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Abstract: Geostatistical estimation methods rely on experimental variograms that are mostly erratic,
leading to subjective model fitting and assuming normal distribution during conditional simulations.
In contrast, Machine Learning Algorithms (MLA) are (1) free of such limitations, (2) can incorpo-
rate information from multiple sources and therefore emerge with increasing interest in real-time
resource estimation and automation. However, MLAs need to be explored for robust learning of
phenomena, better accuracy, and computational efficiency. This paper compares MLAs, i.e., Multiple
Linear Regression (MLR) and Random Forest (RF), with Ordinary Kriging (OK). The techniques
were applied to the publicly available Walkerlake dataset, while the exhaustive Walker Lake dataset
was validated. The results of MLR were significant (p < 10 × 10−5), with correlation coefficients
of 0.81 (R-square = 0.65) compared to 0.79 (R-square = 0.62) from the RF and OK methods. Addi-
tionally, MLR was automated (free from an intermediary step of variogram modelling as in OK),
produced unbiased estimates, identified key samples representing different zones, and had higher
computational efficiency.

Keywords: Ordinary Kriging (OK); random forest (RF); Machine Learning Algorithms (MLA);
geostatistics; spatial estimation; SHAP; interpretable machine learning

1. Introduction

Estimation of attributes distributed in space is one of the most challenging problems in
mining [1] (geochemical grades), petroleum [2] (porosity, permeability), environmental [3]
(hazardous gases, substances), agricultural [4] (soil geochemistry, yield), geophysical [5]
(resistivity signals), and other fields of Engineering [6,7]. Geostatistical techniques need
to model spatial variability, i.e., subjective variogram model fitting to often erratic exper-
imental variograms [8]. Geostatistical techniques assume stationarity assumptions and
normalised data before conditional simulations [2,9–11]. Data for spatial estimation in the
geoscience domain is obtained mostly through scarce and costly drilling methods [12–15];
therefore, robust MLAs must be explored. Real-time decision-making, particularly the de-
mand for automation in various industries, requires efficient and less time-consuming spa-
tial estimation models [16,17]. Unsupervised [8,18,19] and Supervised [8,20–55] Machine
Learning Algorithms (MLAs) have been used as alternatives or as combination with geo-
statistical models, i.e., OK-Artificial Neural Network (ANN) [46]; Support Vector Machine
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(SVM) and Kriging [55]; ANN-Median Indicator Kriging (MIK) [56] for spatial interpola-
tion in environmental sciences [44,57,58], weather forecasting [20,59,60], ecology [51,61,62],
geography [28,32], landslides prediction [63–65], geochemical mapping [36,43,46,48], geo-
physical [66], mineral grade interpolation [8,21,45,47,55,67–69] etc. Neural network and
their variants [29,34,53,54,70–73] have been widely used in numerous domains; they per-
form comparatively better but do not generalise well due to a shortage of training samples
in spatial applications [74]. It is well established that neighbouring samples affect the
interpolated grade at a given position/time; therefore, adding associated samples improves
models’ performance [75,76]. Several RF-based spatial estimation algorithms have also
been proposed in the literature [38,49,52,77]. This research explores MLAs that can in-
corporate all samples, capturing patterns globally at high computational efficiency. To
further explore the MLAs, i.e., how and from which zones promising patterns are learnt,
the SHapley Additive exPlanations (SHAP) algorithm [78,79] was used. In today’s era of
automation and real-time optimisation/modelling [16,17], there is a need to explore novel
Artificial Intelligence (AI) based spatial estimation techniques that can incorporate data
from multiple sources with better accuracy, explainability, and computationally efficiency.
The next section presents a literature review, a background of MLR, RF, and SHAP, followed
by a case study, results, discussion, and conclusion.

2. Literature Review

Traditional spatial estimation techniques like polygonal, inverse distance, and power
of inverse distance are geometrical methods replaced by probabilistic techniques like
OK [80]. Most linear estimation techniques are a weighted linear combination of the sur-
rounding sample values (e.g., % grade of metal in an ore deposit). Kriging is generally a
particular case of the linear regression model [81]. The weights derived using the Kriging
method rely on the variogram’s spatial structure, representing spatial autocorrelation of
measured values from randomly distributed samples [11]. Simple Kriging (SK) assumes
that the mean is known and constant; OK assumes that the mean is unknown and constant
in the local neighbourhood; Universal Kriging (UK) assumes linear variation of mean in
the spatial domain simultaneously while modelling spatial variability [11]. The UK may
cause instability since the coordinates are considered simultaneously; therefore, researchers
recommend modelling trend and residual components separately [31,82]. Kriging esti-
mation also accounts for clustering in samples; and reports estimation variance, which is
used for modelling uncertainty through conditional simulations in addition to short-scale
variability [83].

MLR has been widely used for spatial estimation in different forms. For example, a
MLR method estimated environmental variables at a coarser scale and then at a finer local
scale [84]. Several other variants include clustering-based regression [85]; autoregression
local linear regression of derivative of previously known values [86]; and nonlinear regres-
sion by spatial weight matrix [87]. A linear regression solution reducing the problem set by
eigen analysis [88], and factor analysis [82] has also been reported. Various algorithms are
compared as combinations represent the trend and residual models separately; the average
grade from the best of these combinations is used to report the final estimates [31].

To avoid intermittent, manual, and subjective variogram modelling Neural Network-
based hybrid fuzzy logic-genetic algorithm [89], genetic algorithm [34], and bee colony [70]
based parameter optimisation has been used for spatial estimation. RF algorithm has been
reported to perform better than the spatial linear regression model [38,81] even with very
few samples, e.g., to predict copper mineralisation using 8 Geological features and two
trace elements [35]. RF has proved as a flexible way of incorporating, combining, and
extending variables of different types, leading to an informative mapping of prediction
error [37]. More recently, RF spatial interpolation used observations at the nearest loca-
tions and their distances from the prediction location [36,77]. Directional neighbourhood
distances, i.e., upslope and downslope from observation points, could be used; however,
the computational intensity grows exponentially with the increase of variables [51]. There-



ISPRS Int. J. Geo-Inf. 2022, 11, 371 3 of 23

fore, Principal Component Analysis (PCA) was applied to distance metric from sample
coordinates to reduce spatial dimensions for getting an RF-PCA model showing higher
prediction performances in validation compared to other methods [90].

More suitable Machine Learning (ML) based spatial estimation techniques need to
be developed that are accurate and can incorporate multiple features; however, without
computational complexity. Other combinations of the terms in an MLR model may be ex-
plored, representing interactions that describe the process under consideration. Depending
on the domain, various features could be generated; for example, neighbouring samples’
distances and grades could be vital in the spatial domain.

3. Materials and Methods
3.1. Multiple Linear Regression (MLR)

MLR [47,91,92] is a well-known technique that estimates p + 1 parameters β0, β1, β2 . . . βp
defining a linear relationship between input feature/s (xi1, xi2 . . . xip) and output attribute
(yi) for given n samples i = 1, 2, . . . n.

ŷi = β0 + β1xi1 + β2xi2 + . . . + βpxip + ε (1)

The model is valid under assumptions that the input features are independent (not
highly correlated), the error ei = ŷi − yi should be constant (homoscedastic), independent,
and normally distributed. The term ε can be ignored as uncorrelated noise, while other
parameters are determined as:

β =
(

XTX
)−1

XTY (2)

where X is the (n× p + 1) matrix with a column of unity and Y represents the (1× p + 1)
output column vector with the intercept parameter β0 at the end of the column. A higher
number of features help learn nonlinear relationships and enables MLR to grasp complex
problems with high variability [47–49]. A linear spatial autoregressive model in Equation (3)
below contains four terms as spatial autoregressive models with a spatial autoregressive
error term (SAR-SAR) [93]. The terms consist of (1) weighted dependent variables on an
area with associated neighbouring values, followed by two regressor terms, i.e., (2) spatially
lagged variable of the dependent variable, (3) spatially lagged variables of some or all the
exogenous variables, and (4) last two terms representing the spatial model for the stochastic
disturbances [93].

y = λWy + Xβ1 + WXβ2 + ρWu + ε |λ| and |ρ| < 1 (3)

These dependencies resulted in estimating parameters by the Ordinary Least Square
method (OLS) [93], expressing the interactions among dependent variables, independent
covariates, and error terms [94].

3.2. Random Forest Algorithm

Random forest is an MLA developed by Breiman [95], consisting of a collection of
decision trees where each decision tree represents the arrangement of variables learned
from the dataset. It is applied to discover data patterns from various fields for solving
regression problems [47–49]. In a decision tree, an upside-down tree is constructed in a
hierarchy by selecting the best attributes from the subsets of the sample data set sequentially
(see Figure 1). The random forest being ensemble method uses bagging to combine multiple
decision trees by reducing the overfitting and improving the validation accuracy of the
individual tree decision [95].
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Figure 1. Decision Tree having depth-4.

Figure 1 shows the decision tree for variable-V (e.g., output chemical concentration
in ppm) prediction using sample data based on spatial positions (x and y). Some of the
criteria used for stopping this process of tree construction are Max_depth (depth of the
tree), Min_samples_leaf (minimum samples at leaf nodes), and threshold of a performance
metric (Mean Absolute error (MAE)/Mean Squared Error (MSE)) [47–49]. The tree can be
used to estimate values at an unknown point by asking questions on nodes; i.e., a query to
the tree’s root node will lead through the intermediate nodes and finally to the leaf node,
which represents the output, i.e., predicted value/class.

Each box in Figure 1 above represents a split of the sample data using:

-row1: Best input attribute selected and its cutoff values in that subset
-row2: Mean Squared Error for that subset
-row3: Number of samples in that subset
-row4: V (output e.g., chemical concentration) in that subset (the values are normalised
between 0–1, which is not necessary for the decision tree).

The intensity of the colour shows the magnitude of the value of interest.
The best split (cut-off value) for the best input variable (spatial coordinate in the

cartesian space) produces the most homogenous subgroups [96] in terms of the outputs
(low, medium, or high-grade zones in this case). A suitable algorithm like Classification
and Regression Tree (CART) would iteratively search for potential cut points, subdividing
the data at each possible split for choosing the best split [97]. The decision tree depicted in
Figure 1 has a depth of 4 levels. The root node is placed at level 1; levels 2 and 3 have the
intermediate nodes, and leaf nodes with only output values are set at level 4. At level 1,
the best attribute selected is x, and two subsets were created for level 2 based on the class
values of x. At level 2, the best-chosen attributes for both subsets were x and y, respectively.
Based on the importance of x and y in both subsets at level 2, further splitting was done
into four subsets for level 3. At level 3, x was the best attribute for two subsets, whereas y
was chosen as best for the other two subsets. Based on their respective subsets’ values, the
dataset was further split into eight subsets for leaf nodes/level 4.

As seen in Figure 1, “x” and “y” are both critical spatial features for predicting output
“V” by zoning the Walker Lake data in the cartesian space. This ability to find feature
importance plays a crucial role when features increase significantly due to the availability
of auxiliary information about the process. The decision tree identifies essential features
and is intuitive since it explains the results in a set of if-then rules from top to bottom nodes;
however, it suffers from lower validation accuracy and a higher chance of overfitting than
other regression techniques [47–49].
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A single tree would not produce a stable result for a new sample dataset; therefore,
several trees are generated from a separate subset of random data drawn by replacement
from a given dataset [47–49]. Random Forest overcomes the decision tree’s accuracy issue
by fitting multiple trees through random resampling of the sample dataset with/without
replacement. To produce generalised results, RF uses bagging for combining numerous
trees, i.e., where the final predicted value is the average (in case of regression) or probability
of occurrence (in case of classification) of the outputs from all trees [47–49]. A decision
tree is also used as a base learner in ensemble methods such as Random Forest to improve
hyperparameters and validation accuracy. Various decision tree hyperparameters such as
Min_samples_leaf (minimum samples needed at a leaf node), Min_samples_split (minimum
samples used for the splitting of the dataset), Max_features (maximum features allowed for
the construction of tree), and Max_depth (maximum level of decision tree depth) are tuned
to reduce overfitting.

3.3. Model Generalisation and Hyperparameter Tuning

Most MLA regression models suffer from “bias/under-fitting” or “variance/overfitting”;
therefore, the main task is to find balance in-between by searching algorithm-specific
hyperparameters. Hyperparameters are parameters associated with any regression model
that cannot be learned from sample data and must be set before the fitting process [47–49].
Optimum hyperparameters are derived by providing a set of validation sample data that
did not take part in training using the “cross-validation” or “hold-out” tuning [47–49,98].
After splitting the sample data, in case of hold-out or cross-validation, a hyperparameters
search is usually done in a “grid” using a full factorial search.

A regression model is built for all combinations of hyperparameter ranges to find
the best performing combination using a suitable validation strategy. The validation is a
hold-out strategy when 20% of sample data for validation of the parameters, and a 10-fold
validation, i.e., when ten subsets of data are used to verify the tuned parameters [47–49,98].
For example, in 10-fold cross-validation strategy, data is split into ten subsets while training
on nine subsets and testing on the 10th subset; this process is repeated ten times, and each
subset used for testing is different [47–49,98]. On the other hand, in the hold-out strategy,
sample data is split randomly into two parts as 80:20, i.e., 80% of sample data is used for
training and 20% for verification purposes during hyperparameters tuning. For both MLR
and RF, the ten-fold cross-validation strategy was used to find the optimum regularisation
values. Some authors have also used a combination of hold-out and cross-validation strate-
gies [23,99–103]. However, the computational cost of grid search exponentially increases
with the depth of hyperparameters search space, especially with a cross-validation strategy.

3.4. Performance Evaluation

All regression models express the inputs to output relationship by minimising an error
metric (i.e., the dissimilarity between model output and the actual output) such as “Mean
Squared Error (MSE)” or “Mean Absolute Error (MAE)” [47–49]. MSE and Root Mean
Squared Error “RMSE” are differentiable, while MSE is more prone to outliers than RMSE
and MAE [104]. The R-squared value is the complement of the ratio of the error variance =
∑(ŷ− y)2 to the explained variance ∑(y− y)2 given as:

R2 = 1− ∑(ŷ− y)2

∑(y− y)2 (4)

However, instead of using a single performance metric, such as correlation coefficient
or R-squared value, researchers suggest using a “skill value” to combine the most critical
performance metric as a summary statistic [24,25,105]. This term combines multiple im-
portant performance metrics such as “R_squared”, “Absolute Mean Error (AME)”, “Mean
Absolute Error (MAE)”, and “Root Mean Square Error (RMSE)” [25]. The skill value can be
presented as:
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Skill Value = [AME + MAE + RMSE + 100 ∗ (1− R_squared)] (5)

The best method is one with the lowest skill value.

3.5. Bayesian Optimisation Algorithm (BOA)

Regularisation is applied to find the best fit between low variance, i.e., underfitting,
and high variance (i.e., overfitting). Best Hyperparameter values are searched using a Grid
or Bayesian cross-validation strategy [47–49]. BOA [40,106–108] is an efficient method for
finding hyperparameters using the Bayes theorem. According to the Bayes theorem, the
conditional probability of an event is:

P(A|B) = P(B|A) ∗ P(A)/P(B) (6)

The term P(B) is used for normalisation, which is not required in the case of optimi-
sation. Hence, after dropping P(B), the posterior probability P(A|B) is a multiplication of
likelihood P(B|A) and prior P(A). Possible hyperparameter samples (x1, x2, x3 . . . xn), and
their evaluated cost from the objective function f (x1), f (x2), f (x3) . . . f (xn) makes up data
D and are used to calculate the prior. The likelihood function P(D|f) will change with more
data collection, i.e., (xn+1, f (xn+1)). The posterior probability, also called surrogate objec-
tive function P(f|D), represents the knowledge/approximation of the objective function,
and will be used to evaluate the cost of various candidate samples using Equation (7) below.

P(f|D) = P(D|f) ∗ P(f) (7)

The posterior probability is simply the product of likelihood and prior terms. The
term ‘f’ represents the objective function to be maximised; D represents the data consisting
of samples (different hyperparameter values (x1, x2, x3 . . . xn), evaluated/seen so far) and
their associated costs f (x1), f (x2), f (x3) . . . f (xn). After fitting the function P(f|D) by a
predictive modelling technique such as RF or gaussian process, the surrogate function, is
used to test various candidate samples. A new set of hyperparameter values are sampled
from the model using the Probability of Improvement (PI) given in Equation (8). If the
PI is significant, the hyperparameters are used to determine their exact objective function
value using 10-fold cross-validation, and the data is updated to remodel the function using
Equation (7).

PI = cdf((mu-best_mu)/stdev) (8)

where cdf() = the normal cumulative distribution function, mu = the mean of surrogate
function (P(f|D)) for a given sample x, stdev = the standard deviation of surrogate function
for a given sample x, and best_mu = the mean of surrogate function for the best set of
hyperparameters found so far.

Stepwise detail of the BOA algorithm is described below: Initialisation: Generate data
D0 a set of hyperparameter values (x1, x2, x3 . . . xn), and associated objective function
values f (x1), f (x2), f (x3) . . . f (xn), i.e., R-square values based on 10-fold cross validation
from the RF/MLR algorithm).

For t = 1 . . . N iterations

1. Model (P(f|Dt−1)) the objective function (R-square value) using Equation (7).
2. Find best_mu; i.e., the mean of the best values from the model (P(f|Dt−1))
3. Find a new set of best candidate/s xn+1 . . . (hyperparameter values) through PI
4. Compute the actual objective function/s f (xn+1) . . . by the RF/MLR algorithm, i.e.,

R-square value based on 10-fold cross-validation.
5. Update data as Dt, i.e., x1, x2, x3 . . . xn+1, . . . and associated objective function values

f (x1), f (x2), f (x3) . . . f (xn+1), . . . and go to step 1
6. If PI is insignificant or N iterations are reached, stop and report the best parameters.



ISPRS Int. J. Geo-Inf. 2022, 11, 371 7 of 23

3.6. SHapley Additive ExPlanations (SHAP)

MLAs act as black-box models; therefore, interest is recently being developed among
the artificial intelligence (AI) community to interpret the models using Explainable AI algo-
rithms [78,80]. Such interpretations allow for a better understanding of inner mechanisms,
resulting in more confidence in their application and usage [109]. SHAP algorithm [110] is
widely used in various domains for interpreting MLAs [28,98] to determine the importance
and effect of input features on output values.

The SHAP algorithm originated from cooperative game theory, where different players
cooperate to increase the final payout. In the Machine Learning setting, the prediction
task using a single dataset sample can be considered a game where various features (i.e.,
players) cooperate to play a game (i.e., predict output value). In the original form, the
SHAP algorithm calculates the relative importance of different players by taking each
player’s permutations in sequence and seeing the increment in payout each player makes.
Similarly, each feature’s Shapley values can be calculated by taking all their permutations
in series (for each sample) to quantify the difference in average prediction value and the
prediction value for that specific sample. In other words, the Shapley value of each feature
corresponds to the feature’s share of moving the sample prediction away from the average.
Each feature’s global importance is reported by taking an average of the respective absolute
Shapley values across the dataset. The greater the Shapley value, the greater the feature
share, indicating that the feature is more critical for that single sample’s prediction task.
The magnitude of feature importance Shapley values reports the importance, whereas
the summary plot Shapley values indicate the effect on output. A positive value means
a positive correlation between the feature value and the predicted attribute from average
and vice versa.

3.7. The Walker Lake Dataset

This study uses the well-known Walker Lake dataset [11] from Nevada, western
United States. Walker Lake dataset consists of two sets; Walker Lake survey data, having
470 samples, and exhaustively sampled data @ 1 × 1 m with 78,000 samples for the “V”
variable, as shown in Figures 2 and 3 (260 m× 300 m rectangular grid). Walker Lake survey
and exhaustive data were used for training and validation purposes. Summary statistics
for both survey and exhaustive data are shown in Table 1.

Table 1. Summary statistics Walker Lake data.

Summary Statistics “Survey Data” “Exhaustive Data”

Data count 470 78,000

Mean 435.299 277.979

Variance 89,929.4 62,423.2

Maximum 1528.1 1631.16

Upper quartile 639.5 429.34

Median 423.4 221.25

Lower quartile 184.4 67.79

Minimum 0 0
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4. Application of MLR and RF for Spatial Estimation

After removing the trend, OK was applied to model the residual components to which
the trend was added back for reporting the final OK estimates. The 470 samples were
used to make omnidirectional and directional variograms of the residuals in 0, 45, 90, and
135 azimuths + tolerance of 22.5 degrees. OK estimates of the residuals were determined to
estimate 78,000 points using the SGeMS software [11].

In the case of the MLA (MLR and RF models); the first step was to generate n + N
input features for the estimation of each point from sample data, i.e., 472, for the given n = 2
(Easting and Northing coordinates) and N = 470 (distances of the 470 samples from this
point). As a result, both MLR and RF (Figure 4) used n + N input features as N distances of
all available samples from the point of estimation and n spatial coordinate dimensions of
the point of estimation, as shown in Figure 5. All analyses, modelling, and visualisation
tasks were done using numPy, pandas, scikit-learn, skopt, shap; and matplotlib libraries of
Python [111]. Furthermore, BOA and the grid search made hyperparameter selection for
MLR and RF was made using 10-fold cross-validation.
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Optimum hyperparameters were searched using the Grid search and a BOA, i.e.,
an informed search method that optimises black-box functions in minimum time using
information from previous iterations. Grid search was done as a full factorial search
for comparison considering all combinations between the extreme values of various hy-
perparameters given in Tables 2 and 3 for RF and MLR, respectively. The performance
(R-square values) using ten-fold cross-validation were stored for each combination during
the grid search. The “BayesSearchCV” class inside the “skopt” package of Python was
also used to apply Bayesian optimisation of hyperparameters. Various hyperparameters
of Random Forest, such as the minimum number of samples to be allowed at the leaf
(Min_samples_leaf), maximum allowed depth of a tree (Max_depth), the maximum num-
ber of features to be used (Max_features), minimum number of samples to be used for
splitting (Min_samples_split), and choice of a type of distance metric such as ‘Euclidean’,
’Squared Euclidean’, ’Minkowski’, ’Mahlanobis’, ’Cosine’, ‘Manhattan’, and ‘Chebyshev’
were tuned to obtain best results. Usually, the more than 128 trees do not improve per-
formance significantly [112]; however, the number of trees parameter is also chosen as a
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hyperparameter. The Min_samples_leaf, Max_depth, Max_features and Min_samples_split
were searched with an increment of 5%; while the Number of Trees was searched with an
increment of 100 for ranges shown in Table 2.
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Table 2. The RF Hyper-Parameters ranges are used for searching the optimum values.

Hyperparameters Values

Min_samples_leaf (0.1% to 100%)

Max_features (0.1% to 100%)

Number of Trees (100 to 1000)

Max_depth (0.1% to 100%)

Min_samples_split (0.1% to 100%)

Neighbors’ Distance metric ‘Euclidean’/‘Squared Euclidean’/‘Minkowski’/
‘Mahalanobis’/‘Cosine’/‘manhattan’/‘Chebyshev.’

Table 3. MLR HyperParameters range used for searching the optimum.

Hyperparameters Values

Regularization (0 to 1)

Neighbors’ Distance metric ‘Euclidean’/‘Squared Euclidean’/‘Minkowski’/
‘Mahlanobis’/‘Cosine’/‘manhattan’/‘Chebyshev’

For MLR Regularisation parameter was searched from 0 to 1 with an increment of 0.05
along with various combinations of distances shown in Table 3.

The parameters reporting the best correlation coefficient value were chosen as opti-
mum parameters used to train models (MLR and RF) utilising the entire 470 sample set.
Lastly, the estimation methods had to be exact interpolators at known sample locations;
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therefore, the points precisely located on sample positions, i.e., 0 distances, were assigned
the same grades to force exact interpolation.

5. Results

The trend component, as shown in Figure 6, was modelled by using the following
linear regression Equation (9) using the cartesian coordinates Easting (X) and Northing (Y):

Trend = 584.503− (0.981 ∗ X)− (0.285 ∗ Y) (9)
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After removing the trend, OK was used to model the residual components. The 470 sam-
ples were used to make omnidirectional and directional variograms with 0, 45, 90, and
135 azimuths + a tolerance of 22.5, as shown in Figure 7. OK weights were determined to
estimate 78,000 points using the SGeMS software [11]. The directional variograms were
modelled with the sill, nugget, and range values as 77,000, 20,000, and (min = 6, med = 28.8,
max = 64.8), respectively, as shown in Figure 7.

After finding the best regularisation parameter for the MLR using the Grid (taking
two minutes) and BOA (within one minute), results were generated and compared with
ground truth (exhaustive) data containing 78,000 samples. For the RF, finding optimum
hyper-parameters using the Grid search took about 10 h on a core i-7 processor @ 2.8 GHz.
While the Bayesian optimisation of RF hyperparameters took only 100 iterations to converge
within 20 min, reporting the same optimum hyperparameters values as in the case of grid
search. The RF and MLR models’ optimum parameters using the Bayesian and Grid search
are reported in Tables 4 and 5.

Table 4. Optimum Hyper-Parameters RF.

Hyperparameters Value Hyperparameters Value

Min_samples_leaf 0.01% Max_depth 100%

Max_features 100% Min_samples_split 0.01%

Number of Trees 1000

Neighbors’ Dist. metric ‘Euclidean’
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Figure 7. Experimental and modeled variogram models for Walkerlake data; from top left to bottom
right in (a) 0, (b) 45, (c) 90 and (d) 135 degrees Azimuth including (e) an omnidirectional and
(f) variograms in all directions.

Table 5. Optimum Hyper-Parameters MLR.

Hyperparameters Value

Regularization 0

Neighbors’ Distance metric ‘Euclidean’

As suggested by the literature, decreasing Min_samples_leaf, Min_samples_split, and
increasing Max_features, Max_depth values increased RF variance, enabling us to explain
complex relationships [47–49]. The optimum hyperparameter values found make intuitive
sense, as the task of capturing spatial patterns, in this case, is complex [49]. MLR shows the
same behaviour with a regularisation value of 0.

Summary statistics for MLR, RF, OK point estimates, and the exhaustive datasets are
shown in Table 6 and the Taylor diagram in Figure 8. The results obtained from MLR,
RF, and OK techniques were compared with the exhaustive data for validation, as shown
in Table 7. These tables show that simple MLR performed better than RF and OK, in
terms of RMSE, R-squared value, and respective skill values of 294.03, 319.39, and 328.64,
respectively. The MLR, RF, and OK point estimates are shown in Figures 9–11.

Table 6. Various Model Results on Validation data (78,000 points).

Model R-Squared p-Value AME MAE RMSE Skill Value

OK 0.624 0 17.45 119.0 154.45 328.64

MLR 0.652 0 6.82 105.4 147.43 294.03

RF 0.625 0 11.11 118.0 152.99 319.39
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Table 7. Summary Statistics for Actual Exhaustive data vs. Models prediction.

Summary
Statistics “MLR” “RF” “OK” “Exhaustive

Data”

Data count 78,000 78,000 78,000 78,000

Mean 271.2 288.2 295.42 277.98

Variance 47,276.1 36,114.9 38,476.42 62,423.2

Table 7 indicates that MLR point estimates distribution is closer to the actual (exhaus-
tive) dataset than OK point estimates. MLR point estimates were unbiased, as evident
from the mean values of MLR being closer to the exhaustive as given in Table 7. The “n”
parameters associated with spatial coordinates model the linear trend simultaneously. In
addition, the samples’ distances from the entire region are used as features by the “MLR”;
in contrast, OK limits the use of neighbouring samples within the stationarity region, i.e.,
the variogram range. Therefore, the MLR allows itself to learn the nonlinear patterns from
the closer and farther away samples.

Figure 12 shows the top 10 most important features (i.e., sample distances in this case)
and their respective importance measures after applying the SHAP algorithm to the RF
model. The distances reflect spatial locations of the top five features (i.e., the top five most
influencing samples for each point to be estimated) shown in Figure 13, which are inside or
at the boundaries of significant zones of interest (e.g., low, medium, high mineralisation
zones). Therefore, identifying these zones of interest is paramount since this information
plays a crucial role in spatial point estimations. Furthermore, it shows that distances of
these samples from a given point of estimation in the entire domain are the most important
during the estimation.
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Similarly, samples inside major mineralisation zones have higher MLR coefficients,
as shown in Figure 14. Therefore, for estimation problems involving a more significant
number of samples, only cluster centres identified by the SHAP algorithm could be used as
additional features instead of all sample distances.
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It can be shown from the SHAP summary plot values (on the horizontal axis of
Figure 15) of the twenty most influencing samples against the distance (red = greater and
blue = smaller distance) each time taking part in estimating the 78,000 points. Suppose the
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higher grade/value sample lies closer (smaller distance indicated as blue) to a point being
estimated; in that case, it has a positive SHAP value (likely to report higher estimates).
Contrarily, if a higher grade/value sample is far (greater distance indicated as red) from the
point being estimated, in that case, it is likely to report a negative SHAP value, i.e., lower
estimates. The values for each sample distance were randomly increased and decreased to
determine the effect on output point estimates. Intuitively, point estimates should reduce
by increasing the distance from high-grade samples, indicating that increasing the distance
from these samples results in lower estimation values, and closer distances from this point
would report higher values. Conversely, negative SHAP values of high-grade samples at
greater (red) distances, e.g., sample 6 and sample 21, indicate that lower grades will be
reported at the estimation point at a greater distance from these high grades.
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6. Discussion

Linear regression and RF algorithms have been applied using sample distances and
spatial coordinates to estimate the value of interest in space. These estimates are an
improvement over the previous linear estimation techniques since the samples’ distance
features learn the variation of the correlations between the dependent, independent, and
error terms. The algorithms reported greater computational efficiency than other techniques
without loss of information through previously practiced feature reductions, e.g., PCA
application to reduce features [90]. The MLR model was fast, unbiased, relatively accounted
for short-scale variability, and can incorporate multiple data sources that can be used in
real-time mining systems to perform resource estimation in an automated manner. Sample
distances captured the spatial variability as additional features making even a simple linear
regression model perform better than a complex nonlinear RF model. Out of the n + N
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parameters (n = sample coordinates and N = number of samples), the “n” parameters model
the trend component and “N” parameters the variability across the domain. The results
are aligned with those suggested by researchers [25,32,43,45,49], i.e., adding auxiliary
information (regional anisotropies, mineralogy, and geophysical signals) improves the
results. This research further performs estimation using maximum information with higher
computational efficiency, particularly using MLR. The technique can be extended to other
cases incorporating data from other sources to reinforce learned patterns. The algorithm
shows the importance of using global information (i.e., all samples) to translate a highly
nonlinear problem into a linear problem. These global indicators and thematic maps
suggest that the MLR produced the most unbiased results and incorporated short-scale
variability during estimation. Analysis of MLR coefficient values and sensitivity analysis of
RF algorithm by SHAP algorithm reveals that key zones of interest (e.g., high, low medium
mineralisation zones) were also identifiable during estimation. The coefficient values of
MLR were derived by the gradient descent method, a default option in python libraries
that were therefore not unstable. Hyperparameter tuning time was reduced significantly
by the BOA compared to Grid search in the case of RF algorithm (20 min compared to 10 h)
compared to MLR (one minute from two minutes). Therefore, MLR is a more significant
improvement over both OK and RF algorithms producing better results (R-square of 0.652
compared to 0.62 for RF and OK) with significantly high computational efficiency.

Additionally, unlike previous estimations based on unsupervised methods [18,19] that
identify different zones first to estimate grade values, the SHAP algorithm identified critical
zones in the post-learning phase. This can be beneficial if the distances of most critical
samples’ only could be used instead of all sample distances in exceptional circumstances
involving huge samples to save computational cost. The technique could be explored
further by applying a 3D case study, particularly for the mineral industry, to assess the
estimates’ computational complexity, quality, and associated uncertainty. The variance
of the estimates from MLR was higher than other methods, accounting for short-scale
variability. However, reporting uncertainty of the estimates [36,113] is vital for sensitiv-
ity and risk analysis that can be explored in the next phase for comparing results with
conditional simulations.

7. Conclusions

This paper compares Multiple Linear Regression (MLR), Random Forest (RF), and
Ordinary Kriging (OK) using the sample and exhaustive Walkerlake dataset. Coordinates
of the point of estimation and distances of the neighbouring samples were used as input
features during the estimation. The global mean of the point estimates from the simple
MLR method was unbiased, as evident from the corresponding Means of MLR, RF, OK,
and Exhaustive datasets as 271.2, 288.2, 295.42, and 277.98. Apart from the relatively
higher accuracy, the reported variance of 47,276.1 from MLR point estimates was closer
to the variance of 62,423.2 from exhaustive data than that of 38,476.42 from OK, which
indicates that MLR accounts for short-scale variability. Furthermore, estimates from simple
MLR honoured global parameters of the exhaustive data, which may be due to the entire
sample set being used as input, during point estimation, while kriging limits neighbouring
information to the stationarity region, i.e., the variogram range. The proposed technique
is computationally efficient, solving the prediction model within a second for estimating
78,000 points and automated, i.e., without manual interaction. MLR and RF algorithms
revealed that the proposed method could be used as fast means of estimation since (1) these
algorithms make use of the key zones of importance during point estimation; (2) In cases
with a large number of sample points, only the most critical samples distances could be
used as features instead of all sample distances.
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