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ABSTRACT 
International Journal of Exercise Science 15(2): 884-895, 2022. Upper-body resistance exercise 

effectively increases muscular strength, but may concomitantly increase arterial stiffness. Eccentric exercise can 
lead to muscle soreness and arterial stiffness in untrained participants. However, it is unclear if upper-body 
eccentric exercise could reduce arterial stiffness in a single session for participants that have undergone progressive 
training. Our purpose was to compare acute responses to upper-body eccentric (novel, ECCarm) and concentric 
(traditional, CONarm) steady state arm cycling. We hypothesized that arm arterial stiffness would be reduced after 
both ECCarm and CONarm. Twenty-two young healthy individuals performed either ECCarm (n = 11) or CONarm 
(n = 11) at ~70% of peak heart rate for 20 min after a training period. Heart rate, central pulse wave velocity (cPWV), 
and peripheral pulse wave velocity (pPWV; i.e., arm arterial stiffness) were assessed before, 10 min, and 30 min 
after exercise. Heart rate was not elevated at 10 min post ECCarm, but was elevated at 10- and 30-min post CONarm 
(p < 0.01). After exercise, pPWV was decreased at 10 min post for both ECCarm (7.1 ± 0.3 vs. 6.5 ± 0.2 m/s) and 
CONarm (7.0 ± 0.2 vs. 6.5 ± 0.2 m/s; p < 0.05), while both groups returned to baseline values 30 min post. cPWV 
did not change in either group. Our results indicate that acute ECCarm provides a high-force, low energy cost form 
of resistance exercise that acutely reduces arm arterial stiffness. The reduction in pPWV and rapid heart rate 
recovery suggests that ECCarm is a safe form of exercise for overall and cardiovascular health.  
 

KEY WORDS: Arm ergometry, eccentric exercise, pulse wave velocity, steady state exercise  
 
INTRODUCTION 
 
Arterial stiffness is a contributor to hypertension (8), and increases the risk for cardiovascular 
disease (41). The American College of Sports Medicine (ACSM) recommends that healthy adults 
perform moderate to vigorous intensity aerobic exercise at least 5 times per week, and resistance 
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exercise 2-3 times per week (16). Aerobic exercise can decrease arterial stiffness after both acute 
(18, 36) and chronic (17, 42) interventions. However, both acute (34) and chronic (24) resistance 
exercise may increase arterial stiffness. Thus, resistance exercise, particularly for the upper-body 
(13), may need to be carefully prescribed on an individual basis for those with cardiovascular 
risk factors. 
 
Adequate upper-body strength can improve quality of life in clinical populations via improved 
upper-body and respiratory muscle strength (38). Upper-body strength is also critical for 
manual laborers (2, 37) and can enhance athletic performance (28). Furthermore, grip strength 
(15) and upper-body power (23) are associated with a reduction in all-cause mortality. However, 
upper-body resistance exercise increases arterial stiffness both acutely (22) and chronically (32) 
to an even greater extent than lower-body resistance exercise. Accumulating evidence (10, 30) 
indicates that eccentric exercise (i.e., active muscle lengthening contractions) has the potential 
to improve upper-body muscle function without the negative side effect of arterial stiffness. In 
a ground-breaking study, Okamoto and colleagues (30) demonstrated that 8 weeks of eccentric 
elbow flexion increased strength without increasing arterial stiffness, whereas concentric elbow 
flexion increased strength and arterial stiffness. These authors later reported that acute eccentric 
exercise was associated with an attenuated blood pressure and endothelin-1 responses 
compared to concentric resistance exercise (31). These results are promising and imply that 
attenuated circulatory adjustments to eccentric muscle contractions might help to offset the 
effects of arterial stiffening associated with traditional resistance exercise including concentric 
muscle contractions.  
 
It is well established that unaccustomed eccentric exercise can give rise to significant muscle 
soreness and damage (9). Previous authors (4, 7) have reported that eccentric-induced muscle 
soreness and damage are linked to changes in pulse wave velocity 48 hours after exercise. This 
is especially noteworthy for upper-body exercise prescription because the magnitude of 
eccentric-induced damage is generally greater for upper-body compared to lower-body muscles 
(20). While soreness and damage are common, neither are necessary to trigger improvements in 
muscle size and strength (14) and can be avoided with careful progression of eccentric loading 
over time. Minimizing muscle damage has been shown to have no effect on arterial stiffness 
following eccentric and concentric leg cycling (29), furthering the point that muscle soreness is 
not a requirement for progress. Indeed, we (10) demonstrated that 7 weeks of eccentric arm 
cycling (i.e., repetitive, high-force, muscle lengthening contractions performed at moderate 
aerobic intensities) increased strength and power without changing aortic or arm arterial 
stiffness. Importantly, with the progressive nature of the training protocol, muscle soreness was 
very low throughout the study. However, the acute responses to upper-body eccentric exercise 
in individuals who progressively train are not documented. Evaluation of arterial stiffness 
following acute upper-body eccentric exercise without the associated muscle soreness would 
provide new insights to exercise prescription and cardiovascular health.  
 
In this investigation, participants performed five weeks of heart rate matched eccentric or 
concentric arm cycling. We chose to compare eccentric arm cycling (continuous resistance 
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exercise performed at aerobic intensities) to the more common mode of concentric arm cycling 
(continuous aerobic exercise) to utilize the same muscle groups and primary active joints (i.e., 
shoulders, elbows, and wrists). Our purpose was to evaluate changes in central and peripheral 
arterial stiffness following acute eccentric or concentric arm cycling in the respective groups of 
trained participants. Previous work (29, 36) has shown that peripheral arterial stiffness is 
reduced after concentric arm cycling and leg cycling VO2 max protocols, and that central arterial 
stiffness remains unchanged. Therefore, we hypothesized that arm arterial stiffness would be 
reduced following both steady state eccentric and concentric arm cycling, but that central arterial 
stiffness would remain unchanged. Determining if upper-body eccentric exercise minimizes 
arterial stiffness is clinically relevant because repeated bouts of acute exercise training could 
have cumulative benefits over time (39). 
 
METHODS 
 
Participants 
Twenty-two healthy individuals between 18-44 years of age volunteered to participate in this 
study. A power analysis determined that a sample of 18 participants (9 in each group) was 
needed to detect a 0.67 m/s change in cPWV, which is an estimated 10% change in mortality 
(41), based on 0.80 power and alpha of 0.05. Participants were recreationally active but did not 
regularly perform upper-body aerobic or resistance exercise. Experimental procedures used in 
this investigation were reviewed and approved by the Michigan Technological University 
Institutional Review Board. This research was carried out fully in accordance to the ethical 
standards of the International Journal of Exercise Science (25). The protocol and procedures were 
verbally described and all participants provided written informed consent prior to testing. 
Participants were clustered together in such a way as to create two similar groups of eleven 
participants based on the pre-experimental assessments (further described below) with 
comparable body composition, upper-body cardiorespiratory capacity, and maximum upper-
body power (Table 1). The eccentric arm cycling training group (n = 11) had 8 men and 3 women, 
and the concentric arm cycling training group (n = 11) had 9 men and 2 women. 
 
Pre-Experimental Assessments: Body composition was assessed using dual energy x-ray 
absorptiometry (DEXA; Lunar Prodigy, General Electric Company, Fairfield, CT, USA). Upper-
body cardiorespiratory capacity was assessed during an incremental concentric arm cycling test 
(15 + 15 W·min-1). Gas exchange data were measured continuously using open circuit 
spirometry (True Max 2400, Parvo Medics, Sandy, UT, USA). The metabolic measurement 
system was calibrated with a 3-L calibration syringe (Hans Rudolph, Kansas City, MO, USA) 
and medical gases of known concentrations (16.00 % O2, 4.00 % CO2, balance N2). Upper-body 
peak oxygen consumption (V ̇O2peak), peak heart rate (HRpeak), and peak power output (Wmax) 
were determined. Maximum upper-body power was assessed during maximal concentric arm 
cycling trials (5 s, 120 rpm). Participants were then assigned to one of the following exercise 
conditions: 1) eccentric arm cycling, or 2) concentric arm cycling.  
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Table 1: Participant demographic, anthropometric, and physiological characteristics. 

Variable Eccentric (n = 11) Concentric (n = 11) P value 

Age (yr)  23 ± 1 24 ± 1 0.53 

Height (m) 1.74 ± 0.03 1.77 ± 0.03 0.60 

Body mass (kg) 74 ± 4 79 ± 5 0.40 

BMI (kg∙m-2) 24 ± 1 25 ± 1 0.58 

Body Fat (%) 22 ± 4 25 ± 4 0.62 

Systolic Arterial Pressure (mmHg) 110 ± 4 111 ± 3 0.86 

Diastolic Arterial Pressure (mmHg) 60 ± 3 61 ± 2 0.86 

Resting Heart Rate (b∙min-1) 64 ± 3 60 ± 3 0.33 

V ̇O2peak (L∙min-1) 2.2 ± 0.2 2.3 ± 0.2 0.74 

V ̇O2peak (ml∙kg-1∙min-1)  29 ± 3 29 ± 2 0.82 

HRpeak (bpm)  185 ± 3 181 ± 3 0.37 

Wpeak (W)  134 ± 12 134 ± 12 1.00 

Pmax (W)  599 ± 59 591 ± 60 0.94 

Values are reported as Mean ± SE. Body mass index (BMI), upper-body peak oxygen consumption (V ̇O2peak), upper-
body peak heart rate (HRpeak), peak power reached at the end of the upper-body V ̇O2peak test (Wpeak), and maximal 
upper-body concentric power (Pmax).  

 
Training Period: Both the eccentric and concentric arm cycling groups exercised at 65-70% of 
upper-body peak heart rate 3x/week for five weeks. Specifically, participants exercised 
continuously for 5 and 8 min/session during the first and second weeks, respectively. After this, 
participants trained continuously for 10 and 13 min/session during the third and fourth weeks 
and for 17 min/session during the fifth week. Muscle soreness associated with eccentric arm 
cycling or concentric arm cycling was monitored using a visual analog scale (0-10 cm; 10 cm 
representing the most soreness possible (12, 21)). Specifically, 24 to 48 hours after each exercise 
session, participants performed a standardized bilateral elbow extension movement (i.e., bench 
dip) during which they indicated the level of perceived muscle soreness in their arms by placing 
a mark on the visual analog scale. Perceived muscle soreness was quantified by measuring the 
distance to the mark on the line to the nearest 0.1 cm. During the 5 weeks of training, mean 
muscle soreness ranged from 0.4 ± 0.1 to 0.6 ± 0.2 cm and 0.2 ± 0.1 to 0.4 ± 0.2 cm for the eccentric 
and concentric arm cycling groups, respectively. Thus, participants tolerated the exercise 
sessions well and were reasonably adapted with their respective modality.  
 
Protocol 
For the experimental visit, participants were instructed to avoid exercise and caffeine for 12 h 
preceding the experiment which was performed at least 3 h post-prandial. This experimental 
visit occurred at least 48 h after the final training session of week 5 for all participants. Baseline 
measures of heart rate, blood pressure, and pulse wave velocity were recorded before exercise 
(described below). Subsequently, participants performed either eccentric arm cycling or 
concentric arm cycling on an isokinetic ergometer (described below) continuously at ~70% of 
HRpeak for 20 min at an arm cranking rate of 60 rpm. Arm cycling power output and heart rate 
(Polar CE O537, Polar Electro Inc., Lake Success, New York, USA) were recorded and averaged 
over the 20-min exercise trial. Overall rating of perceived exertion (RPEbody), as well as arm 
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specific RPE (RPEarm), were assessed during the final min of exercise using a Borg 6-20 scale (6). 
Heart rate, blood pressure, and pulse wave velocity were reassessed at 10 min and 30 min post 
exercise. These time points were selected because previous studies report arterial stiffness may 
be altered from 10 to 30 min post-exercise (18, 36). Our experimental protocol is depicted in 
Figure 1. 

 

 

 

 

 

 

 
 
 
Figure 1. Vascular measures including blood pressure, central pulse wave velocity (cPWV), peripheral pulse wave 
velocity (pPWV), and electrocardiography (ECG) were performed 10 minutes before, 10 minutes after, and 30 
minutes after a 20-minute bout of steady state eccentric or concentric arm cycling.  

 
Cardiovascular Parameters: All measurements were completed following the guidelines from 
the Scientific Statement from the American Heart Association (40). At baseline, brachial blood 
pressures were taken in triplicate after at least 15 minutes of supine rest with an automated cuff 
(Omron HEM-907XL, Omron Health Care, Vernon Hills, IL, USA) with one minute between 
each recording. Average systolic arterial pressure (SAP) and diastolic arterial pressure (DAP) 
were used to calibrate the SphygmoCor CPVH system (AtCor Medical, West Ryde, Australia) 
for pulse wave analysis measurements. A single supine blood pressure was taken to calibrate 
directly before recordings at 10- and 30-min post exercise. A small pressure transducer (Millar 
Instruments, Houston, TX, USA) was placed at the radial pulse site to record consecutive 
waveforms during pulse wave analysis. The SphygmoCor system was used to estimate aortic 
blood pressures. Recordings were completed in duplicate with an operator index of ≥ 80 for all 
readings. Values are reported as an average of the two recordings. Peripheral pulse wave 
velocity (pPWV) was measured from waveforms at the radial and carotid pulses to indicate arm 
arterial stiffness. Central pulse wave velocity (cPWV) was measured from waveforms at the 
carotid and femoral pulses to indicate aortic arterial stiffness. The pressure waveforms were 
gated to the R-waves of a three-lead electrocardiogram recording, which was also used to obtain 
heart rate. Distances between the suprasternal notch and carotid artery pulse site, radial pulse 
site, and femoral pulse site were measured as straight lines with a tape measure. Pulse wave 
velocity recordings were taken in duplicate with ≤ 10% standard deviation and a heart rate 
difference of ≤ 5 beats/min in between. Values are reported as an average of the two recordings. 
 
Arm Cycle Ergometer: The isokinetic arm cycle ergometer used in this investigation has been 
previously described in detail (12). Briefly, the flywheel of the ergometer was driven in either 
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the forward direction by the participant (concentric arm cycling), or in the reverse direction 
(eccentric arm cycling) by a 560 W three-phase electric motor (Leeson, C4T17PT2C; Santa Fe 
Springs, CA, USA). The cranks (170 mm) were positioned in the asynchronous fashion and 
power delivered to the ergometer crank was quantified using a power meter (Schoberer Rad 
Messtechnik, SRM, Jülich, Germany), a system that serves as an accurate method to quantify 
cycling power (1). Pedaling rate was set to 60 rpm and the SRM power meter (sampled at 2 Hz) 
displayed the power that the participant was producing (concentric arm cycling trials) or 
absorbing (eccentric arm cycling trials). The SRM power meter was calibrated using static 
calibration procedures (11) and a zero offset (funloaded) was obtained before all arm cycling trials. 
Ergometer seat position was carefully standardized such that the: 1) crank axle was set just 
below the level of the heart, 2) elbow was positioned at a comfortable angle when the cranks 
were horizontal (~20° ulnar notch to humeral head), and 3) legs were positioned to help stabilize 
the torso (~90° lateral malleolus to greater trochanter). Finally, for the concentric arm cycling 
trials, participants were instructed to "propel" the handles of the ergometer at a power output 
monitored by the investigator that elicited the specified target heart rate whereas for the 
eccentric arm cycling trials, participants were instructed to “resist” the motor-driven handles of 
the ergometer at the specified target heart rate. Note that muscle activation patterns during 
concentric and eccentric arm cycling have been described previously (12).  
 
Statistical Analysis 
Independent t-tests were used to test for differences in participant demographic data, power 
output, heart rate, and RPE values between eccentric arm cycling and concentric arm cycling. A 
2 (exercise group) x 3 (time) repeated measures analysis of variance (ANOVA) was used to 
assess differences in heart rate, brachial blood pressures, aortic blood pressures, and pulse wave 
velocity (cPWV, pPWV). If the ANOVA procedures revealed a significant main effect or group 
x time interaction, then post-hoc paired t-tests were performed to determine where differences 
occurred. Data are presented as mean ± standard error and the a priori alpha was set to 0.05. 
 
RESULTS 
 
Muscular, cardiorespiratory, and perceptual responses to the 20-min exercise trial are reported 
in Figure 2. Power absorbed during eccentric arm cycling was ~2x that produced during 
concentric arm cycling (125 ± 13 vs. 67 ± 7 W, p < 0.01). These powers corresponded to 94 ± 5 and 
50 ± 2% of the peak power reached during the concentric arm cycling VO2peak test (Wpeak) and to 
22 ± 2 and 12 ± 1% of maximal concentric arm cycling power (Pmax), respectively. Mean absolute 
and relative heart rates during eccentric arm cycling (122 ± 4 bpm, 66 ± 2% of HRpeak) and 
concentric arm cycling (122 ± 2 bpm, 67 ± 1% of HRpeak) did not differ (p = 0.87 and p = 0.68, 
respectively) and were close to the prescribed target of 70% of HRpeak. Rating of perceived 
exertion for the whole-body during eccentric and concentric arm cycling was between a “light” 
and “somewhat hard” effort and did not differ between groups (13 ± 0 vs. 12 ± 1, p = 0.20). Rating 
of perceived exertion for the arms during eccentric and concentric arm cycling was between a 
“somewhat hard” and “hard” effort and did not differ between groups (14 ± 0 vs. 13 ± 1, p = 
0.38).  
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Figure 2. Muscular, cardiorespiratory, and perceptual responses during exercise. *p < 0.05 vs. concentric arm 
cycling. 

 
Data presented in Table 2 indicate that heart rate was not significantly elevated at 10 min post-
exercise for eccentric arm cycling (p = 0.08) and did not differ from baseline at 30 min post-
exercise. Heart rate was elevated at both 10- and 30-min post-exercise for concentric arm cycling 
(p < 0.01). Mean arterial pressure did not differ from baseline at 10- or 30-min post-exercise in 
either group. Table 2 also depicts aortic blood pressure values for before, 10 min post, and 30 
min post-exercise for both groups. Aortic pulse pressure was elevated at 10 min post for both 
groups, but did not differ from baseline at 30 min post for either group. As illustrated in panel 
A of Figure 3, pPWV was decreased at 10 min post-exercise for both eccentric and concentric 
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arm cycling (p < 0.05), while both groups returned to baseline values by 30 min post. cPWV did 
not significantly change in either group (panel B of Figure 3).  
 
Table 2: Cardiovascular responses to acute exercise session. 

 Eccentric (n = 11) Concentric (n = 11) 

Variable 
Pre-

Exercise 
10 min Post-

Exercise 
30 min Post-

Exercise 
Pre-

Exercise 
10 min Post-

Exercise 
30 min Post-

Exercise 

HR (bpm) 64 ± 3 68 ± 3 61 ± 2 60 ± 3 71 ± 4* 66 ± 3* 

bMAP 
(mmHg)  

76 ± 3 79 ± 2 75 ± 2 77 ± 2 72 ± 2 74 ± 2 

aSAP 
(mmHg) 

91 ± 3 96 ± 2 93 ± 2 92 ± 2 89 ± 2 87 ± 3 

aDAP 
(mmHg) 

61 ± 3 59 ± 2 59 ± 2 63 ± 2 52 ± 2 54 ± 2 

aMAP 
(mmHg) 

74 ± 3 76 ± 2 74 ± 2 74 ± 2 69 ± 2 69 ± 2 

aPP (mmHg) 31 ± 1 38 ± 1* 35 ± 1 31 ± 2 37 ± 2* 35 ± 2 

Values are reported as Mean ± SE. Heart rate (HR), brachial mean atrial pressure (bMAP), aortic systolic blood 
pressure (aSAP), aortic diastolic blood pressure (aDAP), aortic mean blood pressure (aMAP), aortic pulse pressure 
(aPP). * p < 0.05 vs. pre-exercise baseline. 

 

 
Figure 3. Alterations in peripheral (i.e., arm) pulse wave velocity (pPWV) in panel A and central (i.e., aortic) pulse 
wave velocity (cPWV) in panel B. *p < 0.05 vs. pre-exercise baseline. 

 
DISCUSSION 
 
This study compared arterial stiffness responses to steady state eccentric and concentric arm 
cycling in trained participants and resulted in three novel findings. First, arm arterial stiffness 
(i.e., pPWV) was acutely reduced after both eccentric and concentric arm ergometry but 
returned to pre-exercise values by 30 min post-exercise. Second, aortic arterial stiffness (i.e., 
cPWV) was not elevated at 10- or 30-min post-eccentric or post-concentric arm ergometry. Third, 
heart rate was not different from baseline after eccentric arm ergometry, but remained elevated 
until 30 minutes post concentric arm cycling. 
 
Clinically relevant work demonstrates that pPWV is elevated in prehypertensive adults 
compared to normotensive controls, and that pPWV can be reduced by about 10-11% through 
8-weeks of exercise training (5). Our participants reduced pPWV by about 6 and 8% at 10 min 
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post-exercise in the concentric and eccentric groups, respectively. Furthermore, our pPWV 
results are in agreement with a previous study (36) that reported concentric arm ergometry 
performed to VO2peak can acutely decrease arm arterial stiffness. We extend their findings by 
indicating that pPWV was not only decreased at 10 min post-concentric steady state arm cycling, 
but also at 10 min post-eccentric steady state arm cycling. These findings, in conjunction with 
our recent 7-week training study that indicated no change in pPWV (10), show that arm cycling 
does not appear to negatively influence arm arterial stiffness. These results are promising, 
considering that eccentric arm cycling participants increased their upper body strength and 
power in our longitudinal exercise study (10), whereas traditional upper body resistance 
training is reported to increase arterial stiffness both acutely (22) and over 10-weeks (32).  
 
Carotid-femoral pulse wave velocity (reported as cPWV in the present study) is strongly 
associated with cardiovascular disease risk in those with normotension and hypertension (26), 
and even as little as a 1 m/s increase is noted to increase the risk for cardiovascular events and 
death by about 15% (41). Neither the eccentric nor concentric arm cycling in the present study 
altered cPWV as depicted in panel B of Figure 3. The lack of change in cPWV could be due to 
the relatively short duration (i.e., 20 min) and moderate intensity exercise that our participants 
experienced (33). Future work could address longer duration and / or higher intensity eccentric 
or concentric upper-body exercise protocols. Nonetheless, results from the current study along 
with our previous longitudinal results (10), indicate that eccentric arm cycling could potentially 
lower cPWV (both 30 minutes after a training session and after 7 weeks of training), and at the 
very least does not appear to have a negative effect. 
  
Heart rate returned to baseline values by 10 min post-eccentric arm ergometry, but was still 
elevated at 30 min post-concentric arm ergometry. A more rapid recovery of heart rate after 
exercise could indicate improved vagal activation and sympathetic withdrawal (19). Previous 
work has shown that heart rate recovery is more rapid after upper-body ergometry, than lower-
body ergometry (35). Our findings provide new indications that heart rate recovery is more 
rapid after eccentric arm ergometry than concentric arm ergometry. Elevated heart rate, and / 
or pulse pressure, can increase the pulsatility to end organs such as the brain and kidney and 
lead to long-term damage (3). Increases in aortic pulse pressure were similar at 30 min post-
exercise for the eccentric and concentric groups (~4 mmHg). Because heart rate recovered more 
rapidly after eccentric than concentric exercise (see Table 2), and aortic pulse pressures were 
comparable between groups, pulsatile stress should be lower following eccentric arm 
ergometry. Decreasing aortic pulsatility could help to reduce cardiovascular disease risk (27).  
 
A potential limitation of this study is that we did not test arterial stiffness beyond 30 minutes 
post exercise. Other studies with eccentric upper-body (4) and lower-body (7) exercise have 
tracked muscle soreness and arterial stiffness for 48 hours post exercise. However, those studies 
did not include a significant training period, thus induced significant muscular damage. Muscle 
soreness ratings were about 7 to 8 on a 10-point scale (4, 7). Changes in pulse wave velocity have 
been linked to changes in muscle soreness (7). The present study carefully trained participants 
and their peak muscle soreness ratings were less than 1 on a 10 cm analog scale. Thus, our 
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protocol did not induce delayed onset muscle soreness, and therefore we would not expect a 
significant change in arterial stiffness more than 30 minutes beyond the acute exercise session.  
 
The results of the present study, and those of our recent longitudinal study (10), indicate that 
eccentric arm cycling appears to be safe for healthy individuals in regard to arterial stiffness. It 
is currently unknown if these findings will extend to those with pre-clinical, or clinical, 
conditions such as hypertension or coronary artery disease.  
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