Improving learning by connecting chemistry curriculum to students' experiences

Nicole N. Olszowy

report

Abstract

The purpose of the study was to design, implement, and assess the effects of a teaching unit about fuel sources and chemical energy on students’ learning. The unit was designed to incorporate students’ experiences in a way that was aligned with the Michigan High School Content Expectations.

The study was completed with all of the students taking General Chemistry in a rural Michigan high school in the 2010-11 school year. There were 138 participants total. The participants were mostly Caucasian and the majority were in the 11th grade. Of these, 77 constituted the experimental group and were taught the unit. The additional 61 participants in the control group were given the posttest only.

Data was derived from the results of pre/post tests, final assessment projects, and the researcher’s observations. A pretest that contained questions about the fuel sources was administered at the beginning of the unit. An identical posttest was administered at the completion of the unit. A final assessment project required students to choose the best fuel source for the area, and support their opinion with facts and data from their research or the learning activities and labs performed in class.

The results of the study revealed that the teaching unit did produce significant learning gains in the experimental group. The results also indicated that the teaching unit added value to the current General Chemistry curriculum by expanding what students were learning. The instructional goals of the unit were aligned with the Michigan High School Content Expectations. The results also revealed that the students were able to learn to support their thinking and decisions with explanations based on the data and labs. These are essential science literacy skills. The study supported the view that connecting the required curriculum with students’ experiences and interests was effective, and that students can learn important science literacy skills, such as providing support for arguments and communicating scientific explanations, when given adequate teacher support.