
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Michigan Tech Publications 

5-9-2023 

Evaluating machine-generated explanations: a “Scorecard” Evaluating machine-generated explanations: a “Scorecard” 

method for XAI measurement science method for XAI measurement science 

Robert R. Hoffman 
Florida Institute for Human & Machine Cognition 

Mohammadreza Jalaeian 
The Ohio State University 

Connor Tate 
Florida Institute for Human & Machine Cognition 

Gary Klein 
LLC 

Shane T. Mueller 
Michigan Technological University, shanem@mtu.edu 

Follow this and additional works at: https://digitalcommons.mtu.edu/michigantech-p 

 Part of the Cognitive Science Commons 

Recommended Citation Recommended Citation 
Hoffman, R., Jalaeian, M., Tate, C., Klein, G., & Mueller, S. (2023). Evaluating machine-generated 
explanations: a “Scorecard” method for XAI measurement science. Frontiers in Computer Science, 5. 
http://doi.org/10.3389/fcomp.2023.1114806 
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/17127 

Follow this and additional works at: https://digitalcommons.mtu.edu/michigantech-p 

 Part of the Cognitive Science Commons 

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/michigantech-p
https://digitalcommons.mtu.edu/michigantech-p?utm_source=digitalcommons.mtu.edu%2Fmichigantech-p%2F17127&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1437?utm_source=digitalcommons.mtu.edu%2Fmichigantech-p%2F17127&utm_medium=PDF&utm_campaign=PDFCoverPages
http://doi.org/10.3389/fcomp.2023.1114806
https://digitalcommons.mtu.edu/michigantech-p?utm_source=digitalcommons.mtu.edu%2Fmichigantech-p%2F17127&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1437?utm_source=digitalcommons.mtu.edu%2Fmichigantech-p%2F17127&utm_medium=PDF&utm_campaign=PDFCoverPages


TYPE Original Research

PUBLISHED 09 May 2023

DOI 10.3389/fcomp.2023.1114806

OPEN ACCESS

EDITED BY

Chathurika S. Wickramasinghe Brahmana,

Capital One, United States

REVIEWED BY

Christos Troussas,

University of West Attica, Greece

Siming Chen,

Fudan University, China

Scott Cheng-Hsin Yang,

Rutgers University, Newark, United States

*CORRESPONDENCE

Robert R. Ho�man

rho�man@ihmc.us

RECEIVED 02 December 2022

ACCEPTED 03 April 2023

PUBLISHED 09 May 2023

CITATION

Ho�man RR, Jalaeian M, Tate C, Klein G and

Mueller ST (2023) Evaluating

machine-generated explanations: a “Scorecard”

method for XAI measurement science.

Front. Comput. Sci. 5:1114806.

doi: 10.3389/fcomp.2023.1114806

COPYRIGHT

© 2023 Ho�man, Jalaeian, Tate, Klein and

Mueller. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Evaluating machine-generated
explanations: a “Scorecard”
method for XAI measurement
science

Robert R. Ho�man1*, Mohammadreza Jalaeian2, Connor Tate1,

Gary Klein3 and Shane T. Mueller4

1Institute for Human and Machine Cognition, Pensacola, FL, United States, 2Department of Integrated

Systems Engineering, Ohio State University, Columbus, OH, United States, 3MacroCognition, LLC,

Dayton, OH, United States, 4Department of Cognitive and Learning Sciences, Michigan Technological

University, Houghton, MI, United States

Introduction: Many Explainable AI (XAI) systems provide explanations that are

just clues or hints about the computational models-Such things as feature lists,

decision trees, or saliency images. However, a user might want answers to deeper

questions such as How does it work?, Why did it do that instead of something

else? What things can it get wrong? How might XAI system developers evaluate

existing XAI systems with regard to the depth of support they provide for the user’s

sensemaking? How might XAI system developers shape new XAI systems so as to

support the user’s sensemaking? What might be a useful conceptual terminology

to assist developers in approaching this challenge?

Method: Based on cognitive theory, a scale was developed reflecting depth

of explanation, that is, the degree to which explanations support the user’s

sensemaking. The seven levels of this scale form the Explanation Scorecard.

Results and discussion: The Scorecard was utilized in an analysis of recent

literature, showing that many systems still present low-level explanations. The

Scorecard can be used by developers to conceptualize how they might extend

their machine-generated explanations to support the user in developing a mental

model that instills appropriate trust and reliance. The article concludes with

recommendations for how XAI systems can be improved with regard to the

cognitive considerations, and recommendations regarding the manner in which

results on the evaluation of XAI systems are reported.

KEYWORDS

explainable AI, sensemaking, self-explanation, explanation scale, mental model

1. Introduction

There have appeared many discussions of types of explanations, described in terms of

format, content and detail (e.g., Samek et al., 2017). There have been many discussions

of the qualities of explanations, and some attempts to measure and empirically evaluate

explanation quality and the effectiveness of explanations (e.g., Doshi-Velez and Kim, 2017;

Miller, 2017; Lage et al., 2019; Mueller et al., 2019; Buçinca et al., 2020; Johs et al., 2020;

Cabitza et al., 2023; Hoffman et al., 2023).

An individual who is using an AI system is struggling to form a mental model that

explains how the AI works, how it fails, and how failures can be anticipated or surmounted

(Mueller et al., 2019). Reviews of the literature on explanation (in diverse disciplines) and
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studies of how people explain complex systems demonstrate the

depth of reasoning that can be involved in sensemaking (e.g.,

Miller, 2017; Hind et al., 2019; Mueller et al., 2019).

On the other hand, reviews have shown that many machine-

generated explanations are rather superficial, only providing the

users with hints or clues about how the AI system works. The

broader literature on explanation and explanatory reasoning, along

with the literature on Intelligent Tutoring Systems (Troussas et al.,

2019; Clancey and Hoffman, 2022), pedagogy (Chi and VanLehn,

1991) and Intelligent Help Systems (Carroll and Aaronson,

1988) and expert systems (Jingge, 1988) suggested that richer

explanations and richer AI-user engagement are not only possible,

but necessary. Recent work on intelligent help systems has shown

how instructional agents can engage in personalized conversation

(e.g., Troussas et al., 2017).

Compounding this shortfall has been divergence in how such

terms as “explanation,” “justification,” and “interpretation” are

used in the XAI community (e.g., Adadi and Berrada, 2018;

Kaur et al., 2020). This has been compounded further by the

assumption that an explanation that is good for system developers

and computer scientists would be good for a general population

of general users. For example, in the XAI system by Preece et al.

(2018), the explanations are lists of features and the output of

the interpretability models. The authors assert that the outputs of

interpretable models are explanations for users.

Many papers refer to explanation and explainable AI but

that focus on formal interpretability, ontologies, or transparency,

in such modes as decision trees and logical expressions (e.g.,

Tomsett et al., 2018; Calegari et al., 2019; Felzmann et al.,

2019; Kaur et al., 2020; Tjoa and Guan, 2020). For example,

Chari et al. (2020) present an ontology system to aid in the

design of explanatory systems that provides support for expressing

the semantic relationships among explanation attributes. The

researchers consider explanation types including those identified in

prior literature: case-based, conceptual, contrastive, counterfactual,

every-day, scientific, simulation-based, statistical, and trace-based.

These are expressed using formal conceptual graphs. They also

present “competency questions” that can be used by a systems

designer for the development of user and context dependent

explanations (e.g., “What AI model is capable of generating this

explanation type?”). Vilone and Longo (2020) list 36 dimensions

of explainability.

Although this and many other papers speak to the matter of the

explanatory value of explanations, the matter of the extent to which

machine-generated explanation support the user’s sensemaking

remains in the background of the formal analyses. At the same

time, there is a consensus that user needs should be understood,

prioritized and addressed (Liao et al., 2020).

Interviews with stakeholders of various stripes have shown that

some users are quite interested in doing “deep dives” into how

the AI works, and are quite capable of it (Hoffman et al., 2021).

One might wonder how a chunk of code or a cryptic decision

tree would have explanatory value to some users–as opposed

to having explanatory value to system developers. Some users

might prefer a digestible explanation of an AI’s reasoning. But

such an explanation may be misrepresentational to some degree.

This might be said about explaining how an AI system works by

using metaphor or analogy (e.g., “neural nets”). At one extreme,

the explanation would be complete and correct. And likely it

would have explanatory value primarily to developers or computer

scientists. This entails the conundrum that a complex system can

only be modeled by something that is as complex as itself. So, any

“interpretation” of an AI model is bound to be reductive. The issue

is, what does it explain? and “to whom does the explanation have

explanatory value?”

An important distinction has been drawn between

epistemological (formal/scientific) explanation and psychological

(cognitive) explanation (Cabitza et al., 2023). It is this latter

category that is the focus of the present work: An attempt

to develop a scale for evaluating the explanatory value of the

machine-generated explanations to people (users, stakeholders),

vs. a formalist understanding of explainability, interpretability, or

transparency. The Explanation Scorecard presented here does not

classify explanations in terms of form or format (images, diagrams,

text, etc.); nor does it classify explanations in terms of the widely-

used distinction between “local” explanations (Why it decided

this) vs. “global” explanations (How it works). Furthermore, the

Scorecard is agnostic with regard to the explanation requirements

of different stakeholder groups (see Klein et al., 2020; Mohseni

et al., 2020). Rather, it ranks explanations in terms of cognitive

depth of support for the user’s sensemaking.

The Scorecard originated from discussions with XAI system

developers, early in the Explainable AI Program initiated by the

U.S. Defense Advanced Research Projects Agency (2018). Although

the concept of explainable AI pre-dated that Program (see Samek

et al., 2017), the DARPA Program was a major impetus for the field.

The initial version of the scorecard (Klein et al., 2020) was applied

to the explanation approaches being utilized in the early phase of

the DARPA Program. The system developers generally found the

Scorecard interesting; it allowed them to reflect on how they might

enhance their systems’ explanation capabilities. The discussions

also called out some subtle distinctions that entailed refinements of

that initial Scorecard. Subsequent empirical evaluations, reported

in the present article, also resulted in refinements to the Scorecard.

The next section of this article discusses the background on the

taxonomics of types of explanations and dimensions of explanation,

which leads to a consideration of the cognitive dimension that is

formative of the Scorecard. Following that is a discussion of the

process by which the Scorecard was developed. This is followed

by presentation of the results of an empirical validation that

utilized the Scorecard in an analysis of recent XAI literature. The

Conclusion discusses the key findings and some recommendations

for how work in this area might be advanced.

2. Classifying explanations

Across the broad and trans-disciplinary literature on

explanation there have appeared many distinctions on types

and categories of explanations; traceable explanations, removable

explanations, layers of explanation, and so forth. Variations emerge

from the focus of the research, that is, whether the focus is on the

philosophy of science, cognitive psychology, instructional design,

or computer science. In the XAI context, explanations can be
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described according to their form and content. An AI system that

relies on mathematical algorithms such as regression might need to

explain such things as co-variation. Such differences in explanation

format and content are of course important to developers but may

not be to other users or stakeholders.

Explanations of How it works have often been called global.

These refer to mechanism, function, or architecture, often using

analogies (e.g., neural network). Explanations of Why it did that

refer to features and instances and are called local (Lipton, 1990;

Miller, 2017). Many of the explanations presented in the XAI

literature involve the analysis of features, classes, or instances

(Mueller et al., 2019; Belle and Papantonis, 2020; Covert et al.,

2021). The global-local distinction is indeed convenient, but it is

seductive. When people try to explain complex systems to other

people (Klein et al., 2014, 2021), explanations of How it works

are typically accompanied by examples or instances. Conversely,

explanations about Why it did that serve as hints about How it

works. The distinction has seemed important because, for example,

an understanding of the AI’s mechanism or process might or might

not be sufficient to a user who needs to appreciate why or when

an AI system might make mistakes. In other words, global vs. local

does not well describe actual explanations.

In the XAI work there has been a natural focus on the

explanation requirements of developers and computer scientists.

In many cases, the explanations are really justifications (Why we

designed it this way) (Lundberg and Lee, 2017; Covert et al., 2021).

The explanations are often model outputs either of the AI or of a

simplified model of the AI (called a post hoc or white box model).

The formal analysis of interpretations and justifications involves

the need to determine which model or class of models is better,

according to computational metrics.

Holzinger et al. (2020) presented a scale for evaluating

explanations in terms of user judgements (understandability,

consistency, completeness, etc.). As such, it can be applied to

any type, format or content of explanation; in other words, it

is a scale for evaluating user satisfaction (see Hoffman et al.,

2023). It is not for the evaluation of the depth of reasoning that

explanations support.

Sheh and Monteath (2018) attempted to classify explanations

by form, by content, and by the intended beneficiary of the

explanations. Their “scope” dimension ranges from Teaching to

Justification. Their “depth” dimension ranges from Attributes to

Models. The “source” dimension refers to whether the explanation

is from the AI or from a post hocmodel of the AI. Explanations are

further classified according attribute identity (e.g., saliency maps)

vs. attribute use, which involves explaining how the AI arrived

at a determination (p. 263) and the understanding of decision

boundaries (p. 264). It is not clear how any of the dimensions

qualify as actual dimensions, although it is possible to bin examples.

For example, decision trees and rules satisfy all of the quadrants of

their classification scheme, being “Introspective, Model-based, and

Teaching explanations”.

In brief, explanations can take many forms and formats. They

can express very different kinds of content. They can be classified

in many ways, such as according to the purpose or context of

use (e.g., teaching). They can be evaluated by users or by the

researchers themselves. Explanations can be tailored to a particular

beneficiary. There is one thing, however, that all developers, users,

and stakeholders have in common: the desire to make sense of

the AI. It was this cognitive aspect that was formative of the

Explanation Scorecard.

2.1. Explanation as sensemaking

Early in the DARPA XAI Program, a simplified model

of the explanation process was used to idealize the process

of explaining:

(1) The XAI system generates an explanation,

(2) The explanation is provided to the user,

(3) The user understands the explanation,

(4) Performance improves.

This model was created in order to inform system developers

of the kinds of things that need to be measured at steps 2, 3,

and 4: explanation goodness, user satisfaction, user mental model,

performance, and reliance (Hoffman et al., 2023). From a cognitive

perspective, this “spoon feeding” model glosses over the user’s

engagement in deliberative sensemaking.

The concept of “depth of processing” emerged in the

psychology of verbal learning in the 1970s (Craik and Lockhart,

1972; Craik and Tulving, 1975). Numerous studies demonstrated

that deeper processing (comprehension of meaning) resulted

in better recall and recognition memory, compared to shallow

processing of the surface features of the to-be-learned material. In

a related vein, research has shown that deliberate and deliberative

self-explanation plays a significant role in learners’ understanding,

in domains and contexts ranging from schoolhouse learning to

learning about complex systems and devices (Chi and VanLehn,

1991; Calin-Jageman and Ratner, 2005; Rittle-Johnson, 2006;

Lombrozo, 2016; Gajos and Mamykina, 2022). The purpose of self-

explanation can be to satisfy curiosity, to enable the learner to

develop a richer mental model, to make more accurate predictions

of the AI’s behavior, to develop appropriate trust in the AI, or

to improve performance via appropriate reliance. Consistent with

this is the key finding from the decades of research on Intelligent

Tutoring Systems (Clancey and Hoffman, 2022). This research

showed that to be an effective tutor, the AI must enable the user

to make comparisons among cases. It must help the user integrate

fragmentary knowledge into more general structural schemas. It

must help the user reflect on experience and integrate general and

situated knowledge.

These two extremes—“superficial hints” vs. “cognitive depth”—

suggested that a scale might be formed that characterizes machine-

generated explanations in terms of support for sensemaking.

Differences in the content of the information and in how the

information is presented can manifest as differences in the extent

to which the explanations support the user’s sensemaking. For

example, a table showing the weights of surface features by itself

does not help much in understanding how an object recognition

system works, but in conjunction with examples of both positive

cases and failures, information about features can be useful in

figuring out how the system arrives at good answers but sometimes
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gives bad answers. The Levels of Explanation presented in this

article are an attempt to capture these differences.

3. The explanation Scorecard

The Levels present an ordinal variable reflecting the extent to

which the information supports sensemaking to a greater depth.

The ordination of the Levels 1–7 is not simply “less to more”

explanation or “weaker to better” explanation or “sparser-to-richer”

explanation. Moving up the Levels does not mean that the user

needs to engage in less mental effort because the explanations

are more complete. Nor does it mean that more mental effort is

required because the explanations are more detailed and technical.

Rather, it means that the explanation helps the user to engage in

sensemaking to enrich their mental model. Moving up the Levels,

somewhat greater sophistication to inference making is required

of the user, and yet at the same time there is more support for

the user who is trying to understand how to use the AI as a tool

(e.g., how to anticipate confusions). Considering that the emphasis

in the XAI literature is on explanations and justifications that are

suited for programmers or system developers, going from Level

1 to Level 7 there is greater consideration of the user’s needs to

achieve a satisfactory and actionable understanding, rather than

a purely technical understanding. In other words, the Levels are

not just about explanation, they are about self-explanation. The

sensemaking perspective differs significantly from the “spoon-

feeding” perspective.

Following the presentation of the Scorecard in Table 1 is

a consideration of how it covers some of the ideas in other

classification schemes.

Based on analysis at either Level 1 or Level 2, a user might

formulate multiple hypotheses about the rule or system that the

AI is utilizing. Level 3 (Instances of Failures) is distinguished

from Level 2 (Instances of Successes) because Level 3 supports the

disconfirmation of hypotheses. As AI systems achieve higher levels

of performance, instances of AI failures may become more salient.

The discovery of what happens when the AI gets something wrong

can push the user to a next level of understanding. Explanations at

Levels 1 and 2 may promote users’ feeling of trust or confidence

in the AI by showing what the AI looks at. But such trust may

not always be appropriate. Level 3 explanations adduce cautionary

tales that may enable a sense of justified trust and contribute to

appropriate reliance.

Level 4 (AI Reasoning) and Level 5 (Diagnosis of Failures)

expand self-explanation yet further. Some XAI systems (during

the time frame of the DARPA XAI Program) presented depictions

of AI rules, logic, etc., and this motivated the attempt to develop

the Scorecard, to provide developers with concepts and categories

that may help them consider the importance of user sensemaking

and self-explanation.

In the application of the Scorecard, the attribution for a given

XAI system defaults to the highest level of the individual aspects of

the explanation. For example, a heat map (Level 1) in conjunction

with positive cases (Level 2) portraying choice logic (Level 4; AI

Reasoning) would be scored as Level 4. If the XAI system included

negative cases that violate the choice logic, then it would be scored

TABLE 1 The explanation Scorecard.

NULL

No material is provided to support self-explaining. The user can only guess.

1. SURFACE FEATURES

“Here’s what it looked at.”

Level 1 explanations can be thought of as the “cues” to what the AI perceives.

Surface features can be indicated by salience (“heat”) maps, bounding boxes,

linguistic features (text), and semantic bubbles, representing the outputs derived

by the AI. The features typifying a class can be listed in text form, or in a matrix

or histogram in which probabilities or other scalar variables are associated with

individual features.

2. INSTANCES OF SUCCESS

“Here’s examples of cases it got right.”

Level 2 explanations can be thought of as providing “hints.” These reference

instances or demonstrations of the AI generating correct categorizations,

predictions or recommendations. The explanations might consist of clear cases

or exemplars of a category; the results of various categorization analyses.

Additionally, success cases might be scaled by a value on some

machine-generated measure of correctness or likelihood. Examples of successes

along with identifications of surface features or the values of classification

attributes let the user make richer inferences about how the AI is working.

3. INSTANCES OF FAILURES

“Here’s examples of cases it got wrong.”

While examples of successes (Level 2) are hints as to how the AI is making

decisions, hints can also be in the form of examples of failures, which are often

presented in contrast with exemplars or successes. Examples often include

highlighting of features or differences. The comparison of failures to successes

allows the reconsideration of hypotheses and the generation of alternative

hypotheses. Example cases might be considered “failures” if they are

accompanied by categorizations or analyses indicating a low probability or low

machine confidence of their being correct.

4. AI REASONING

“Here’s how it decides.”

Level 4 explanations go beyond cues and hints, to reasons. These are decision

rules: expressions of how the AI makes its determinations. These provide the user

with a capability to think about when and why an AI decision was correct. These

explanations can be in the form of categorization rules, choice logic, parse graphs

or other symbolic forms. Goal stacks show the goals that are most activated when

the AI made a decision about particular instances. These explanations are often

formal or semi-formal, but they might include text or even be in the form of text.

Decision rules can reference features or instances, to illustrate how the AI

weights different features in order to make choices.

5. DIAGNOSIS OF FAILURES

“Here’s why it got those things wrong.”

Level 5 explanations make the reasons for AI failures or mistakes explicit. These

provide the user with a capability to anticipate failure, and determine how or why

an AI decision was correct or incorrect. Explanations are diagnostic; they refer to

violations of feature constraints, decision rules or choice logic. These

explanations can be semi-formal, but they might include text or even be in the

form of text.

6. EXPLORATION

“Why did it get those things right? “What things can it get wrong?”

At Level 6 there is a jump in machine capability to support self-explanation. The

AI enables the user to explore contrasts in the variation of categories, features,

concepts, or events. Machine- or user-generated contrasts show how the AI’s

determination would change or might not change if some feature of an instance

were to be changed. Contrastives can be in the form of counterfactuals or

semifactuals (Kenny and Keane, 2009; Wachter et al., 2017; Miller, 2018).

Counterfactuals can involve categorizations (i.e.,Why did it decide X instead of

Y?) or features (i.e., If q had changed to z would the outcome be different?).

(Continued)
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TABLE 1 (Continued)

Semi-factuals are of the form If feature z were changed, would the instance still

have been called a Q?Manipulations can involve fuzzying, feature breaking,

region deletion, inpainting, or other techniques. In one way or another, the user

is able to create failure and success conditions and to make their own predictions

by manipulating input features, weights, etc. in order to see the effects on the AI

outputs.

7. INTERACTIVE ADAPTATION

“Here’s how the XAI could improve; here’s how the user’s mental model can

improve.”

At Level 7 there is another jump in machine capability: The user can provide the

XAI with actionable feedback to augment either the AI models or the XAI

component of the system. The interaction has to involve reciprocation, in which

both the XAI and the user adapt. Specifically, the user provides feedback that

enables the AI to improve its models and improve its explanations for the user.

The engagement can be in the form of question-and-answer between the XAI

and the user; it can be in the form of annotations or manipulations to cases. It

can be about the adequacy of the XAI-generated explanations. The goal is to

improve the XAI-generated explanations, which may themselves fall at any of the

lower Levels. At Level 7 the distinction between an explanatory system and an

Intelligent Tutor dissolves.

as Level 5 (Diagnosis of Failures). These possibilities, and others as

well, are explicated in Section 4.

3.1. Inheritance

The Levels do not assume or impose inheritance constraints.

It is easy to imagine such constraints. Many XAI systems present

success or failure cases (Levels 2 and 3), but the cases are described

in terms of the next lower level— features (Level 1). An explanation

that qualifies as Level 4 (AI Reasoning) can describe reasoning by

reference to features (Level 1), by reference to success cases (Level

2), or by reference to failure cases (Level 3). But the Scorecard

Levels do not require that each Level inherit all of aspects of all

of the lower Levels. An explanation in the form of success cases

(Level 2) need not necessarily describe the cases by reference to

features (Level 1), although they often do. An explanation at any

Level might involve aspects of one or more of the lower Levels. For

example, the explanations presented by Kenny and Keane (2009)

and Dodge et al. (2019) qualify as Level 6 (Exploration) by virtue

of the inclusion of counterfactuals. But the exploration is in terms

of case features (Level 1), and success cases Level 2 (successes). Yet,

there is no inheritance from the intermediate Levels 3 (Failures) or

4 (AI Reasoning).

3.2. About levels 6 (Exploration) and 7
(Interactive Adaptation)

Level 6 (Exploration) and Level 7 (Interactive Adaptation) may

stand out from the lower levels because Levels 6 and 7 explicitly

involve active exploration and thus explicitly involve agency on the

part of the user. However, the assumption of the Scorecard as a

whole is that users engage in an active, deliberative attempt to self-

explain how the AI works. Agency on the part of the user is involved

across all the levels, though it is certainly the case that some users

simply take the AI outputs as givens and do not desire to sensemake

to any depth.

It has been argued that counterfactuals lack explanatory value

(White and Garcez, 2021). This claim seems counter-intuitive.

But it hinges on a model that assumes that an explanation is

a resolution: an explanation has served its purpose once it has

been delivered and understood. However, the delivery of an

explanation is not a terminus in the sensemaking process. Indeed,

counterfactuals have a very important purpose: They show the user

that further exploration is possible, and they show how exploration

can be conducted. This is powerful, as it supports the exploration

when the AI is operating at the boundaries of its competence

envelope—instances that fall inside a classification but nearly do

not, and instances that fall outside the classification but nearly do

not. Such cases show when a small change makes a difference to

the categorization.

Levels 6 and 7 move the XAI prospectus closer to Intelligent

Tutoring Systems. The two areas of research have much in

common, but most importantly, the work on Intelligent Tutoring

Systems revealed many of the challenges that have confronted the

field of XAI. To be an effective tutor, the AI system has to be able

to form and rely upon a model of the task domain, a model of the

task, a model of the user’s mental model of the task, and a model

of the AI system. Clancey and Hoffman (2022) review the relation

of XAI and ITSs, illustrating ITSs that manifest the Levels 6 and

7 in the Scorecard. Thus, Levels 6 and 7 are at the cutting edge of

current XAI capabilities. A number of XAI researchers have noted

the value of interactive explanation—to allow the user to “peek

inside a model’s behavior” and a capability that lets users “toggle”

the information in an explanation (see Bhatt et al., 2020, p. 5; also

Amershi et al., 2014).

At Level 7, the user reciprocates by advising the program in

some way (Goyal et al., 2019; Yeh et al., 2019; Kim et al., 2021).

A number of XAI researchers have proposed systems that would

fall at this level. For example, Dahan (2020) proposed a system for

the analysis of trademark logos in which a user could use bounding

boxes to highlight regions of a given test logo, to thereby adjust how

the AI analyzed similar logos that it had identified. We know that it

is possible to implement an XAI system that achieves Level 7. Two

of the projects funded by the DARPA XAI Program culminated in

systems that included an explanatory manipulation capability (see

Stefik et al., 2021).

4. Related work

Although the Scorecard Levels are specifically for describing

explanations of AI systems, one would expect them to be

consistent with taxonomies developed in cognitive psychology and

instructional design.

4.1. Related work in instructional design

Perhaps the most cited such scheme is that advanced by

Benjamin Bloom (Bloom and Krathwohl, 1956; Anderson et al.,

2001). It references categories that are types of knowledge

(factual, conceptual, procedural, andmeta), and cognitive processes
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(remember, understand, apply, analyze, evaluate, and create). The

scheme identifies types of knowledge applied by using particular

cognitive processes, for example using factual knowledge in order

to conduct an analysis. Discussions of the limitations of the Bloom

taxonomy appear in Moore (1982) and Bereiter and Scardamalia

(2005).

The Scorecard Levels embrace Bloom’s types of knowledge

by virtue reference to facts about why an AI made a particular

determination and how the AI works (e.g., decision rules). The

Scorecard Levels are formed on the basis of a cognitive dimension

(sensemaking), and they directly reference the cognitive processes

of understanding, applying (developing appropriate trust and

reliance), analysis, and evaluation (exploration).

A number of other taxonomies combine categories of purpose

(remembering vs. application), content (facts, concepts, principles)

and procedures (such as analysis) (e.g., Moore, 1982; Sugrue, 2002).

The Scorecard Levels are consistent with those, in a manner similar

to their consistency with the Bloom taxonomy.

Given that these schemes list varieties of knowledge content

and varieties of cognitive processes, it would be difficult for the

Scorecard Levels to not be consistent with them in some respects.

But the integration of schemes is handicapped when some refer to

dimensions when in fact the orderings are categorial. Marzano and

Kendall (2007) argued that it is impossible to unambiguously order

learning content or processes by the degree of cognitive demand or

mental difficulty. Complex procedures can sometimes be learned

easily. It can be difficult to consistently order examination questions

according to cognitive difficulty (Dempster and Kirby, 2018).

Ordering by cognitive difficulty is tacit in some of the taxonomic

schemes, including the Bloom scheme.

The Scorecard Levels do not attempt such an ordering; they

are about the manner in which explanations support sensemaking,

not the degree of difficulty of sensemaking. The emphasis on

sensemaking is consistent with the emphasis of the learning

sciences on metacognition, that is, deliberative reasoning about

one’s own understanding (Marzano and Kendall, 2007).

The Scorecard Levels also provide coverage of the types of

explanation of AI systems.

4.2. Related work in AI

The Levels cover various distinctions that have been proposed

with regard to types of explanations. For example, Level 6 covers

what (Covert et al., 2021) call “removal-based explanations”. Level 2

(examples as explanations) covers what some XAI researchers refer

to as prototypes (as in Kim et al., 2016; Vong et al., 2018).

The Scorecard covers classifications of types of machine-

generated explanations. For example, the Levels cover the

“explainability categories” presented in the review by Belle and

Papantonis (2020). Levels 1 and 4 correspond to what they

call local explanations. The Scorecard Levels cover the types

of post-hoc interpretations listed by Amershi et al. (2014);

saliency maps (called “local explanations”) are featural (Level

1), explanation by nearest neighbors is successes (Level 2).

The Scorecard Levels map to the categories of explanations

developed by Vilone and Longo (2020). Numerical explanations

and visual explanations would be Level 1; selection of

prototypes would be Level 2; rule-based explanations would

be Level 4.

The Levels cover what Preece et al. (2018) call traceable

explanations, justifications and assurances (Level 4). These

reference features (Level 1), input-output relations (decision rules,

Level 4) and success cases (Level 2). Preece et al. refer to these types

as “layers”. The layering involves a computational linkage (e.g.,

Layer 2 “links” to Layer 1) but the layering also involves the notion

that different stakeholders need different types of explanation.

The Scorecard is agnostic with respect to the intended beneficiary

(developers, stakeholders, etc.). Any of the Levels can apply to

explanations suited to any stakeholder group, although the form

and content of those might differ from one group to another (see

Klein et al., 2020). Throughout this article we use the term “user” to

refer to the sensemaking activity of any individual.

The scaling of explanations in terms of their support for self-

explaining involves merging some types that are distinguished

for the purposes of computer science. Guidotti et al. (2018)

distinguished decision trees and decision rules (both are Scorecard

Level 4). They distinguished features of importance, saliency

mapping, “sensitivity analysis” and “activation maximization” (all

are Scorecard Level 1). This focus on distinctions of importance

to computer science is clearly different from the consideration of

explanatory value for individuals who are not computer scientists.

5. An application of the Levels

The Levels were used to score a set of reports on XAI system

development. The method was one that has been utilized in

protocol analysis (Hoffman et al., 1998; Crandall et al., 2006).

Independent evaluators classify statements using a pre-defined

scheme (in this case, the Levels of Explanation). Then there

is a discussion of the disagreements, which can sometimes be

resolved directly. This enables calculation of the rate of essential

agreement. Remaining agreements are resolved by clarifications to

the coding scheme.

We expected that manymachine-generated explanations would

not reach the higher levels, yet hoped to see instances of systems

that fell at highest Level (Interactive Adaptation) (see Table 1).

5.1. Materials

The scope of the evaluation of the Levels of explanation

had to be bounded. Within the field of computer science, it

might be argued that all AI systems that have an interface

for data visualization, data fusion, and visual analytics are a

form of Explainable AI (for example, see Liu et al., 2017).

However, the goal of such systems is to explain data, not

explain how the AI works. A literature search was conducted to

identify reports (publications, proceedings) using the following

Boolean: [“Explainable AI” OR “XAI” OR “Explainable Artificial

Intelligence” OR “explainability + AI”]. The search was also

narrowed to the years of the DARPA XAI Program 2019–2021.

The resulting set of 165 articles included journal publications,

publication preprints, and conference presentations. Three of the
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researchers read the abstracts and performed a cursory read of the

articles. This enabled a down-select, retaining only those articles

that explicitly related to explainable AI, methods of explanation,

examples of explanation, or evaluation of explanation methods

(many articles referenced explanation in their titles or key words

lists but were actually about formal interpretability or post hoc

models, for example). Next, review articles and opinion pieces

were removed from the focus set. Most of those referenced articles

that had been published prior to 2019, but more importantly, the

example explanations that were provided were not always ones that

had actually been machine-generated. In many cases, the example

explanations were ones generated by the authors (of the various

selected articles) to illustrate what they felt to be good explanations.

The final set consisted of 33 articles that reported on the

development of XAI systems and that included examples of

machine-generated explanations. One of the articles reported on

the development of two XAI systems, so the total number of XAI

systems that could be scored was 34.

5.2. Procedure

The articles were evaluated by three of the authors. One

evaluator was a Ph.D. cognitive psychologist specializing in

educational psychology, and one was a Ph.D. student in the

field of Intelligent Systems and robotics. Both were familiar

with the literature on Explainable AI and had conducted an

extensive review of the literature. The third evaluator was a Ph.D.

Cognitive psychologist who has conducted and developed methods

of cognitive task analysis and protocol analysis.

The evaluation process requires is a qualitative analysis (see

Corbin and Strauss, 1990; Hughes andWood-Harper, 2000; Yardley

et al., 2020). Previous research that has utilized the method of

independent judgments in protocol analysis has found that only

one or two scoring passes are required for evaluators to resolve

differences in their judgments and achieve consensus (see Hoffman

et al., 1998). The present analysis involved three waves of scoring.

There was progressive refinement of the scoring categories (the

Levels). Judgment benefitted from the review of multiple and

different XAI systems, each bearing its own unique characteristics

and context. This supported adjustment of the definitions of the

Levels until a consensus was achieved.

In the first wave, two evaluators independently scored the XAI

systems’ explanations utilizing the initial version of the Scorecard,

which had been developed early in the DARPAXAI Program (Klein

et al., 2020). The first pass scoring was conducted during the final

stages of the process of down-selecting the articles. It was clear

when explanations involved reference to features (Level 1) and this

held for a many of the articles. Overall, however, there was only

about a 50 percent agreement between the first two raters.

Discussion revealed that it was not always clear what counted

as a “success” or a “failure.” For Level 1 explanations (e.g., saliency

maps, graphs of feature weights, etc.) is it not clear what it would

mean for an explanation to reference an example of a success (as

in Abdollahi and Nasraoui, 2016; Anderson et al., 2019). For Level

2 and Level 3, an explanation might be presented as a Success

case, but if the AI was merely reporting empirical data (e.g., the

percentage of people who liked a particular movie), that could not

be legitimately attributed as a success on the part of the AI system.

Some scoring disagreements were easily resolved by discussion, and

both raters changed some of their scorings. This resulted in 70%

rate of essential agreement.

Next, a third researcher conducted a scoring. Discussion of the

results mandated the rejection of the assumption that there would

be strict inheritance as one progressed up the Levels (described

above). This resolved most of the remaining disagreements. For

example, explanations that involved Instances of Successes (Level

2) usually described successes in terms of features (Level 1). But

sometimes they did not. Explanations that expressed AI Reasoning

(Level 4) usually expressed rules in terms of Features (Level 1)

and Success examples (Level 2), but sometimes they did not.

As a third example, an explanation that was in the form of a

saliency map (Level 1) might involve a comparison of multiple

maps, which would qualify as Level 6 (Exploration). Two articles

reported explanations that were scored at Level 6, but there was no

inheritance from Levels 3 or 5.

Perhaps the best example of scoring subtleties is an article that

presented explanations that consisted of saliencymaps plus rewards

that were assigned for a particular course of action. This made it

appear as if the XAI explanations revealed AI Reasoning (Level

4), but the explanations were actually just a number of different

kinds of cues, all of which would be Level 1. And yet, later in

the article it was pointed out that the AI agent was programmed

to sometimes fail, enabling the user to see the failure and the

accompanying proportional decrease in the reward for the chosen

course of action. Thus, the highest Level achieved by this system

was Level 3 (Instances of Failures).

The third round of scoring resulted in a refinement of the

definitions of the Levels 4 through 7. For example, the description

of Level 6 was adjusted to be more definitive about the use of

contrastives (counterfactuals and semi-factuals).

In the discussion of the results of the scoring by the three

researchers, a number of changes were made to the scoring

assignments, in which each of the three raters changed between

one and three of their scorings. This second round resulted in

pairwise agreement rates between 70 percent and 87 percent.

A final discussion of the few remaining disagreements led to

convergence and 100 percent agreement. These final adjustments

were incidental. For example, one report presented additional

material about the machine-generated explanations late in the

paper, rather than at the point where the machine-generated

explanations were described. The final version appears in Table 1.

5.3. Results

The down-select procedure resulted in reports that can be

categorized as: classification systems (objects, events, situations,

handwriting, text, patients) (n = 15), Decision making systems

(health care, finance, criminal justice, selection of interpretability

tools, selection of classification models) (n = 13), Planning

systems (recommenders, game strategy analysis, course of action

evaluation) (n = 2), Data analytic systems, (n = 1) and Vehicle

control systems (n= 2). We now present summaries of the selected
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reports, describing their AI application, the application domain,

the nature of the machine-generated explanations, and their

Levels scorings.

Abdollahi and Nasraoui (2016)

AI application: planning system

The application domain is movie recommendation.

Explanations were empirically derived from ratings of movies on

a 1–5 scale. Text expressed the proportion of people who rated a

given movie as “x or greater out of 5”. A histogram showed the

proportion of people who rated the given movie as “1–2” vs. “3” vs.

“4–5”. The method by which the explanations were generated was

(apparently) not described to the participants. The explanations

are of the recommendations.

Score: Level 1 (Features)

Adebayo et al. (2018)

AI application: classification system

The application domain is the classification of objects.

The outputs of image processing algorithms were regarded as

explanations. The presented example consists of a figure composed

of multiple images including three original photographs (of a

bird, a dog, and a person eating an ear of corn), each of which is

accompanied by a series of seven images showing the outputs of

various saliency algorithms and an edge detector. In the presented

example, the instances are all correct classifications, and so can

considered successes.

Score: Level 2 (Instances of Successes)

Akula et al. (2020)

AI application: classification system

The application domain is classification of objects. The XAI

system generates counterfactuals about the classification of objects

by identifying the minimal (“semantic”) features that would

have to be changed in order to change the AI’s determination.

The explanations take the form of an exemplar (e.g., a toad)

accompanied by images of semantic features (e.g., bumpiness of

the skin) that would have to be changed to alter the determination

(e.g., a frog).

Score: Level 6 (Exploration)

Anderson et al. (2019)

AI application: decision making system

The application domain is analysis of courses of action by a

machine agent in video game play. Explanations took the form

of views of the game board along with the player’s score. Saliency

maps were said to show what the machine agent was seeing. The

XAI system would remove game elements, and the participant’s

task was to anticipate what the agent would do at the decision

points. After making a prediction, the XAI system showed either

a saliency map or a histogram showing the rewards for each of the

agent’s alternative courses of action. The researchers assert that “By

comparing the bars of two actions, a human can gain insight into

the trade-offs responsible for the agent’s preference” (p. 2).

Score: Level 3 (Instances of Failures)

Anguita-Ruiz et al. (2020)

AI application: classification system

The application domain is the identification of gene expression

patterns related to obesity. The explanations were an interface

showing the results of the processing of gene expression data,

along with annotations about gene functions from gene data

bases and encyclopedias. The processing system identified rules

that described transcription pathways. The goal of the research

was to evaluate the “biological quality” of the rules (i.e., spurious

associations vs. true causal relationships). Experts in the genetics

of obesity evaluated the rules by relying on a display showing

the associations among genes along with values on a number

of measures (e.g., gene expression change). About 100 genes

(identified by codes names such as “8127A/ME1”) were arrayed

along the perimeter of a circle. Running among them were

connecting lines showing the rules (i.e., gene associations).

These were sometimes isolates and sometimes formed clusters

of convergence and divergence. The display enabled the experts

to determine the “biological meaningfulness” of rules. The XAI

system did not explain how the rules were discovered by the AI,

but the explanations that the AI had discovered.

Score: Level 4 (AI Reasoning)

Cheng et al. (2021)

AI application: decision making system

The application domain is clinical/surgical decision making.

The Visual Analytics XAI system presents a complex, multi-

window display of a number of data types and algorithm outputs.

For example, a two-bar histogram indicates the pre-surgery and

in-surgery risk level for a patient. Timelines show changes in

patient status. Displays of numerical and symbolic data show

patient pre-surgical information (e.g., oxygen saturation level).

These various data fields provide contextual information that is

intended to help clinicians. The system tool presents a detailed

visualization of case features (Level 1) with a capability that enables

users to investigate the contribution of features to the treatment

recommendation and treatment outcome through a “what-if ”

tool. This would qualify the system as Level 6 (Exploration). The

qualification is that little information is provided to the users

about how the variation of features impacts the treatment outcome

prediction, leaving the reader to assume functionality of the

provided features.

Score: Level 6 (Exploration)

Choo and Liu (2018)

AI application: classification system

The application domain is handwriting analysis. MNIST are

described using notional network-like diagrams to illustrate the

“inner workings” of deep net models, and color-coded arrays

to depict the activation patterns of nodes. Icon colors and color

clusters depict proximity in a feature space (Level 1). The system

includes a capability whereby users can change configurations of

deep nets to see the effects on the machine outputs. This would
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qualify as Level 6. There is also a capability of “interactive model

refinement,” in which expert knowledge can be used to refine a

deep learning method.

Score: Level 7 (Interactive Exploration)

Dahan (2020)

AI application: decision making system

The application domain is the choice of classification models

by legal professionals. The XAI system is intended to assist in

determining legal standing of IP and trademarks, based on case law

and an Intellectual Property registry. A number of classification

models were compared, including SHAP, Logistic Regression,

Decision Trees, XGBoost, Unsupervised Saliency Maps, and

feature detection algorithms. The trademark analysis utilized

saliency maps to highlight similarities of the given trademark logo

with other similar trademark logos. The system classifies the input

based on visual, phonetic and conceptual similarity to existing

textual and image data. The XAI provides explanations of the

results in the form of references to the specific laws used to arrive

at the decisions. The explanations include highlighted words in

pieces of legal text, intended to explain how the AI classified a given

case. These explanations referred to visual similarity of trademarks

(e.g., “The difference between the marks at issue cannot counteract

the similarities...”), phonetic similarity (e.g., “It must be concluded

that the Board of Appeal did not err in taking the view that the two

signs at issue are phonetically similar”), or conceptual similarity

(e.g., “The Board of Appeal did not err in taking the view that the

two signs at issue are conceptually similar”). Each analysis was

accompanied by a “confidence score”.

Score: Level 2 (Instances of Successes)

David et al. (2012)

AI application: decision making system

The application domain is financial decision making but

the experiment’s task involved an interactive game in which

participants could earn coins by selling lemonade. Participants

had to decide how many cups to make per day, based on the

price of lemons and a weather forecast. After some practice at the

game, participants could take recommendations from an “advisor.”

The advisor’s recommendation could be a good one or a flawed

one. Participants had the option to accept the recommendation

without seeing the details of it. Participants were told that

the recommendations came either form a human expert or a

computer algorithm.

The Recommendations (explanations) all took the form of text,

which could be in one of three forms:

• Global Explanation–Information about the type and extent

of data it uses (sales data from many lemonade stands over

several years).

• Feature-based Explanation–The features that were used to

generate the prediction (e.g., “Based on data from lemonade

stands over several years, your previous sales, and market

demand, the algorithm recommendation is to make six cups

of lemonade”).

• Performance-Based Explanation–A confidence rating for the

advice (e.g., “90 percent certainty”).

The explanations were presented in two windows. One showed

the weather prediction and lemonade cost, and a field for the

participant to the number of cups to be made. The second window

showed the actual weather, the actual demand for lemonade and

the number of cups sold. Below the two windows was a progress

bar showing the main events across the game session, starting

from the point where advice became available, to the point where

the advice failed, to the point where the advice came with a cost.

How the explanatory text was incorporated into the display is

not shown. The explanations had a clear effect in that when the

algorithm/advice performed well the adoption rate increased.

There was no difference between being told the advisor was a

human vs. an algorithm.

Score: Level 1 (Features)

Dodge et al. (2019)

AI application: decision making system

The application domain is fairness judgments concerning

predictions of recidivism. Explanations took the form of text.

Case Explanations asserted such things as The training set

contained 10 individuals identical to Illana and 60% of them

re-offended. Demographic explanations referenced the likelihoods

of reoffending for individuals of the same race and age as the given

case. The Case Explanations and the Demographic Explanations

are arguably Level 2 (Successes). “Input-Influence explanations”

expressed the likelihood that an individual with certain features

would be more/less likely to reoffend (e.g., race, age, number of

prior convictions) (e.g., Iliana’s age is 18-2; if it had been older

than 39, she would have been predicted as NOT likely to reoffend).

These are counterfactuals.

Score: Level 6 (Exploration)

Ehsan et al. (2019)

AI application: planning system

The application domain is the evaluation of machine agent

game strategy. The explanations consisted of text that provided

the “rationale” for the actions of an “agent” which was playing a

video game (Frogger). The rationales described what each action

was and the machine agent’s reason for the action. The text was

accompanied by a view of the game board, showing the game grid

and the sequence of game piece moves made by the agent/game

player. The participants in an evaluation study were told that the

game moves and rationale statements were made by a computer

agent. Participants rated the rationale statements for confidence,

human-likeness, adequacy and understandability. The rationale

statements did not describe how the agent works or how the

explanations were generated. The actual instructions given to the

participants are not provided in the article.

Score: Level 4 (AI Reasoning)

Harbone et al. (2018) and Preece et al. (2018)

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1114806
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Ho�man et al. 10.3389/fcomp.2023.1114806

AI application: classification system

The application domain is the identification, monitoring, and

prediction of traffic congestion in images and video. A large data

set of images were annotated for ground truth. A subset was then

used to train Deep Net classifiers. One explanation form was a

saliency map, with green coloring indicating evidence toward

“Not congested” and red coloring indicating evidence toward

“congested” (Level 1). Images were also annotated with arrows,

derived based on a neural network, indicating cars that contributed

to the “congested” classification. The annotations were referred to

as “Post-hoc explanation via salient semantic object identification.”

The researchers refer to the presentation of a rule that states if the

ratio between the average car pixel velocity and the speed limit is

lower than a threshold, the road is classified as congested. Such

a rule could be presented to the decision maker to provide an

explanation of how the system used the component data to infer

the final classification (Level 4). However, this seems to have been

just a prospectus for a form of explanation.

Score: Level 2 (Instances of Success)

Hind et al. (2019)

AI application: classification system

One application domain is the identification of “good” loan

applications, based on such features as salary and risk (Scorecard

Level 1). Another cited application is of a mapping of patients to

treatments based on a list of pairs of patient features (symptoms)

and treatments. A Cartesian product of a mapping of features to

classes is the full set of all ordered pairs derivable from an n x n

matrix. From that, an explanation is regarded as a justification of

why a feature vector was mapped to a particular class (Scorecard

Level 4). Based on a data set, the ML system finds the right number

of classes. This would be an expression of decision rules. A given

example is:

For a loan application to be good:

Number of satisfactory trades ≥ 23 AND

External Risk Estimate ≥ 70 AND

Net Fraction of Revolving Burden < 63

Score: Level 4 (Reasoning)

Hohman et al. (2019)

AI application: data analytics

The intended beneficiary is the data scientist or system

developer. That is, the goal was to make machine systems more

interpretable, in the formal sense of that term. Explanations

were in the form of data histograms (“visualizations”) and text

(“verbalizations”). The histograms described the contributions of

features to the categorization of an instance. The text described

the contribution of features to the system’s determination.

The histograms were regarded as an “overview” while the

“verbalizations” highlighted particular features or trends. The

display included a slider, with which the user could adjust the

simplicity vs. detail of the machine-generated descriptions. When

set to Brief, the explanation was just text that describes the

difference between the two instance’s predictions. An example is:

“Predictions vary potentially due to some features.” Dragging the

slider to the second position, the sentence updates and displays

the exact number of features that distinguish the two predictions.

When set to Detailed position, the explanation lists the prediction

values, the number of differing features, and the percent of the

number of total features that distinguish the instances. An example

is: “Overall predictions for instances 126,024 and 312,129 vary

potentially due to nine features (i.e., 25%).” The researchers

refer to this style of explanation as “interactive verbalization,”

but the interactivity is limited since the user can only adjust

the detail/specificity of the explanations. The system supports

the exploration of the features used to classify an instance and

adjustment of the machine-generated explanations.

Score: Level 6 (Exploration)

Jesus et al. (2021)

AI application: decision making system

The application domain was fraud detection in financial

transaction records. Three explainers were used (LIME,

TreeInterpreter, and SHAP) to calculate feature distributions

and determine which of the 112 possible features were used

to build decision trees. The outputs were used to generate

explanations of the model scores (i.e., which features contributed

to the decision). Information about an ML’s decision was provided

to users cumulatively, starting with just the data (transaction

features), then a ML “model score,” then data and score plus an

explanation. The model scores were referred to as an expression

of the impact of features, but the quantification method was not

explained and just a single model score was provided for one

test case. The explanations consisted of a list of features, each of

which was accompanied by a score expressing the degree to which

each feature contributed to the classification, highlighted by a red

vs. green square icon indicating whether a feature indicated risk

or legitimacy.

Score: Level 1 (Features)

Kaur et al. (2020)

AI application: decision making system

The application domain was the choice of interpretability

tools by data analysts. Interpretability tools (post hoc explanations)

create mathematical descriptions of the input-output relations

generated by black box systems, which are themselves said

to be opaque or of low intrinsic interpretability. Looking in

detail at two interpretability tools (GAMS and SHAP), the

visualizations of the outputs of machine learning systems included

a histogram showing the impact of features on model outputs.

A numerical scale showing scores indicated how higher and

lower values were thresholded for different categories (in the

illustrated case, marital status and income). Kaur et al. referred to

histograms of the important scores for individual cases as “local”

explanations, which they were. Kaur et al. also referred importance

of features as “global” explanations, which is a debatable

appellation.
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Score: Level 1 (Features)

Kenny and Keane (2009)

AI application: classification system

The application domain was the classification of handwriting

using the MNIST data set. The XAI system focused on contrastive

reasoning of two kinds: (1) counterfactuals (If you had applied

for a smaller loan, it would have been approved) and (2) plausible

semi-factuals (Even if you had applied for a smaller loan, it still

would have been refused). Instances were paired with a variation

that had a feature change that did not change the classification,

a counterfactual variation where a feature change did result in

a classification change, and a variation in which a subtle (hence

plausible) feature change would lead to a different classification.

The researchers conducted a formal evaluation of their system

with other systems that generated counterfactuals. A number

of mathematical comparisons were made based on a variety of

measures, such as the distance of an instance from the nearest

instance that was in the training set. This measure was interpreted

as a measure of plausibility.

Score: Level 6 (Exploration)

Kim et al. (2021)

AI application: vehicle control system

The application domain is self-driving automobiles. An AI

system learned vehicle control with the benefit of human advice.

The XAI conducted an analysis of visual salience, to show the

developers and the research participants which portions of an

image the AI “looked at”. The vehicle would summarize what it had

observed and segmented with a semantic association. It expressed

this in natural language along with a statement of what it intended

to do (e.g., I see a pedestrian crossing, so I stop). This included

justifications relating an action to a reason (e.g., The vehicle slows

because it is approaching an intersection and the light is red). The

XAI was pre-populated with action-justification statements for all

of the events that occurred in the training data set. Although the

user could provide the XAI with actionable feedback, the feedback

was not about the machine-generated explanations (the XAI), but

was about the reasoning of the AI (the automation’s decision rules).

Thus, the explanations do not satisfy Level 7. The justifications that

the AI presented were decision rules.

Score: Level 4 (AI Reasoning)

Krause et al. (2016)

AI application: classification system

The application domain is the assignment of patients to risk

categories of treatment risk on data on the relative effectiveness

of various medications. However, data analysts are strongly

implicated as the primary intended beneficiary of the explanations.

The example explanation that was provided consisted of a graphical

portrayal of nine scales, each of which consists of a color bar and a

numerical scale. The color bar indicates the distribution of values.

Each scale references a particular diagnostic having its unique

measurement scale (e.g., blood glucose level, bodymass index). The

user (perhaps a diagnostician) can set thresholds for defining “high

risk patients.” Indeed, one use of the manipulation capability is in

the conduct a diagnostic task, and not to develop an understanding

how the AI works. However, “[the system] can be used for model

interpretation, with a focus on visualizing input/output behavior

rather than the model itself. Users can change the sort order of the

partial dependence bars by using the buttons at the top. In addition

to sorting by the feature weight and relevance as determined by the

predictive model if available, users can also sort according to local

feature importance and impactful changes. If impactful changes

are chosen as the sort order, the suggested changes to each feature

are indicated” (p. 109).

Score: Level 6 (Exploration)

Neerincx et al. (2018)

AI application: decision making system

The application domain is monitoring ocean-going vessels. The

decision of a recommender system was accompanied by a sentence

frame providing the reason for the AI’s decision (e.g., “I expect

changes to the weather condition and am reasonably certain of this

estimate. I advise you to...”). These were generated by reference to

an ontology and preformulated sentence frames. The key element

to the explanations is the expression of the AI’s confidence level.

However, “... the particular design pattern behind the message also

allows extra information to be provided on request of the user”

(p. 207).

Score: Level 6 (Exploration)

Neerincx et al. (2018)

AI application: decision making system

The application domain is diabetes control by young patients.

The explanations were in the form of text (accompanied by a

cartoon robot who asks the questions of the patient). The system

presents multiple choice decision problems, which list alternative

courses of action. These serve to induce contrastive reasoning on

the part of the user. “Therefore, the generic method for automated

explanation extraction includes the identification of the foil for a

contrastive explanation” (p. 207).

Score: Level 6 (Exploration)

Petsiuk et al. (2018)

AI application: classification system

The application domain is object classification based on

photographs. “Importance maps” use a rainbow code to show

the impact each pixel has in determining a class assignment.

Examples show: (1) A photograph depicting an object (e.g., a

bird, a cow), (2) Two importance maps showing the importance

of pixels for each of two possible categories (e.g., a bird versus a

person), and (3) The calculated likelihood (percentage) for each

of the two categorizations. The presentation of a low and high

likelihood categorizations can be regarded as a comparison of

successes and failures. These are hints; they show what the AI

“confused” but do not say why. Thus, there is no diagnosis (Level 4).
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Score: Level 3 (Instances of Failures)

Pierrard et al. (2018)

AI application: classification system

The application domain is the classification of geometric

shapes utilizing an artificial data set consisting of black and white

images showing shapes (circles, ellipses, etc.) of varying degrees of

fuzziness and located in various locations in an image field. The

explanations consisted of text that stated the class assigned to an

image and listed the features that typified the class (e.g., “Class 4

because object A is a disc and object B is a square, and a disc is

above the ellipse”).

Score: Level 1 (Features)

Pierrard et al. (2019)

AI application: classification system

The application domain was the identification of body organs

in radiographs. An algorithm was trained to identify closed sets of

relations (e.g., “is close to”, “to the left of”) associated with organs.

The explanations consisted of the images annotated identifications

of organs, and text expressing the reasons for the identifications

(e.g., Organ 9 is the bladder because it is stretched and it is below

the right kidney).

Score: Level 1 (Features)

Poursabzi-Sangdeh et al. (2021)

AI application: decision making system

The application domain is the prediction of selling prices for

apartments based on various features (e.g., number of bedrooms,

days on the market). The study presented participants with the

results from two different interpretable (post hoc) models. The

example explanations that are presented are lists of features

and the output of the interpretability models. While these

involved the formal notion of “interpretability,” the authors

assert that the outputs of interpretable models are explanations

for users.

Score: Level 1 (Features)

Russell (2019)

AI application: decision making system

The application domain was financial (loan) decision making.

The XAI system generates counterfactuals that describe how the

data would have to be changed so as to result in a different outcome.

This is achieved by finding minimal changes in the data that would

lead to a different response by the algorithm (e.g., You have an

income of $30,000 but if you had an income of $45,000 you would

have been offered the loan). The XAI generated counterfactuals by

using sentence frames (e.g., “You could have gotten a score_____

if _____ took the value of _____ rather than_____”).

Score: Level 6 (Exploration)

Samek et al. (2017)

AI application: classification system

The application domain was object recognition in images (e.g.,

volcano, coffee cup) and activity recognition (e.g., “sitting up”)

in video clips. Explanations consisted of heat maps showing pixel

salience. These were described as what the AI was “seeing”. For a

text classifier, text pieces were annotated by highlighting keywords

that mapped to classifications (e.g., “sickness” and “discomfort”

mapped to a medicine category).

Score: Level 1 (Features)

Singh et al. (2016)

AI application: decision making system

The application task is the prediction of the likelihood of

hospital readmission based on various patient features. The

explanations are “program snippets” that are a transformation of

a decision tree into a simple if-then programs (two or three lines

of code). The snippets were derived from black box models. An

example snippet is:

if Diag: Other and not Tolbutamide:

Discharged: Home

else: Diag: Other

Score: Level 4 (AI Reasoning)

Turner (2016)

AI application: classification system

The application domain was face recognition. An “explanation

face” was created as the product of the original image and a

salience map. A model-derived description (saliency regions) was

subtracted from the original image. This had the effect of showing

the face with the regions of high salience (represented using white).

Bounding boxes were added to highlight what the authors call

“cues.” From the provided example, it is not clear what the cues

are cues of. Why, for example, should the person’s nostrils or the

corner of one eye be important in person identification?

Score: Level 1 (Features)

Vasu et al. (2021)

AI application: classification system

The application domain is content-based image retrieval and

classification. The explanations consisted of an array of six images

that all received a given classification (e.g., cats, tables, carrots), and

salience maps for each of those images. The retrieval system was

designed to incorporate user feedback. The user can indicate which

of the retrieved images are, and which are not instances of the class.

This can be regarded as training of the AI (the user effectively tells

the AI that it was wrong about something.)

Score: Level 6 (Exploration)

Vilone and Longo (2020)

AI application: classification system

The application domain was object classification (e.g., cats,

tables, carrots). The explanation for a given image was a saliency

map (Level 1). These were said to “help the user understand
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what it is paying attention to” (p. 1). The system also presents a

set of comparison cases (Level 2). The system was designed to

incorporate user feedback. The user could indicate which images in

a retrieved set were and which were not instances of the class. This

can be regarded as training of the AI: The user effectively tells the

AI that it was wrong about something (Level 7). The researchers

asserted that “[The] user helps the system understand their goal

through saliency-guided relevance feedback” (p. 1).

Score: Level 7 (Interactive Exploration)

Wang et al. (2019)

AI application: decision making system

The application domain is phenotyping for intensive patient

care. From data on vital signs (features) interpretable models

generate counterfactuals. The “Explanation sketches” consisted

of a number of graphical components: A graph showing the

values for 12 vital signs over time, a histogram showing vital

signs’ importance for each of five alternative diagnoses, and a

text box showing the counterfactual rule for each prediction

(e.g., The system would predict SHOCK if any of the following

conditions were satisfied...). These were intended to suggest why

the AI predicted a given condition, referencing the features (the

vital signs).

Score: Level 4 (AI Reasoning)

Wang et al. (2022)

AI application: vehicle control

The application domain is the analysis of the behavior of

autonomous vehicles. The information presented to the user is

composed of spatio-temporal features (Scorecard Level 1): objects,

object locations, movements, timelines, etc. The ability of the user

to filter/select features allows the user to review the vehicle AI

model, see examples of when it was successful or when it failed,

as well as explore the connection between events, features and

surrounding data (Levels 2 and 3). A display of object detection

results and features shows green bounding boxes to indicate

ground truth and red bounding boxes to indicate predicted

positions. The darker the color, the lower the activation value

(Scorecard Level 4). Like the work of Kim et al. (2021), Wang et al.

focus on explaining why the AI (the autonomous vehicle) failed,

i.e., the reasons for accidents (Level 5, Diagnosis of failures). The

system offers the user an opportunity for users to explore what

would happen if input data (scenario features or parameters) were

changed. The user can also change data connections to see how the

output would change.

Score: Level 6 (Exploration)

White and Garcez (2021)

AI application: classification system

The application domain, based on the Adult Data Set, is

predicting whether an individual earns more than $50K per year.

Individuals are described in terms of socioeconomic class, age,

occupation, and other factors (Scorecard Level 1). The explanations

consisted of a number of graphical components: A graph showing

the values for the variables and a histogram showing importance of

each measure for each alternative classification (Scorecard Level 2).

Additionally, the XAI system was able to present counterfactuals,

such as by changing marital status or education level. The results

of counterfactuals are presented in a table showing the degree of

change in the coefficient in the regression model. This would fall

at Scorecard Level 6, but it is noted that the counterfactuals were

generated by the system, and not posed as queries by the user.

Score: Level 6 (Exploration)

5.4. Summary of the findings

For the two largest applications categories (Decision Making

and Classification Systems) systems, explanations were scored at

Levels 1 through 4, and Level 6. Levels 1 and 6 were the most

frequent (four systems at Level 1 and five systems at Level 6). For

the other three applications categories (Planning, Data Analytic,

and Vehicle Control Systems), scorings were predominately Levels

4 and 6.

Explanations at all Levels are ultimately expressed in terms of

features or the manipulation of features. Explanations at Level 4

(AI Reasoning) often describe decision rules in terms of features

(e.g., Hind et al., 2019; Jesus et al., 2021; exceptions are Singh

et al., 2016 and Ehsan et al., 2019). Explanations at Level 6 describe

explorations in terms of feature manipulations. An analysis of XAI

systems that had been conducted early in the DARPA XAI Program

showed that five out of the eleven XAI systems developed by the

Performer Teams generated explanations that were exclusively at

Level 1. In regard to this, the most intriguing findings of the present

analysis are the relatively high proportion of systems that were

Scored at Level 6 (Exploration), and the fact that two Classification

systems achieved Level 7 (Interactive Exploration).

6. Limitation of the methodology

The Levels as defined are not free of all possible ambiguities

or subtleties of interpretation, if only because the key concepts

that are involved are intrinsically complex and subtle. Qualitative

analysis requires judgment (see Corbin and Strauss, 1990; Hughes

and Wood-Harper, 2000; Yardley et al., 2020). Because of this, it

is possible to regard the Levels scoring process as limited. The

Scorecard Levels form an ordinal scale, not an interval scale.

Thus, for example, a system scored at Level 6 is not twice as

explanatory as a system scored at Level 3. It would be desirable to

have quantitative methods for evaluating and comparing machine-

generated explanations. But such methods would themselves

necessarily rely on categorical, conceptually-dependent judgments.

For a deconstruction of the subjective-objective distinction see

Mitroff (1974), Muckler and Seven (1992), or Annett (2002).

Developing quantitative scales is certainly a challenge for XAI

research, and its cognitive science complement.

Previous research that has utilized the method of independent

judgments in protocol analysis has found that only one or two

scoring passes are required for evaluators to resolve differences
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in their judgments and achieve consensus (see Hoffman et al.,

1998). The present analysis involved three waves of scoring. There

was progressive refinement of the scoring categories (the Levels).

Judgment benefitted from the review of multiple and different XAI

systems, each bearing its own unique characteristics and context.

This supported adjustment of the definitions of the Levels until a

consensus was achieved.

The present analysis was complicated by the need to coordinate

the work across multiple sessions and in a distance modality. The

discussion of the scoring and negotiation of any disagreements

should be conducted in person, by the entire group of evaluators.

The primary limitation of the present work is the restricted

sample. The down-selection procedure revealed just those reports

that included actual machine-generated explanations, published or

posted up to the date of the analysis. None of the systems was scored

at Level 5 (Diagnosis of failures). The system described by Wang

et al. (2022) achieved Level 5 but was scored at Level 6 by default,

that is, because it achieved that higher Level. We suspect that there

are more XAI systems now that would be scorable at Level 5.

7. Use of the Scorecard

The success of XAI systems development hinges on an ability

to empirically evaluate the quality and effectiveness of machine-

generated explanations. Although early XAI research involved the

development of systems that did not support the user’s sensemaking

to much cognitive depth, researchers have been aware of the need

to do just that.

Scorecard Levels present a judgment scale whereby researchers

and system developers can assess machine-generated explanations

in term of the degree to which they support the user’s sensemaking.

This analysis can be prospective, in the sense of deciding early in

system design the level of explanatory depth that is desired and they

building the XAI system to meet the selected Level. The assessment

can also be retrospective, in the sense that the researchers or

independent evaluators can assess machine-generated explanations

in the manner reported in our analysis.

The Scorecard scale represents a first attempt to do this.

The scale can guide the creation, as well as the evaluation of

XAI systems. The Scorecard is not interpreted as a measure of

the explainability (of AI systems). The Scorecard levels are not

interpreted with reference to explainability in the formal sense

usually meant by computer scientists. Explainability is generally

regarded as a formal property of AI systems (e.g., Koh and Liang,

2017; Adadi and Berrada, 2018; Kaur et al., 2020; Mohseni et al.,

2020; Jesus et al., 2021).

The Explanation Scorecard is intended to be useful for

identifying alternative ways to present information that might

help users by supporting their self-explanation. The Scorecard

provides the conceptual terminology needed to consider the

cognitive value of machine-generated explanations, and how those

explanations might be enriched. Developers can assess their system

early in the design process, and determine whether (sometimes

simple) interface or algorithm changes might support higher levels

of self-explanation.

The Scorecard was composed so as to be agnostic with regard

to the intended beneficiary of the explanations. The Levels can

be directly applied to scale the explanations that are tailored and

intended for use by individuals, or by one or another stakeholder

group, such as developers. Explanations that are expressed formally

or are intended to convey justifications can be evaluated in terms

of the Levels, with respect to the depth of understanding the

explanations convey for system developers.

8. Recommendations for the field of
XAI

Clarity about the difference between explanation,

interpretation, and justification seems achievable. But care

is in order with regard to the differences between formal

meanings of such terms as interpretability and understandability

vs. their meanings in ordinary discourse (see Cabitza et al.,

2023). Consistency can be achieved by disambiguating, e.g.,

not referring to explainability when the actual reference is to

formal interpretability.

Out of our starting set of 165 reports on XAI system

development, only 11 presented a discussion of methods and

results from experiments involving human research participants

and the empirical evaluation of the Human-XAI work system.

This is a major shortcoming of the field. The mere demonstration

of an XAI system, or mathematical proof of its computational

capabilities, is not a substitute for empirical evaluation. The

development of AI systems represents a significant investment,

and assessment is necessary in order to realize the promise of

that investment. Empirical evaluation of Human-AI work systems

must adduce convincing empirical evidence that the work system

is understandable and learnable; that the technology is usable

and useful. Recent research have begun to address this matter of

experimental adequacy and rigor (e.g., Hernandez-Orallo, 2017;

Lage et al., 2019; Buçinca et al., 2020; Amarasinghe et al., 2022).

Reports on the development and evaluation of AI systems

have one foot in computer science and one foot in psychology,

hence the notion of empirical AI (Hoffman, 1992). The Levels

of Explanation described in the Scorecard can be used as an

independent variable in research that attempts to evaluate the

effectiveness of explanations.

The evaluation of the performance of a human-XAI work

system is essentially a large-scale psychological experiment. This

brings with it the desirability of utilizing a reporting structure

that is patterned after reports from the experimental psychology

laboratory. Reports should have distinct and complete sections on

Method, Procedure, and Results. This may seem obvious, but in

practice it is important. For example, for many of the articles that

were found in the literature search it was left unclear whether

the presented examples of explanations were machine- or author-

generated, or whether the intended beneficiary was the end user,

or other developers, or general readers of the article. The method

used in evaluation was often incomplete and scattered across the

subsections of a report.

None of the reports in our focus set and none of the

reports in the first phase of the DARPA XAI Program included

full descriptions of the actual task instructions presented to

the participants. Those might, even should, include some global

explanation and not just be about the buttonology. It would be
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assumed that as a part of a well-formed researchmethod, someHow

it works explanatory information would always be presented in the

initial instructions and training. Typically this form of explanation

is presented as text, but may include example instances using other

forms (e.g., diagrams, salience maps, etc.). It is uncertain whether

How it works instructional materials have been well-formed across

the broader field of in XAI.

9. Conclusions

Using the Levels of Explanation, we have evaluated the

explanations generated by selected XAI systems with respect to

their explanatory value to the user, that is, the degree to which they

support the user’s sensemaking and effort at self-explanation. Our

results suggest that progress is being made. Achieving higher levels

of explanation has been possible. Of the reports that underwent our

analysis, 11 fell at a higher level (Levels 6 and 7), with five being

dated 2020 or later. The black box might be opening up, but who is

looking in? The field of XAI is still characterized, at least to some

extent, by the development of “explanations” that are designer-

centric. They rely on interfaces that are laden with alpha-numerics,

data graphs, feature trees, color-coded matrices, all of which are

supposed to illustrate the inner workings of Deep Nets or Machine

Learning systems. These interfaces are cryptic, except to those who

designed them. It not clear how these serve as explanations to users.

Cognitive evaluation is one of a number of important opportunities

fer advancing the field (see Liu et al., 2017). Do explanations across

the Levels map onto user judgments of explanation goodness or

explanation satisfaction? Do explanation across the Levels influence

user judgments of trust in the AI? Do explanations at higher

levels help users develop richer mental models of AI systems?

It is possible to empirically evaluate the Scorecard levels using

methods and metrics that have been tailored to XAI evaluation (see

Hoffman et al., 2023). The work of Wang et al. (2022) (see above)

included an evaluation by experts, indicating that the generation

of explorable explanations was successful and the visual elements

included with the spatial temporal feature selection and querying

had explanatory value.

The down-selection procedure that was utilized revealed just

those reports that included actual machine-generated explanations,

published or posted up to the date of the analysis. More reports

that do this are appearing in the literature, and thus present an

opportunity to not only apply the Levels and to refine them as

well. That may result from applications of the scheme in either the

system development or system evaluation context. Feedback from

developers who apply the Levels would also be useful, in affirming

or disconfirming the value of the Scoresheet for developers, and also

in refining the Scoresheet. Thus, use of the Scorecard might enable

the XAI community to track progress in the field.
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