CHAPTER 2-6

BRYOPHYTA - ANDREAEOPSIDA, ANDREAEOBRYOPSIDA, POLYTRICHOPSIDA

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andreaeopsida – The Granite Mosses</td>
<td>2-6-2</td>
</tr>
<tr>
<td>Andreaeobryopsida</td>
<td>2-6-4</td>
</tr>
<tr>
<td>Polytrichopsida</td>
<td>2-6-4</td>
</tr>
<tr>
<td>Polytrichaceae</td>
<td>2-6-5</td>
</tr>
<tr>
<td>Tetraphidaceae</td>
<td>2-6-9</td>
</tr>
<tr>
<td>Buxbaumiaceae – Bug on a Stick</td>
<td>2-6-10</td>
</tr>
<tr>
<td>Diphysciaceae</td>
<td>2-6-12</td>
</tr>
<tr>
<td>Summary</td>
<td>2-6-13</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>2-6-13</td>
</tr>
<tr>
<td>Literature Cited</td>
<td>2-6-13</td>
</tr>
</tbody>
</table>
CHAPTER 2-6
BRYOPHYTA - ANDREAEOPSIDA, ANDREAEOBRYOPSIDA, POLYTRICHIOPSIDA

Andreaeopsida – The Granite Mosses

This is a small, cool-climate class of siliceous-rock-dwelling mosses (Schofield 1985), again with only one genus, but with approximately 100 species. They are typically blackish or reddish, brittle, and short (Figure 1). One can recognize them by rubbing one’s hand across them and discovering small fragments stuck to the hand. This no doubt has dispersal potential.

The leaves are but one cell thick (Figure 2), but some species have a multiple cell thickness in the center, forming a costa (Figure 3). The arrangement of leaves is multi-ranked and the stem typically has colored cell walls (Figure 4). Unlike most mosses, they have a thalloid protonema.

Of ecological significance, Andreaea is autoicous (having male and female reproductive organs in separate clusters on the same plant; Figure 5-Figure 7). This ensures there will be others around to accomplish fertilization.
The capsule is reminiscent of liverworts, opening in **four valves**, but having the tips remaining **attached** to each other, making it look like those paper lanterns we made as children for Halloween (Figure 8). Unlike the liverworts, it **lacks elaters**. And unlike most liverworts and Bryopsida, it **lacks a seta** and has a gametophyte **pseudopodium**, a character in common with **Sphagnopsida**, a stalk produced at capsule maturity from the gametophyte tissue.
Chapter 2-6: Bryophyta - Andreaeopsida, Andreaeobryopsida, Polytrichopsida

Andreaeobryopsida

This class likewise is comprised of a single genus, *Andreaeobryum* (Figure 9), which has been considered by most to belong to the Andreaeopsida, but recently separated in the treatment by Buck and Goffinet (2000). It differs in being **dioicous** (having male and female reproductive organs on separate plants) and possessing a **seta**. Its **calyptra** is larger, covering the capsule, and the capsule is **valvate**, but unlike the Andreaeopsida, the apex erodes, so the **valves are free**, not joined at the apex. The distribution is narrow, restricted to the northwestern part of Canada and adjacent Alaska, where it grows on calcareous rocks, contrasting with the acidic granite preference of *Andreaea* (Andreaeopsida).

Polytrichopsida

With bryophytes, the determination of primitive or advanced often depends on the generation being examined. The gametophyte may have changed considerably while some set of characters of the sporophyte remained constant. And of course, the reverse can be true. The **dioicous** condition (male and female reproductive organs on separate plants) that characterizes *Polytrichopsida* is considered to be primitive (Longton & Schuster 1983), with the **monoicous** condition (male and female reproductive organs on the same plant) that is so frequent in *Bryopsida* typically being derived by doubling of the chromosome number. Likewise, **nematodontous peristome teeth** (having evenly thickened walls and whole dead cells lacking eroded walls, Figure 10) of *Polytrichopsida* would seem to be an earlier development than the arthrodontous condition of Bryopsida.

All members of the class possess an elongate sporophyte **seta**, supporting an **operculate peristomate** capsule, and a **columnar columella**, characters that are more advanced than in Sphagnopsida but typical in Bryopsida. Spores are produced by meiosis in a single event in **sporogenous** tissue that surrounds the columella (Figure 11-Figure 12).
The gametophyte is often very specialized, being characterized by stems with a **central strand**, reaching its peak in *Polytrichaceae* (Figure 13), with the presence of **hydroids** (water-conducting cells) and **leptoids** (sugar-conducting cells). The leaves of the class are **all costate** (having a midrib-like structure; Figure 14).

In many ways, this family looks like a tracheophyte wanna-be. It attains a greater height than the typical moss and can even stand alone to nearly half a meter in the case of *Dawsonia longifolia* (Figure 15). *Polytrichum commune* (Figure 16) likewise attains similar heights, but only with the support of other individuals, forming a hummock. Even in the cold climate of Macquarie Island, *P. juniperinum* reaches hummock heights of 30 cm (Rod Seppelt, pers. comm. 16 March 2007).

The genus *Dawsonia* has many unresolved species, some of which have been moved to a different genus. Even the well known *D. superba* (Figure 15) has been merged into *D. longifolia*. *Dawsonia longifolia* s.l. is a native of New Zealand, Australia, and Papua New Guinea and breaks the height record for upright mosses. It grows up to 48 mm in a year and in this study ranged 6-38 cm tall (Green & Clayton-Greene 1981). This compares well with known growth rates of *Polytrichum commune* of 3-5 cm in one growing season (Figure 17) (Sarafis 1971). It occurs in a temperate climate and its growth tracks available moisture and temperature. Its sperm dispersal is aided by an antheridial splash cup, with sperm known to reach females 1.5-2 m from the males in the field, but experimental tests showed they could splash to heights up to 3.3 m in the lab (Clayton-Greene et al. 1977)! Ligrone et al. (2002) showed that *Dawsonia* responded differently to antibodies used to label the arabinogalactan proteins in the water conducting cells, suggesting that their chemical structure differed from that of other mosses tested. On the other hand, *Dendroligotrichum* (Figure 18) and *Polytrichum* demonstrated a strong reaction in the leptoids (Figure 13; Figure 19) of the stem. These three genera differed in other marker reactions as well, supporting the uniqueness of the *Polytrichopsida*.
Antibodies against varied carbohydrate epitopes of arabinogalactan proteins gave different results. The ‘arabinogalactan proteins (AGP)’ antibody labelled the WCCs in all mosses, except *Dawsonia*, whilst no labelling was observed in hepatics.

The *Polytrichaceae* lead the way to complexity with their unusual leaf structure, possessing vertical lamellae (vertical tiers of cells like the pages of an open book; Figure 20-Figure 22) that provide an interior somewhat resembling that of a maple leaf. In fact, in the genus *Polytrichum*, some members have the outer portion of the blade folded over the lamellae (Figure 23-Figure 24), creating an internal chamber resembling palisade mesophyll surrounded with epidermis. The cuticle (in this case, a waxy, water-repellent covering on the outer surface of the leaf; Proctor 1979) of *Polytrichum* is more developed than in most other bryophytes, and *Polytrichum* seems to repel water from its leaves rather than to absorb it (Figure 23), a phenomenon that may prevent the spaces among the lamellae from flooding that would block access of CO₂ to the chloroplasts within. Its rhizoids function not only for anchorage, but also seem to facilitate external water movement.
In some mosses, like *Polytrichum*, the antheridia are in splash **cups** or **platforms** (rosette of leaves from which reproductive units such as sperm, gemmae, or spores can be splashed by raindrops; Figure 25), and when the **sperm** (male reproductive cells; male gametes) are mature, the antheridium (Figure 26) swells and bursts during a rainy period. The bases of the antheridia, in taxa such as *Polytrichum* and *Atrichum* (Figure 33), collect fluid between the sperm tissue and the antheridial jacket (Figure 26) (Bold et al. 1987). When the cells at the tip of the sterile jacket open, the antheridial jacket contracts. At this time, the fluid at the bottom acts as a hydraulic ram and forces the sperm out of the antheridium. Once in the open water of the splash cup, the sperm are splashed from the cup. Hopefully, some of these sperm will splash near the tip of a female plant (Figure 27) and will begin swimming toward the archegonium (Figure 28).
But it appears that the sperm of *Polytrichum commune*, and perhaps others, may have some help in this process from another source (Harvey-Gibson & Miller Brown 1927). A variety of invertebrates visit the male splash cups once they are fertile and get the mucilage with sperm stuck on their bodies. While visiting the plants, the insects lap up the mucilage and lick the saline crystals that form on the margins of the perichaetial leaves. The same insects, bodies and limbs smeared with mucilage in which sperms were abundant and motile, likewise appear on female plants. Now, can someone show whether the red color of splash cups (Figure 25) in several members of this family have the ability to attract any dispersal agents?

After fertilization, the zygote divides to form an embryo within the archegonium. Eventually this sporophyte embryo tissue forms a foot, seta, and capsule. The capsule develops within the calyptra (Figure 29-Figure 31), which is the expanded archegonium. The calyptra is essential for normal development in most mosses, and a split on one side can cause asymmetrical development. In the case of *Polytrichum*, the calyptra is very hairy (Figure 31), earning the moss the name of hairy cap moss or goldilocks moss. If it removed early in development, the capsule will not develop properly.

Eventually the calyptra (Figure 31) is shed, exposing the capsule. Then the operculum (lid) must come off to permit spore dispersal. In this family the capsule has 64 short teeth joined by a membrane (epiphragm) that covers the capsule like skin on a drum (Figure 32). These small spaces permit spores to escape the capsule a few at a time, providing maximum chances for some escaping under the right conditions for dispersal and establishment.
Chapter 2-6: Andreaopsida, Andreaeobryopsida, Polytrichopsida

Figure 32. Epiphragm of *Polytrichum*. Photo by Laurie Knight <http://www.flickr.com/photos/laurie-knight>, with permission.

Figure 33. *Atrichum undulatum* with antheridial splash cups, another member of the *Polytrichaceae*. Photo by Janice Glime.

Tetraphidaceae

Tetraphis (Figure 35), also in the *Polytrichopsida*, looks more like a typical moss than do other Polytrichopsida, with thin, 1-cell-thick leaves and a costa (Figure 14, Figure 34). *Tetraphis* is unique among mosses in having gemmae (Figure 35-Figure 36) arranged in splash cups at the tips of the stems when sexual reproduction is not in season, arguably a primitive remnant. These gemmae are asexual bits of plant material that can grow into a new plant. Its most unusual character is that its protonemata are not threads, but rather flaps (Figure 37). Antheridia are borne terminally on the leafy plants (Figure 38), as are the archegonia. The capsule (Figure 39) has only four long, unjoined, nematodontous teeth (Figure 10, Figure 40).

Figure 34. *Tetraphis pellucida* leaf cross section showing 1-cell-thick lamina and multicellular costa. Photo from botany website, University of British Columbia, with permission.

Figure 35. Leafy gametophytes of *Tetraphis pellucida* with gemmae cups on top. Photo by Janice Glime.

Figure 36. Gemma cup with gemmae of *Tetraphis pellucida*. Photo by Janice Glime.
Buxbaumiaceae – Bug on a Stick

Buxbaumia (Figure 41-Figure 45) is one of the strangest of all mosses. It lacks any leafy stem at all (Figure 41). Its archegonia and antheridia arise directly from the protonema. Hence, its capsules (Figure 43) arise directly from this persistent protonema (Figure 41). They all tend to orient in the same direction (Taylor 1972), most likely in response to the predominant direction of light. Its capsules, although possessing teeth (Figure 44), more typically split across their broad, flattened surface, hence exposing the spores (Figure 45) (Koch *et al.* 2009). Koch and coworkers demonstrated that in *Buxbaumia viridis* (Figure 41) this capsule surface is covered with "massive" wax layers that have embedded and superimposed platelets and granules on them. When these waxy layers peel back, the epidermis peels with them.

The *Buxbaumia* capsule interior is chambered and spongy, somewhat like a spongy mesophyll of Magnoliophyta. It typically occurs with tiny, black leafy liverworts such as *Cephalozia* (Figure 46). Campbell (1918) had considered this moss to be saprophytic, exhibiting almost no chlorophyll, but Mueller (1975) demonstrated dense chlorophyll in the protonema and...
considered that to be the primary photosynthetic organ, one that persists throughout the life of the moss. The protonema is not a good competitor, so you can find it after forest fires, on soil banks, on roadsides, and other places that are not very hospitable to plants that could easily overgrow the photosynthetic protonemata. The capsule (Figure 41-Figure 43) is rather unusual, with its broad, flattened side and a rounded side. This strange shape has earned it a number of common names, including humpbacked elves, elf-cap moss, Aladdin’s lamp, and bug on a stick.

Figure 42. *Buxbaumia aphylla* on a soil bank with all capsules pointing the same direction. It has been suggested that common habit is advantageous to maximize light absorption by the photosynthetic capsule. Photo by Janice Glime.

Figure 43. Unopened capsule of *Buxbaumia aphylla*, illustrating the flat side with a beaked operculum that has earned it the common names of bug-on-a-stick and Aladdin’s lamp moss. Note the absence of a leafy gametophyte. Photo by Michael Lüth, with permission.

Figure 44. *Buxbaumia piperi* capsule showing diminished peristome teeth. Photo from botany website at the University of British Columbia, with permission.

Figure 45. *Buxbaumia aphylla* (Class *Polytrichopsida*) showing flat side of capsule peeled back to expose the spores and spongy interior. Photo by Janice Glime.

Figure 46. *Cephalozia bicuspidata*, member of a genus of tiny liverworts that often occur with *Buxbaumia aphylla*. Photo by Kristian Peters, through Wikimedia Commons.
In *Buxbaumia aphylla*, Hancock and Brassard (1974a) found that almost all elements that occurred in the protonema also occurred in the sporophyte, suggesting they were transported internally. Hancock (1973) also suggested that its protonemata were perennial. In northern climates, this is advantageous because the capsules are very susceptible to mortality from sudden early frosts. Normally, the capsules form in fall and overwinter as green capsules (Hancock & Brassard 1974b). They complete development and disperse their spores early in spring, then disappear.

Diphysciaceae

Diphyscium (Figure 47-Figure 54) is distributed mostly in the northern hemisphere (Milne & Klazenga 2012). Its three genera have been reduced to one (Magombo 2002; Goffinet 2012), which has an asymmetrical capsule (Figure 51-Figure 54) of similar shape to that of *Buxbaumia* and lacks a leafy female stem except for perichaetial leaves (Figure 54), but the male plant of this genus has large, strap-shaped leaves and leads an independent and separate existence (Figure 47-Figure 50). The capsule opening is quite small and the teeth extrude like a wisp of hairs (Figure 54). The perichaetial leaves are unusual, having a long, excurrent costa and often being fimbriate on the margins (Figure 53-Figure 54). As in *Buxbaumia*, the capsule shape is responsible for several common names – nut moss, powder gun moss, grain of wheat moss. It shares the phototropic behavior of *Buxbaumia* by having its capsules all oriented in one direction with their flat sides facing the direction of the light (Figure 51-Figure 53).
Summary

Bryophyta can be considered to have six classes: Takakiopsida, Sphagnopsida, Andreaeopsida, Andreaeobryopsida, Polytrichopsida, and Bryopsida, differing most consistently in capsule structure. Gametophores of Andreaeopsida, Andreaeobryopsida, and Polytrichopsida produce archegonia and/or antheridia at the apex and the embryo develops within the archegonium.

Sporophytes remain attached to the gametophyte and produce spores by meiosis. These classes, and all Bryophyta, produce spores from the sporophyte only once.

Takakiopsida, Andreaeopsida, and Andreaeobryopsida have capsules that split into valves, but lack elaters. Sphagnopsida lacks valves and has an operculum that is shed at dispersal time, but lacks peristome teeth. In capsules of Polytrichopsida and Bryopsida, an operculum usually covers peristome teeth that often aid dispersal, contrasting with liverworts wherein the capsule splits into four valves with elaters that possibly facilitate spore movement. Polytrichopsida have nematodontous peristome teeth; Bryopsida have arthrodontous peristome teeth. All other classes of Bryobiotina lack peristomes. Andreaeobryopsida is dioicus (two sexes on separate plants) and possesses a seta (stalk of capsule), whereas Andreaeopsida is monoicus (both sexes on same plant) and lacks a seta.

Acknowledgments

I appreciate the comments and suggestions of Karla Werner, who offered a beginner's perspective. Noris Salazar Allen offered constructive criticisms on the taxonomic descriptions and helped with the proof reading. Heino Lepp alerted me to the invertebrate dispersal of sperm by his 3 September 2006 contribution to Bryonet.

Literature Cited

