Codon usage in higher plants, green algae, and cyanobacteria

Document Type


Publication Date



Codon usage is the selective and nonrandom use of synonymous codons by an organism to encode the amino acids in the genes for its proteins. During the last few years, a large number of plant genes have been cloned and sequenced, which now permits a meaningful comparison of codon usage in higher plants, algae, and cyanobacteria. For the nuclear and organellar genes of these organisms, a small set of preferred codons are used for encoding proteins. Codon usage is different for each genome type with the variation mainly occurring in choices between codons ending in cytidine (C) or guanosine (G) versus those ending in adenosine (A) or uridine (U). For organellar genomes, chloroplastic and mitochrondrial proteins are encoded mainly with codons ending in A or U. In most cyanobacteria and the nuclei of green algae, proteins are encoded preferentially with codons ending in C or G. Although only a few nuclear genes of higher plants have been sequenced, a clear distinction between Magnoliopsida (dicot) and Liliopsida (monocot) codon usage is evident. Dicot genes use a set of 44 preferred codons with a slight preference for codons ending in A or U. Monocot codon usage is more restricted with an average of 38 codons preferred, which are predominantly those ending in C or G. But two classes of genes can be recognized in monocots. One set of monocot genes uses codons similar to those in dicots, while the other genes are highly biased toward codons ending in C or G with a pattern similar to nuclear genes of green algae. Codon usage is discussed in relation to evolution of plants and prospects for intergenic transfer of particular genes.

Publication Title

Plant Physiology