Determination of water-soluble and fat-soluble vitamins in tears and blood serum of infants and parents by liquid chromatography/mass spectrometry

Document Type


Publication Date



Tears serve as a viable diagnostic fluid with advantages including less invasive sample to collect and less complex to prepare for analysis. Several water-soluble and fat-soluble vitamins were detected and quantified in human tears and compared with blood serum levels. Samples from 15 family pairs, each pair consisting of a four-month-old infant and one parent were analyzed; vitamin concentrations were compared between tears and blood serum for individual subjects, between infants and parents, and against self-reported dietary intakes. Water-soluble vitamins B1, B2, B3 (nicotinamide), B5, B9 and fat-soluble vitamin E (α-tocopherol) were routinely detected in tears and blood serum while fat-soluble vitamin A (retinol) was detected only in blood serum. Water-soluble vitamin concentrations measured in tears and blood serum of single subjects were comparable, while higher concentrations were measured in infants compared to their parents. Fat-soluble vitamin E concentrations were lower in tears than blood serum with no significant difference between infants and parents. Serum vitamin A concentrations were higher in parents than infants. Population trends were compiled and quantified using a cross correlation factor. Strong positive correlations were found between tear and blood serum concentrations of vitamin E from infants and parents and vitamin B3 concentrations from parents, while slight positive correlations were detected for infants B3 and parents B1 and B2 concentrations. Correlations between infants and parents were found for the concentrations of B1, B2, B3, and E in tears, and the concentrations of B2, A, and E in blood serum. Stronger vitamin concentration correlations were found between infants and parents for the breast-fed infants, while no significant difference was observed between breast-fed and bottle-fed infants. This work is the first to demonstrate simultaneous vitamin A, B, and E detection and to quantify correlations between vitamin concentrations in tears and blood serum. Our results suggest that tears are a viable biofluid to monitor nutritional health because they sufficiently mirror blood serum data and may enhance the speed of deficiency diagnoses.

Publisher's Statement

© 2016 Elsevier Ltd. Publisher's version of record: https://doi.org/10.1016/j.exer.2016.12.007

Publication Title

Experimental Eye Research