CHAPTER 8-7

NUTRIENT RELATIONS: FERTILIZATION

TABLE OF CONTENTS

Fertilization Effects .. 8-7-2
 N Additions .. 8-7-4
 P Additions ... 8-7-8
 Ca and Mg Additions .. 8-7-9
 Fe Additions .. 8-7-9
 CO₂ Additions ... 8-7-10
Excess Nutrients .. 8-7-10
Fertilization and Community Structure ... 8-7-11
Summary ... 8-7-15
Acknowledgments ... 8-7-15
Literature Cited ... 8-7-15
CHAPTER 8-7
NUTRIENT RELATIONS: FERTILIZATION

Figure 1. *Gymnostomum aeruginosum* growing on calcareous rock. Photo by Michael Lüth, with permission.

Fertilization Effects

We often learn about things in science by serendipity. And when it comes to learning about bryophytes in ecosystems, we often learn by what we do to their neighboring tracheophytes. Hence, when we fertilize our gardens or add fertilizers to restore impoverished land, the bryophytes respond, in their own way, along with the intended tracheophytic plants.

In general, fertilizers are detrimental to bryophytes. This is often because added fertilizers benefit tracheophytes that were unable to grow well in their absence and once being fertilized are able to overgrow the slow-growing bryophytes (Virtanen 2000), depriving them of light. One effect of fertilizers is that they frequently change the pH, often making it more alkaline; this is especially true for lime fertilizers. Few bryophytes are favored by high pH levels (Figure 1), and at the very least, the species composition is likely to change (Miles 1968; Miles 1973). Moreover, lime often has a desiccating effect, like that of chalk dust on your hands. However, some specific nutrients may be limiting and certain fertilizers may actually benefit the bryophytes.

Surprisingly, bryophytes in a polar semi-desert at Svalbard Arctic archipelago increased their cover as a benefit from applications of N, P, and K (with little effect by increased temperature), while there was a significant decrease in the cover of the flowering plants *Dryas octopetala* (Figure 2) and *Saxifraga oppositifolia* (Figure 3) (Robinson *et al*. 1998). A strong winter injury seemed to account for the ultimate decrease in *Dryas octopetala*. On the other hand, *Hylocomium splendens* (Figure 4) and *Rhytidium rugosum* (Figure 5) exhibited significant reductions in growth in a combined temperature and fertilizer enhancement experiment in a subArctic-alpine community in Sweden (Jägerbrand *et al*. 2003).

Figure 2. *Dryas octopetala*, an Arctic species that decreases cover when fertilized with N, P, and K. Photo by Jörg Hempel, through Creative Commons.
Changes in nutrient concentrations can affect the lipid content of bryophytes, thus affecting their ability to tolerate cold and desiccation. In the Arctic, growing shoots contain more lipids than carbohydrates (Rastorfer 1972). The lipid content of *Sphagnum fuscum* (Figure 6-Figure 7) increases during spring in the actively growing parts while decreasing in the senescent parts (Karunen & Salin 1981). *Dicranum elongatum* (Figure 8) uses lipids as storage material in its senescent parts (Karunen & Mikola 1980; Karunen & Liljenberg 1981). The conversion to carbohydrates may lower the freezing point, but I have not seen evidence to support this suggestion.
Al-Hasan et al. (1991) found that the addition of Ca(NO₃)₂ caused a shift in lipid content in the mosses Ctenidium molluscum (Figure 12), Dichodontium pellucidum (Figure 10), Pogonatum urnigerum (Figure 11), and Tortella tortuosa (Figure 12), with total lipids decreasing steadily with increasing concentrations of Ca(NO₃)₂ in the culture medium. At the same time, the proportion of the predominant polyunsaturated fatty acids also decreased [arachidonic acid (20:4) in C. molluscum, eicosatrienic acid (20:3) in P. urnigerum, and linoleic (18:2) and linolenic (18:3) acids in D. pellucidum and T. tortuosa].

Temperature also plays an important role in the storage of certain lipids and fatty acids. The content of triglycerides increases in Dicranum elongatum (Figure 8) plants photosynthesizing at low temperatures of 1-6ºC (Karunen 1981).

N Additions

Because bryophytes receive much of their nutrient input directly from the atmosphere, their responses to added atmospheric inputs of such pollutants as NO₃⁻ and NH₄⁺ can be rapid. If mosses are nutrient deficient, they should respond immediately and positively to these additions.
It appears that at least some bryophytes can use more N than they normally get. As noted in Chapter 8-6, *Fontinalis novae-angliae* (Figure 13) and *F. dalecarlica* (Figure 14) both became considerably darker green in response to higher N concentrations (Glime, unpubl.); *Dicranum majus* (Figure 15) likewise had its highest chlorophyll content from the highest N location (Bakken 1995).

Muller (1997) compared N content of plants from a plot receiving low doses of NH$_4$N0$_3$ diluted in rainwater (30 kg N ha$^{-1}$ year$^{-1}$) to plants from a control plot that received the same amount of rainwater without added N. The treatment simulated a tripling of the natural N deposition, while the added water represented only 7% of its annual precipitation. Although the N found in tracheophytes (0.7 mg N g$^{-1}$) in this study provided inconsistent results (Schleppi et al. 1999), the moss *Thuidium tamariscinum* (Figure 16) had a dry matter increase in N of 1.3 mg g$^{-1}$ (7%) (Muller 1997). At the same time, treated *Hylocomium splendens* (Figure 4) tended to become brown (Muller 1997), while *Sphagnum nemoreum* (= *S. capillifolium*; Figure 17) seemed to have a reduction in photosynthetic pigments as a result of the added N (Schleppi et al. 1999). It appears that the mosses were harmed by the added N in this form, except for the greater storage of N in *Thuidium tamariscinum*. On the other hand, Heeschen and coworkers (1996) contended that N is a "critical nutrient" for bryophytes in raised bogs. But the form matters.

Li and Vitt (1997) in their experiments on nutrient applications in peatlands in Alberta, Canada, found that the added N increased the productivities of two dominant mosses, *Sphagnum fuscum* (Figure 6-Figure 7) in a bog and *Tomentypnum nitens* (Figure 18) in a rich fen,
whereas the productivity of two dominant shrubs, *Rhododendron groenlandicum* (=*Ledum palustre* subsp. *groenlandicum*; Figure 19) in the bog and *Betula pumila* (Figure 20) in the rich fen, was unaffected. Furthermore, Nordin and Gunnarsson (2000), working with *Sphagnum fuscum, S. magellanicum* (Figure 21), and *S. rubellum* (Figure 22) from two mires in Sweden, found that addition of NH$_4$NO$_3$ actually caused decreased growth, but resulted in higher concentrations of amino acids in the tissues. When tissue amino acid concentrations exceeded 2 mg, growth in length decreased, suggesting the amino acids may have reached a toxicity level or that the feedback mechanism caused a toxic buildup of NH$_4$NO$_3$.

Woodin *et al.* (1985) found that precipitation high in NO$_3^-$ (as often found in acid rain) induces the nitrate reductase in *Sphagnum fuscum* (Figure 6-7). Eventually this causes a rise in ammonia, which in turn inhibits the nitrate reductase activity. Nitrate reductase is typically the limiting component in the conversion to amino acids, so it provides a control mechanism that attempts to moderate the concentration of NH$_4^+$ and amino acids in the plant:

\[
\text{nitrate} \xrightarrow{\text{nitrate reductase}} \text{nitrite} \xrightarrow{\text{nitrite reductase}} \text{ammonia} \rightarrow \text{amino acids}
\]

But it is important to keep in mind several intervening factors. Bryophytes in bogs and poor fens typically have *Cyanobacteria* associated with them, and ammonium inhibits nitrate reductase, reducing the symbiotic N fixation by the *Cyanobacteria*. Furthermore, ammonium is more available in acid soils. (See Subchapter 8-3 for further discussion of these intervening factors.)
Nitrate reductase is formed only in the light in *Fontinalis antipyretica* (Figure 28) (Schwoerbel & Tillmanns 1974). If this is true in other bryophytes, it might explain why Fries (1945) was able to obtain only slight growth of *Leptobryum pyriforme* (Figure 25) and none in *Funaria hygrometrica* (Figure 26) when he cultured them on NO$_3^-$ in the dark. In the light, on the other hand, *Funaria hygrometrica* and *Weissia controversa* (Figure 27) grew best on the NO$_3^-$ source (Dietert 1979), but poorly even on a buffered NH$_4^+$ medium. And *Fontinalis antipyretica* grew best on NH$_4^+$ ions because of the suppression of nitrate reductase by NH$_4^+$ (Schwoerbel & Tillmanns 1974). Many bryophytes can reduce NO$_3^-$ to NO$_2^-$ in the dark, but light is required to stimulate conversion of NO$_2^-$ to NH$_4^+$ (Brown 1982).

As one might expect, what is good for one bryophyte may destroy another. Dirkse and Martakis (1992) found that in Swedish forests, fertilization with NH$_4$NO$_3$ elicited a positive response from *Lophocolea heterophylla* (Figure 24) while causing a "distinctly negative" response from *Ptilidium ciliare* (Figure 24). In another experiment with the aquatic *Sphagnum cuspidatum* (Figure 37), Paffen and Roelofs (1991) were unable to demonstrate any response to added NH$_4^+$ unless the CO$_2$ concentration was increased simultaneously. This suggests that it is the usable C source (CO$_2$) that is limiting in that habitat, not the N source.
The aquatic moss *Fontinalis antipyretica* (Figure 28) responded to high levels of KNO₃ with a toxicity response that interfered with its physiological gas exchange (Stolz & Weise 1976). Its maximum sensitivity was in late spring, with minimal sensitivity in mid summer. High N levels can cause complete O₂ depletion in *Fontinalis*-colonized waters, interfering with P uptake. Total gas exchange of *F. antipyretica* increased 10-12 fold when air turbulence in the culture system increased from 25 to 45 L h⁻¹; P uptake increased accordingly.

P Additions

Phosphorus typically comes from the mineral substrate, animal dung, and decomposition. The presence of *Funaria hygrometrica* (Figure 26) seems to correlate with the addition of phosphate fertilizer (O'Toole & Synnott 1971). Could this simply be tolerance, or is it a requirement? After all, this moss grows on charcoal, which typically binds ions, providing a low-nutrient habitat. In *Polytrichum formosum* (Figure 29), there seems to be a clear benefit; Vagts and Kinder (1999) reported an "exceptional stimulatory effect of NPK on this moss in a heathland."

In an Alaskan study, addition of P in a stream resulted in an increase in cover of the mosses *Hygrohypnum alpestre* (Figure 30) and *H. ochraceum* (Figure 31-Figure 32), suggesting that these mosses had been P limited (Figure 33; Bowden *et al.* 1994). P concentrations are typically low in stream ecosystems and limit algal productivity as well.
Figure 32. *Hygrohypnum ochraceum*, a species that increases in cover in the Arctic when P is added to the streams. Photo by Michael Lüth, with permission.

Figure 33. Comparison of moss growth and biomass in unfertilized control reaches (0.05µM) and reaches fertilized by H$_3$PO$_4$ to a concentration of 0.3µM in the Kuparuk River, Alaska, USA. From Bowden *et al.* (1994).

In their study on a stream population of *Fontinalis antipyretica* (Figure 28), Stolz and Weise (1976) found that the incorporation of P is an active process and is temperature dependent. The RNA fraction was the cell fraction most sensitive to these concentrations.

N and P seem to act together in strange ways. In *Schistidium* (Figure 34) in Alaska, the addition of either N or P caused the cover to increase, but when both were added together the cover decreased (Gordon *et al.* 2001). In bogs and fens, the nutrient relationship can be quite complex. Thormann and Bayley (1997) found that when N or P was added to the water, net primary productivity of *Sphagnum fuscum* (Figure 6-Figure 7) decreased significantly and that water level was the primary limiting factor.

Ca and Mg Additions

Liming (CaCO$_3$) is a common practice for eliminating bryophytes from lawns and other areas where they are unwanted. One of the problems created by liming is desiccation. But Ca$^{++}$ from CaCO$_3$ can also harm bryophytes by competing with other nutrient ions by occupying too many exchange sites. This makes it difficult for other ions to bind to the cell walls and enter the bryophyte. But added Ca$^{++}$ is not always harmful to bryophytes. Helsper *et al.* (1983) found that repeated Ca$^{++}$ applications to a Calluna-dominated heathland in the Netherlands resulted in an increase in bryophytes.

The entry of Ca$^{++}$ and Mg$^{++}$ seem to interfere with each other, most likely through competition for exchange sites. The rich fen moss *Scorpidium revolvens* (Figure 35) responded to applications of MgCO$_3$ and CaCO$_3$ in relation to hardness (Tahvanainen 2004). At high Mg:Ca ratios and low hardness or at low Mg:Ca and high hardness, growth was suppressed, causing a bell-shaped response curve. In other words, growth increased, then decreased as Ca$^{++}$ increased (0-18 mg L$^{-1}$), but increased with the Mg level (0-12 mg L$^{-1}$).

Fe Additions

Iron can be a micronutrient or a macronutrient in plants and is needed in various enzymes. In oxygenated
water, iron forms iron oxides that are insoluble and precipitate out. However, in an aquatic system, deep water becomes anaerobic (lacking oxygen) and the iron then changes to its ferrous state and forms ferrous hydroxide, which is soluble. An interesting consequence of this relationship occurred in our study of a reservoir dam system (Glime & Keen 1984). The dam had the capability of providing outflow from four different depths. When the bottom depth was used, anaerobic water exited the reservoir and joined the shallower river below. The \textit{Fontinalis duriae} (Figure 36) in that river soon became covered with iron "pebbles." As the ferrous iron reached the photosynthesizing mosses, it changed to its ferric state and formed iron oxides with the photosynthetic oxygen. These ferric oxides adhered to the mosses as chunks or pebbles.

But once again, relationships are not so simple. When atmospheric CO$_2$ was increased to 700 ppm in combination with low levels of N deposition (6 g m$^{-2}$ yr$^{-1}$), \textit{Sphagnum recurvum} var. \textit{mucronatum} (Figure 38) responded with increased productivity, exhibiting a 17\% increase in dry biomass (Heijden \textit{et al.} 2000). But when N increased with the CO$_2$, no growth differences occurred. In fact, even at the highest N level coupled with the high CO$_2$ level there was a reduction of total N in the capitulum but not in the stems. This reduction in the capitulum coincided with reduced amino acids, but the soluble protein levels remained the same.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{image1.png}
\caption{\textit{Fontinalis duriae}, a species that can become plated with iron when reduced iron meets oxygenated water and plants producing oxygen. \textcopyright{} Michael Lüth.
\end{figure}

\section*{CO$_2$ Additions}

When plants are submersed, CO$_2$ can easily be limiting. This seems to be especially true for \textit{Sphagnum} as it enjoys the warmer temperatures of summer when CO$_2$ is quickly lost from the warm water. Addition of CO$_2$ to water in which \textit{S. cuspidatum} (wet kitten moss; Figure 37) was growing caused strong increases in both biomass and length (Paffen & Roelofs 1991). Addition of NH$_4^+$ without additional CO$_2$ had no effect on growth.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{image2.png}
\caption{\textit{Sphagnum cuspidatum} growing in water. \textcopyright{} Michael Lüth.
\end{figure}

\section*{Excess Nutrients}

Some bryophytes require low nutrient conditions, and many simply cannot survive fertilization or high nutrient situations. The effect of high mineral concentrations has been a source of consternation for many bryologists who have attempted terrariums or culture of bryophytes. Standard nutrient concentrations usually need to be diluted to about 10\% that used for tracheophytes and algae (Jeff Duckett, pers. comm. 23 February 2017), but as you will see in this chapter, that varies widely.

This problem of excess came to the attention of Bryonetters. Formation of a white crust on the tips of plants has attracted attention in a number of species. The discussion began when Caitlin Maraist (Bryonet 18 July 2016) cultured \textit{Ceratodon purpureus} (Figure 39) on Turface (a clay that has been heated to improve absorption) moistened with DI water. The plants developed a white precipitate on their leaf tips. Timea Deakova (Bryonet 19 July 2016) reported having the same problem when culturing \textit{Dicranum} species (Figure 8, Figure 15).
Lars Hedenäs (Bryonet 19 July 2016) reported *Syntrichia ruralis* s.l. (Figure 40) as commonly having such a crust when growing in "strongly calcareous and periodically dry habitats... When dry, the upper leaf portions (hair-points and uppermost lamina) become brittle" with what appears to be a precipitated calcium compound.

When *Syrrhopodon texanus* (Figure 41) grows on mineral-rich sandstones, groups of plants can become white with salts accumulated on leaf tips, but adjoining species do not seem to have these accumulations (David Taylor, Bryonet 18 July 2016). This raises interesting questions about the various abilities of bryophytes to tolerate these salts. Why do some deposit them at their tips and others do not? How does this relate to internal vs external conduction? And what physiological adaptations permit some bryophytes to tolerate these salts without suffering from exosmosis (loss of water through the cell membranes due to the higher salt concentration on the outside of the cell)?

Fertilization and Community Structure

It is easy to see that, rather than benefit, mosses may suffer from increased fertilization both from acid rain inputs and from airborne farm fertilizers, as shown in many field experiments (Mickiewicz 1976; Brown 1982; Jäppinen & Hotanen 1990; Kellner & Mårshagen 1991). In industrialized areas, heavy metals, needed by the bryophytes in minute quantities, can further result in the decline of bryophytes when the industrial sources greatly increase the quantities of these pollutants. In some cases, this pollution fertilization may be beneficial to the bryophytes, as in the pine-heath system where nutrient levels are especially low. Under such circumstances, mosses including *Pohlia* (Figure 42-Figure 43) and *Pleurozium schreberi* (Figure 44) can replace lichens, including *Cladonia* spp., particularly if irrigation is supplied (Persson 1981). Skré and Oechel (1979) found that *Sphagnum nemoreum* (= *S. capillifolium*; Figure 17) also increased its productivity in fertilizer experiments, as did the litter-inhabiting species *Brachythecium oedipodium* (Figure 45) and *Plagiothecium laetum* (Figure 46) with higher N, P, or Mg (van Dobben *et al.* 1992). Increases in productivity and growth of bryophyte species can lead to changes in community structure.
adapted to lower nutrient levels. Jäppinen and Hotanen (1990) found that these common boreal species, also including Dicranum (Figure 48) and Sphagnum (Figure 52) species, were killed by fertilizer applications designed to improve timber yield, but that Polytrichum commune (Figure 49) seemed unaffected. The overall effect, then, of the addition of nutrients is that species that are typical of poor sites (lichens, Ericaceae, feather mosses) shift toward associations of species typical of rich sites (Poaceae and litter-inhabiting mosses).

By contrast, Skré and Oechel (1979) found that Hylocomium splendens (Figure 4) and Pleurozium schreberi (Figure 44) in the black spruce (Picea mariana; Figure 47) forest near Fairbanks, Alaska, did not increase in cover with fertilizer additions, suggesting that nutrients were already more available than in the pine-heath system studied by Persson (1981) or that these populations were

Figure 43. *Pohlia nutans* with capsules, a species that can replace lichens when nutrients are added to nutrient-poor habitats through pollution. Photo by Jan-Peter Frahm, with permission.

Figure 44. *Pleurozium schreberi*, a species that can replace lichens in heathlands when fertilized by pollution. Photo by Sture Hermansson, with online permission.

Figure 45. *Brachythecium oedipodium* increased its productivity in fertilizer experiments with N, P, and Mg. Photo by Michael Lüth, with permission.

Figure 46. *Plagiothecium laetum* increased its productivity in fertilizer experiments with N, P, and Mg. Photo by Kristian Peters, with permission.

Figure 47. Black spruce (*Picea mariana*) forest. Photo by Herbert Pöhnl, through Creative Commons.

Figure 48. *Dicranum polysetum*, a boreal forest species that is killed by forest fertilization designed to improve timber productions. Photo by Janice Glime.
Figure 49. *Polytrichum commune*, a boreal forest species that unaffected by forest fertilization designed to improve timber productions. Photo by Michael Lüth, with permission.

On the other hand, disappearance of *Rhytidiadelphus squarrosus* (Figure 50) was not coupled with an increase in tracheophyte cover in either acidic or calcareous grassland (Morecroft *et al.* 1994). Rather, it appears to have responded to additions of NH$_4$NO$_3$ or (NH$_4$)$_2$SO$_4$ (ammonium sulfate) additions through disruption of its N metabolism (Bates 2000).

Peatlands can respond differently in different geographic regions. Aerts and coworkers (1992) attributed the lower productivity of northern Swedish peatlands compared to those in southern Sweden to the 10X greater input of atmospheric N in the southern location. They supported this hypothesis by adding N and P at both sites. At the northern site, added N increased productivity 4-fold, but added P had no effect. Conversely, at the southern site, added N (4 g m$^{-2}$ y$^{-1}$) had no effect on productivity, whereas adding P (0.4 g m$^{-2}$ y$^{-1}$) increased productivity 3-fold. This trend is likewise supported by comparing a low and high deposition site in the Netherlands. Atmospheric N deposition there has been increasing, causing peatlands to increase in available N (Limpens *et al.* 2003). This increase in N seems to have coincided with an increase in *Sphagnum fallax* (Figure 52). However, Limpens *et al.* could find no evidence that *S. fallax* outcompeted any of the other five *Sphagnum* species in the area. Nevertheless, when N was added at a low deposition site, this species did expand its coverage. They determined that at the high deposition site *S. fallax* was limited by P. They concluded that when the capitulum N concentration is raised to 7 mg L$^{-1}$ or higher and the P concentration is 0.7 mg L$^{-1}$ or higher, this species can increase and dominate.

Li and Vitt (1997) found that while moss productivity increased 4-300% with N enrichment (3 g m$^{-2}$ yr$^{-1}$ as NH$_4$Cl), the productivity of the peatland shrubs *Betula pumila* (Figure 20) and *Rhododendron* (= *Ledum* groenlandicum) (Figure 19) did not. In fact, they concluded that the moss layer immediately retained nearly all of the added N. Likewise, Bayley *et al.* (1987) found that when N was added to a boreal peat system in the form of NO$_3^-$, 90% was taken up by the *Sphagnum* lawn (Figure 51) within 24 hours, resulting in a growth increase by the *Sphagnum*. No growth increase occurred in the tracheophytes, even after five years of experimentation (Vitt 1991). Sanville (1988) likewise found that *Sphagnum* production increased in response to nutrient addition.

In the high Arctic heath, bryophytes are a major ecosystem component. When N and P were added to that system for eight years, there was no change in bryophyte cover, but physiological processes shifted in the bryophyte layer (Gordon *et al.* 2001). Only 10 kg ha$^{-1}$ yr$^{-1}$ of N increased the proportion of physiologically active bryophyte shoots while decreasing their capacity to assimilate NO$_3^-$. Effects of added P were even greater. When both nutrients were added, the species composition changed, with some bryophytes increasing in abundance

Figure 50. *Rhytidiadelphus squarrosus* with competing vascular plants. Photo by Michael Lüth, with permission.

Figure 51. *Sphagnum* lawn. Photo through Creative Commons.

Figure 52. *Sphagnum fallax*. Photo by Michael Lüth, with permission.
and others decreasing. Since N and P are both limiting in this Arctic system, increasing either will have an effect on the ecosystem. Thus, if mineralization increases as a result of global warming, we can expect shifts in the community structure of the Arctic ecosystems.

Predicting the behavior of tundra and peatland communities is not simple. Chapin and Shaver (1989) found that in Alaska the mosses (and lichens) had the greatest N and P use efficiency, but, unlike deciduous leaves, declined in N use efficiency with the addition of N plus P. Nevertheless, they can be efficient scavengers of available N, competing effectively with tracheophytes. In the Arctic tundra, Marion and coworkers (1987) found that litter recovered 1.3-16.3% and mosses 5.4-16.4% of labelled N, whereas above ground tracheophytes recovered only 2.6-5.0%. Although we tend to think of the tundra as being nutrient limited, it appears that it may not be nutrient limited for the mosses. Oechel and Sveinbjörnsson (1978) found that the addition of a dilute nutrient solution to the mosses there did not increase photosynthetic productivity or growth. One reason for this lack of response, or even decline in productivity, upon the addition of nutrients is that NO\textsubscript{3}- causes the induction of nitrate reductase activity, as shown for Sphagnum fuscum (Figure 6-Figure 7) by Woodin and coworkers (1985). Thus it appears that the feedback system controls the N levels in the mosses (see above under N Additions). Skré and Oechel (1979) likewise found that Hylocomium splendens (Figure 4) and Pleurozium schreberi (Figure 44) did not increase productivity after fertilizer additions, but surprisingly, Sphagnum capillifolium (Figure 17) did. Perhaps its position high in the hummock is less suitable than other locations for the N-fixing Cyanobacteria that maintain N levels in bogs and fens.

In some habitats, increasing the nutrient content can shift dominance from cryptogams, including mosses, to tracheophytes (van Dobben et al. 1992). When N (as NH\textsubscript{4}NO\textsubscript{3}) was added to a forest ecosystem in Sweden in an 18-year experiment, cryptogams, including the soil mosses Pleurozium schreberi (Figure 44) and Hylocomium splendens (Figure 4), and the heath family Ericaceae lost dominance to the grass Deschampsia flexuosa and ruderal (disturbed habitat) species. Both bryophytes were strongly "disfavored" by the addition of N at all levels. The other additions (P, K, Mg, S, and micronutrients) had similar effects but to a much smaller degree. Pleurozium schreberi was disfavored by S and micronutrients. Added P and N significantly stimulated the growth of Pseudoscleropodium purum (Figure 54), whereas Brachythecium rutabulum (Figure 53) did not respond (Bates 1994). The P. purum plants showed a greater uptake of P and to a lesser extent N than did the B. rutabulum while also conserving them more efficiently. Bates explained this difference in that P. purum depends on an unpredictable supply of nutrients from precipitation, whereas B. rutabulum probably obtains more of its nutrients from its substrate. Some nutrients are sequestered onto cell wall exchange sites of P. purum and taken up later as needed.
Chapter 8-7: Nutrient Relations: Fertilization

Summary

Fertilizers typically harm bryophytes by benefitting their tracheophyte competitors. They can also raise the pH, creating conditions unfavorable for bryophytes. Only in the Arctic do fertilizers sometimes seem to benefit bryophytes, where nutrients are low and cool temperatures favor bryophyte growth. Fertilizers such as Ca(NO₃)₂ cause a decrease in the lipids that are needed for tolerance of cold and desiccation, whereas cold temperatures increase them.

In the boreal forest, it appears that effects of added nutrients on bryophyte community structure can be long lasting. Even 47 years after N fertilization ceased, the community structure had not returned to pre-fertilization composition (Strengbom et al. 2001). Brachythecium reflexum (Figure 57) and Plagiothecium denticulatum (Figure 58) had increased. On the other hand, the typically abundant Hylocomium splendens (Figure 4) had decreased relative to controls. At the same time, there seemed to be no difference in species composition of tracheophytes, but the sporocarp production of the N-sensitive mycorrhizal fungi had decreased.

Figure 56. Reindeer, large numbers that can contribute to manuring that provides nutrients for bryophytes. Photo by Roger S. Key, with permission.

In the boreal forest, it appears that effects of added nutrients on bryophyte community structure can be long lasting. Even 47 years after N fertilization ceased, the community structure had not returned to pre-fertilization composition (Strengbom et al. 2001). Brachythecium reflexum (Figure 57) and Plagiothecium denticulatum (Figure 58) had increased. On the other hand, the typically abundant Hylocomium splendens (Figure 4) had decreased relative to controls. At the same time, there seemed to be no difference in species composition of tracheophytes, but the sporocarp production of the N-sensitive mycorrhizal fungi had decreased.

Figure 57. Brachythecium reflexum, a species that increased following N fertilization. Photo by Michael Lüth, with permission.

Figure 58. Plagiothecium denticulatum, a species that increased following N fertilization. Photo by Michael Lüth, with permission.

Acknowledgments

I appreciate the contributions of undergraduate Phil Gaudette and M. S. student Jennifer Jermalowicz Jones for their critical reading of the manuscript from the perspectives of students interested in nutrient relationships of bryophytes.

Literature Cited

Muller, N. 1997. Short-term response of the ground vegetation in a montane forest ecosystem under increased nitrogen deposition - influence of light and competition. Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), CH-8903 Birmensdorf, Switzerland. Thesis 12388, ETH Zurich.

