






Fig. 27. Representative data gathered for the junction box testing: set tidal volume of 700 mL, respiratory rate of 5, 10, and 15 BPM, and an I:E ratio of 1:2
for trial 1.
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9.2. Mechanical part

� Develop more efficient support for self-inflating bags
� Improve PEEP valve performance or replace it with a ready-made calibrated industrial part
� Add HEPA filter
� Add a mechanical pressure relief valve as the default option
� Add cooling system for the motor
� Work towards a more completely distributed-manufacturable device (e.g. replace all the current purchased components
for those that can be manufactured on site from feedstock).

9.3. Medical functionality and testing capabilities

� Conduct longevity validation to ensure long-term reliability for multiple patients and determine the lifetime of the device
� Add FiO2 and O2 sensors
� Conduct medical validation with a clinician specialist to ensure the device is clinician friendly
� Complete sterilization and testing to ensure that the device can be cleaned using conventional methods and chemicals.
The chemical compatibility of commercial 3-D printing materials is well known [84] and this provides several chemical
sterilization pathways that would need to be tested.

Finally, it should be noted that this device was designed for distributed manufacturing, which is currently discouraged by
the nature of some regulations (e.g. the FDA certifies a device and a manufacturer as one). This device is not yet approved for
clinical use. Future work is needed to develop integrated testing facilities for the open source ventilator to enable rapid man-
ufacturer certification as well as full regulatory approval of the device. This will involve meeting medical device standards
such as ISO 80601-2-12:2020 - Medical electrical equipment, ISO 5367:2014 - Anaesthetic and respiratory equipment, and
IEC 62304:2006 - Medical device software.

Fig. 28. Representative standard error between each test for each position of junction box at a respiratory rate of 5 BPM: A) no junction boxes attached, B)
junction box at lung end, C) junction box at ventilator end, D) junction box at both ends. Legend shows the tidal volumes that were input by the user.
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Table 2
Determination of meeting E-Vent Key Ventilation Technical Specifications [74].

Key Ventilation Specifications E-Vent Recommendations RepRapable OS Design

2.1. Control of Breathing Rate (breaths per minute) 8–30 BPM 5–45 BPM, controlled by user interface
2.2 Control of Tidal Volume (air volume pushed into lung

in mL)
200–800 mL based on patient
weight

100–846 mL, controlled by user interface

2.3 Control of I/E Ratio (inspiratory/expiration time ratio) best if adjustable between
range of 1:1–1:4

Adjustable between range of 1:1–1:4, controlled by
user interface

2.4 Assist detection pressure. When a patient tries to
inspire, they can cause a dip on the order of 1–5 cm
H2O, with respect to PEEP pressure (not
necessarily = atmospheric).

Required Can be added based on pressure [132] or temperature
[66] feedback

3. Airway pressure must be monitored Required Contains two pressure sensors connected between the
ventilator and patient via an airway tube, pressures
are shown on the LCD screen

3.1.1 Pressure limits: Max pressure 40 cm H2O Alarms sound if pressure exceeds 40 cmH2O
3.1.2 Pressure limits: Plateau pressure 30 cm H2O Can be added by introducing a pause at the end of the

inspiratory phase [132]
3.2 Passive mechanical blow-off valve 40 cm H2O Can be purchased together with the self-inflating bag

kit
3.3.1 Monitor plateau pressure Clinician viewable Can be added by modifying the control algorithm
3.3.2 Monitor PEEP Clinician viewable Can be added, need software to see the quantitative

value
3.4 PEEP 5–15 cm H2O 2–11 cm H2O based on observed data during testing
4. Manual clinician override Failure of automatic

ventilation allows conversion
to immediate ventilation.

Yes

5. Ability to use ventilation on room air.
Implemented with an oxygen/air gas blender that some
hospitals already have.

Required for emergencies Yes

6. HEPA filtration on the patient’s exhalation Required because COVID-19
can be aerosolized

Can be added, HEPA filters can usually be purchased
alongside manual resuscitator bags.

8. Failure conditions result in alarm Required Alarms sound if pressure exceeds the allowed limits
from 5 to 40 cmH2O

Fig. 29. Printed circuit board design.
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10. Conclusions

The comparative characteristics of modern ventilators under development [113,130], as well as the medical recommen-
dations of experienced anesthesiologists [131], allow determining the main advantages and disadvantages of the developed
system. Ventilators created by developers around the world can be divided into two main groups: 1) ventilators based on
self-inflating bags [69,132–38], and 2) ventilators based on compressors and pumps [139–143]. The main drawback of most
existing projects is that the main stages of the design process, such as calculating of the required motor power, developing a
mechanical compression system, feedback signal processing algorithms (pressure, temperature, flow, etc.), developing a
cooling system based on temperature parameters of motors, are not well documented. Ventilators based on pumps often
have advanced functionality that allows preparing gas mixtures, moisturizing the circulated atmosphere, and providing
an autonomous assistance mode. The main disadvantage of such systems is the complexity of manufacturing, expensive
and sometimes inaccessible components, as well as the difficulty in configuring and calibrating, which requires considerable
expertise and experience from the user. BVM-based ventilators are easy to replicate and consist of low-cost, readily available
components. The advantage of these systems is the ability to release a clinical specialist for a certain period of time to work
with other patients. Such an automated apparatus significantly surpasses manual compression in accuracy and stability.
Some of the considered BVM-based models, however, have a complex design with expensive components (personal com-
puter, programmable logic controller, etc.) that may demand complex software algorithms. Many of these projects also
did not put enough stress on testing.

In order to compare the development of open source ventilators, a five-point validation system has been developed for all
types of ventilators, based on criteria such as openness, buildability, community support, functionality, reliability, COVID-19
suitability, clinician amiability [144]. Based on applying this metric the following can be concluded about the developed sys-
tem described in this study:

� Fully open source and well-documented
� Easily reproducible
� Has been tested for pressure and volume limits with respiratory rate and tidal volume control
� Has critical emergency alarms
� Consists of standard components and connection blocks

Although the developed ventilation system is inferior to certified medical ventilators in the number of available modes,
the open source device is far less costly and is able to be deployed by means of distributed manufacturing. In addition, the
open source ventilator described and tested here surpasses the capabilities of manual BVM-based ventilation in the accuracy
of reproducing predetermined breathing modes, as well as in the stability of the repetition of respiratory cycles. Future work
is necessary to further develop the system tested in this work for acceptable deployment in clinical environments, however,
the nature of the design is such that desired features are relatively easy to add and test using protocols and parametric design
files provided by this study.
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