Michigan
Technological Michigan Technological University
1a8s] University Digital Commons @ Michigan Tech

Michigan Tech Publications

6-6-2022

Utilization of Bayesian Optimization and KWN Modeling for
Increased Efficiency of Al-Sc Precipitation Strengthening

Kyle Deane
Michigan Technological University, kideane@mtu.edu

Yang Yang
Michigan Technological University, yyang7@mtu.edu

Joseph Licavoli
Michigan Technological University, jjlicavo@mtu.edu

Vu Nguyen
Deakin University

Santu Rana
Deakin University

See next page for additional authors

Follow this and additional works at: https://digitalcommons.mtu.edu/michigantech-p

0 Part of the Materials Science and Engineering Commons

Recommended Citation

Deane, K., Yang, Y., Licavoli, J., Nguyen, V., Rana, S., Gupta, S., Venkatesh, S., & Sanders, P. G. (2022).
Utilization of Bayesian Optimization and KWN Modeling for Increased Efficiency of Al-Sc Precipitation
Strengthening. Metals, 12(6). http://doi.org/10.3390/met12060975

Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/16227

Follow this and additional works at: https://digitalcommons.mtu.edu/michigantech-p

b Part of the Materials Science and Engineering Commons



http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/michigantech-p
https://digitalcommons.mtu.edu/michigantech-p?utm_source=digitalcommons.mtu.edu%2Fmichigantech-p%2F16227&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/285?utm_source=digitalcommons.mtu.edu%2Fmichigantech-p%2F16227&utm_medium=PDF&utm_campaign=PDFCoverPages
http://doi.org/10.3390/met12060975
https://digitalcommons.mtu.edu/michigantech-p?utm_source=digitalcommons.mtu.edu%2Fmichigantech-p%2F16227&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/285?utm_source=digitalcommons.mtu.edu%2Fmichigantech-p%2F16227&utm_medium=PDF&utm_campaign=PDFCoverPages

Authors

Kyle Deane, Yang Yang, Joseph Licavoli, Vu Nguyen, Santu Rana, Sunil Gupta, Svetha Venkatesh, and Paul
G. Sanders

This article is available at Digital Commons @ Michigan Tech: https://digitalcommons.mtu.edu/michigantech-p/
16227


https://digitalcommons.mtu.edu/michigantech-p/16227
https://digitalcommons.mtu.edu/michigantech-p/16227

metals

Article

Utilization of Bayesian Optimization and KWN Modeling for
Increased Efficiency of Al-Sc Precipitation Strengthening

Kyle Deane !, Yang Yang 1'%, Joseph J. Licavoli !, Vu Nguyen 2, Santu Rana 2, Sunil Gupta 2, Svetha Venkatesh 2

and Paul G. Sanders 1-*

check for
updates

Citation: Deane, K.; Yang, Y.;
Licavoli, J.J.; Nguyen, V.; Rana, S.;
Gupta, S.; Venkatesh, S.; Sanders, P.G.
Utilization of Bayesian Optimization
and KWN Modeling for Increased
Efficiency of Al-Sc Precipitation
Strengthening. Metals 2022, 12, 975.
https:/ /doi.org/10.3390/
met12060975

Academic Editor: Cristiano

Fragassa

Received: 31 March 2022
Accepted: 31 May 2022
Published: 6 June 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Materials Science & Engineering, Michigan Technological University,

Houghton, MI 49931, USA; kjdeane@mtu.edu (K.D.); jjlicavo@mtu.edu (J.J.L.)

2 The Applied Artificial Intelligence Institute, Deakin University, Geelong, VIC 3220, Australia;
v.nguyen@deakin.edu.au (V.N.); santu.rana@deakin.edu.au (S.R.); sunil.gupta@deakin.edu.au (5.G.);
svetha.venkatesh@deakin.edu.au (S.V.)

*  Correspondence: yyanglO@mtu.edu (Y.Y.); sanders@mtu.edu (P.G.S.); Tel.: +1-906-487-2339 (P.G.S.)

Abstract: The Kampmann and Wagner numerical model was adapted in MATLAB to predict the
precipitation and growth of Al3Sc precipitates as a function of starting concentration and heat-
treatment steps. This model was then expanded to predict the strengthening in alloys using calculated
average precipitate number density, radius, etc. The calibration of this model was achieved with
Bayesian optimization, and the model was verified against experimentally gathered hardness data.
An analysis of the outputs from this code allowed the development of optimal heat treatments, which
were validated experimentally and proven to result in higher final strengths than were previously
observed. Bayesian optimization was also used to predict the optimal heat-treatment temperatures in
the case of limited heat-treatment times.

Keywords: KWN; Bayesian optimization; precipitation strengthening; scandium; trialuminide

1. Introduction

Al-Sc precipitation strengthening alloys have been proven in the literature to have
excellent coarsening resistance when compared to more traditional precipitation strength-
ening alloys due, in large part, to the low diffusion rates and low solubility limits of Sc in
aluminum [1-3]. The formation of nano-sized, nearly spherical L1, Al3Sc has shown promis-
ing precipitation strengthening at ambient and elevated temperatures [3,4]. However, due
to the scarcity and expense of Sc, little work has been performed to experimentally optimize
heat treatments in various Al-Sc alloys. The goal of the current study is to outline and verify
a computational method to accurately predict Al3Sc precipitate nucleation and growth.
This information is then tied to strengthening models to estimate optimal heat-treatment
schedules, which were also evaluated experimentally.

Many thermodynamic and kinetic modeling packages used in materials science con-
tain precipitation-strengthening models that can give rough estimates for optimal material
chemistry and processing parameters. The primary issue is that these models are designed
for “generality”, which favors the use of few fitting parameters and limited system-specific
knowledge at the expense of accuracy. For example, models involving temperature depen-
dence often adopt Arrhenius relations, requiring several fitting parameters (pre-exponential
factors, exponential constants, etc.) to “capture” the underlying physics without explicitly
deriving the true and complex relations that govern the value of these fitting parameters
for a specific material system. The user is then tasked with finding the proper fitting param-
eters to match their system of interest. There are obvious practical incentives to adopt this
approach, including time constraints, limitations on theory, and limits on computational
resources, but the incentives for making these assumptions can often be overwhelmed by
the inadequacy of the resulting models and the faulty assertions flowing from them. To
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remedy this problem, one may develop a modeling method that rapidly and automatically
identifies key fitting parameters from existing data sets in the literature or from material
databases, thus retaining generality without sacrificing as much accuracy. Such a model
would require correlation with real experimental data to give meaningful results due to the
complexity of the thermodynamic and kinetic simulations, but, given enough pre-existing
data, an ample amount of inputs can be adjusted to fine-tune the result, enabling higher
accuracy and increasing the likelihood of achieving an optimized process.

To accomplish this goal, an implementation of Kampmann and Wagner’s numerical
precipitation model (hereafter referred to as the KWN model) was developed to approxi-
mate the experimental conditions reported in this work, as well as those found in [5]. The
KWN model tracks precipitate nucleation, growth, coarsening, and dissolution over a series
of discrete timesteps by iteratively solving classical nucleation theory and Gibbs-Thomson
relationship equations. The precipitates formed are grouped into bins of similar radii and
are allowed to grow or dissolve in accordance with their size in the equations at each
timestep [6-8].

The KWN model involves many tunable configuration parameters. These parameters
can result in significant improvements in accuracy if they are fitted properly. Bayesian opti-
mization (BO) is a powerful tool for the optimization of complex systems. It offers greater
automation to increase both product quality and productivity [9-11]. BO was therefore
used to fit the parameters for the KWN model to better coincide with the experimental
results. Once the parameters were properly fitted, BO was of further use in identifying the
heat treatments with the model that would yield the greatest strength.

2. Materials and Methods

The following components, described in detail in Sections 2.1-2.3, were integral to
this study:

1.  Precipitation and Strengthening Model—By simulating nucleation and growth of
Al3Sc in Al-Sc binary alloys, this program predicts strengthening behavior with aging.

2. Experimental Verification—Casting, aging, and hardness testing of Al-Sc binary alloys
generated data for fitting and verification of the precipitation and strengthening model.

3. Bayesian Optimization—Bayesian optimization (BO) was used to obtain the best
fit between experimentally observed and simulated strengthening behavior. After
the model was calibrated, BO was used again to suggest heat treatments for optimal
strengthening.

2.1. Precipitation and Strengthening Model

The precipitation and strengthening model, essentially a modified KWN model with
strengthening equations in the form of a MATLAB program, can be separated into sev-
eral distinct sections, as shown in Figure 1: initial material and process-specific inputs
(Section 2.1.1), an outer loop that iterates for each heat-treatment temperature (Section 2.1.2),
an inner loop that iterates through the time of each heat-treatment step and calculates pre-
cipitate nucleation behavior at each timestep (Section 2.1.3), and the innermost loop that
adjusts the precipitate radii formed in previous timesteps according to the Gibbs—-Thomson
relationship (Section 2.1.4). After all nucleation, growth, and dissolution are calculated for
a given timestep, solute concentration is adjusted for solute atoms lost to or gained from
precipitates.

2.1.1. Model Inputs

In the first section of the model code, all inputs are defined, and constants related to these
values are calculated. Process-specific inputs include the number, temperature, and length of
heat-treatment steps, as well as the initial solute concentration of the alloy in question. Material-
specific inputs include Gibbs free energy data for calculation of the solvus line [12], the diffusion
coefficient of the solute atoms in the matrix (Dy), the vacancy formation and migration energies

of the solute atoms (E;_X and E})), lattice parameters of the matrix and precipitate phase (a,
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and a,), Poisson’s ratio of the matrix and precipitate phase (v, and v}), and shear modulus of
the matrix and the precipitate phase (G;/°" and G;he‘”).

[ (2.1.1) Inputs ]

-~
/(2.1.2) Temperature Loop for each heat treatment step
==
(2.1.3) Timestep Loop for discrete timesteps

L _ ]
(2.1.4) Growth/Dissolution Loop for all
previously nucleated precipitates

NIy

( ~
(2.1.5) Outputs J

-

Figure 1. Visual representation of the distinct sections of the precipitation and strengthening model.
The model itself is available in the Supplementary Material.

2.1.2. Model Temperature Loop

Following the input section, a loop is entered to calculate temperature-dependent
values for the first heat-treatment step. This loop repeats whenever the simulated heat-
treatment time expires and the temperature is raised or lowered to the next listed heat-
treatment temperature.

The first part of the temperature loop calculates the Al-intermetallic solvus line, defin-
ing the solubility of the solute atoms in the matrix. As the temperature increases, so does
the solubility, which can cause significant precipitate dissolution at the beginning of a
relatively high heat-treatment step. The composition of the solvus line was found at each
temperature using the Gibbs free energy curve data from the input section [12].

The second part of the Temperature Loop calculates the diffusivity of the solute atom
in the matrix, as seen in Equation (1) [13], where Dy is the diffusion coefficient, f is the

dimensionless correlation factor (0.7815 for FCC materials), E;*X is the vacancy formation

energy near an impurity atom X, and E), is the impurity migration energy mediated by
a vacancy [14]. As the temperature increases, the diffusion rates of solute atoms increase,
accelerating nucleation and growth kinetics.

_EU—X _ EV
D = Dyfexp (W) (1)

Once diffusivity is calculated, a nested loop is entered to perform all time-dependent
calculations.

2.1.3. Model Timestep Loop

There is a large loop within the outer temperature loop that iterates for each timestep.
This loop holds all time-dependent constitutive equations and tracks solute concentration
evolution, as affected by nucleation and growth. At each timestep, the critical radius of
precipitate nucleation and nucleation rate are calculated based on the solute concentration
at the beginning of the step. Another loop (discussed in the next section) is then entered
to grow /dissolve precipitates made in previous steps, and, next, the solute concentration
is updated to account for all solute loss or gain from the precipitates. At the end of each
timestep, the average precipitate radius and corresponding strength prediction is outputted.

In order to determine the critical radius of the precipitate nucleation, it is important to know
the changes in Gibbs free energy associated with creating new precipitate volume (AGy) as well
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AGS —

as creating a greater matrix-precipitate interfacial area (AGs). Equations (2) and (3) demonstrate
the main equations used to determine these values, with AGLormation

AlX
formation of Al3X, G;:lestiix as the intercept at 25%X of a line tangential to the matrix-phase

Gibbs energy curve at the current matrix composition [15], € as the misfit strain between the
two phases, G3rear p as the shear modulus of the noted phase (m = matrix, p = precipitate),

and vy, or p as the Poisson’s ratio of the noted phase [7].

as the Gibbs energy in

AGfarmation _ GAI3X

_ AlzX matrix
AGo = Vinol @
3G;;rlliear 1 m) (1=0m -1
3€2Gzhear (1 + vp) B (] + %) (1 - ZZJP) B G%iear(l + vm) (1 _ ZZJP) 3)
(1—2vp) Gsear (140 ) (1 + om) Gglrear (1 +vp ) (1 — 20m)

Because the L1, precipitates start to contribute to strengthening effectively at just
1-2 nm [3], it is important to note that the interfacial energy of each precipitate changes
based on the precipitate radius. This is because at the smallest radii, only the most favorable
(lowest-energy) interfacial planes are used due to the small number of unit cells involved.
As the precipitate grows and incorporates more unit cells, it is able to more closely ap-
proximate a sphere; this rounding-out results in the use of less-favorable interfacial planes
and an increase in average interfacial energy. While differences in interfacial energy for
Al3Sc precipitates have been clearly observed, no clear analysis of the transition has been
undertaken. Instead, it has been suggested that a linear increase from the smallest to the
largest interfacial energy over the first several nanometers in radius (as in Equation (4))
is sufficient to approximate nucleation and growth trends [8]. In this model, precipitates
with radii smaller than 5 nm were made to have size-dependent interfacial energies, while
larger precipitates have the maximum interfacial energy (as observed in the literature for
overaged precipitates).

Y = Vslope constant?less than 5 nm + Yinitial 4)

This size dependence complicates matters as calculation of the critical radius of nucle-
ation depends on interfacial energy (Equation (5)). Solving these equations if the critical
radius is <5 nm yields Equation (6).

*
— " 5
" T AG, + AG, ®)
—2Yinitial
s = 6
less than 5 nm AG, + AGs + 2')/slope constant ( )

The nucleation rate, I, is calculated through the use of Equations (7)—(11), where V,
is the average volume of an atom in the matrix, c is the atomic fraction of solute atoms in
the matrix, Z is the Zeldovich factor, f* is the atomic impingement rate, T is the incubation
time for nucleation, and Nj is the number of nucleation sites per cubic meter (assumed to
be the number of solute atoms per cubic meter for homogenous nucleation) [6].

Vo = 4ea), + (1 — 4c)ay, 7)

VaAG2

/ 3
87t kT’Ycriticul radius

2
x _ 167TCD’Ycriticul radius
244
AGga,

Z= ®)
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At this point in the loop, a further nested loop (described in the following section)
iterates to grow/dissolve precipitates formed at previous timesteps. After the completion of
this loop, the number of solute atoms in precipitates is subtracted from the initial number of
solute atoms in the alloy, and the new matrix composition is calculated. The average radius
and number of precipitates is also calculated at this point to be used in the calculation of
the precipitate strengthening.

For L1, precipitates such as those found in Al-Sc alloys, the predominant strengthening
mechanism at small precipitate size (<3 nm) is order strengthening, which is described in
Equation (12). As the average precipitate radius increases over a certain threshold, Orowan
strengthening (Equation (13)) gains dominance. By analyzing each of these equations
at the end of every time step, it is possible to create a predictive aging curve describing
likely strengthening behavior. In these equations, M is the Taylor mean orientation factor,
Yapp is the precipitate antiphase boundary energy, b is the Burgers vector of the matrix,
f is the phase fraction of precipitates, R is the average precipitate radius, and A._, is the
edge-to-edge interprecipitate spacing [5,16,17].

Oord = 0.44MG;hear 'Yf;jpgf% ”

0.4MG3 b In ()
TTAe—e/1 — Uy

It is important to note that Equation (12) has no dependence on A,_., while Equation
(13) does. In a scenario in which precipitate growth occurs despite a constant phase fraction
(such as coarsening), the average strength remains constant until the Orowan strengthening
mechanism becomes dominant, at which point the strength begins to decrease. However,
in scenarios in which the phase fraction of precipitates increases simultaneously with the
average precipitate radius (such as growth during matrix depletion), the increase in strength
merely slows down as the average radius increases into the Orowan strengthening regime.

Oor = (13)

2.1.4. Model Growth/Dissolution Loop

This loop is the innermost nested loop of the model, and it keeps track of any pre-
cipitate growth or dissolution that occurs in previously formed precipitates due to solute
concentration changes and the Gibbs—Thomson effect. Because it is known how many
precipitates, and of which size, were nucleated at each previous timestep, the radius and
solute atom content of precipitates formed at each step can be revisited and adjusted. The
calculations for each timestep compete for resources (solute atoms), and, as the matrix
is depleted of excess solute atoms over the course of the simulation, a near-equilibrium
concentration is eventually reached. At this concentration, solute atoms enter precipitates
from the matrix at approximately the same rate as they leave them. However, the solute
gain/loss ratio of larger precipitates is larger than that of smaller precipitates due to inter-
facial energy and the Gibbs-Thomson effect. This results in the larger precipitates slowly
increasing in size as the smaller precipitates dissolve back into the matrix, a phenomenon
commonly referred to as precipitate coarsening.

Precipitate growth in this model is governed by Equation (14), where c}" is the equi-
librium concentration in the matrix immediately adjacent to a precipitate and c! is the
equilibrium concentration of the precipitate. The Gibbs-Thomson effect works on the
principle that the equilibrium composition in the matrix immediately adjacent to a precipi-
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tate (c}") is affected by the interfacial energy of the precipitate. This effect is described by
Equation (15), where ¢ is the equilibrium composition at a planar interface [18].

dR D c—c}
T 14
dt R cf —cm (14)
29V )
" = clex B — 15
r e p < Rgus constantTR ( )

After the innermost loop of the precipitate growth/dissolution at each time step, the
solute concentration is updated and applied to the next time loop. After each loop of
temperature step, the corresponding temperature-related parameters, such as solubility
and diffusivity, are updated. Next, the whole loops move to the next temperature step with
the updated information.

2.1.5. Model Outputs

Because of the flexibility afforded by simulating with MATLAB, all inputs, variables,
and counters used and/or generated throughout a simulation can be output into Excel.
Potentially useful outputs for understanding the precipitation behavior include, but are
not limited to: time, temperature, matrix concentration, nucleation rate, precipitate num-
ber density, average radius, and the various relevant strengthening mechanisms. The
sheer amount of information known about each simulation becomes difficult to display
in scientific work, so not all outputs that are discussed in this work are accompanied by
a figure.

2.1.6. Model Special Considerations

This model also considers several special considerations due to the circumstances of
the physical condition being modeled. For example, in the Al-Sc system, the critical radius
is often calculated to be smaller than one unit cell of the precipitate. Since the matrix and
precipitate unit cells (FCC Al and L1, Al3Sc) only differ in the substitution of a single Sc
atom, there is no possible differentiation between one Al3Sc unit cell and a unit cell of the
matrix with a substitutional Sc atom. Therefore, the critical radius variable was adjusted to
never allow predicted precipitates smaller than two unit cells.

Another consideration taken into account is that silicon content can accelerate the
kinetics of certain systems, including the Al-Sc system. Si atoms have more favorable
bonding with vacancies than Sc atoms. Because Si atoms also tend to cluster with Sc
atoms in the Al matrix, the Sc atoms benefit from easier access to vacancies, resulting in an
apparent decrease in migration energy (and, in turn, an increased diffusion rate) [13]. This
can have a significant effect on precipitation.

Another consideration is the initial incubation state. Classical nucleation theory in-
cludes an incubation term, which describes the period required to rearrange homogenously
distributed solute atoms into solute clusters [6]. In this model, it is possible to start the first
timestep with the incubation time partially completed, indicating that some clustering has
already begun due to room-temperature diffusion or diffusion during initial cooling.

2.2. Experimental Verification Setup

The facilitation of model calibration and accuracy verification required the perfor-
mance of several experimental trials mirroring heat treatments that were simulated. For
these trials, sample charges consisting of master alloys, weighing 600 g in total, were cut
and assembled in the proper proportions to achieve the target compositions, as shown in
Table 1. All cutting operations were originally performed with a horizontal bandsaw with
active cooling, after which the samples were cleaned using an ultrasonic bath of acetone
and cut to match specified masses with the use of end-cutting nippers. These charges
were then held at 1173 K (900 °C) for 10 min under a 684-Torr atmosphere of ultra-high
purity argon and cast into a permanent mold using a vacuum induction melter (VIM). The
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permanent mold geometry was designed so that two cylindrical bars were bottom-filled to
reduce turbulence within the liquid (Figure 2).

Table 1. Expected and observed alloy compositions.

Target Composition (at%) ICP-OES Determined (at%)
Alloy (at%) Sc Si Sc Si
Al-0.04Sc 0.04 - 0.041 0.005
Al-0.07Sc 0.07 - 0.068 0.007

Figure 2. (a,b) The samples for experimental verification were cast into a permanent mold using a
vacuum induction melter (VIM). (c) Hardness of the experimental samples was measured using a
Leco Vickers hardness tester.

After casting, holes were drilled into the base of representative bars to create chips for
compositional verification using ICP-OES (results shown in Table 1). An optical emission
spectrometer (Perkin Elmer Optima 7000DV ICP-OES, PerkinElmer, Inc., Waltham, MA,
USA) was used with standards (Inorganic Ventures) to determine the concentrations of
the elements of interest (Sc, Si) in each digested solution (College of Forestry, Michigan
Technological University, Houghton, MI, USA). For each alloy, a slice approximately 1 cm
thick was then removed from the center of a bar using a cutoff wheel and mounted in
QuickSet epoxy, Allied High Tech Products, Inc., Compton, CA, USA. The samples were
mounted to assist in the initial polishing, but also to create a larger surface to allow adequate
gripping during hardness testing. These mounted samples were then ground and polished
to a 0.04-micron colloidal silica finish. Once polished, the samples were tested for hardness
(Vickers microhardness, 50 g load, 15 s hold, 10 replicates) and conductivity (using a Fischer
Technologies Sigmascope SMP10, Helmut Fischer, Windsor, CT, USA, 10 replicates) to
capture baseline conditions.

In order to perform heat treatment at elevated temperatures on the samples, the epoxy
had to be removed before each treatment. The samples were broken out of the epoxy mounts
by crushing the epoxy in a bench-mounted vice, taking care not to squeeze the epoxy in
such a direction as to deform the aluminum sample in the process. Once the sample was
broken free, it was heat-treated to match the relevant simulation parameters. After the
proper time at temperature, the samples were taken out and immediately quenched to lock
in their structure. They were then remounted in epoxy, as discussed in the next paragraph.

Due to the large number of heat treatments required in this study, a method was devel-
oped to minimize the need for grinding/polishing on samples that were initially polished.
The key to this method was to limit the flow of epoxy under the sample while remounting
the sample by covering the bottom of the mounting cup with packaging tape (adhesive
facing up) before inserting the sample, polished-side down. Once solidified, the tape and
any remaining tape residue were removed from the epoxy-mounted sample, leaving the
previously polished surface exposed. With this method, only fine polishing to remove
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the oxide layer from the sample would be necessary. In this way, the sample conditions
were quickly and efficiently alternated between epoxy-mounted and un-mounted between
heat-treatment steps.

The microstructure was investigated in the representative sample using TEM. A thin
slice was cut off from the bulk sample using a Japax LUX3 wire electrical discharge machine,
Japax, Japan. Several 3-millimeter & discs were punched from the slices and mechanically
ground to <100 um using SiC paper. The disk samples were polished using a twin-jet
polisher with a mixture with a 1:4 ratio of reagent-grade nitric acid to reagent-grade
methanol (20 V, —40 °C). The precipitate size was characterized using a FEI Titan Themis
S-TEM (Thermo Fisher Scientific, Waltham, MA, USA).

2.3. Bayesian Optimization

Assuming a process can be defined by an unknown, continuous objective function f,
the goal of BO is to find a global maximizer of this objective function x* = argmax.cx f(x),
where X is a design space of interest. In addition, it is assumed that the function f has no
simple closed form, but can be evaluated at any arbitrary query point x to obtain the output
y = f(x). BO finds the optimum of f by making a series of evaluations, x1, x2,...x7 of f,
such that the optimum is found in the fewest number of iterations. As more evaluations
are observed, BO finds the optimum by sequentially updating the Gaussian process (GP)
model [19]. GP is the non-linear probabilistic regression model of the response surface
y given the input x. As more data are observed, the shape of the resulting GP surrogate
function improves.

2.3.1. Gaussian Process

The primary form of the surrogate function is modeled using a Gaussian process
(GP). A GP can be thought of as a distribution over the space of smooth functions where
every point in the input space is associated with a Gaussian distributed random variable.
Formally, a GP is modeled by

f(x) ~ GP(m(x),k(x,x") (16)

where m is the mean function and k(x, x’) is the covariance function of any two observations.
A popular choice for the covariance function is the squared exponential

k(x,x') = Ufexp(—zé(x—x’)z) (17)

where UJ% is the output variance and [ is the length scale. The output variance 0’} defines
the expected deviation of the function output y away from its average value. The length
scale [ defines the “region of influence” of a point within the parameter space at which
the influence of an observation decreases, as one considers points farther away from
this observation.

The advantage of using a GP is that it is possible to compute the predictive distribution
for a new observation at any location x’. This predictive distribution follows a Gaussian
distribution. Its mean and variance are given by:

n(x') = k(x', X)K(X, X) "y (18)

o(x') =k(x',x") —k(x', X)K(X, X) k(x, X)’ (19)

In these equations, a matrix X = [x1, X2, ... xy] is denoted and k(U, V) is a covariance
matrix whose element (i, j) is calculated as k; j = k(x,«, x]') withx; € Uand x; € V.
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2.3.2. Acquisition Function

Using the GP model above, BO builds a decision function, known as an acquisition
function, to select the next point to evaluate, x. An acquisition function determines which
parameter settings the next test should use to have the greatest chance of reaching a greater
value than previous points. In order to suggest useful points, such an acquisition function
considers areas of the GP model in which epistemic uncertainty is high (exploration), as
well as areas where the objective function is thought to be high (exploitation).

As the original function f(x) is expensive to evaluate, it is replaced by the acquisition
function a(x), which is cheaper. Therefore, instead of maximizing the original function,
maximization of the acquisition function is used to select the next point. In this auxiliary
maximization problem, the objective a(x) is known and can be easily carried out with
standard numerical techniques.

Xpp1 = argmaxyex(x) (20)

There are many ways to define acquisition functions in the literature. Typically,
acquisition functions are designed to seek locations of either high mean and high variance
or a combination of the two. In this work, the expected improvement (EI) acquisition
function [20,21] which measures the amount of improvement over the best value so far,
as used. Formally, the improvement function is defined as I(x) = max{0, f(x) —y "},
where iy is the best-observed value so far. Next, the expectation E[I(x)] can be computed

analytically as follows. Given z = %, the El is computed as:

a(x) = [p(x) —y"|®(x) + o(x)p(x) (21)

where y(x) and o (x) are the predictive mean and predictive variance of the Gaussian pro-
cess described in the previous section, while ®(x) and ¢(x) are the normal cumulative distri-
bution function (c.d.f.) and the normal probability distribution function (p.d.f.), respectively.

2.3.3. lllustration of Bayesian Optimization, Gaussian Process, and Acquisition Function

A simple example of how GP is used to describe BO surrogate functions is shown
in Figure 3. With experimental knowledge of several points along with the function,
sections of the function near to those points have relatively small ranges of probable
values, whereas areas that are far from previously sampled points have more variance and,
therefore, potentially higher output values. It is also important to note that areas with
high variance are not alone in their potential to have local maxima; locations where the
variance is small and the means are expected to be high frequently appear as maxima are
identified (exploitation).

In this work, BO was first used to minimize the root-mean-square error between
precipitate strengthening observed experimentally for specific two-step heat treatments
and precipitate strengthening predicted using the KWN model. To achieve a better fit,
precipitate-matrix interfacial energy values at nucleation and at r = 5 nm were adjusted.
Such interfacial values have been determined multiple times in literature, but there is little
agreement other than an acknowledgment that the interfacial energy for Al;Sc decreases
at a very small precipitate size due to the preferential formation of interfaces along the
lowest energy planes (100). The two-step heat treatments were chosen at the low end of
temperatures where Sc is mobile in Al, in an attempt to make the heat-treatment predictions
more accurate. Once the KWN model was properly fitted and verified, BO was again
used to maximize the strengthening results after heat treatments with limited durations by
changing the heat-treatment temperature and simulated heat-treatment step times.
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----- Uncertainty
—— Predicted mean values

®  Experimental points
= Acquisition function

Function Outputs

N

Process Parameter, x

Figure 3. Conceptual representation of a one-dimensional Gaussian process, where several points are
defined due to experimental testing of the relevant process. The blue and green lines represent the
uncertainty and predicted mean values of the objective function, respectively. The red line represents
the acquisition function, and the vertical black line denotes the next requested experimental point.

3. Results and Discussion

The experimental flow of the model optimization and experimental verification is
shown in Figure 4. After the Bayesian optimization of the KWN model, the precipitation
strengthening was experimentally verified and compared to the predicted results at several
selected steps.

[ Calibration Experiments Set-up ]
ige
[ BO calculation ]
1L

Experimental/Prediction
comparison

JL

[ Optimization heat treatment ]

Figure 4. Flow chart of the model optimization and experimental verification.

3.1. Bayesian Optimization of the Precipitation and Strengthening Model

In order to provide initial datasets for the calibration of the model with Bayesian
optimization (BO), several two-step heat treatments were performed with Al-0.045c at%
and Al-0.075c at%, varying both the time and temperature held at each step, as described
in Table 2.

Upon running a BO routine to determine the best possible fit through the adjustment
of the surface energy variables, the ideal values were found and tabulated in Table 3. These
values were similar to the values retrieved from the literature.
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Table 2. Heat-treatment parameters of calibration experiments.

Heat-Treatment Step 1 (T7) Heat-Treatment Step 2 (T3)
Sample Alloy (at%)  Temperature (K) Time (s) Temperature (K) Time (s)
1A Al-0.04Sc 548 10,800 598 10,800
2A Al-0.04Sc 548 10,800 623 10,800
3A Al-0.04Sc 518 14,400 608 14,400
4A Al-0.04Sc 521 14,091 603 13,971
1B Al-0.07Sc 548 10,800 598 10,800
2B Al-0.07Sc 548 10,800 623 10,800
3B Al-0.075c¢ 531 14,400 623 7200
4B Al-0.07Sc 525 14,308 583 9171

Table 3. Comparison of research and BO-Fitted Al: Al3Sc surface energies and migration energy of Scin Al

Surface Energy (J/m?) : orati
Reference : - Migration Energy Method
Nucleation Coarsening (eV/atom)
Bayesian Optimized 0.096 0.158 0.63 BO
Hyland, 1992 [22] 0.094 - - Experimental
Mao, 2011 [23] - 0.165 - DFT
Booth-Morrison, 2012 [13] - - 0.45-0.74 DFT

A comparison of the observed and the model-predicted results for these heat treat-
ments can be viewed in Figures 5 and 6. The optimized parameters appeared to result
in an acceptable fit to the experimental data. This fit to the experimental data was not
perfect, as several of the results slightly over-predicted or under-predicted the experimen-
tally observed strengthening effects (which was most noticeable in Sample 3A). However,
the lack of a preferential bias in either direction lends credibility to the assumption that
experimental error was likely a contributing factor.

4
o
W
(=]
)

2 1A : 2A
g * S 40 1 X
& 30 £ 30
£20 £ 20 |
5 =
%” 10 10 -
— %)
@ 0 ‘ g 0
0 5,000 10,000 15,000 20,000 25,000 0 5,000 10,000 15,000 20,000 25,000
Time (s) Time (s)
50 3A 0 4A
£ 40 y £ 40 X
w30 w30
é 20 E, 20
10 B 10
£ o £ 0
) »n
0 10,000 20,000 30,000 40,000 0 10,000 20,000 30,000
Time (s) Time (s)
X Experimental Predicted

Figure 5. Graphs demonstrating the experimental and simulated results of several two-step heat
treatments for Al-0.04Sc at%, as described in Table 2. Error bars represent +/— 2 standard error.
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Figure 6. Graphs demonstrate the experimental and simulated results of several two-step heat
treatments for Al-0.07Sc at%, as described in Table 2. Error bars represent +/ — 2 standard error.

3.2. Analysis of Simulation Trends

For each simulation discussed in Section 3.1, an apparent plateau in strengthening
was observed in the second step, approximately 50 MPa for Al-0.04Sc at% and 120 MPa
for Al-0.075Sc at%. By plotting relevant model variables for each simulation (such as for
sample 2A, shown in Figure 7), the cause of the plateau can be determined. In all of these
simulations (1A—4B), a similar chain of events preceded the strengthening plateau:

1.  During the first heat-treatment step (T1), the nucleation rate and precipitate growth
rate maintained a relatively constant order of magnitude. The matrix concentration
declined only slightly due to these effects, which were themselves due to the relatively
slow rate of depletion corresponding with the precipitate formation of radii of 1 nm
or less.

2. At the onset of the second step (T3), the nucleation rate immediately dropped by
several orders of magnitude, and the rate of precipitate growth increased significantly.

3. As the pre-existing precipitates grew throughout the second step, the matrix became
depleted at an accelerated rate and approached the equilibrium solubility at T5.

4. As the matrix approached the equilibrium concentration, the nucleation rate and
precipitate growth rate decreased until they were nearly negligible, as both were
driven by matrix depletion.

5. As the precipitates were no longer changing significantly in size or in number, all the
predicted strengthening mechanisms plateaued.

From the preceding events, the lower temperature step (T1) promoted nucleating Al3Sc
precipitates in the supersaturated solution while limiting the precipitates” growth. The
higher temperature step (T») was beneficial for growing Al3Sc precipitates from the nuclei,
but the temperature was sufficiently low to limit the coarsening once the supersaturation
was depleted. This acceleration in precipitate growth and supersaturation depletion led to
larger strength increases upon the completion of the T, aging step.

It should also be noted that the average radius reached in sample 2A clearly ex-
ceeded the optimal target of 1-3 nm for order strengthening, resulting in the unfortunate
dominance of the Orowan strengthening mechanism. This was the case in all the initial
simulations (1A—-4B). Throughout these tests, the difference in strengthening effect between
the predicted Orowan and ordered mechanisms was consistently lower at the conclusion
of the Al-0.07Sc at% simulations than in the Al-0.04Sc at% (~10 MPa versus ~50 MPa). This
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phenomenon can be linked directly to the fact that the average precipitate radius predicted
for the Al-0.04Sc at% was consistently higher than for the Al-0.07Sc at%, which can in turn
be linked to the consistently smaller precipitate number density at the end of t; within
these simulations. Therefore, heat-treatment adjustments aiming to increase precipitate
number density should increase the strength. The precipitate sizes in the Al-0.045c at% and
Al-0.075c at% were investigated using TEM. The measured precipitate size in the Al-0.045c
at% showed higher values than in the Al-0.07Sc at% (8.7 & 0.5 nm vs. 3.7 & 0.3 nm) after
the two-step heat treatment. This helps to support the trend analysis.

(a) Strengthening Mechanisms

Solid Solution
Mismatch/Coherency
Ordered

Orowan

0 5,000 10,000 15,000 20,000 25,000
Time (s)

(b) Matrix (¢) Nucleation Rate
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1.E+12
1.E+09
1.E+06 -
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Figure 7. Graphs representing simulation outputs for Sample 2A (described in Table 2 and Figure 5).
Throughout the simulated heat treatment, these outputs show (a) the predicted strengthening effect if
various strengthening mechanisms are dominant, (b) the concentration of Sc atoms in solution in the
matrix, (c) the simultaneous nucleation rate of new precipitates, (d) the number density of existing
precipitates in the sample, and (e) the average radius of all existing precipitates.
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3.3. Optimized Heat Treatments with No Imposed Time Limit

Figure 8 shows the simulation results for the aging Al-0.04Sc at% for 1 x 10° s at 523 K
(250 °C). Long-term heat treatment simulations were also run for the Al-0.07Sc at% at 548
and 573 K (275 and 300 °C). These simulations suggest that holding at T; for significantly
longer times than in Simulations 1A—-4B (from Table 2) resulted in enough depletion in
the matrix to effectively halt the nucleation rate. It was also noted that changing the alloy
composition and T; temperature affected the total possible number of precipitates, which
should in turn affect the possible precipitate radius and strengthening.

With the assumptions that the number of precipitates does not change after t; given a
proper T selection (as supported by the simulations), and that all the remaining matrix
supersaturation is depleted during the heat treatment at T, through the growth of pre-
existing precipitates, Equations (22) and (23) predict what the final average radius would
be if, at any given time during heat treatment at Ty, the sample was switched to T,. Figure 9
shows how the predicted average radius after sufficient T, varies by changing the time
and temperature of the T1 heat-treatment step for Al-0.04Sc at% and Al-0.07Sc at% with T4
varying between 523 and 573 K (250 and 300 °C). As an example of how to read these graphs,
heat-treating Al-0.04Sc at% at T; = 548 K for 10,000 s and then switching to T, = 573 K until
full matrix depletion should result in a final average radius of 10 nm.

(#Sc solute atoms) _ (#Sc solute atoms)
#Sc atoms ([ #Sc atoms volume tTy volume eq 22)
precipitate ) ¢, 1, ~ \ precipitate } , . #precipitates
2 1 volume £ Ty
1
3 #Sc solute atoms [ #Sc solute atoms 3
n R 3 Tar.5c volume LT volume e
R — | Rig + 2« 2 * — ! 23
after To Y0 4 T (#Sc atoms) oy o (#Pmclwmt%) @3)
volume 4Ty
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& 0.0005 ©6.0E+16
X £
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Figure 8. Simulated results for aging Al-0.04Sc at% for 1 x 10° s at 523 K (250 °C), similar to Figure 7.
Note that nucleation effectively halts as Sc is depleted from the matrix.
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Figure 9. Graphs demonstrating how varying the time and temperature of the first heat treatment
step (t; and Ty, respectively) affect the predicted precipitate size and Orowan strengthening after heat
treating at a second heat-treatment temperature (T5) that is sufficiently high to completely deplete
excess solute atoms in the matrix.

There are several notable trends in Figures 8 and 9, as discussed below:

1.  Alllong t; heat treatments eventually reach an equilibrium, where nucleation effec-
tively stops. At this point, no amount of additional heat treatment can continue to
decrease the predicted final radius after T, because the final average radius depends
on the Sc atom-to-precipitate ratio. Ideal heat treatments should reach this equilibrium
before moving to T5.

2. When heat-treated at the same T; until matrix depletion, Al-0.045c at% always results
in larger average precipitates than Al-0.07Sc at%, as fewer precipitates can nucleate in
alloys with lower concentration. Heat treatments of alloys with varying Sc content
should take this into account.

3. Heat treating at the lowest tested T; of 523K (250 °C) requires more time than 548
or 573 K (275 or 300 °C), but it yields the highest strength. This is because, while
the nucleation rates are similar between the three temperatures, considerably more
precipitate growth occurs in the two higher temperatures. This results in larger
precipitates at the end of t; and in the more rapid depletion of the matrix. This rapid
depletion accelerates the decline in the nucleation rate, limiting the final number of
precipitates. Ideal heat treatments should be performed at low initial temperatures,
such as 523 K (250 °C), for times that are sufficient to allow maximum strengthening.
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4. Between these two alloys, only Al-0.07Sc at% at 523 K (250 °C) achieved the target
final average radius and, therefore, the maximum potential strengthening associated
with the ordered strengthening mechanism. Ideal Al-Sc alloys for heat treatment
should be of a concentration > Al-0.07Sc at%, and, therefore, be able to achieve the
maximum potential strengthening.

To verify these results, several long t1 simulations and experimental heat treatments
were performed, as shown in Figure 10 and described in Table 4. Hardness testing was
performed on the experimental samples and resulted in observed precipitate strengthening
approximately equal to the predicted strengthening of the model. This supports the
hypothesis that increasing the number density of precipitates with a significantly longer
tl step results in a decrease in the average precipitate radius upon the depletion of the
matrix. These results also demonstrate that substantial heat-treatment time savings can be
achieved through the use of a second heat treatment step at a slightly higher temperature,
in this case 573 K (300 °C), to allow the rapid depletion of the matrix without significant
coarsening. However, these heat treatments are still prohibitively long for industrial use.

0 ¢ = Al-0.04Sc at% - Single Step Prediction
T T1=523K,tl =210 hrs

120 L Al-0.04Sc at% - Single Step Experimental

—_
(=1
(=]

Al-0.04Sc at% - Two Step Prediction
T1=523K, t1 =70 hrs
T2=573K, t2=10 hrs

Al-0.04Sc at% - Two Step Experimental

%
IS
X

60 Al-0.07Sc at% - Single Step Prediction
T1=523K,tl =70 hrs

Strengthening Effect (MPa)

40 Al-0.04Sc at% - Single Step Experimental
20 Al-0.07Sc at% - Two Step Prediction
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T2=573K,t2=3 hrs
0 Al-0.07Sc at% - Two Step Experimental
1.E+03 1.E+04 1.E+05 1.E+06

Total Heat Treatment Time (s)

Figure 10. Graphs comparing the observed strengthening effects (via Vickers microhardness tests)
and the corresponding model-predicted Orowan strengthening effects in several long heat treatments
(Table 4). Error bars represent +/ — 2 standard error.

Table 4. Long t; heat treatments and simulations.

1st Step 2nd Step Final Strength (MPa)
D Ty (K) (h) T (K) (h) Observed
escription K t K t Simulated
P ! ! 2 2 rmdiate Value 2 Std Error
0.04Sc at%, 1 Step 523 210 - - 82 77 2
0.04Sc at%, 2 Step 523 70 573 10 82 77 2
0.07Sc at%, 1 Step 523 70 - - 137 131 3
0.07Sc at%, 2 Step 523 20 573 3 137 133 2

The Bayesian optimization not only increased the efficiency of the heat treatment, but
also helped with the accuracy of the strengthening prediction. Compared to the general
Orowan strengthening predictions for the Al-Sc or similar Al-Sc-Zr alloys containing similar
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precipitate sizes (~5 nm), the Bayesian-optimized Orowan strengthening provided the most
accurate predictions of the strength increase (Table 5).

Table 5. Accuracy of strengthening predictions using/not using Bayesian optimization.

Experimental Predicted

Strength Strength Accuracy Ref

Al-0.075c at% 131 137 96% Present
Al-0.185c at% 140 160 87% [3]
Al-0.45¢-0.4Zr at% 500 630 80% [24]

3.4. Optimized Heat Treatments with Imposed Time Limits

In situations in which heat treatments spanning several days are not feasible, and a
target heat-treatment time is imposed, it is useful to predict the optimal heat-treatment
temperatures. With this goal in mind, BO processes were again employed, this time to adjust
the heat-treatment step times and temperatures and achieve the maximum strengthening
effect possible. Table 6 demonstrates the results of one such optimization, and Figure 11
shows a comparison of the corresponding simulations and experimental verification data.
From these data, it is apparent that greater t; times yield better results, as the optimized
time is identical to the upper limit. Furthermore, because the theoretical maximum number
of precipitates for ideal temperatures is not reached in these truncated heat treatments,
the optimized temperatures for Ty simply represent the temperatures with the highest
nucleation rates.

Table 6. Example Bayesian optimization limits and optimized results.

Upper Time Limit (s)  Optimized Time (s) Optimized Temp (K)

Alloy (at%) t1 tr t1 t T1 T2
Al-0.04Sc 10,800 14,400 10,800 6936 532 641
Al-0.075c¢ 10,800 14,400 10,800 5733 543 592

Al-0.04Sc at% Al-0.07Sc at%
T1=532,t1 =10800 s T1 =543, t1 = 10800 s
T2 =641, t2=6936 s T2=592,12=5733s
E 120 =120
100 &
% % = 100 X
o o 30
E 60 £ 60 |
g £
£ 40 % 40 -
5 20 % 20
£ 07 £ o , :
“ 0 5000 10,000 15,00020,000 A o 5000 10,000 15,000 20,000
Time (s) Time (s)
X Experimental ~——Predicted

Figure 11. Graphs comparing the predicted and experimental results for heat treatments that were
optimized to achieve the greatest strength in a restricted amount of time. In this case, t; and t, were
limited to 3 h each. In both cases, optimal strengthening at T, occurred before 3 h. Error bars for
experimental points represent +/— 2 standard error.

4. Conclusions

In this study, a model was developed to predict the strength of Al-Sc alloys after
multiple successive heat treatment steps. The use and theory of this model are described in
Section 2.1, and the MATLAB code itself is annotated and included in the Supplementary
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Material. Using the Bayesian optimization (BO) of the relevant precipitate-matrix inter-
facial energy values in order to adjust the model predictions to more closely match the
experimental results, the surface energy values for the Al3Sc at the onset of nucleation and
during coarsening were predicted to be 0.096 and 0.158 ] /m?, respectively. These values
were similar to the initial values that were found in the literature (0.094 and 0.165 J/m?).
The model fits the experimental data relatively well, although some errors were observed.

Through the analysis of the model simulations, some guidelines for obtaining the
maximum achievable strengthening in these alloys were found:

1. In Al-Sc alloys that do not achieve order strengthening dominance, the greatest
strength can be achieved by minimizing the final average radius. This can be achieved
by initially holding at a heat treatment temperature with ample nucleation activity
and minimal growth activity (e.g. 523 K) until the nucleation rate is negligible due
to decreasing supersaturation. At this point, the maximum number of precipitates
possible has been reached, and continuing heat treatment at this temperature, or at a
reasonably high temperature (e.g. 573 K) results in a minimal average radius.

2. Ideally, two heat-treatment steps should be used for Al-Sc alloys, as full the depletion
of the matrix after the initial nucleation treatment at proper nucleation tempera-
tures can be prohibitively time-consuming. Adding a short second step at a higher
temperature can significantly decrease the total required time.

3. Scconcentrations greater than Al-0.075c at% are suggested in order for the Sc additions
to achieve their full potential. The simulations showed that increasing the solute
concentration decreased the final achievable average sizes of the precipitates by
allowing a greater comparative number density of the precipitates to be nucleated. An
alloy with Al-0.045c at% is predicted to be unable to produce precipitates small enough
to allow ordered strengthening dominance, while the Al-0.07Sc at% was predicted to
be able to form small enough precipitates in only a minority of circumstances (e.g.,
T1 =523 K, t1 =10 h).

Considering that long, low-temperature heat treatments are not always possible in an
industrial setting, the BO of the model can also be used to determine the ideal strengthening
time and temperature parameters given the upper time limits. For the demonstrated
examples, the maximum achievable strength was considerably lower than the strength
that would have been possible with the long, low-temperature heat treatments, but the
computer-optimized temperature parameters succeeded in predicting a slightly stronger
final strength than could be achieved with more traditional, rounded temperature values.
This demonstrated that the approach could be repurposed for other time limitations, etc.,
if required. However, designing heat treatments by determining the time required to
nucleate the maximum number of precipitates through simulation generally results in
greater strengthening.

Supplementary Materials: The following are available at: https:/ /www.mdpi.com/article/10.3390/
met12060975/s1. The MATLAB code for the calculations used in this work is included in a separate
file in the Supplementary Materials.
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