Concerning multiplier automorphisms of cyclic Steiner triple systems

Document Type


Publication Date



A cyclic Steiner triple system, presented additively over Zv as a set B of starter blocks, has a non-trivial multiplier automorphism λ ≠ 1 when λB is a set of starter blocks for the same Steiner triple system. When does a cyclic Steiner triple system of order v having a nontrivial multiplier automorphism exist? Constructions are developed for such systems; of most interest, a novel extension of Netto's classical construction for prime orders congruent to 1 (mod 6) to prime powers is proved. Nonexistence results are then established, particularly in the cases when v = (2β + 1)α, when v = 9p with p ≡ 5 (mod 6), and in certain cases when all prime divisors are congruent to 5 (mod 6). Finally, a complete solution is given for all v < 1000, in which the remaining cases are produced by simple computations.

Publisher's Statement

© Kluwer Academic Publishers 1992. Publisher’s version of record: https://doi.org/10.1007/BF00141968

Publication Title

Designs, Codes and Cryptography