2016

CARBON FLUX DYNAMICS IN HIGH ALTITUDE PEATLANDS IN THE ECUADORIAN ANDES

Maria Elisa Sanchez Garces

Michigan Technological University, msanchez@mtu.edu

Copyright 2016 Maria Elisa Sanchez Garces

Recommended Citation
https://digitalcommons.mtu.edu/etdr/294

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr

Part of the Other Ecology and Evolutionary Biology Commons, and the Terrestrial and Aquatic Ecology Commons
CARBON FLUX DYNAMICS IN HIGH ALTITUDE PEATLANDS IN THE ECUADORIAN ANDES

By
María Elisa Sánchez

A THESIS
Submitted in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE
In Applied Ecology

MICHIGAN TECHNOLOGICAL UNIVERSITY
2016
© 2016 María Elisa Sánchez
This thesis has been approved in partial fulfillment of the requirements for the Degree of
MASTER OF SCIENCE in Applied Ecology.

School of Forest Resources and Environmental Science

Thesis Co-Advisor:  Rod Chimner

Thesis Co-Advisor:  Erik Lilleskov

Committee Member:  Judith Perlinger

School Dean:  Terry Sharik
### TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>4</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>5</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>6</td>
</tr>
<tr>
<td>CHAPTER ONE</td>
<td>7</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>7</td>
</tr>
<tr>
<td>METHODS</td>
<td>12</td>
</tr>
<tr>
<td>Study sites</td>
<td>12</td>
</tr>
<tr>
<td>Experimental setup</td>
<td>13</td>
</tr>
<tr>
<td>Carbon dioxide flux measurements</td>
<td>14</td>
</tr>
<tr>
<td>Methane flux measurements</td>
<td>16</td>
</tr>
<tr>
<td>Environmental parameters and vegetation cover</td>
<td>17</td>
</tr>
<tr>
<td>Hydrology</td>
<td>17</td>
</tr>
<tr>
<td>Statistical analyses</td>
<td>18</td>
</tr>
<tr>
<td>RESULTS</td>
<td>19</td>
</tr>
<tr>
<td>Environmental parameters and hydrology</td>
<td>19</td>
</tr>
<tr>
<td>Carbon dioxide and methane fluxes</td>
<td>19</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>20</td>
</tr>
<tr>
<td>CO₂ fluxes</td>
<td>20</td>
</tr>
<tr>
<td>CH₄ fluxes</td>
<td>22</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>25</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>27</td>
</tr>
<tr>
<td>FIGURES</td>
<td>35</td>
</tr>
<tr>
<td>TABLES</td>
<td>43</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>47</td>
</tr>
<tr>
<td>A.1</td>
<td>47</td>
</tr>
<tr>
<td>A.2</td>
<td>48</td>
</tr>
</tbody>
</table>
PREFACE

The journal article which is included as the main body of this manuscript was written by
María Elisa Sánchez. Data collection and processing were done by Sánchez, as well as
figures and tables.

Rod Chimner provided help with the experimental design, gas flux measurements
training, and editing advice and assistance.

John Hribljan provided a great part of the gas sampling training, constructed the gas
measurement chambers and was essential in troubleshooting while measuring in the
mountains.

Erik Lilleskov helped with the experimental design as well as help in the construction of
the Cayambe Coca and Antisana sites and essential editing assistance.

Esteban Suárez helped in the constructions of the sites, editing and provided knowledge
of the high altitude ecosystems in Ecuador.

John Stanovick provided crucial help with the SAS model.
ACKNOWLEDGMENTS

There are many wonderful people to thank for their help with this project. First of all, my father and brother for being my pillars and guides. Shayle, thank you for your undivided care and for sharing this adventure with me.

Thank you Rod Chimner, Erik Lilleskov, John Hribljan and Esteban Suárez; you have shared with me the most precious things a person can receive nowadays: time, trust and knowledge. Thank you Judith Perlinger for being part of the committee. Thanks to John Stanovick for your pivotal help with the statistical models. Thank you Evan Kane for your help with SAS. Thank you to the people at the U. S. Forest Service, and everyone I’ve met here in Houghton.

An immense thank you to Martín Carrera and Segundo Chimbolema, the field crew, none of the data collection would have been possible without you. Thank you to the volunteers who participated in one way or another in this project: Ellie Crane, Alex Brown, Austin Meyer, Josie Scott, Ryan Newis, Haley Randolph and Lila Wright. A special thanks to the people at LEA-USFQ: Andrea Encalada, José Schreckinger, Jael Martínez, Ana Dolenc.

I also thank the U. S. Forest Service for funding this project.
ABSTRACT

Although knowledge of peatland CH$_4$ and CO$_2$ exchange in temperate mountain ecosystems is available, information about carbon (C) exchange in peatlands of the Andean mountains is limited and these ecosystems may behave differently given the particular characteristics of the Andean tropics. These ecosystems are highly productive and under pressure by grazing. Our first objective was to measure baseline carbon dioxide (CO$_2$) and methane (CH$_4$) flux in an undisturbed peatland in Cayambe-Coca National Park. Our second objective was to quantify CO$_2$ and CH$_4$ fluxes in an intensively cattle grazed peatland near Antisana Ecological Reserve. CO$_2$ and CH$_4$ effluxes were measured using a static chamber method. The mean NEE values for the undisturbed and disturbed site were -0.69 ± 0.08 and -1.25 ± 0.13 g CO$_2$ m$^{-2}$ hr$^{-1}$ respectively. A significant correlation between microtopography and CO$_2$ and CH$_4$ flux was found in the undisturbed site, with higher NEE, GPP, ER and CH$_4$ values in hummocks than in lawns. Microtopography doesn’t seem to be a controller of CO$_2$ efflux in the grazed site, although the NEE and GPP rates are higher than those found in the undisturbed site, and show a linear relationship with vegetation cover. CH$_4$ emissions in the undisturbed site were low (8.1 ± 1.17 mgCH$_4$ m$^{-2}$ d$^{-1}$). However, CH$_4$ emissions at the grazed site were very high (132.25 ± 34.22 mg CH$_4$ m$^{-2}$ d$^{-1}$), which might be attributed to the high physical impact and inputs from cattle. In summary, it appears that cattle grazing may be capable of large changes to C exchange and greenhouse gas fluxes in Andean peatlands.
CHAPTER ONE

INTRODUCTION

Carbon (C) exchange in peatlands is being studied around the globe due to the importance that methane (CH$_4$) and carbon dioxide (CO$_2$) have in the global cycle and climate change (Frolking et al. 2006, Lahteenoja et al. 2009, Turetsky et al. 2014). Peatlands accumulate thick layers of partially decayed plant material (peat), which develops from the slow decomposition of the organic matter under saturated conditions (Gorham, 1991, Rydin & Jeglum, 2006). The C accumulation is due to an imbalance that favors C uptake over the loss of C (Strack et al. 2016). This accumulation in undisturbed peatlands occurs by the conversion of atmospheric CO$_2$ to peat while emitting CH$_4$ (Huth et al. 2012). Both are significant greenhouse gases, but methane has a higher global warming potential and radiative forcing (Solomon et al. 2007). As they may behave as sinks or sources of these gases, peatlands have important implications in the global greenhouse gas cycle (Gorham, 1991, Frolking et al. 2006).

Peatlands cover approximately only 3% of Earth’s land surface but represent 30-40% of the global soil C (Gorham, 1991, Page et al. 2011). Although peatlands are most extensive in the boreal and temperate zones, they are also numerous in many tropical regions (Joosten, 2010). Total C stocks of tropical peatlands are estimated to be ~18% of the global peat stock, with tropical South American peatlands roughly estimated to contain ~24% of the total tropical peatland area (Page et al. 2011). However, recent

---

1 The material contained in this chapter is in preparation for submission to the journal *Mires and Peat*. 
mapping of peatlands in the South American lowlands shows that there is a considerable amount of C that hasn’t been accounted for in regional and global C budgets (Draper et al. 2014). Although most attention has been focused on lowland peatlands, tropical peatlands are also very common in mountains, including the Andes (Bosman et al. 1993, Samaniego et al. 1998, Izurieta, 2005, Chimner & Karberg 2008, Cooper et al. 2010, Hribljan et al. 2016).

The tropical alpine zone of Venezuela, Colombia, Ecuador and Northern Perú (called páramo) is characterized by cold and wet conditions and high solar radiation; it occurs roughly between 3000 to 5000 meters above sea level (masl) (Balslev & Luteyn, 1992, Hofstede, 2003). Due to its tropical location, the páramo has low climate variability throughout the year (Mena & Hofstede, 2006), thus supporting both year-long plant production and saturation of peat soils. The interaction between climate, geographic location and topographic convergence in the Andes, contributes to the formation of very unique peatlands (Buytaert et al. 2005).

Andean peatlands, “turberas” or “bofedales”, are common throughout the South American tropics (Chimner & Karberg 2008, Cooper et al. 2010, Maldonado Fonkén, 2014). In the Ecuadorian páramo, these environments tend to be dominated by several species of cushion plants (e.g. Plantago spp., Azorella spp., Distichia spp.), grasses (e. g. Calamagrostis spp., Cortaderia spp.), sedges (e.g. Carex spp.), and a variety of mosses that form a heterogeneous ground layer vegetation matrix (Bosman et al. 1993, Hribljan et al. unpublished data). Peatlands in the Andes are not as extensive as those in the lowlands, hence Ecuadorian páramo peatlands are small but numerous (Hribljan et al. unpublished data). The peatlands in this ecozone range in age from 1000 to 8000 years,
but most initiated between 3000–5000 years ago (Samaniego et al. 1998, Earle et al. 2003, Chimner & Karberg 2008, Hribljan et al. 2014, 2016). Although relatively young, Andean peatlands have peat deposits that average ~5–6 m thick with long-term mean C accumulation rates (LARCA) ranging from 12 to 53 gC m\(^{-2}\) yr\(^{-1}\) (Chimner & Karberg 2008, Hribljan et al. 2014, 2016). These C accumulation rates are greater than northern peatlands, which have a mean LARCA of ~18 g m\(^{-2}\) yr\(^{-1}\) (Yu et al. 2010), and are comparable to Amazonian peat swamp forests with LARCA values that range between 39–85 g m\(^{-2}\) yr\(^{-1}\) (Lahteenoja et al. 2009).

Despite the large C deposits in Andean peatlands, data is sparse on their C cycling dynamics and environmental factors that control them. Studies of CO\(_2\) efflux of mountain peatlands in the temperate regions show distinct seasonal patterns, with a broad photosynthesis range of values during the snow-free periods and a significant positive correlation of CO\(_2\) emissions with soil temperature as well as a significant negative correlation of CO\(_2\) emissions with water table (Wickland et al. 2001, Chimner & Cooper, 2003, Otieno et al. 2009). As CO\(_2\) efflux data is lacking in the tropical Andean region we are uncertain of the values and the factors influencing them.

Studies of CH\(_4\) efflux in peatlands provide contrasting results. A study of a fen dominated by aerenchymatous cushion plants in Patagonia found near zero emissions of CH\(_4\) (Fritz et al. 2011), which contradicts prevailing studies that vascular plants with aerenchyma tissues typically have higher CH\(_4\) emissions (Turetsky et al. 2014). Fritz et al. (2011) attributed this to high levels of soil oxygenation in the rooting zone by aerenchymal cushion plants. In support of this, they measured much greater CH\(_4\) emissions from clipped cushion plant patches, concluding that the environment was
indeed suitable for CH₄ production. In contrast, Teh et al. (2014) found that upper montane grasslands in Perù were net CH₄ sources. Since CH₄ emissions in high altitude ecosystems have been rarely measured, it is difficult to generalize these patterns to all Andean peatlands.

Microtopography (e.g. hummocks, lawns and pools) is important in peatlands as these surfaces provide heterogeneity in microclimate and anerobic conditions, which can modify C cycling and species composition (Rydin & Jeglum, 2006). For instance, in temperate peatlands dominated by mosses, hummocks are often associated with higher aerobic CO₂ respiration, whereas lawns are more saturated and may have higher rates of CH₄ efflux (Bubier et al. 1992, Johnson et al. 2013). Microtopography effects over C exchange in Andean peatlands may be different as many are dominated by vascular cushion plants 15-30 cm above the watertable (Bosman et al. 1993).

Besides their ecological relevance, Andean peatlands are socio-economically important to local communities and cities, which benefit from their ecosystem services (Suárez, 2001, Izurieta, 2005). Páramo peatlands play an important role in watershed hydrology and are sources of water for large cities downslope (Buytaert et al. 2005). The use of these lands by local communities for agriculture and grazing is also very common (Izurieta, 2005, Young, 2009). However, since the introduction of hoofed grazing animals to the Andean páramo around 200 years ago and the growth of agricultural practices, the vegetation has suffered a significant decrease in coverage (Millones, 1982, Molinillo & Monasterio, 2002). Of the total land area of Ecuador, approximately 5% is páramo ecosystem (from 3500 to 5000 masl), 40% of these páramo ecosystems in Ecuador are protected in a national park or an ecological reserve and the remaining 60% has been
altered by human intervention or is currently being degraded (Beltrán et al. 2009). Grazing is a widespread practice in the Andes (Balslev & Luteyn, 1992, Hofstede, 1995), and one of the main reasons for degradation of peatlands in this region (Salvador et al. 2014). The constant presence of cattle as well as the increasing intensity could lead to a significant change in the characteristics of these ecosystems.

Cattle can affect peatlands by both grazing and trampling (Sjögersten et al. 2011). Trampling reduces the peat’s bulk density causing peat subsidence (Rydin & Jeglum, 2006), and oxygenates the upper peat layer, leading to increased CO₂ emissions (Strack, 2008). Grazing and the addition of nutrients with faecal matter could cause a change of the vegetation cover towards a graminoid dominance (Falk et al. 2015), or the removal of photosynthetically active biomass (Falk et al. 2014). These changes in above ground biomass affect the system’s net C exchange, in some cases potentially shifting it to a net source of CO₂ (Sjögersten et al. 2011, Falk et al. 2014), or lead to an increase in photosynthesis and net ecosystem uptake (Falk et al. 2015). The input of nutrient from faeces in peatlands in the Colombian Andes has also been linked to increased above ground biomass as well as higher decomposition rates (Urbina & Benavides, 2015). CH₄ emissions in peatlands that have been affected by grazing have contrasting results, with some studies relating them to higher emissions (e. g. Aerts & de Caluwe, 1999, Fritz et al. 2011, Boon et al. 2014), and others to lowered or no impact in emissions (e. g. Falk et al. 2015, Sjögersten et al. 2011).

Because of the lack of information on carbon cycling in tropical Andean peatlands, our first objective was to measure baseline fluxes in an undisturbed peatland. Since grazing is widespread in the tropical Andes, our second objective was to quantify
CO₂ and CH₄ fluxes in an intensively grazed site. We hypothesized that: 1. Microtopography affects the C efflux, and we expect i. a higher C uptake on hummocks than in lawns; and ii. a higher CH₄ emissions in lawns. 2. We believe that disturbance by intensive grazing will affect both the CO₂ and CH₄ flux, specifically we expect i. a reduction of the net ecosystem exchange and gross primary production with increasing disturbance; and ii. an increase in CH₄ efflux with higher disturbance.

METHODS

Study sites

The study was conducted in two peatlands in the Ecuadorian Andes (Figure 1, and Table 1). Our first site, Cayambe-Coca (CC), is located in the Cayambe-Coca National Park and our second site, Antisana (AN), is located in the Pullurima cattle farm that borders the Antisana Ecological Reserve to the west. The temperature in these sites varies greatly during the day (Table 1); as the Ecuadorian Andes are located in the tropical zones, there is minimal seasonality and precipitation is present almost every day of the year (Suárez, 2001).

CC is well-protected from human disturbance, including grazing. The basin-shaped peatland is adjacent to a small pond (Figure 2). Precipitation in this site is high due to an orographic effect, which helps in the formation of peatlands (Buytaert et al. 2006, Mitsch and Gosselink, 2015). This peatland is located in the Guamaní mountain range that divides the northeastern Ecuadorian highlands from the eastern cloud forest. Specifically, the site is located in the Potrerillos lava flow that is part of the Chacana Caldera (Hall and Mothes, 2008). Vegetation communities in CC are dominated by the cushion plant *Plantago rigida* (Plantaginaceae), and brown mosses interspersed with a
few dwarf shrubs, mostly *Disterigma empetrifolium* (Ericaceae). Although CC is well protected it is not considered as a control for the disturbed site because of many variables, the most notable being differences in geomorphology, altitude and local climatic conditions, that differ from the AN site.

The AN site has a higher degree of disturbance due to long history of cattle grazing (Whymper, 1880). Currently cattle are allowed free range throughout the greater AN region, and the peatland is particularly affected by trampling, peat compaction and fertilization with manure and urine. The sloping AN peatland is located adjacent to a stream in the foothills of the Antisana volcano (Figure 2), and the most denuded areas are those near the access to the watercourse. Vegetation at AN site is dominated by *Plantago rigida* and *Eleocharis albibracteata* (Cyperaceae). Plant cover at the sub-meter scale varies greatly within the site due to trampling by cattle, ranging from 0 to 100 %.

**Experimental setup**

Polyvinyl chloride (PVC) collars (diameter 40.6 cm, height 10 cm, and thickness of wall 0.5 cm) were placed in pairs in adjacent hummock and lawn areas. Collars were carefully inserted into the peat to a depth of 5 cm to create a solid seal between the peat and the collar, and left in place for the entire length of the study. In CC, a total of 8 collars (4 pairs) were laid along a transect that bisected the peatland (Figure 2a). In AN, a total of 16 collars (8 pairs) were laid along a grazing disturbance gradient: half of the collars were intentionally placed in areas that showed less disturbance and had 100 % vegetation cover. The other half were placed in more disturbed areas with vegetation cover varying from 0 to 95 % (Figure 2b).
A set of boardwalks were constructed at both sites to prevent disturbance on the peatland while sampling. Four PVC pipes of 10.2 cm diameter by 50 cm long were inserted in the peat for each pair of collars, and left throughout the length of the study as supports for the boardwalks.

**Carbon dioxide flux measurements**

CO$_2$ flux was measured with an EGM-4 Infrared Gas Analyzer (IRGA; PP Systems, Amesbury, USA) connected to a custom made clear acrylic chamber (diameter 40.6 cm, height 59 cm, volume 76,533 cm$^3$; Hustchinson & Mosier, 1981). The IRGA has a closed path system with a constant flow rate of 200-400 cm$^3$/min. The acrylic chamber was equipped with a detachable top, mixing fan, vent valve, and a photosynthetically active radiation (PAR) sensor. The IRGA was zeroed and calibrated *in situ* for every visit with a 400 ppm calibration CO$_2$ mixture (Mesa, California, USA). Due to the high altitude and low pressure, calibration of the IRGA was problematic, because on each visit the calibration with the 400 ppm standard occurred at different values. Our sites occur above 3900 masl and below 650 mbar, which is outside the bench tested range of the PP-Systems IRGA (850–1150 mbar, or around 1400–1200 masl; PP-Systems, personal communication, October 20$^{th}$, 2014). To check IRGA stability at the higher altitudes, a curve of concentration vs altitude was created (Figure 3). Tests of the IRGA along an altitudinal gradient with a 400 ppm calibration standard from 3500-4100 masl, reported a CO$_2$ concentration that is offset from the standard gas and linearly increases as pressure decreases with altitude. Therefore, a range of CO$_2$ standards (300, 400, 500, and 600 ppm) were measured at the field sites, to prepare a curve for posterior slope correction. Standards were prepared using both 400 and 10000 ppm CO$_2$ calibration mixtures by
Mesa, a gas tight syringe (Super Syringe S-500, Hamilton, Reno, USA), and Tedlar bags (500 and 1000 ml Tedlar air sample bag, SKC, Pennsylvania, USA). Calibration curves were linear (mean $R^2$ of 0.96) and were not significantly different between dates, which showed a linear relation between CO$_2$ flux measurements and the actual values. From the mean slope of the curves (0.70 ± 0.08) a correction factor of 1.43 was created to be used for adjusting the CO$_2$ flux values.

To perform a CO$_2$ measurement, the acrylic chamber was placed on the collar and sealed with a wide rubber gasket placed over the chamber/collar seam. After letting the chamber equilibrate briefly, the lid was closed and sealed with a rubber gasket. The CO$_2$ flux measurements were taken over a 124 sec period (Ballantyne et al. 2014). Clear chamber measurements for net ecosystem exchange (NEE) were taken first, capturing photosynthesis and both plant and microbial respiration. At the end of the measurement, the chamber lid was opened briefly to re-equilibrate, closed and sealed again, then covered with a white opaque cloth to block sunlight and prevent photosynthesis, and ecosystem respiration (ER) was measured. Gross primary production (GPP) was determined by the difference between NEE and ER. In this study, positive values indicate a release of CO$_2$ from the ecosystem to the atmosphere, negative values represent an uptake of CO$_2$ by the ecosystem from the atmosphere. All measurements were randomized across collars and taken between 9:00 and 16:00. Data collection was performed in 11 campaigns for CC and 9 for AN, from July 2014 to February 2016 at intervals of approximately 1–2 months.
Methane flux measurements

CH₄ emissions were quantified by a static chamber technique (diameter 40.6 cm, height 31 cm, volume 40,212 cm³; Hutchinson & Mosier, 1981). A portable flame ionization detector (FID; INFICON-Photovac MicroFID II, USA) was used to determine CH₄ concentrations. Given that a minimum of 17% oxygen is required to start the hydrogen flame (INFICON, 2012) and the percent oxygen in both study sites is around 13%, samples were taken in situ and analyzed on the FID in the laboratory at a lower elevation. A gas syringe was used to extract 500 ml gas samples through a septum on the side of the chamber, and injected into Tedlar bags that were pre-flushed with nitrogen zero grade 99% by Mesa. For each collar, a sample of ambient air was taken over the vegetation. The chamber (equipped with a vent tube) was then placed over the collar, tightly sealed with a wide rubber gasket placed over the chamber/collar seam, and a gas sample was taken from the chamber at 0, 15, 30 and 45 min for a total of five samples, including ambient, per collar. In the laboratory (~2400 masl) the FID was calibrated using a two span calibration (100 ppm CH₄ standard mixture from Mesa and a 10 ppm dilution). For CH₄ concentration measurement, gas bags were connected to the FID and a period of ~8 seconds was necessary for stabilization and reading. CH₄ flux was calculated using the PP-Systems CO₂ efflux equation adapted for CH₄ equation (1) (PP-Systems, personal communication, November, 2014). A headspace correction was calculated to account for chamber gas dilution when a gas sample was taken from the chamber. The difference between the CH₄ flux calculated with and without the headspace correction was less than 2.7%. Data collection was performed in 8 campaigns for CC and 6 for AN from November 2014 to February 2016 in intervals of approximately 1–2 months.
\[ F_{CH_4} = \frac{\Delta C}{\Delta t} \times \frac{P}{1013} \times \frac{273}{273 + T} \times \frac{16.043 \, kg}{22.414 \, m^3} \times \frac{V_c}{A_c} \times \frac{mol}{10^6 \mu mol} \times \frac{86400 \, s}{d} \times \frac{10^6 \, mg}{kg} \]

where: \( F_{CH_4} \) is the CH\(_4\) efflux (mg m\(^{-2}\) d\(^{-1}\)), \( \Delta C/\Delta t \) is the change in CH\(_4\) with time (\(\mu\)mol mol\(^{-1}\) s\(^{-1}\)), \( P \) is the barometric pressure (atm), \( T \) is the air temperature at soil surface (°C), 16.043 g is the molecular weight of CH\(_4\), and a mol of gas occupies 22.414 L at standard temperature and pressure (STP) (values are transformed to kg and m\(^3\) respectively), \( V_c \) is the chamber and collar volume (m\(^3\)) and \( A_c \) is the area of chamber (m\(^2\)). The CH\(_4\) emissions are scaled to 24 hours of the day for ease of comparison with other studies.

**Environmental parameters and vegetation cover**

Ambient temperature, peat temperature (at 5 cm depth), and barometric pressure were recorded during each gas efflux measurement. An iButton (1-Wire Digital Thermometer DS18B20, Dallas Semiconductor, Maxim) was placed on each collar for continuous peat temperature logging every 4 hours. Peat temperature data are available from June 2014 to March 2015 for CC and from October 2014 to May 2015 for AN. The percent vegetation cover was determined for each collar by visually assessing the cover area of each species or genus.

**Hydrology**

Water table levels were measured at each site in a 1 m long x 6.3 cm diameter fine-mesh-covered PVC slotted pipe inserted into a pre-cored hole and flushed several times to clear well of sediment from installation. A PVC cap was installed on the wells to exclude infiltration from rain. A water level datalogger (Levelogger Model 3001, Solinst, Canada)
was placed inside each well. Additionally, a barometric pressure datalogger (Barologger Model 3001, Solinst, Canada) was placed in a smaller PVC pipe on a drier section of the peatland. Atmospheric pressure correction was made to the Levelogger values and a daily measurement of water table levels was obtained for each site. Manual well measurements were conducted through the sampling season to confirm Levelogger accuracy. A single pH measurement was made for each site in March 2015.

**Statistical analyses**

For the CO₂ analyses, a total of 84 measurements were included for CC and 124 for AN, taken on 11 and 9 dates, respectively (Appendix A1). For the CH₄ analyses, a total of 64 measurements were used for CC and 49 for AN, taken on 8 and 6 dates, respectively (Appendix A1). In AN the CH₄ measurements were only made consistently in lawns due to logistical issues. Some data were omitted from both sites due to missing values of either flux or environmental variables. The relation between peat temperature (measured with iButtons) and microtopography was analyzed with a paired t-test. At AN, the effects of the explanatory variables: vegetation cover and microtopography were analyzed on CO₂ flux; and the effects of vegetation cover on CH₄ flux. In CC the effects microtopography were analyzed on CH₄ and CO₂ flux. The Proc Mixed (SAS version 9.4) procedure was used to perform a repeated measures analysis with mixed effects. The analyses used the collar as a subject and the collar pairs as a block effect, and microtopography was used as a group effect. The normality of the dependent variables was tested before performing the analysis. Residuals were checked for homogeneity of variances. In the results, data are presented as mean ± SE, and significance was determined at an alpha value of 0.05.
RESULTS

Environmental parameters and hydrology

Both sites were very wet, with frequent, almost daily, precipitation during the study period (Figure 4). Frequent precipitation led to stable water table levels at both sites until reduced precipitation associated with an El Niño event that started in October 2015 lowered water tables in January-February 2016. Prior to the El Niño event, water table levels in CC typically ranged from ~3 cm above to ~5 cm below the soil surface; while water table levels at AN were slightly lower, ranging from ~0 cm to ~20 cm below the soil surface (Figure 4 and Table 2).

Peat temperature (measured automatically with iButtons) at 10 cm depth ranged from 0.5 °C and 17.5 °C for CC and -3.5 °C and 41.5 °C for AN over the length of the study. The minimum and maximum peat temperatures typically occurred at ~02:00 and ~14:00, respectively, in both sites (Table 2). A paired t-test showed a significant difference between the daily mean peat temperatures of hummocks and lawns for CC, \( t(278) = 27.83, p < 0.001 \), and AN, \( t(221) = 43.87, p < 0.001 \), with higher temperatures on lawns.

Carbon dioxide and methane fluxes

In CC, CO₂ fluxes were significantly different between hummocks and lawns (Table 3, Figure 5). GPP was roughly five times greater on hummocks (-2.28 ± 0.13 g CO₂ m⁻² hr⁻¹) compared to lawns (-0.43 ± 0.06 g CO₂ m⁻² hr⁻¹), \( F = 146.79, p = < 0.0001 \). ER was four times greater in hummocks (1.08 ± 0.07 g CO₂ m⁻² hr⁻¹) than lawns (0.24 ± 0.03 g CO₂ m⁻² hr⁻¹), \( F = 314.87, p = < 0.0001 \). NEE was eight times higher on hummocks (-1.19 ± 0.12 g CO₂ m⁻² hr⁻¹) compared to lawns (-0.19 ± 0.04 g CO₂ m⁻² hr⁻¹), \( F = 50.35, p \)}
CH4 efflux was not significantly different between hummocks (10.15 ± 2.06 mg CH4 m⁻² d⁻¹) and lawns (6.07 ± 1.01 mg CH4 m⁻² d⁻¹).

In contrast, at the disturbed site (AN) there was no significant effect of microtopography on any of the fluxes. There was, however, a significant effect of percent vegetation cover on NEE (\(F = 15.37, p = 0.0005\)), GPP (\(F = 10.70, p = 0.0037\)) and CH4 (\(F = 9.91, p = 0.01\)). A linear relation for NEE, GPP and CH4 flux vs. percent vegetation cover was found (Figure 6). When analyzed by cover classes rather than percent cover (100% vegetation cover vs. <100% vegetation cover). Average NEE and GPP values decreased by roughly 50% in the less vegetated areas, while there was a 50% increase in CH4 emissions in the less vegetated areas (Figure 7), although these relations are not statistically significant in our model.

GPP was also influenced by PAR, but the effects of microtopography on PAR differed. In CC light response curves showed a high saturation point at around 2500 µmol m⁻² s⁻¹ with a marked difference between hummocks and lawns (Figure 8 and Table 4). Lawns in CC show a much lower initial slope and GPP at the saturation point than hummocks. In AN the light response curves (generated only using 100% vegetation cover) show no clear differences between hummocks and lawns, but the saturation point was similar to AN.

**DISCUSSION**

**CO2 fluxes**

Despite the extremely high elevation of the páramo (>4000 masl) and the cold and cloudy conditions, plant production appears to be high in these peatlands. Mean GPP for the undisturbed site, CC, was -1.35 g CO₂ m⁻² hr⁻¹, and for the grazed site, AN, -2.87 g CO₂
m$^{-2}$ hr$^{-1}$. These GPP values are greater than those reported for temperate low altitude *Sphagnum* dominated peatlands of -0.71 and -1.03 g CO$_2$ m$^{-2}$ hr$^{-1}$ (Carroll & Crill, 1997, Johnson *et al.* 2013, Ballantyne *et al.* 2014), but in the range of values reported for sedge dominated mountain ecosystems in temperate regions with GPP values ranging between -0.01 and -6.32 g CO$_2$ m$^{-2}$ hr$^{-1}$ (Wickland *et al.* 2001, Otieno *et al.* 2009, Millar *et al.* 2016). The vegetation in these peatlands seems to be suited to the extreme high altitude conditions, allowing them to stay active throughout the year (Beck, 1994), thus showing high photosynthetic values.

The high GPP values are coupled with high daytime NEE. The mean NEE reported in this study for both sites (CC: -0.69, AN: -1.25 g CO$_2$ m$^{-2}$ hr$^{-1}$) are greater than those reported for *Sphagnum* dominated temperate peatlands which range between -0.005 and -0.5 g CO$_2$ m$^{-2}$ hr$^{-1}$ (Carroll & Crill, 1997, Riutta *et al.* 2007, Johnson *et al.* 2013, Ballantyne *et al.* 2014). However, the NEE values reported in this study are in the range (-0.79 to -1.58 g CO$_2$ m$^{-2}$ hr$^{-1}$) of those reported for mountain peatlands in Southern Germany.

Microtopography had a large influence on CO$_2$ fluxes at the undisturbed site (CC), with higher NEE, GPP and ER values on hummocks than lawns. This pattern has been observed in other studies in the northern regions (e.g., Strack *et al.* 2006, Sullivan *et al.* 2008). The increased value of NEE, GPP and ER in hummocks gives CC a heterogeneous CO$_2$ exchange pattern. When fully vegetated, NEE, GPP and ER mean values in AN showed no significant differences between hummocks and lawns, which could suggest that the influence of grazing might reduce the heterogeneity of CO$_2$ flux patterns in peatlands dominated by cushion plants.
The mean GPP and NEE values measured for fully vegetated collars are roughly two and a half times greater in our grazed site, AN, than in the undisturbed site, CC. The higher GPP and NEE could be due to higher PAR, lower elevation, and higher temperatures, but it might also be due to an increased abundance of vascular plants that occurs after grazing (Falk et al. 2015, Stark & Ylanne, 2015). Additionally, the higher plant productivity could be explained by fertilization by cow manure and urine. This observation is supported by a study conducted in cushion plant dominated peatlands in the Andes of Colombia, that found greater above ground biomass as well as greater decomposition rates in plots disturbed by trampling and manure addition (Urbina & Benavides, 2015). The constant fertilization could be adding nutrients that promote growth of the above ground biomass, which could be increasing GPP and ER (Boon et al. 2014). On the other hand, in the less vegetated areas of the grazed site the constant grazing and trampling is exposing the peat and reducing the photosynthetically active biomass. Other studies have shown a relation between NEE and plant biomass, reporting a decrease in NEE with grazing in artic mires (Sjögersten et al. 2011, Falk et al. 2014). Our NEE values indicate that areas with less than 90% vegetation cover are likely a source of CO₂ once night-time respiration is accounted for.

**CH₄ fluxes**

Our measured CH₄ emissions in the undisturbed site (CC) were detectable but low, averaging 8.1 mg CH₄ m⁻² d⁻¹. In contrast, the CH₄ emissions in the grazed site, AN, were much greater, averaging 132.3 mg CH₄ m⁻² d⁻¹. In a global review, Turestky et al. 2014 found that average CH₄ emissions ranged from ~50-200 mg CH₄ m⁻² d⁻¹ for pristine boreal and temperate peatlands and developed equations for calculating CH₄ emissions.
based on mean annual temperature. Using the mean annual air temperature of both sites (5 °C) this equation estimated a mean flux of ~45 mg CH₄ m⁻² d⁻¹, which is several times greater than the values we measured for CC, the undisturbed site. However, these growing season rates differ from annual flux rates due to the seasonality differences between the tropics and temperate-boreal zones (Chimner, 2004). Most peatlands in temperate-boreal regions have significantly lower CH₄ emissions during winter (due to the inhibited microbial activity), and much higher growing season rates (Dise, 1992, Alm et al. 1999 and Huth et al. 2012). These findings would suggest that the annual CH₄ efflux throughout the year of the peatlands assessed in this study could be closer to the mean reported for the temperate and boreal zones. Although the annual CH₄ emissions reported for northern peatlands are highly variable, literature reports a mean between ~4-15 g CH₄ m⁻² yr⁻¹ (e.g., Alm et al. 1999, Roulet, 2007, Abdalla et al. 2016, Pypker et al. 2013). This puts the mean annual values measured in the undisturbed site, 3 g CH₄ m⁻² yr⁻¹, close to the low end of reported values for bogs and fens in the temperate and boreal zones.

Although CH₄ emissions in CC are low compared to northern peatlands in temperate and boreal zones, they are not zero. This is in contrast with findings by Fritz et al. (2011) who reported zero CH₄ emissions in a cushion plant dominated peatland in Patagonia, Argentina. This discrepancy could be explained by differences in altitude, latitude (Fritz et al. study was held at 40 masl in a temperate zone), and/or associated plant communities (Turetsky et al. 2014). To explore the influence of vegetation further, we can look at the effect of microtopography on CH₄ emissions in the undisturbed site. Microtopography seems to be an important control on CH₄ emissions in CC, with higher
CH$_4$ emissions for hummocks than those in lawns. Literature correlates CH$_4$ efflux with higher photosynthetic activity that leads to the supply of root exudates for CH$_4$ production and the subsequent emission through aerenchymatous tissues (Whiting et al. 1992, Lai et al. 2014). The cushion plants that dominate our study sites are vascular plants that may have aerenchymatous tissues, as described for other species in the genus *Plantago* (Striker et al. 2007). Although Fritz et al. attribute the absence of CH$_4$ emissions to oxygenation of the rooting zone of densely growing cushion plants, the plant communities in our study may have different characteristics, as it has been found that porosity values for roots with aerenchyma differ among plant species, even between genotypes (Colmer, 2003). The presence of these cushion plants in our site may be enhancing the CH$_4$ emissions out of the anaerobic rooting zone by the use of aerenchymatous tissues (Joabsson et al. 1999). The influence of vegetation on gas flux is also evidenced by the strong positive association of graminoids with CH$_4$ emissions (Turetsky et al. 2014). In the Andes this is consistent with a study by Teh et al. 2014 who reported a value of 15.6 mg CH$_4$ m$^{-2}$ d$^{-1}$ for montane grasslands in Perú. Those values are roughly double the emissions described for the undisturbed site in this study.

Our measured CH$_4$ emissions in the grazed site averaged 132 mg CH$_4$ m$^{-2}$ d$^{-1}$, with an annual emission of 48 g CH$_4$ m$^{-2}$ yr$^{-1}$. These values are 22 times higher than the undisturbed site, and in the high range of those reported for pristine peatlands in the northern regions (Nykanen et al. 1995, Turestky et al. 2014). Because most grazed peatlands are drained, studies have often found lower values of CH$_4$ emissions in grazed peatlands due to the absence of saturated conditions (e.g. Nykanen et al. 1995, Turestky et al. 2014). However, exclosures of muskox grazing in an undrained high artic mire in
Greenland found that there was a 44% decrease in CH₄ emissions for excluded areas compared to control (Falk et al. 2015). The browsing patterns of muskox and the differences in location might not be comparable with our study. However, the undrained, often saturated conditions of AN make a perfect environment for the production of CH₄ (Rydin & Jeglum, 2006). In addition, the presence of cattle in AN could be increasing CH₄ flux emissions due to the constant input of cattle urine and manure. Nutrient additions increase CH₄ emissions as it has been shown that ammonium (NH₄⁺) may inhibit an enzyme in CH₄ oxidizing bacteria and boost CH₄ production (Dobbie & Smith, 1996, Boon et al. 2014, Aerts & de Caluwe, 1999). Furthermore, microbial data collected at the AN site was found to have a high relative abundance of methanogens compared to other sites in the Andean mountains, and higher methanogen to methanotroph ratio, especially in surface horizons (Lilleskov E.A., personal communication, September 19th 2016). These findings confirm the unexpectedly high CH₄ emissions of the site and suggest that the methanogen activity that usually thrives in deeper anaerobic zones has moved to surface layers. Additionally, as with CO₂ flux values, CH₄ values reported in Figures 9 and 10 suggest that reduction of vegetation cover by grazing and trampling may be increasing CH₄ emissions by approximately 50%. This hypothesis is supported by Fritz et al.(2011), who found that the emissions from the clipped cushion plants were higher than those reported for the intact cushion.

CONCLUSIONS
These data are the first to report CO₂ and CH₄ emissions in high altitude peatlands in the Ecuadorian Andes, and one of only a handful of studies for the Andean region. This study
provides a baseline knowledge of C fluxes in an understudied ecosystem at the same time that it opens new questions for research.

The two peatlands differ in CO₂ and CH₄ exchange patterns, and even though this difference might be due to the variation of altitude and consequent change in climatic conditions, the presence of cattle could also be a leading contributor. Microtopography and vegetation cover are two factors that influence CO₂ and CH₄ emissions in these peatlands. The presence of hummocks and lawns gives the peatlands a heterogeneous C exchange. The effects of anthropogenic disturbance in these peatlands might be causing a change in their unique exchange patterns. The intensity of cattle activity and its effect on vegetation cover influences the NEE, GPP and CH₄ values. CH₄ fluxes in the grazed site are much higher than those reported at the undisturbed site; the presence of cattle and the constant anaerobic conditions in the grazed site could be increasing the CH₄ fluxes. The presence of cattle could have profound consequences not only for the physical characteristics of the peatland but also for their biogeochemistry. Given that the undisturbed site shows less CO₂ storage over the gradient of disturbance intensity and higher CH₄ emissions, intensive grazing practices are likely to reduce or reverse greenhouse gas benefits from mountain peatlands. The importance of that effect depends on the intensity and extent of grazing impacts in these ecosystems.
REFERENCES


Figure 1. Map of sites in Cayambe Coca National Park (CC) and Antisana Ecological Reserve (AN) located in the Andean mountain region, East of Quito, Ecuador. Satellite image includes intellectual property of Esri and its licensors and are used herein under license. Copyright © [World Imagery, August 2016] Esri and its licensors. All rights reserved. Ecuador and South America maps: Diva-GIS, GADM Database of Global Administrative Areas, November, 2015. See Appendix A.2 for documentation on terms of use.
Figure 2. Study sites’ topography (A. Cayambe Coca: CC, and B. Antisana: AN), circles represent each collar pair. Pictures of each site with vegetation dominated by cushion plants on the right. AN shows evidence of cattle disturbance.
Figure 3. EGM-4 reading of a 400 ppm standard vs altitude (m)
Figure 4. Water table levels for each study site measured with a Solinst logger. Precipitation data for CC is from “Virgen Papallacta” station from FONAG, at 3920 masl and 4 km away from the study site. Precipitation data for AN is from “Mica Presa” station from EPMAPS at 3957 masl and 6.5 km away from the study site. Negative values of WT are below the surface. No precipitation data were available for the year 2016 in AN.
Figure 5. Mean NEE, ER, GPP and methane flux by microtopography (hummock and lawn). Cayambe Coca (CC) top and Antisana (AN) bottom for all plots. Error bars indicate one standard error. Asterisk indicates significant differences between microtopography. For CO₂, negative values represent uptake by the ecosystem. For CH₄, positive values represent loss from the ecosystem. No information for CH₄ in hummocks at AN.
Figure 6. Mean NEE, ER, GPP (g CO$_2$ m$^{-2}$ hr$^{-1}$), and methane (mg CH$_4$ m$^{-2}$ d$^{-1}$) flux by percent vegetation cover in Antisana (AN). Error bars indicate one standard error. For CO$_2$, negative values represent uptake by the ecosystem. For CH$_4$, positive values represent loss from the ecosystem. AN values for CH$_4$ are only for lawns. Linear fit for all graphs. Normality assumption not met for ER.
Figure 7. Mean NEE, ER, GPP, and methane flux by the degree of disturbance (<100 and 100% plant cover) in Antisana (AN) site. Error bars indicate one standard error.
Figure 8. Light response curves, GPP (gCO₂ m⁻² hr⁻¹) vs. mean PAR (µmol m⁻² s⁻¹) by microtopography (hummock and lawn). We used the inverse sign for GPP in these light response curves. Cayambe Coca (CC) top and Antisana (AN) bottom. Only 100% vegetated collars considered for AN. Equation fit exponential rise to the maximum, single, 3 parameter: \( f = y₀ + a(1 - \exp(-bx)) \)
### TABLES

**Table 1.** Descriptions of peatlands sampled at Cayambe Coca National Park (CC) and Antisana Ecological Reserve (AN). Precipitation and ambient temperature values are presented as mean (minimum, maximum)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CC</th>
<th>AN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude (masl)</td>
<td>4258</td>
<td>3940</td>
</tr>
<tr>
<td>Coordinates (Lon., Lat)</td>
<td>(-78.199753, -0.319114)</td>
<td>(-78.276429, -0.494660)</td>
</tr>
<tr>
<td>Mean annual precipitation (mm yr(^{-1}))</td>
<td>1375 (635, 2667)(^a)</td>
<td>828 (558, 1168)(^b)</td>
</tr>
<tr>
<td>Mean daily ambient temperature (°C)</td>
<td>5.2 (0.94, 9.98)(^a)</td>
<td>5.7 (0.4, 7.7)(^c)</td>
</tr>
<tr>
<td>pH</td>
<td>5.38</td>
<td>5.2</td>
</tr>
<tr>
<td>Age of peatland (yr)(^d)</td>
<td>8036</td>
<td>5313</td>
</tr>
<tr>
<td>Mean peatland soil depth (m)</td>
<td>3.9(^d)</td>
<td>4.5(^e)</td>
</tr>
<tr>
<td>Carbon storage (Mg ha(^{-1}))(^d)</td>
<td>1037</td>
<td>1046</td>
</tr>
</tbody>
</table>

\(^a\) between the years 2009-2015 at “Virgen Papallacta” station, 3920 masl and 4 km away from the study site (FONAG, Personal communication, July 2016)

\(^b\) between the years 1987-2015 at “Mica Presa” station, 3957 masl and 6.5 km away from the study site (EPMAPS, Personal communication, July 2016)

\(^c\) between the years 2000-2010 at “Mica Presa” station (EPMAPS, Personal communication, July 2016)

\(^d\) (Hribljan et al. 2016)

\(^e\) (Comas et al. In preparation)
Table 2. Mean daily water table and peat temperature measurements in Cayambe Coca National Park (CC) and Antisana Ecological Reserve (AN). Values are presented as mean (minimum, maximum)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CC</th>
<th>AN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water table (cm)</td>
<td>$-5.8 \pm 0.41 (-58.0 , 3.2)$</td>
<td>$-24.2 \pm 0.76 (-50.0 , -1.1)$</td>
</tr>
<tr>
<td>Peat temperature ($^\circ$C)</td>
<td>$6.5 \pm 0.04 (2.4 , 11.9)$</td>
<td>$8.75 \pm 0.04 (4.3 , 16.5)$</td>
</tr>
</tbody>
</table>
Table 3. Summary of Cayambe-Coca CC and Antisana AN sites C flux data. NEE, ER, and GPP are expressed in gCO$_2$ m$^{-2}$ hr$^{-1}$, and positive values represent release by the ecosystem to the atmosphere. CH$_4$ is expressed in mgCH$_4$ m$^{-2}$ d$^{-1}$, and positive values represent loss from the ecosystem. Mean, minimum and maximum are measured across all collars and all dates. SE represents one standard error.

<table>
<thead>
<tr>
<th></th>
<th>CC</th>
<th>AN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NEE</td>
<td>ER</td>
</tr>
<tr>
<td>Mean</td>
<td>-0.69</td>
<td>0.66</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.37</td>
<td>2.04</td>
</tr>
<tr>
<td>Minimum</td>
<td>-3.39</td>
<td>0.00</td>
</tr>
<tr>
<td>SE</td>
<td>0.08</td>
<td>0.06</td>
</tr>
</tbody>
</table>

* lawns only
Table 4. Light response curve equation coefficients and adjusted $R^2$ for CC and AN by microtopography (hummock and lawn). Equation: $f = y_0 + a(1 - \exp(-bx))$. All models significant ($p = < 0.001$), except for lawns in CC.

<table>
<thead>
<tr>
<th></th>
<th>CC Hummock</th>
<th>CC Lawn</th>
<th>AN Hummock</th>
<th>AN Lawn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adj $R^2$</td>
<td>0.4962</td>
<td>-0.0084</td>
<td>0.3863</td>
<td>0.3606</td>
</tr>
<tr>
<td>Coefficient</td>
<td>P</td>
<td>Coefficient</td>
<td>P</td>
<td>Coefficient</td>
</tr>
<tr>
<td>$y_0$</td>
<td>-0.2695</td>
<td>0.7971</td>
<td>-0.5436</td>
<td>0.8212</td>
</tr>
<tr>
<td>$a$</td>
<td>3.4347</td>
<td>0.0001</td>
<td>1.0172</td>
<td>0.6668</td>
</tr>
<tr>
<td>$b$</td>
<td>0.0013</td>
<td>0.0578</td>
<td>0.0037</td>
<td>0.5236</td>
</tr>
</tbody>
</table>
APPENDIX

A.1

Table A1. Dates of measurements performed on each site. X denotes if measurements of either CO₂ or CH₄ were taken.

<table>
<thead>
<tr>
<th>Date</th>
<th>CO₂</th>
<th>CH₄</th>
<th>Date</th>
<th>CO₂</th>
<th>CH₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/1/2014</td>
<td>x</td>
<td></td>
<td>7/29/2014</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>10/8/2014</td>
<td>x</td>
<td></td>
<td>11/14/2014</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>10/27/2014</td>
<td>x</td>
<td></td>
<td>12/5/2014</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>11/17/2014</td>
<td>x</td>
<td></td>
<td>12/10/2014</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>11/26/2014</td>
<td></td>
<td>x</td>
<td>1/29/2015</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>12/8/2014</td>
<td>x</td>
<td>x</td>
<td>3/31/2015</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>12/15/2014</td>
<td>x</td>
<td>x</td>
<td>4/30/2015</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>1/26/2015</td>
<td>x</td>
<td>x</td>
<td>7/9/2015</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>3/16/2015</td>
<td>x</td>
<td>x</td>
<td>11/27/2015</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>5/19/2015</td>
<td>x</td>
<td>x</td>
<td>2/5/2016</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>11/13/2015</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/25/2015</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/2/2016</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A.2

Terms of Use
World Imagery - ESRI

HUMAN READABLE SUMMARY OF THE TERMS OF USE
This summary is not a license and is meant only to explain certain concepts of the related legal
document.
What this covers: Maps, geocoding, network analysis, and geometry services hosted by Esri on
ArcGIS Online
What this does not cover: OpenStreetMap and Bing Maps

YOU MAY
Use ArcGIS Online maps and map layers, imagery, and geometry services in conjunction with Esri
software or an ArcGIS Online subscription for projects and applications that are both internal and external
use
As long as you do not exceed the transaction cap if the cap applies to you.
• Government, Education, and NGO users: Full unlimited use
• Private organizations, Business Partners, and Developers: 50,000,000 transactions per year. For
maps, a transaction is defined as eight tiles. For imagery and geometry services, a transaction is
defined as one request.
For application scenarios exceeding 50 million transactions per year, additional fees apply.
Use ArcGIS Online geocoding services with Esri products for internal and external use
• No fee is required for searches where an address is entered to find a location on a map but results
are not stored
• For all other uses of geocoding, including storing results (batch geocoding), you must purchase a
subscription.
Use ArcGIS Online routing, drive time, and other network services with Esri products for internal or
external use after purchasing a subscription
Include screen captures or a printed or plotted maps in the following ways
• Personal use, internal business use, or include in a presentation or a report for a client
• In brochures and marketing collateral, or on a company web site to promote your own products
and services and display your store locations
• In academic publications (research journals, textbooks, etc)

For other uses, you must obtain permission from Esri first.
Use the basemap data offline in the following manner
• The data may only be taken offline using Esri Content Packages
• The package can be used with any device as long as it is used exclusively with Esri software.

UNDER THE FOLLOWING CONDITIONS
Provide attribution to Esri and its data providers.

Use with Esri software, and comply with its terms of use. If you do not have Esri software, you must
purchase an ArcGIS Online subscription.

YOU MAY NOT
Systematically harvest map tiles through any method other than using Esri Content Packages Redistribute
map tiles, geocodes, and routes. Embed ArcGIS Online services into any turn-by-turn navigation system or
in applications that are used in high risk settings
GADM - DIVA-GIS

GADM database of Global Administrative Areas

GADM is a spatial database of the location of the world's administrative areas (or administrative boundaries) for use in GIS and similar software. Administrative areas in this database are countries and lower level subdivisions such as provinces, departments, bibhag, bundeslander, daerah istimewa, fivondronana, krong, landsvæðun, opština, sous-préfectures, counties, and thana. GADM describes where these administrative areas are (the "spatial features"), and for each area it provides some attributes, such as the name and variant names.

The current version is 2.8 (November 2015).
The current version of GADM delimits 294,430 administrative areas.

The data are available as shapefile, ESRI geodatabase, RData, and Google Earth kmz format. Shapefiles can be used for most mapping and "GIS" software. You can download a free program such as Q-GIS or DIVA-GIS. The RData files can be used in R with the 'sp' package loaded.

You can download the data by country or for the whole whole world.

This dataset is freely available for academic use and other non-commercial use. Redistribution, or commercial use is not allowed without prior permission. You are free to create maps and use the data in other ways for publication in academic journals, books, reports, etc.