The role of environmental, socioeconomic, institutional, and land-cover/land-use change factors to explain the pattern and drivers of anthropogenic fires in post-Soviet Eastern Europe: a case study comparison of Belarus, European Russia, and Lithuania

Jessica L. McCarty
Michigan Technological University

Peter Potapov
University of Maryland at College Park

Alexander Prishchepov
Leibniz Institute of Agricultural Development in Central and Eastern Europe

Svetlana Turubanova
University of Maryland at College Park

Matthew C. Hansen
University of Maryland at College Park

Recommended Citation

Retrieved from: https://digitalcommons.mtu.edu/mtri_p/172

Follow this and additional works at: https://digitalcommons.mtu.edu/mtri_p

Part of the Demography, Population, and Ecology Commons, Engineering Commons, and the Place and Environment Commons
Authors
Jessica L. McCarty, Peter Potapov, Alexander Prishchev, Svetlana Turubanova, Matthew C. Hansen,
Vladimir Romanenkov, Dmitri Rukhovitch, Polina Koroleva, and Maxim Dubinin
The role of environmental, socioeconomic, institutional, and land-cover/land-use change factors to explain the pattern and drivers of anthropogenic fires in post-Soviet Eastern Europe: a case study comparison of Belarus, European Russia, and Lithuania

Jessica L. McCarty1, Peter Potapov2, Alexander Prischepov3, Matthew C. Hansen2, Svetlana Turubanova2, Alexander Krylov2, and Alexandra Tyukavina2

Background
In this NASA Land-Cover/Land-Use Change Early Career Scientist Project, we are completing the following: 1) map land-cover/land-use (LCLU) change from agricultural land abandonment, cropland reestablishment, and afforestation in Belarus, European Russia, and Lithuania from 1990 to 2010 using moderate to high resolution satellite data; 2) analyze relationship of LCLU change with socioeconomic conditions, land management practices, policy, proximity to infrastructure, and agricultural management across time and space; 3) using results of LCLU change analysis, analyze potential origins and spread of fire while also comparing extreme fire year of 2010 to fires for agricultural management across time and space; 3) analyze statistical model of LULC changes results of LCLU change analysis, analyze fire activity and fire factors to explain the pattern and drivers of anthropogenic fires in post-Soviet areas.

Project Outcomes
1. Landscapes-based LCLU change map for two decades, 1990 - 2000 and 2000 - 2010
3. A statistical model of LULC changes
4. Investigation into the drivers of anthropogenic fire and wildland fire observed in Eastern Europe and Russia
5. Calculation of GHG, air quality, and short-lived climate forcers emissions
6. Outreach with international and in-country collaborators

Remote Sensing and Mapping of Active Fires
- Weekly MCD14ML maps created and assigned land covers for study region;
- MCD45A1 burned area for for all land covers and croplands are mapped;
- Compared to MCD14ML, the MCD45A1 detects different proportions of agricultural burning;
- MCD14ML ag fires for Belarus is 73% of all fires and 56% for Lithuania;
- MCD45A1 ag fires for Belarus is 57% of all fires and 41% for Lithuania;
- Combined 30 m forest cover change product with multiple fire data set to produce stand replacement analysis for Russia, 2002 - 2011 (Figure 4; submitted to EURIS as Krylov et al.)

Abandoned Croplands and Cropland Afforestation
- Between 1985 and 2012, 3.1 million ha of afforestation existed (10% - 12% of abandoned lands);
- No federal policies have been adapted to convert abandoned lands to forest land use.

In-Country Collaborators
Drs. Vladimir Romanenkov (All-Russian Institute for Agrochemistry named after D. Pyryazhnikov [Moscow]) and Dmitry Rukhovitch (V.V. Dokuchaev Soil Institute [Moscow]) and Ms. Polina Koroleva (Dokuchaev Soil Institute) contributed to book chapter on cropland mapping with PI McCarty (Romanenkov et al. 2014). Dr. Maxim Dubinin (NEXTGIS [Moscow]) currently working on web app with NGOs. Fulbright Scholar Alex Gittelson is in St. Petersburg/Moscow and IAMO.

Acknowledgements
This work is funded by the NASA LCLU Early Career Award under NASA Contract # NNX13AC66G. We would like to acknowledge research interns Erik Boren, Justin Carter, and Dante Mann and Assistant Research Scientist David Banach of MTRI for assisting in data analysis. This hashtag is for Dr. Eric Brown de Colstoun @ NASA GSFC:
#fantabulousnasakluckyluck