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Figure 4.3: Indicators of different observation directions for two objects.
Top Left: θ = −π/4. Top Right: θ = 0. Bottom Left: θ = π/8. Bottom
Right: θ = π/2.

centered at (−0.5,−0.5). For different observation directions, strips containing the

objects are constructed effectively.

4.3.2 Two Observation Directions

Now we consider two observation directions: θ1 = 0 and θ2 = π/2. We compute the

indicators and superimpose them in one picture. Since the observation directions are
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Figure 4.4: θ = π/2 and θ = 0. Left: Single object; Right: Two objects.

perpendicular to each other, the strips are perpendicular to each other in Fig. 4.4.

For both one object and two objects, we see that intersection of the strips contains

the support of f .

4.3.3 Multiple Observation Directions

Combining the characterization of the support of the source from Theorem 4.6 and

Corollary 4.7 for all available receiver directions θ1, . . . , θj ∈ Θ, we obtain the

following result

Corollary 4.8 Under the assumption of Theorem 4.6, we have for any z ∈ Rd,

1. If z ∈
⋂J
j=1

⋃M
m=1 int(KSDm

(θj)), then there exists ε > 0 such that Iz,ε > 0, for

any 1 ≤ j ≤ J.
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Figure 4.5: Reconstruction using multiple observation directions when f =
5. Left: single object. Right: Two objects.

2. If z /∈
⋂J
j=1

⋃M
m=1 int(KSDm

(θj)), then there exists 1 ≤ j ≤ J, and ε0 > 0 such

that Iz,ε goes to zero for any 0 < ε ≤ ε0.

Corollary 4.8 gives a rigorous characterization of a subset of the Θ−convex hull

of the support D of the source. For the numerical implantation of Corollary 4.8,

we compute the corresponding indicator function I
θj
z for each observation direction

θj, j = 1, . . . J. We expect that the value of Iz defined in (4.7) is much larger for

z ∈
⋂J
j=1

⋃M
m=1 int(KSDm

(θj)) than for z /∈
⋂J
j=1

⋃M
m=1 int(KSDm

(θj)). Hence, the

plot Iz for any z ∈ BR(0) should yield a visualization of
⋂J
j=1

⋃M
m=1 int(KSDm

(θj)).

We use N = 20 observation directions θj, j = 1, . . . , 20 such that θj = −π/2 + jπ/N .

We superimpose the indicators and show the results in Fig. 4.5. The locations and

sizes of support of f are reconstructed correctly.
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Figure 4.6: Reconstructions using multiple observation directions when
f(x, y) = x2 − y2 + 5. Left: single object. Right: Two objects.

Next, we choose f(x, y) = x2 − y2 + 5, a function depending on the locations but

independent of the wave number k. The reconstruction is shown in Fig. 4.6. Finally,

we assume that f depends on k as well. Let

f1(x, y; k) = k2(x2 − y2 + 5),

and

f2(x, y; k) = eik(x cos 3π/2+y sin 3π/2)(x2 − y2 + 5).

The reconstructions are shown in Fig. 4.7. Note that this case is not covered by the

theory.
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Figure 4.7: Reconstructions of sources depending on wavenumber k. Top:
f1(x, y; k) = k2(x2 − y2 + 5). Top Left: one object. Top Right: two objects.
Bottom: f2(x, y; k) = eik(x cos 3π/2+y sin 3π/2)(x2 − y2 + 5). Bottom Left: one
object. Bottom Right: two objects.

4.3.4 Extended objects

The sizes of supports of f in the above examples are small compared with the wave-

lengths used. The smallest wavelength is λmin = 2π/10 ≈ 0.628. In Fig. 4.8, we show
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Figure 4.8: Reconstructions of larger objects when f(x, y) = 5. Left:
triangle. Right: thin bar.

the reconstructions of larger objects. One is an equilateral triangle with vertices

(−2, 0), (1, 0), (−1/2, 3/2
√

3− 1).

The second one is a thin slab given by (−2, 2) × (0, 0.1). The results indicate that

shorter wavelength could lead to better reconstruction.
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Chapter 5

Conclusions

5.1 Summary and Conclusions

In this thesis, we developed two new sampling methods for two inverse scattering

problems.

We first generalized the indicator method in [45], which is discussed in Chapter 2, and

proposed a new direct sampling method for inverse electromagnetic scattering prob-

lems in an inhomogeneous isotropic medium in R3 using the far field measurements.

We considered two cases of the contrasts. First case, when all of D is absorbing.

Second case, we considered the more general case whene only parts of D may be

absorbing. In this method we proposed an indicator function which is big when the

131



sampling point lies inside the scatterer and when the sampling point moves away

from the boundary of the scatterer the value of the indicator function decays and

goes to zero. The main feature of this method is that the indicator function is based

on the inner product, and therefore the method is very simple to implement. With

the help of the factorization of the corresponding far field operator, a lower bound

established for sampling points inside the scatterers. Furthermore, we showed that

the indicator function decays like Bessel function as the sampling point moves away

from the boundary of the scatterers. Moreover, we showed that the proposed method

is stable with respect to noises in the data.

As the second contribution, we proposed a new sampling method for multifrequency

inverse source problem for time-harmonic acoustic waves using a finite set of far field

data. The method is based on the factorization method for multifrequency inverse

source problems with sparse far field measurements. The main feature of this method

is that the indicator function is based on the inner product, and therefore the method

is very simple to implement. We have developed a non-iterative reconstruction scheme

of factorization-type to locate the support of the sources and studied the behavior of

the indicator function, which gives a characterization of the support of the source.

The method produces a union of convex polygons with normals in the observation di-

rections that approximates the positions and the convex hull of well-separated source

components.
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5.2 Future Work

Based on the work accomplished in this thesis, we provide below a number of possible

future works:

1. Study the orthogonality sampling [56] for the detection of the location and

shape of objects from the far field pattern of scattered electromagnetic waves.

2. Study the theoretical foundation of the orthogonality sampling [56]. The theory

of the orthogonality sampling is only partially resolved and the relation between

indicator functions proposed in [56] and the shape of the scatterer is open and

needs further investigation.

3. Study a factorization method for multifrequency inverse source problem for

time-harmonic electromagnetic waves with a limited set of far field data.

4. Generalize the method proposed in Chapter 4 to the case of multifrequency

inverse source problem for time-harmonic electromagnetic waves with a limited

set of far field data.
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