Date of Award


Document Type

Master's Thesis

Degree Name

Master of Science in Forest Ecology and Management (MS)

College, School or Department Name

School of Forest Resources and Environmental Science


Andrew J Storer


Beech bark disease (BBD), a non-native association of the fungal pathogen Neonectria faginata and the beech scale insect Cryptococcus fagisuga, has dramatically affected American beech within North American forests. To monitor the spread and effects of BBD in Michigan, a network of forest health monitoring plots was established in 2001 following the disease discovery in Ludington State Park (Mason County). Forest health canopy condition and basic forestry measurements including basal area were reassessed on beech trees in these plots in 2011 and 2012. The influence of bark-inhabiting fungal endophytes on BBD resistance was investigated by collecting cambium tissue from apparently resistant and susceptible beech. Vigor rating showed significant influences of BBD in sample beech resulting in reduced health and substantiated by significant increases of dead beech basal area over time. C. fagisuga distribution was found to be spatially clustered and widespread in the 22 counties in Michigan's Lower Peninsula which contained monitoring plots. Neonectria has been found in Emmet, Cheboygan and Wexford in the Lower Peninsula which may coincide with additional BBD introduction locations. Surveys for BBD resistance resulted in five apparently resistant beech which were added to a BBD resistance database. The most frequently isolated endophytes from cambium tissue were identified by DNA sequencing primarily as Deuteromycetes and Ascomycetes including Chaetomium globosum, Neohendersonia kickxii and Fusarium flocciferum. N. faginata in antagonism trials showed significant growth reduction when paired with three beech fungal endophytes. The results of the antagonism trial and decay tests indicate that N. faginata may be a relatively poor competitor in vivo with limited ability to degrade cellulose.