CHAPTER 9-5

LIGHT: REFLECTION AND FLUORESCENCE

TABLE OF CONTENTS

Cave Mosses – Reflectance ... 9-5-2
 Schistostega pennata – Luminous Moss ... 9-5-2
 Cyathodium .. 9-5-5
 Wombat Holes .. 9-5-5
 Cave Communities .. 9-5-6
 Rockhouses ... 9-5-10
 Responses to Low Light in Caves .. 9-5-10

Reflectance in the Desert ... 9-5-12

Fluorescence .. 9-5-12

Pigments .. 9-5-14

Leaf Canopy .. 9-5-14

Leaf Angle ... 9-5-14

Summary ... 9-5-15

Acknowledgments .. 9-5-16

Literature Cited .. 9-5-16
Chapter 9-5: Light: Reflectance and Fluorescence

Cave Mosses - Reflectance

Caves provide a classical example of gradients, with diminishing light and temperatures gradually descending or ascending from the mouth to an interior temperature near 10°C. As light diminishes, so does ability of the plant to meet its light compensation point. Thus, through this gradient, we see that flowering plants are the least tolerant, then ferns, followed by bryophytes, and last algae (Dalby 1966b).

In non-commercial caves where light diminishes rapidly, or in buried lava caves, finding these bryophytes can be difficult and time consuming. Hanley (1982) used an echo sounder to locate bryophytes in caves and other dark areas such as deep lakes. However, in many caves, artificial lights provide sufficient illumination for algae, bryophytes, and ferns to succeed deep within the cave (Boros 1964). In fact, in many commercial caves, bryophytes have been considered to be a nuisance and measures have been taken to remove them, often using sodium hypochlorite. However, to avoid release of chlorine and other dangerous gases into caves, researchers tested hydrogen peroxide. But even the dilute 15% hydrogen peroxide necessary to remove bryophytes is destructive to fragile limestone formations, and the solution must be buffered with bits of limestone rock for at least 10 hours before its application (Faimon et al. 2003). I fail to understand why the bryophytes are considered offensive!

Schistostega pennata – Luminous Moss

No moss seems to be revered more than the clandestine cave moss Schistostega pennata (Figure 1- Figure 3), also known as dragon's gold (Berqvist 1991). Always a delight to find, its protonemata shine like emerald jewels from the darkness of a rock crevice or cave. So intriguing is this moss that the Japanese have a monument to it in Hokkaido (Iwatsuki 1977, Kanda 1988; Figure 2), where it grows in profusion in a cave barely large enough for a child to stand. At just the right position, you can see its marvelous reflections, but move the wrong way and they...
are lost. The frond-like gametophyte and terminal sporophyte have none of that ethereal luminescent quality (Figure 3). Ignatov et al. (2012) examined the developmental pattern of this species and determined that it has sexual reproduction in September.

Figure 2. Monument to Schistostega in Hokkaido, Japan. Photo by Janice Glime.

Figure 3. Schistostega pennata plants showing their frond-like appearance and capsules at the end of the stem. Photo by Martin Hutten, with permission.

This unusual jewel-like property (Figure 4) is the result of the protonema (Gistl 1926). The cells are lens-shaped (Figure 7) and their upper surface is curved in such a way as to focus the light on the interior of the cell (Figure 6; Figure 5). This "normal" form is reached only when they grow in light that comes at all times from the same oblique direction. The chloroplasts orient themselves so that they are always at the most intensely lighted spot on the inner wall of the cell (Figure 7). If a change in the light direction occurs, as may happen seasonally, the chloroplasts can reposition themselves within one to three hours.

Figure 4. Protonemata of Schistostega pennata showing upright clumps. Photo courtesy of Misha Ignatov.

Figure 5. Protonema of Schistostega pennata showing lens-shaped cells. Photo courtesy of Misha Ignatov.

Figure 6. The cave moss, Schistostega pennata, reprinted with permission from Zen Iwatsuki.

Figure 7. Lens-shaped cells of protonema of Schistostega pennata with chloroplasts arranged on one side of cell to focus light. Photo courtesy of Misha Ignatov.
Like Crum (1973), we find appeal in retelling the account by Kerner von Marilaun in *Pflanzenleben*, as translated by F. W. Oliver in *The Natural History of Plants*:

"On looking into the interior of the cave, the background appears quite dark, and an ill-defined twilight only appears to fall from the center on to the side walls; but on the level floor of the cave innumerable golden-green points of light sparkle and gleam, so that it might be imagined that small emeralds had been scattered over the ground. If we reach curiously into the depth of the grotto to snatch a specimen of the shining objects, and examine the prize in our hand under a bright light, we can scarcely believe our eyes, for there is nothing else but dull lusterless earth and damp, mouldering bits of stone of yellowish-grey color! Only on looking closer will it be noticed that the soil and stones are studded and spun over with dull green dots and delicate threads, and that, moreover, there appears a delicate filigree of tiny moss-plants, resembling a small arched feather stuck in the ground [Figure 10]. This phenomenon, that an object should only shine in dark rocky clefts, and immediately lose its brilliance when it is brought into the bright daylight, is so surprising that one can easily understand how the legends have arisen of fantastic gnomes and cave-inhabiting goblins who allow the covetous sons of earth to gaze on the gold and precious stones, but prepare a bitter disappointment for the seeker of the enchanted treasure; that, when he empties out the treasure which he hastily raked together in the cave, he sees roll out of the sacks, not glittering jewels, but only common earth. . . . On the floor of rocky caves one may discern by careful examination two kinds of insignificant-looking plant-structures, one a web of threads studded with small crumbling bodies, and the other bluish-green moss-plants resembling tiny feathers. The threads form the so-called protonema, and the green moss-plants grow up as a second generation from this protonema . . . the gleams do not issue from the green moss-plants, but only from their protonema."

"From the much branched threads ... numerous twigs rise up vertically, bearing groups of spherical cells arranged like bunches of grapes. All the cells of a group lie in one plane, and each of these plants is at right angles to the rays of light entering through the aperture of the rocky cleft. Each of the spherical cells contains chlorophyll-granules, but in small number ... and they are always collected together on those sides of the cells which are turned towards the dark background of the cave.... Taken together, these chlorophyll-granules form a layer which under low power of the microscope appears as a round green spot ... the light which falls on such cells through the opening of a rocky cleft behaves like the light which reaches a glass globe at the further end of a dark room. The parallel incident rays which arrive at the globe are so refracted that they form a cone of light, and since the hinder surface of the globe is within this cone, a bright disc appears on it. If this disc, in which the refracted rays of light fall, is furnished with a lining, this also will be comparatively strongly illuminated by the light concentrated on it and will stand out from the darker surroundings as a bright, circular patch.... It is well worthy of notice that the patch of green chlorophyll-granules on the hinder side of the spherical cell extends exactly so far as it is illuminated by the refractive rays, while beyond this region, where there is no illumination, no chlorophyll granules are to be seen. The refracted rays which fan on the round green spot are, moreover, only partially absorbed; in part they are reflected back as from a concave mirror, and these reflected rays give a luminous appearance. This phenomenon, therefore, has the greatest resemblance to the appearance of light which the eyes of cats and other animals display in half-dark places, only illuminated from one side, and so does not depend upon a chemical process, an oxidation, as perhaps does the light from a glow-worm or of the mycelium of fungi which grow on decaying wood. Since the reflected light-rays take the same path as the incident rays had taken, it is clear that the gleams of the *Schistostega* can only be seen when the eye is in the line of the incident rays of light. In consequence of the small extent of the aperture through which the light penetrates into the rock cleft, it is not always easy to get a good view.... If we hold the head close to the opening, we thereby prevent the entrance of the light, and obviously in that case no light can be reflected. It is, therefore, better when looking into the cave to place one's self so that some light at any rate may reach its depth. Then the spectacle has indeed an indescribable charm."

The result of these very reflective chloroplasts in *Schistostega pennata* is that the protonema takes on the appearance of "goblin gold" and can create quite eerie effects (Figure 4-Figure 5; Figure 8-Figure 9).
In Japan, there is an opera written about this moss! The opera, written by Ikuma Dan, is based on a book of the same title, "Luminous Moss," by Taijun Takeda (Glime & Iwatsuki 1987). The story relates the tragedy of several sailors who were stranded by a blizzard on the northern island of Hokkaido. With no hope of escaping that remote northern tip of the island before spring to find food and shelter elsewhere, they hid in a cave. As their rations ran out and their fellow sailors died of starvation, they did the only thing they could to survive—they became cannibals. Finally, the captain alone remains. When he is brought to trial for his unthinkable acts, he reflects on the halo of green (the luminous moss) about the heads of each who has been a cannibal, but he tells the courtroom that the halo is visible only to those who have not been cannibals. He alludes to the cannibal in each of us as we struggle to survive among the millions of the world. Today a cave in Hokkaido is set aside as a memorial to protect this unusual moss (Kanda 1971, 1988; Figure 2).

Schistostega pennata (Figure 8-Figure 10) is widespread in the North Temperate Zone. Bowers (1968) and Conard (1938) have reported it from the Upper Peninsula of Michigan, where I have seen it growing on the roof of a cave behind a waterfall. Outside that same cave, I have observed the leafy gametophore, which resembles a tiny fern frond (Figure 11), growing on a small ledge of the rock wall, but protonemata there, if present, did not exhibit their highly reflective property. Bowley (1973) found the moss in several localities in Vermont, Champlin (1969) reported it from Rhode Island, Christy and Meyer (1991) from Wisconsin, Case (1975) found it in Alberta, Canada. Matsuda (1963) reported it in artificial caves in Japan. Perhaps the most unusual report is that of Koike (1989) who reported its culture in empty bottles in urban areas of Japan. Reinoso Franco et al. (1994) considered it to be an acidophile, at least on the Iberian Peninsula.

When I went to Germany, I was delighted to find Schistostega pennata (Figure 8-Figure 11) growing at the base of a boulder where it probably did not get direct sunlight except at sunset and most likely did not get direct rainfall very often either. Perhaps one reason for its success in such habitats is the presence of protonemal gemmae (Edwards 1978).

Cyathodium

In the thallose liverwort genus Cyathodium (Figure 12), some species that grow in caves and similar low-light environments also emit a yellowish luminescence from their thalli (Crum 1973). These liverworts are tropical and subtropical and in China grow in karst caves (Zhang et al. 2004).

Wombat Holes

In Australia, a similar moss, Mittenia plumula (Figure 13) lives on dimly lit, clay-covered rock ledges and at the entrances to wombat holes, where the moss lives on soil. Stone (1961, 1986) concluded that Mittenia belongs in the order Schistostegales with Schistostega (Figure 1-Figure 11. Both have a pinnate leaf arrangement, protonemata with similar luminescent properties, similar pale color of the leafy plant, and similar habitats.

When I went to Germany, I was delighted to find Schistostega pennata (Figure 8-Figure 11) growing at the base of a boulder where it probably did not get direct sunlight except at sunset and most likely did not get direct rainfall very often either. Perhaps one reason for its success in such habitats is the presence of protonemal gemmae (Edwards 1978).
Cave Communities

Growth of other bryophytes in caves far from a natural light source has been a source of fascination for both bryologists and non-bryologists all over the world, and these bryophytes often form zones around electric lights (Haring 1930). So fascinating are these plants of low light that their descriptions have appeared in non-botanical journals. Boros (1964) was able to publish a paper in the first volume of the *International Journal of Speleology* (speleology is the study of caves), reporting on mosses growing around electric light sources deep within a cave. Dalby (1966b) later published a similar article on their growth under reduced light in caves, this time in the first volume of *Studies in Speleology*. Numerous communities have been described from caves around the world: Shiomi (1973) in Japan; Maheu and Guerin (1935) in France; Rajczy (1979) in Greece; Zober (1981), Komáromy et al. (1985), Rajczy et al. (1986), and Buczko and Rajczy (1989) in Hungary; Lo Giudice & Privitera (1984) in Italian grottos; Stafurea (1985) in Romanian grottos; Weber (1989) for both animals and flora, including bryophytes, in two German caves and artificial caverns; Kubešová (2009) in the Czech Republic. Even *Science* has accepted articles on mosses in Virginia (USA) caverns, including the famous Luray Cavern (Lang 1941, 1943), and Prior again studied Luray Cavern mosses, publishing in 1961 in *The Bryologist*.

Most cave bryophytes are not specific to these habitats. Reinoso Franco et al. (1994) have found *Schistostega pennata* with *Isotrygium elegans* (Figure 14; low-light species of canyons and crevices), *Diprophyllum albicans* (Figure 15; forest epiphyte), *Calypogeia arguta* (Figure 16), *C. azurea* (Figure 17; also an epiphyte), *Pogonatum nanum* (Figure 18), and *Fissidens curvovii* at a pH of 5.7 in caves.
Figure 18. *Pogonatum nanum*, a species that is able to grow in low light. Photo by J. C. Schou, with permission.

The widespread *Fissidens taxifolius* (Figure 19) grew in Crystal Caverns in Virginia, USA, and aroused the curiosity of a visitor who delivered it to Conard (1932). This moss grew on the damp ceiling, forming circles about 8" from several electric light bulbs, having appeared only a few years earlier. The moss looked normal, but the leaves were further apart than in typical specimens, not an unusual trait for a moss of low light.

Figure 19. *Fissidens taxifolius*, a common moss that can grow on the ceiling of caves. Photo by Jan-Peter Frahm, with permission.

A variety of species seem to be capable of growing in caves. Buczko & Rajczy (1989) reported nineteen bryophyte taxa from three caves in Hungary. Dalby (1966a) reported the occurrence of the tufa-former, *Eucladium verticillatum* (Figure 31), in a poorly lit cave, also occurring in caves in Hungary (Buczko & Rajczy 1989). In Crystal Cave, Wisconsin, Thatcher (1949) found *Barbula unguiculata* (Figure 20), *Brachythecium populeum* (Figure 21), *Brachythecium salebrosum* (Figure 22), *Bryoerythrophyllum recurvirostre* (Figure 23), *Bryum caespiticium* (Figure 24), *Bryum capillare* (Figure 25), *Ceratodon purpureus* (Figure 26), *Fissidens taxifolius* (Figure 19), *Leptodictyum riparium* (Figure 27), *Marchantia polymorpha* (Figure 28), *Plagiomnium cuspidatum* (Figure 29), and *Warnstorfia fluitans* (Figure 30). Like Conard, Thatcher observed the leaves to be more distant than is typical.

Figure 20. *Barbula unguiculata*, a species that is able to grow in caves. Photo by Michael Lüth, with permission.

Figure 21. *Brachythecium populeum* with capsules, a species that is able to grow in caves. Photo by Janice Glime.

Figure 22. *Brachythecium salebrosum*, a species that is able to grow in caves. Photo by Michael Lüth, with permission.

Figure 23. *Bryoerythrophyllum recurvirostre*, a species that is able to grow in caves. Photo by Michael Lüth, with permission.
Komáromy et al. (1985) likewise found *Eucladium verticillatum* (Figure 31), a *Brachythecium* (*B. velutinum*), and two species of *Fissidens* [*F. dubius* (Figure 32), *F. pusillus* (Figure 33)] in a cave. Within only one year from its first illumination, Howe Cavern in New York, USA, already was adorned with *Amblystegium serpens* (var. *juratzkanum*: Figure 34), *Amphidium mougeotii* (Figure 35), *Brachythecium rutabulum* (Figure 36), *Bryum caespiticium* (Figure 24), *Bryum capillare* (Figure 25), *Leptobryum pyriforme* (Figure 37), and *Marchantia polymorpha* (Figure 28) encircling its new lights (Haring 1930). Buczkó and Rajczy (1989) found that *Amblystegium serpens* (=*A. juratzkanum* var. *juratzkanum*;
Figure 34) was the most characteristic moss in several Hungarian caves, extending furthest from the cave entrance that provided the only light, surviving at only 232 lux. Niklas Lönnell reported to Bryonet (3 March 2010) that *Eucladium verticillatum* (Figure 31) introduced at an underground station in Stockholm, Sweden, thrives decades later on moist areas of the walls where artificial light is available.

![Figure 31. *Eucladium verticillatum*, a tufa-forming moss. Photo by Michael Lüth.](image1)

![Figure 32. *Fissidens dubius*, a known cave dweller. Photo by Bernd Haynold, through Creative Commons.](image2)

![Figure 33. *Fissidens pusillus*, a species known to live in caves. Photo by Michael Lüth, with permission.](image3)

![Figure 34. *Amblystegium serpens*, a common cave moss in Hungary. Photo by Michael Lüth.](image4)

![Figure 35. *Amphidium muegeottii*, a species that colonized around lights in a cave within one year. Photo by Michael Lüth, with permission.](image5)

![Figure 36. *Brachythecium rutabulum* with capsules, a species that colonized around lights in a cave within one year. Photo by Tim Waters, through Creative Commons.](image6)

![Figure 37. *Leptobryum pyriforme*, an invader of bare soil. Photo by Michael Lüth.](image7)
Tufa formers such as *Eucladium* (von der Dunk & von der Dunk 1980), *Barbula* (Figure 20), and *Didymodon* (Figure 38) are found in many of these caves, since the caves are usually limestone, and tufa formers must be adapted to relatively dim light to survive the calcium carbonate covering they must endure.

Figure 38. Tufa-forming *Didymodon tophaceus*, a former of didymodontoliths. Note carbonates at base encrusted on older stems. Photo by Michael Lüth, with permission.

With all these reports, it is not unexpected then that Koponen (1977) reported mosses at a depth of 176 m in a mine at Vihanti, Finland. The surprising fact is that the mosses he found are the very light-tolerant *Ceratodon purpureus* (Figure 26) and *Pohlia nutans* (Figure 39). But then, these two mosses seem to do well in extremes, as long as it is not too hot.

Figure 39. *Pohlia nutans*, a widespread moss that frequents caves and mines. Photo by Michael Lüth.

Jedrzejko and Ziober (1992) illustrated the effects of light on the species composition of moss communities and the ability of mosses to survive at low light intensities with their study of bryophytes in seven Polish caves. More than 50% of the bryophyte flora occurred where they had full access to daylight. As the investigators went deeper into the caves, the number of species decreased, but with 1.3% of the species occurring only in the darkest zone.

Responses to Low Light in Caves

If you have ever picked up a board from your lawn, you know how thin and long the grass stems can be. This elongation response by plants in low light is termed *etiolation*. Dunham and Lowe (1927) described etiolation of bryophytes in caves and among boulders in New England, USA. But at least some light should be present, right? Nevertheless, Fries (1945) succeeded in growing the mosses *Funaria hygrometrica* (Figure 40) and *Leptobryum pyriforme* (Figure 37) from protonemata on inorganic media in total darkness. Thus, it would appear that some growth can occur, using the plant’s reserves, even in the absence of light.

Figure 40. *Funaria hygrometrica*, a species that is able to grow without a media carbon source in the dark. Photo by Michael Lüth, with permission.

Rajezy (1978-1979) chose to experiment with growing mosses in total darkness of a cave. He used two common Hungarian species, *Atrichum undulatum* (Figure 42) and *Plagiomnium ellipticum* (Figure 43), which he planted in flowerpots along with their original soil. These were

Rockhouses

Rockhouses are really just small caves created by deep recesses in bedrock cliffs. But despite their smaller size, they can create conditions much different from those of their surroundings outside the cavity. They tend to be buffered from extremes in both temperature and moisture, with cold blasts emanating in the summer and protection from severely cold winds in the winter. Nevertheless, despite their moderate climate, their low light levels greatly restrict the potential flora. It is therefore interesting that the greatest affinities of these floras are with the tropics (Farrar 1998). While the species in the rockhouses tend to be endemic to the eastern United States, the conditions created for them mimic the low light intensities of the dense rainforests. It is possible that the climatic moderation of the rockhouses might have permitted adapted plant groups to persist here since the time when a tropical/subtropical climate existed in the eastern US during the Pre-Pleistocene. It is in these secluded habitats that a number of endemic ferns reside, but the most numerous plants are the bryophytes. Farrar considered both groups to be preadapted to this habitat by their vegetative reproduction and their ability to have net photosynthetic gain in very low light.
placed in a cave where the climate is very constant, having a temperature of 9.5 ±1°C and 95-100% relative humidity. *Plagiomnium ellipticum* rapidly became brown and within three months had produced long, fine, vertical, leafless stems of 4-6 cm length. *Atrichum undulatum*, on the other hand, remained green for two years. Its chloroplasts increased from a mean of 8.8 to 10.3 per cell from May to October. In the cave both species had a much higher ratio of dark CO₂ fixation that did the control samples from normal light (Table 1). One interesting event in Rajczy's experiment was that isopods (*Mesoniscus graniger*, Figure 41) consumed all the dead material of the plants. The mosses soon grew pale, then partly brown.

Table 1. Incorporation of CO₂ into moss biomass in caves compared to controls. From Rajczy 1978-1979.

<table>
<thead>
<tr>
<th></th>
<th>¹⁴CO₂ Incorporation</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Net Activity (cmp/leaf)</td>
<td>Contrib dk fix to total fix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>total fix</td>
<td>dark fix</td>
<td>light fix</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrichum undulatum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>control</td>
<td>898</td>
<td>85</td>
<td>813</td>
<td>9%</td>
<td></td>
</tr>
<tr>
<td>cave sample</td>
<td>174</td>
<td>81</td>
<td>93</td>
<td>47%</td>
<td></td>
</tr>
<tr>
<td>Plagiomnium ellipticum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>control</td>
<td>3790</td>
<td>340</td>
<td>3450</td>
<td>9%</td>
<td></td>
</tr>
<tr>
<td>cave sample</td>
<td>550</td>
<td>220</td>
<td>330</td>
<td>40%</td>
<td></td>
</tr>
</tbody>
</table>

Figure 41. *Mesoniscus graniger*, an isopod consumer of dead mosses. Photo by Richard Kovács, through Creative Commons.

Figure 42. *Atrichum undulatum* leaves. Photo by Janice Glime.

Figure 43. *Plagiomnium ellipticum*. Photo by Michael Lüth.

Figure 44. Chloroplast with cutaway view to show inner and outer membrane, stacks of thylakoids that form grana, and connecting stroma. Drawing by Janice Glime

When *Atrichum undulatum* (Figure 42) cells were examined with the electron microscope after four months of experiment (September), the chloroplasts differed considerably from those of the control plants. The size of the grana had increased but their number decreased and they were arranged mostly at the periphery of the chloroplast. There were no starch grains. Then, in March, there was a most unexpected change. The chloroplasts contained starch once more and the grains appeared to be identical to those of the control plants. Thylakoids (Figure 44) were even thinner than in September, and only 1-2 stroma thylakoids were present. From 3 to 10 broad, low grana were present.

Surprisingly, *Plagiomnium ellipticum* (Figure 43) also had starch grains in March. However, these were not like those of their control plants. Some were far larger, and most chloroplasts lacked them. Most of the chloroplast envelopes were torn up.

In April, samples taken from the cave to the lab had measurable photosynthesis, although they had no exposure to light prior to the time of measurement. For *Atrichum undulatum* (Figure 42), photosynthesis reached 15-20% of that in the controls. Both species retained some photosynthetic activity for the two years of the experiment, but that of *Atrichum undulatum* was greater.
Rajczy (1978-1979) interpreted these results to mean that the mosses were subsisting on heterotrophic energy sources. He could find no other explanation for the sudden appearance of starch after 10 months in the cave. Furthermore, he cited the dark-culturing experiments of Servetaz (1913), Pringsheim and Pringsheim (1935), and Fries (1945) to support his position. Could the mosses be using electromagnetic rays? symbiosis? chemosynthesis? Cave algae are known to subsist using these unusual methods of obtaining energy (Kol 1966; Hadju 1971). And why did both species [Atrichum undulatum (Figure 42) and Plagionnium ellipticum (Figure 43)] have starch grains in March when the grains had disappeared earlier? Did some endogenous rhythm, lacking stimulus by photoperiod or temperature, trigger a change in metabolic activity?

Reflectance in the Desert

In desiccation-tolerant species, surface properties often change. This can result in a change in surface reflectance, as exemplified in the xerophytic moss Syntrichia ruralis (Hamerlynck et al. 2000). In this species, distinct differences occur in the ability to establish thermal dissipation of excess light energy throughout a range of light levels, helping to protect the sensitive chlorophyll and DNA.

Fluorescence

Wikipedia defines fluorescence as "emission of light by a substance that has absorbed light or other electromagnetic radiation of a different wavelength." One little-known property of at least some bryophytes is their ability to fluoresce various colors in UV light. Lichenologists are familiar with this property in lichens, using it as an identification tool (Hale 1956), but bryologists seem rarely to use it. Bees know it in flowers, being attracted to black patches of oriental poppy (Papaver orientale – Figure 46) petals and fine lines of marsh marigold (Caltha palustris – Figure 47) by their emission of fluorescence in the UV light of the sun.

Figure 45. Syntrichia ruralis, a species that changes its optical properties when dry vs wet. Photo by Jan-Peter Frahm, with permission.

In the Antarctic, surface reflectance properties differed over a range of water content, but did not correlate with pigment content (Lovelock and Robinson 2002). Nevertheless, the photochemical reflectance was correlated with the concentrations of active xanthophyll-cycle pigments and the photosynthetic light use efficiency as measured by chlorophyll fluorescence. The water content had a strong influence on both the amplitude and position of the red-edge and may itself cause the differences in reflectance. Continuous high levels of xanthophyll pigments indicate the continual high light levels.

Figure 46. The oriental poppy (Papaver orientale) has patches that appear black to us, but that reflect UV light that is visible to bees, guiding them to the center of the flower where the pollen and stigma reside. Photo by Janice Glime.

Figure 47. Caltha palustris, a species whose flowers appear yellow to us, but that reflect UV rays seen by bees. Photo by H. Zell, through Creative Commons.

Chlorophyll fluorescence is well known in plants, including bryophytes (Shi et al. 1992, Proctor & Smirnoff 2011), giving indication of the health of the plant by its ability to emit light from its active chloroplasts (Figure 48) (e.g. Csintalan et al. 1999; Deltoro et al. 1999; Arróniz-Crespo 2008). But other tissues can fluoresce as well. In Fontinalis antipyretica, the cell wall fluoresces yellow (Figure 49). Ridgway and Larson (1966) reported on the usefulness of the fluorescence technique to follow sporogenesis in the hornwort Anthoceros (Figure 50).
Chapter 9-5: Light: Reflectance and Fluorescence

Figure 48. *Funaria hygrometrica* leaf chlorophyll fluorescence, showing the typical red fluorescence of that molecule. Note that the cell walls lack fluorescence. Photo by Janice Glime.

Figure 49. *Fontinalis antipyretica* wall yellow fluorescence, contrasting with the red of the chlorophyll fluorescence. Photo by Janice Glime.

Figure 50. *Anthoceros punctatus*, member of a genus in which fluorescence permits us to follow development of spores. Photo by Jonathan Sleath, with permission.

My first encounter with the phenomenon was on a field trip in Europe where I entered in conversation with Gisela Nordhorn-Richter. She had stopped by a display of microscopes at her university just because the poor guys didn’t have many visitors. She took her research organisms, members of the genus *Pohlia* (Figure 51-Figure 52), to test the quality of the microscopes, one of which had UV light capabilities. To her amazement, gemmae lit up all over the place, displaying far more than she had been able to see without the UV aid. She then looked at other species and found that this was a good tool to help in determining number and shape, enabling her to delineate species more easily (Nordhorn-Richter 1984 a, b, c, 1985 a, b, 1988).

Figure 51. *Pohlia bulbifera* showing location of bulbils – structures that can be located in UV light by their fluorescence. Photo by Jan-Peter Frahm, with permission.

Figure 52. *Pohlia bulbifera* bulbils that fluoresce, making them easier to locate. Photo by Des Callaghan, with permission.

But for some reason, this view of bryophytes has been neglected in other arenas. It was not until Dale Kruse inquired about bryophyte fluorescence on bryonet (25 March 2011) that the subject again surfaced. “I just returned from a trip to Puerto Rico where I visited the rainforests of the Caribbean (El Yunque) National Forest. A ‘non-bryological’ employee there suggested there were fluorescent mosses in the forests of El Yunque. I did a quick search on the web and found very little information. I have seen fluorescent lichens but not mosses.” Bryologists responded with skepticism, suggesting it was a fungus or bacterium (or possibly a lichen). Then Michael Lüth responded (Bryonet 26 March 2011): “We saw a fluorescent *Frullania dilatata* (Figure 53) on an excursion,
when someone held a fluorescent lamp to a tree searching for some lichens." But Michael is able to show us proof.

Figure 53. *Frullania dilatata* demonstrating purple fluorescence under UV light from a special hand lens. Photo by Michael Lüth.

Pigments

As in the algae, one can use the chlorophyll-to-phaeophytin ratio to assess physiological stress in bryophytes (Lopez *et al.* 1997). This ratio proved to be a better indicator of environmental stress than presence-absence data for species in 188 stretches of river in northwest Spain. Organic pollution was indicated most strongly, with pH also strongly correlated.

As discussed in other chapters, pigments can respond to changes in light intensity. Dark-colored wall or cytoplasmic pigments are present in genera like *Frullania* (Figure 53) that are able live high in the canopy or at high elevations (Li *et al.* 1989; Glime *et al.* 1990). Aquatic bryophytes that grow in cold water and full sunlight likewise produce red cytoplasmic pigments, as seen in *Fontinalis* (Figure 54).

Leaf Canopy

It is well known that chlorophyll concentration increases in response to reduced light availability (Niinemets & Tobias 2014). But within the bryophyte canopy, older tissues are lower on the plant and thus receive less light. In this case, the chlorophyll concentration decreases with not only age, but also with decreasing light availability (Davey & Ellis-Evans 1996; Niinemets & Tobias 2014). Furthermore, in lower light, the plants are less dense and the leaves are usually farther apart, decreasing the density (Niinemets & Tobias 2014). This reduction in density increases the light interception per leaf area. Pleurocarpous mosses are able to acclimate structurally to light levels by adjusting the density of leaves and branches, whereas non-branching acrocarpous mosses lack the ability to change branching density. In addition, mosses under low water conditions have a greater degree of aggregation, thus further reducing light penetration. But as mosses desiccate they have greater light penetration further down the stem than the same mosses when hydrated, increasing productivity in older parts (Davey & Ellis-Evans 1996).

Absorption is not equal throughout the spectrum. Davey and Ellis-Evans (1996) observed that the greatest attenuation occurred at wavelengths corresponding to the peaks of chlorophyll absorption (675 nm and below 450 nm). Other factors that affect absorption include stem orientation, stem density, leaf size and orientation, and pigment content.

Leaf Angle

Leaf angle (Figure 55) is the angle made by the axil of the leaf and the axis. It affects the reflectance of light in plants. Angle of incidence (Figure 56) is the angle formed between the direction of light and the vertical (difference from straight on), so a low sun has a higher angle of incidence. Therefore, a small leaf angle (approaching vertical) creates the effect of a large angle of incidence.

Figure 55. Incidence light and reflectance on a leaf at an acute angle. In this case, the incident light strikes the leaf at an angle of 60° from the straight up light that would strike the leaf from a perpendicular direction. Redrawn from Howard 1967.
Howard (1967) demonstrated that leaf angles in four tracheophyte species of 0-30° (=90-60° angle of incidence) made little difference in reflectance, but when the angle of incidence was smaller, the reflectance increased rapidly, consequently rapidly reducing photosynthesis. In *Eucalyptus regnans*, photosynthesis begins to decrease at ~72° leaf angle, and at 45°, photosynthesis drops to 70% of values of horizontal leaves. At 5° leaf angles it approaches 0% (Kriedmann et al. 1964).

In bryophytes, many moss species raise their leaves and wrap them around the stem as they dry, effectively providing greater protection to the chlorophyll by greater overlapping of leaves. In the desert moss *Syntrichia caninervis* (Figure 57), leaf angle changes (Figure 58) are an important means of protecting against the effects of high light intensity during long periods of desiccation (Wu et al. 2014). First, the leaf movement helps to slow drying, permitting the plant to adjust physiologically in preparation for desiccation (see Chapters 7-5 and 7-6 in Water Relations). Second, the acute leaf angle of only 30° of a dry plant protect the photosynthetic cells. And third, when the leaf rehydrates, it returns in 7 seconds to an angle of 69-84°, with the first leaves reaching normal position in only 1 second. The hyaline cells at the leaf base are thin-walled and facilitate rapid uptake of water, swell, and push the leaf away from the stem. The leaf hair also play a role in reflecting light and reducing its impact on the chlorophyll. But the leaf hairs (awns) play another role that thus far has not been explained. They somehow are important in adjusting the leaf angle. When these awns are removed, the angle adjustment is retarded.

Summary

Protonemata of some mosses, such as *Schistostega pennata*, are able to position their chloroplasts to receive maximum available light and the lens-shaped cells help to focus the light. Their high reflectance provides a luminescence in caves. Similar reflective abilities are present in *Mittenia plumula* that lives in wombat holes. *Cyathodium* species that live in caves have a similar reflective ability in their thalli.

Some bryophytes are able to live in the dim light surrounding light bulbs in visitor caves, exceeded in their low-light survival only by the algae. Many of the cave bryophytes are also typical of other habitats of greater light intensity, including high-light tolerators like *Ceratodon purpureus* and *Pohlia nutans*. Some are the tufa formers that often are so encrusted with limestone that only their tips are able to get sufficient light for photosynthesis. *Amblystegium serpens* seems able to live in the lowest light at only 232 lux.

One response to bryophytes in deep caves is etiolation, which spaces leaves further apart, thus exposing more surface area to the little light available. In some species, the number of chloroplasts and size of grana can increase and growth can occur even in the dark. Long, thin "exploratory" branches may form. In *Atrichum undulatum* the starch disappeared in winter but reappeared in spring, in the dark! When placed in the light, photosynthesis began without delay.

Various plant parts may exhibit fluorescence. So far this ability is known from chloroplasts, leaf cell walls, developing spores, and bulbils and aside from the chlorophyll fluorescence known from all photosynthetic plants, it is known from at least some species of all three bryophyte groups.

Some mosses develop pigments in response to increased light intensity, although chlorophyll concentrations usually decrease. Others change the leaf angles, decreasing the damage to chlorophyll.
The light intensity diminishes as it penetrates the bryophyte canopy, but when the leaves dry, more light may reach older portions.

Acknowledgments

Thank you to Misha Ignatov for providing me with a prepublication copy of Ignatov et al. and providing me with numerous images of *Schistostega*. And thank you to Martin Hutten for offering his *Schistostega* images. Noris Salazar Allen introduced me to *Cyathodium cavernarum* and provided me with images. Michael Lüth has been especially generous in granting permission for me to use any of his images.

Literature Cited

