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Figure 2. The LSTM model architecture, which includes three LSTM layers, two batch normalization
layers, and a dense layer. na is the number of neurons in each LSTM layer. ht and ct are hidden
activation states and cell memory states. Xt is the input time series, and Ŷt is the predicted output.

Table 1. The test values and the optimal values of the hyperparameters.

Parameters Values Tested Optimal Value

Optimizer Adam, SGD Adam
LSTM layers 2, 3, 4 3

Activation units (16, 8), (32, 16, 8), (32, 16, 16, 8), (64, 32, 16, 8) (32, 16, 8)
Activations ‘relu’, ‘tanh’, ‘sigmoid’ ‘tanh’

Dropout 0.1, 0.2, 0.3, 0.4, 0.5 0.2
Learning rate 0.01, 0.001, 0.0001 0.001

Epochs 100, 200, 300, 500 300, 500
Batch size 32, 256, 1024, 2048 2048

Validation Split 0.2, 0.1, 0.05 0.05

2.3. Data Processing

The LSTM input features consist of seven meteorological variables that are critical to
the LST variation, including downward shortwave, downward longwave, latent heat, sen-
sible heat, surface air temperature, zonal wind speed, meridional wind speed, with water
depth as an optional eighth input feature. The target variable for the LSTM prediction is
the LST. In this study, we evaluated the feasibility of using observations from the proposed
hypothetical monitoring network(s) in each lake to train the LSTMs. For example, we test a
hypothetical monitoring network in Lake Erie consisting of 14 observing sites that were
designed in the International Field Years of Lake Erie (IFYLE) program in 2005 (Figure 3) to
train the LSTM model for Lake Erie. It is referred to as a “hypothetical” monitoring network
because there are no long-term (decade-long) observations in these proposed monitoring
locations, as it was a seasonal monitoring effort in the summer of 2005. Therefore, we
extracted the required variables at the proposed 14 sites from the reanalysis datasets for
the LSTM training. After that, we evaluated the LSTM performance in predicting the LST
over the entire lake with gridded over-lake meteorological inputs. The LSTM performance,
in turn, can be used to evaluate the effectiveness of the proposed monitoring network in
assisting the ML-based forecast. Such a method has been widely used in the Observing
System Simulation Experiments (OSSEs) [43–46]. The same procedure and analysis are
conducted for each lake.
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Figure 3. Bathymetry of Lake Erie overlaid with the 14 hypothetical monitoring sites based on the
design of the International Field Years of Lake Erie (IFYLE) program in 2005.

The 7 meteorological features at the 14 hypothetical monitoring sites were extracted
from the Climate Forecast System Reanalysis (CFSR) dataset for 1995–2010 and from the
CFSR’s upgraded extension (i.e., Climate Forecast System Version 2 (CFV2)) available
from 2011 to present at the National Center for Environmental Prediction (NCEP) [47].
For simplicity, we refer to both datasets as CFSR. CFSR is global reanalysis data with
the assimilation of satellite radiances and all available conventional and satellite observa-
tions, and has been used to drive hydrodynamic models for the Great Lakes in various
studies [13,17,48,49].

The target variable (daily LSTs) at the 14 hypothetical monitoring sites was extracted
from the Great Lakes Surface Environmental Analysis (GLSEA; https://coastwatch.glerl.
noaa.gov/glsea/glsea.html, accessed on 26 May 2022) developed by the NOAA Great
Lakes Environmental Research Lab (GLERL). The data are derived from the Advanced
Very High-Resolution Radiometer (AVHRR) satellite imagery and updated daily with
information from the cloud-free portions of the previous day’s satellite imagery. GLSEA
products applied a smoothing algorithm to generate a continuous evolution of the LST as
described in Schwab et al. [50]. The GLSEA-LST is currently the best available resource to
examine the spatial and temporal variability of LST for the entire Great Lakes [2,3,51].

The training dataset includes 17 years (1995–2011) of 6205 daily data (29 February in
leap years were ignored) at 14 locations. At each location, the dataset was grouped into
two matrices, including an input matrix with the shape of (6205 days, 7 features) and a
labeled output matrix of (6205 days, 1 target). In the designed LSTM, we used 5 days of
historical feature data to predict the LST. Hence, the inputs were further temporalized into
6205 daily instances, each of which includes the historical 5-day feature data. For instance,
to predict the LST on the 5th day, the selected features on the 1st, 2nd, 3rd, 4th, and 5th
days were used as inputs. Thus, the resultant input matrix had a shape of (6205, 5, 7) for
each point. Finally, the temporalized data for all 14 sites were stacked to create the input
dataset for training, which had a shape of (86,870 (i.e., 6205 × 14), 5, 7). Correspondingly,
the output dataset for training had a shape of (86,870 (i.e., 6205 × 14), 1).

An important transformation in the data processing for machine learning models is
feature scaling. This is critical when input attributes have very different scales, as in this
study. A standardization transformation was performed to make all the input features and
the target on the same scale. The Standard Scaler function in the scikit-learn package was
employed for this task. The mean and variance of the training dataset were stored and
used to standardize the testing dataset.

2.4. LSTM Training and Validation

For each of the Great Lakes, an LSTM model was developed following the same
procedure. The LSTM was implemented using the Keras API in the TensorFlow open-
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source platform. The training and validation of the LSTM were performed in Google Colab
using GPU acceleration. The LSTM for the input datasets with and without the water depth
feature were trained separately. The training dataset (1995–2011), after standardization
and temporalization, was randomly shuffled into a training dataset and a validation
dataset with a ratio of 95:5. The hyperparameters of the models, such as the number of
activations, number of LSTM layers, and number of epochs, were determined through
trial and error to produce the best model performance. The optimal values of these
hyperparameters are given in Table 1. Two optimizers (i.e., Adam and Stochastic Gradient
Descent (SGD)) were tested. The Adam optimizer converged faster and produced slightly
better model performance. Therefore, the Adam optimizer and the mean-square-error
(MSE) loss function were employed to train all the LSTM models. To avoid model overfitting
or underfitting, the number of LSTM layers and the number of nodes in each layer must be
properly chosen. By using a grid search technique, it was determined that three LSTM layers
with activation units of (32, 16, 8) produced better performance. In addition, a dropout
method was applied to avoid model overfitting. Two dropout layers with a dropout rate
of 0.2 were added after the first and second LSTM layers. Other parameters, such as
learning rate, epochs, batch size, and validation split, were determined by optimizing the
model performance.

LSTM validation was carried out by comparing the LSTM performances on the training
and validation datasets to determine whether the model is overfitting, underfitting, or well
trained. If a model has good performance on the training data but poor generalization
to the validation data, it is considered overfitting. If a model has poor performance on
both the training and validation data, it is deemed to be underfitting. On the other hand,
a well-trained model should perform well on both the training and validation datasets.
During model validation, the model parameters determined from training, including all the
hyperparameters, weights, and bias terms, remain unchanged. The validation dataset that
was not used for training was fed into the model to produce the predictions. The model
performance was evaluated by computing the MSE error between the model predictions
and the labeled data in the validation dataset. Figure 4 shows the model performances on
the training and validation datasets in Lake Erie. The training and validation errors reached
a sufficiently low level with increased epochs. The loss functions decreased rapidly with
increasing epochs (which defines the number of times that the learning algorithm will work
through the entire training dataset) to a low level as the weights and bias terms in the model
were optimized through model training. The model performance on both the training and
validation data reached its optimized state with greater than 100 epochs, indicating that
the model was well trained and did not suffer from overfitting or underfitting. Similar
performances were observed in the training and validation for other lakes.

Figure 4. LSTM performance evaluated by MSE on the training and validation datasets in Lake Erie.


