


Figure 5.5: HAWC significance map for the Aquila Rift molecular cloud.
The background is smoothed with a 0.5 degree diameter disk and a point
spread function is used for the sources (Ayala Solares et al., 2017)

.

clouds show a noteable excess above the background. Without a significant excess

seen in the three GMCs, a flux upper limit was instead determined. Figure 5.11 shows

the three clouds’predicted fluxes compared with calculated 95% upper limits. These

limits are not very constraining and they leave a wide range of possible gamma ray

fluxes.

Since the gamma ray flux upper limit has been calculated, the same can be done

for the CR flux near each cloud. Since the predicted gamma ray flux is directly

proportional to the CR flux, their upper limits are related as well:
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Figure 5.6: HAWC significance map for the Hercules molecular cloud. The
background is smoothed with a 0.5 degree diameter disk and a point spread
function is used for the sources (Ayala Solares et al., 2017)

.

ULFγ = k · ULΦCR ·
(
M

d2

)
(5.1)

where the ‘UL’ denotes an upper limit for gamma rays and CRs respectively, and ‘k’

is the constant from (eqn. 2.3). The ratio between a GMC’s predicted gamma ray

flux and flux upper limit is the same as the surrounding CR sea’s assumed flux and
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Figure 5.7: HAWC significance map for the Taurus molecular cloud. The
background is smoothed with a 0.5 degree diameter disk and a point spread
function is used for the sources (Ayala Solares et al., 2017)

.

flux upper limit:

(
ULFγ
Fγ

)
=

(
ULΦCR

ΦCR

)
(5.2)

where the calculated results are seen in Figure 5.12. The upper limits on the CR flux

near the three clouds are larger than the CR flux measured at Earth and thus not
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Figure 5.8: Excess plot for the Aquila Rift GMC. N’ is HAWC data and
〈N ′〉 is the estimated background. ‘f’ is the fraction of PMTS that recon-
structed a gamma ray shower from the cloud. The different fractions corre-
late to different energies,a smaller fraction relating to smaller energy. This
shows that no matter how many PMTs were triggered, there is no significant
excess (Ayala Solares et al., 2017)

.

Figure 5.9: Excess plot for the Hercules GMC. N’ is HAWC data and 〈N ′〉
is the estimated background. ‘f’ is the fraction of PMTS that reconstructed a
gamma ray shower from the cloud. The different fractions correlate to differ-
ent energies,a smaller fraction relating to smaller energy. This shows that no
matter how many PMTs were triggered, there is no significant excess(Ayala
Solares et al., 2017)

.

very constraining.
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Figure 5.10: Excess plot for the Taurus GMC. N’ is HAWC data and 〈N ′〉
is the estimated background. ‘f’ is the fraction of PMTS that reconstructed
a gamma ray shower from the cloud. The different fractions correlate to
different energies,a smaller fraction relating to smaller energy. This shows
that no matter how many PMTs were triggered, there is no significant excess
(Ayala Solares et al., 2017)

.

Figure 5.11: Flux 95% predicted upper limits for GMCs. The uncertainties
are those from Figure 5.3 (Ayala Solares et al., 2017)

.
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Figure 5.12: Flux ratios for GMCs compared with measured cosmic ray
flux (Ayala Solares et al., 2017)

.
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Chapter 6

Conclusion

The goal of this study was to probe the ‘sea’ of Galactic diffuse CRs. In chapter 2

the diffusive shock acceleration mechanism for CR acceleration was described. The

interaction between an accelerated CR and a Giant Molecular Cloud was detailed,

resulting in the creation of a gamma ray. This gamma ray flux is predicted from

Equation 2.3 which uses properties of the clouds and the assumed CR flux.

The HAWC detector, as described in chapter 3, is able to detect gamma ray-induced

air showers at the high energies these gamma rays have as they reach Earth. This

means measurements by HAWC can be compared against the predicted gamma ray

flux.

In chapters 4 and 5 the uncertainties in Giant Molecular Clouds’ masses and distances
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were taken into account when finding the uncertainty range of predicted gamma ray

fluxes and how they compare to HAWC’s sensitivity. It was determined that despite

the upper end of the uncertainty range being within HAWC’s sensitivity to the flux,

the data maps do not show a high significance toward detection and no discernable

excess was found. Instead, upper limits were calculated for CR flux, which do not

place tight constarints on the possible range of CR flux.

In the end, no certain conclusion was reached regarding whether or not the CR ‘sea’

is evenly distributed throughout the Galaxy. Aquila Rift offers the best constaraint

for the three studied clouds from Figure 5.12, with an upper limit of twice the locally

measured CR flux. As HAWC continues operating and detecting these gamma ray

showers, as seen in Figure 5.3, over time it will become more sensitive to smaller

fluxes, thus more able to be compared against the predicted flux. It is also possible

that not all uncertainties are accounted for, like for instance in the assumed CR flux

part of Equation 2.3. The uncertainty range may yet be much larger than what was

shown in this report.
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