Document Type


Publication Date



The effect of molecular adsorption on the transport properties of single walled carbon and boron nitride nanotubes (CNTs and BNNTs) is investigated using density functional theory and nonequilibrium Green’s function methods. The calculated I-V characteristics predict noticeable changes in the conductivity of semiconducting BNNTs due to physisorption of nucleic acid base molecules. Specifically, guanine which binds to the side wall of BNNT significantly enhances its conductivity by introducing conduction channels near the Fermi energy of the bioconjugated system. For metallic CNTs, a large background current masks relatively small changes in current due to the biomolecular adsorption. The results therefore suggest the suitability of BNNTs for biosensing applications.

Publisher's Statement

© 2013 AIP Publishing LLC. Publisher's version of record:

Publication Title

Applied Physics Letters


Publisher's PDF

Included in

Physics Commons