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a b s t r a c t 

Accurate rainfall estimates are required to forecast the spatio-temporal distribution of rain-triggered land- 

slides. In this study, a comparison between rain gauge and satellite rainfall data for assessing landslide 

distribution in a data-sparse region, the mountainous district of Idukki, along the Western Ghats of south- 

western India, is carried out. Global Precipitation Mission Integrated Multi-satellitE Retrievals for GPM- 

Late (GPM IMERG-L) rainfall products were compared with rain gauge measurements, and it was found 

that the satellite rainfall observations were underpredicting the actual rainfall. A conditional merging 

algorithm was applied to develop a product that combines the accuracy of rain gauges and the spatial 

variability of satellite precipitation data. Correlation Coefficient (CC) and Root Mean Squared Error (RMSE) 

were used to check the performance of the conditional merging process. An example from a station with 

the least favorable statistics shows the CC increasing from 0.589 to 0.974 and the RMSE decreasing from 

65.22 to 20.01. A case scenario was considered that evaluated the performance of a landslide prediction 

model by relying solely on a sparse rain gauge network. Rainfall thresholds computed from both the con- 

ditionally merged GPM IMERG-L and the rain gauge data were compared and the differences indicated 

that relying solely on a discrete, sparse rain gauge network would create false predictions. A total of 18.7% 

of landslide predictions only were identified as true positives, while 60.7% was the overall false-negative 

rate, and the remaining were false-positives. This pointed towards the need of having a continuous data 

that is both accurate in measurement and efficient in capturing spatial variability of rainfall. 

© 2022 The Author(s). Published by Elsevier Ltd on behalf of Ocean University of China. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Landslides occur due to decreased slope stability and are 

triggered by seismic activity, snow melting, or heavy rainfall 

( Guzzetti et al., 2002 ). Rain can increase the piezometric surface, 

causing increased pore-pressure and decreased soil shear resis- 

tance, leading to slope failures ( Arnone et al., 2011 ). 75% of rain- 

induced landslides in the world occur in developing Asian coun- 

tries, including China and the Indian subcontinent, claiming, on av- 

erage, 500 lives and causing property loss of about 3 billion U.S. 

dollars every year ( Froude and Petley, 2018 ). 

The Western Ghats in southwest India is one of the most 

landslide-prone areas ( Abraham and Shaji, 2013 ; Sajinkumar et al., 

2020 ; Sajinkumar and Oommen, 2021 ) and is characterized by 

rugged hills and steep slopes ( Sajinkumar et al., 2011 ). The West- 

∗ Corresponding author at: Department of Geological and Mining Engineering and 

Sciences, Michigan Technological University, Houghton, MI, USA. 

E-mail address: sajinks@keralauniversity.ac.in (K.S. Sajinkumar). 

ern Ghats receive an annual average rainfall of above 30 0 0 mm, 

a major triggering factor for landslides ( Thampi, 1997 ). This can 

be exemplified through the recent incidence during August 2018 

when a major part of the Western Ghats received heavy rainfall 

that resulted in floods and landslides that took hundreds of 

lives ( Vishnu et al., 2019 , 2020 ; Jennifer and Saravanan, 2021 ; 

Sajinkumar et al., 2022 ). Idukki, a district nestled in the Western 

Ghats, alone recorded 2223 landslides in August 2018 ( Hao et al., 

2020 ). The years 2019 and 2020 also witnessed frequent land- 

slides. A major landslide in Malappuram, Kerala, in 2019 claimed 

69 lives ( Wadhawan et al., 2020 ), while a landslide in Idukki in 

2020 claimed more than 50 lives ( Sajinkumar and Oommen, 2020 ). 

This calls for developing a landslide early warning model that uti- 

lizes rainfall measurements and slope stability analysis to forecast 

landslide occurrences. 

However, Idukki has a sparse rain gauge network with just five 

rain gauges over an area of 4366 sq. km. Such a sparse network 

creates many challenges in accurately creating a landslide model 

as the landslides in Idukki are predominantly rain-triggered. 

https://doi.org/10.1016/j.geogeo.2022.10 0 060 
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Limitations in accurate landslide prediction models adversely 

affect the early warning systems, resulting in generating false 

warnings. False negatives would give rise to catastrophic out- 

comes claiming lives and property whereas false positives would 

reduce the population’s faith in scientific warnings and could lead 

them to gradually begin ignoring warnings, because of warning 

fatigue ( Sorensen and Sorensen, 2007 ; Dash and Gladwin, 2007 ; 

Mackie, 2014) and cause disastrous consequences. Thus, it is 

equally important for the scientific community and policymakers 

to improve rainfall measurements. 

Developing a landslide early warning system includes two 

steps: modeling slope stability and modeling rainfall thresh- 

olds that trigger the landslides ( Stanley and Kirschbaum, 2017 ; 

Naidu et al., 2018 ). Most of the current landslide models combine 

slope stability model and hydrologic model, including HYSWA- 

SOR ( Dirksen et al., 1993 ), TOPMODEL ( Lamb et al., 1998 ), SHAL- 

STAB ( Dietrich and Montgomery, 1998 ), Antecedent Soil Wa- 

ter Status (ASWSM) ( Crozier, 1999 ), SINMAP ( Pack et al., 2001 ) 

and tRIBS VEGGIE ( Lepore et al., 2013 ) models. Rainfall thresh- 

olds are also established using statistical approaches such as 

Larsen and Simon (1993) , Terlien (1998) , Glade et al. (20 0 0) , and 

Kim et al. (2010) . Iverson (20 0 0) established the significance of 

rainfall infiltration in triggering shallow landslides and pitched for 

accurate rainfall estimates and landslide catalogs for rain-triggered 

landslide modeling. Hong et al. (2007) pointed out the significance 

of a rainfall product with a sufficient temporal resolution, a com- 

prehensive land surface database, a hydrological modeling compo- 

nent, and a landslide database to develop a rain-triggered landslide 

model. 

The predominant source of rainfall measure is rain gauges. 

However, most of the world’s mountainous parts, especially in de- 

veloping countries, have sparse rain gauge networks and fail to 

capture rainfall’s spatial variability ( Sinclair and Pegram, 2005 ). 

Sidle and Ochia (2006) observed the need to develop better rain 

estimation networks in developing countries to improve landslide 

modeling and early warning systems. In India, rain gauges are pre- 

dominantly operated by India Meteorological Department (IMD). 

Mishra (2013) performed an accuracy analysis on the IMD operated 

Automated Weather Stations (AWS) and inferred that with increase 

in gauge spacing larger variations in rainfall were identified. The 

study identified 15 km as an upper limit for observing significant 

spatial variations in rainfall. Mishra (2013) concluded gauge spac- 

ing as an essential parameter for the accurate representation of 

rainfall using the rain gauges. The study also identified the impor- 

tance of using gauge adjusted satellite data for filling the gaps oc- 

curring due to poor rain gauge density. Prakash et al. (2019) iden- 

tified rain gauge density and spatial variation in rainfall as two 

factors that contributed to the uncertainty in rainfall observations 

in India. The study identified NE India as having the least rain 

gauge density while South India as having the largest spatial vari- 

ation in rainfall. It should be noted that even though South In- 

dia in general have denser rain gauge networks, the mountain- 

ous regions of Idukki is an exception. Prakash et al. (2015) com- 

pared seven gridded rainfall datasets with the IMD gridded rain- 

fall as reference. The study observed largest uncertainties in oro- 

graphic regions including the Western Ghats. The IMD gridded 

dataset is a spatially interpolated gridded product derived from 

about 3500 quality-controlled rain gauge observations on an av- 

erage on a daily timescale at a spatial resolution of 50 km over 

the Indian region ( Rajeevan and Bhate, 2009 ). Even though vari- 

ous studies ( Joshi et al., 2013 ; Gairola et al., 2015 ; Parida et al., 

2017 ) used the gridded rainfall product derived from IMD sta- 

tions as reference for comparing the quality of various rainfall 

products over India, the different rain gauge densities in differ- 

ent parts of the country owes to certain uncertainty in the gridded 

product. 

Studies also turned towards radar or satellite-based precip- 

itation measures that efficiently capture the spatial variability 

of rainfall in relatively high spatial and temporal resolutions 

( Guenzi et al., 2017 ). While radar measurements are subjected 

to a series of errors like beam blockage and wave attenuation, 

especially in mountainous terrain, satellite measurements pro- 

vide calibrated global coverage ( Kirschbaum and Stanley, 2018 ; 

Tang et al., 2020 ). Hong and Adler (2008) developed the first 

satellite-based model for rain-triggered landslides globally using 

the Tropical Rainfall Measuring Mission (TRMM) data product 

( Garstang and Kummerow, 20 0 0 ; Liu et al., 2012 ). TRMM, a joint 

venture of NASA and JAXA, provided satellite rainfall measures 

from 1997 to 2015. TRMM is now succeeded by a multi-satellite 

precipitation monitoring system, the Global Precipitation Mission 

(GPM) ( Hou et al., 2014 ; Liu et al., 2017 ). The study by Hong and 

Adler (2008) was followed by many that compared and analyzed 

the performance of satellite data with conventional rain gauge 

networks ( Marra et al., 2014 ; Rossi et al., 2012 ). However, such 

studies had a general inference that pointed towards the over- 

estimation of light rainfall and underestimation of heavy rainfall 

by satellite products ( Nikolopoulos et al., 2017 ; Robbins, 2016 ). 

Brunetti et al. (2018) compared various rainfall products for their 

ability in forecasting landslides over Italy and found that the Cli- 

mate Prediction center (CPC) Morphing Technique (CMORPH) and 

the SM2RAIN Advanced SCATterometer (ASCAT) products as the 

best performing. However, the observations were still underpre- 

dicting rainfall and the thresholds had to be adjusted accordingly 

to forecast landslides. A later study by Brunetti et al. (2021) an- 

alyzed various satellite products for predicting landslides in India 

and inferred that a merged GPM and SM2RAIN ASCAT product 

provided the better results. Pradhan and Indu (2021) identified 

that GPM IMERG performed better in orographic regions like the 

Western Ghats during the monsoons while SM2RAIN performed 

better during the pre-monsoon season. 

Though the satellite precipitation measures provide high global 

coverage and spatial variability, they lack accurate rainfall esti- 

mates ( Vignal and Krajewski, 2001 ). This occurs due to biases that 

predominantly result from the satellite precipitation being a re- 

sult of atmospheric observations modeled using certain algorithm 

to eventually produce precipitation measurements ( Boushaki et al., 

2009 ). The lack of accuracy in rainfall estimates from satellite 

data poses a significant challenge for precipitation data retrieval 

and often calls for the bias adjustment of satellite precipitation. 

Zambrano-Bigiarini et al. (2017) noted that the satellite precipita- 

tion should be validated on a case-by-case basis. Adjusting satel- 

lite rainfall products generally follows two paths: using gauge mea- 

surements and using different satellite precipitation measurements 

where gauge measurements are not available. Satellite precipita- 

tion products often comes with internal bias correction proce- 

dures as is done by IMERG that uses monthly gauge data to ad- 

just the precipitation measures ( Tang et al., 2020 ). However, the 

monthly timescale is often too coarse and precipitation bias cor- 

rection on daily or hourly timescale is required. Tobin and Ben- 

net (2010) noticed the inadequacy of TRMM and the CMORPH algo- 

rithm in effectively capturing precipitations and developed a pro- 

cess that used ground precipitation data and probability filtering 

techniques to condition satellite data. Boushaki et al. (2009) used 

the gauge measurements from the Climate Prediction Center (CPC) 

to adjust satellite precipitation. The adjustment was based on cal- 

culating an error field that gave a weighted difference between the 

satellite and CPC rainfall with the weightage factor being the in- 

verse distance from the CPC grids. Zhao et al. (2018) compared 

six satellite precipitation products over mainland China and ob- 

served that gauge adjusted GSMAP and GPM IMERG performed 

better. Sungmin and Kirstetter (2018) identified that the gauge ad- 

justed IMERG-F version performed the best among the IMERG ver- 
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sions. Nikolopoulos et al. (2017) noted the need to merge rain 

gauge and satellite data products to combine the accuracy of rain 

gauges and spatial variability of satellite data to predict better 

rainfall-triggered landslides. In recent years, machine learning has 

been used to combine heterogeneous data sources ( Guarascio et al., 

2020 ). Woldemeskel et al. (2013) used a linearized weightage pro- 

cedure to combine modified inverse distance weighted (IDW) rain 

gauge interpolated product with satellite rainfall product. However, 

Sinclair and Pegram (2005) noted that due to the fractal variability 

of rainfall in space, simple interpolation of rain gauges is unable 

to capture the spatial field of rainfall accurately. Conditional Merg- 

ing ( Pegram and Clothier, 2001 ; Sinclair and Pegram, 2005 ) is a 

widely used successful method ( Berndt et al., 2014 ) to merge radar 

observations with rain gauge measurements. This method uses or- 

dinary kriging to interpolate the rain gauge values and later com- 

bines it with the radar/satellite data’s spatial structure ( Sinclair and 

Pegram, 2005 ). 

This study analyzed the utility of rain gauge and satellite data 

in Idukki for modeling rain-triggered landslides. The region re- 

ceives an abundance of rainfall and is subjected to shallow land- 

slides, especially during the monsoon seasons but has sparse 

rain gauge density with only five rain gauge stations for over 

4366 sq. km. The study considers a landslide database created by 

Hao et al. (2020) , corresponding to the August 2018 anomalous 

rainfall. This study compares rain gauge and satellite rainfall mea- 

sures to the landslide occurrence pattern to assess optimal rain- 

fall data for landslide modeling and early warning. This objective is 

achieved using the following steps on a case study in Idukki with 

sparse rain gauge data: 

(a) Compare rain gauge and satellite data for the Idukki region. 

(b) Perform conditional merging on satellite data and analyze 

how this changes satellite rainfall products’ performance 

with respect to rain gauge measurements. 

(c) Compare between rain gauge observations and conditionally 

merged satellite data for predicting landslide distribution. 

2. Study area 

In the Western Ghats ( Fig. 1 a), the Idukki district is one of the 

densely populated districts with a population of 1.11 million and 

254 inhabitants per sq. km. Idukki exhibits two of the three phys- 

iographic divisions viz., midlands (7.5–75 m amsl), and highlands 

( > 75 m amsl). Owing to high population density, people are forced 

to move to the highlands, leading to an increase in anthropogenic 

stress on the slopes. The most seen human influence on vulnerable 

slopes is cut slope and land clearance for constructional purposes. 

Jones et al. (2021) observes anthropogenic factors such as land 

use, road density and quarry density as major factors for increased 

landslide susceptibility in Idukki. Kuriakose et al. (2009) indicates 

that the deforestation rates prevailing from the 19 th century as a 

predominant force in increasing the landslide susceptibility of the 

region. Idukki experiences an annual average of 4100 mm of rain- 

fall, with most of the rain occurring during the south-west mon- 

soon from June to September. In 2018, from the 1 st of June to the 

29 th of August, anomalously high rainfalls, with a departure of 36% 

above the average rainfall measure, were reported ( Vishnu et al., 

2019 ). This anomalous rainfall caused heavy floods and landslides, 

claiming massive loss of life and property. This point towards de- 

veloping a landslide early warning system for mitigating such dis- 

aster. However, the sparse rain gauge network poses a challenge in 

acquiring data with enough spatial variability to model landslides 

( Fig. 1 b). Table 1 shows the location of the rain gauges with lati- 

tude, longitude, and elevation values. 

Table 1 

Location and elevation details of rain gauges in Idukki, Kerala. 

Station Name Latitude ( °N) Longitude ( °E) Elevation (m) 

Peermade 9.5667 76.9833 1000 

Thodupuzha 9.8983 76.7131 37 

Munnar 10.0000 77.1500 1175 

Idukki 9.8333 76.9167 926 

Myladumpara 9.6851 77.1851 1095 

3. Data and methods 

Rain gauge measurements were obtained from IMD ( www.imd. 

gov.in ). Though many studies relied on the IMD gridded data, this 

study opted to use the actual rain gauge data corresponding to the 

ground reality as the gridded product is an interpolation of this ac- 

tual data. Five such rain gauges in the Idukki district were consid- 

ered for this study. Daily data for August 2018 was taken and miss- 

ing data were imputed by arithmetic average of daily rainfall over 

the stations. GPM Integrated Multi-satellitE Retrievals for GPM- 

Late (IMERG-L) daily data was downloaded from the official site for 

GPM downloads using an earth data account ( www.gpm.nasa.gov ). 

Landslide data for 2018 was taken from Hao et al. (2020) . SRTM 

30 m DEM was used for elevation calculations. 

GPM is a constellation of satellites that use active radar, passive 

microwave, and infrared imaging to acquire global precipitation 

measures. These satellites provide precipitation measures for every 

30 min for > 90% of the earth. The core observatory is a combined 

enterprise by NASA and JAXA. It consists of a Dual-frequency Pre- 

cipitation Radar (DPR) operating on K and Ka bands and a GPM Mi- 

crowave Imager (GMI). The GPM provides four levels of data prod- 

ucts: Level 1 consists of inter-calibrated and geolocated brightness 

temperatures from DPR, GMI, and other partner radiometers; Level 

2 consists of intercalibrated precipitation rates; Level 3 consists of 

gridded time-space precipitation rates and latent heats, combin- 

ing data from core observatory and other partners using a multi- 

satellite merging algorithm (IMERG); Level 4 is a research prod- 

uct created from merging remote sensing data and model inputs 

( Hou et al., 2014 ). The IMERG products, in turn, give three levels of 

products: the near real-time 4 h latency ’Early’ (IMERG-E) and 14 h 

latency ‘Late’ (IMERG-L) products and the post-real-time research 

ready ‘Final’ (IMERG-F) product, at a spatio-temporal resolution of 

0.1 °×0.5 h ( Sun et al., 2018 ). The products are available at hourly, 

daily, and monthly precipitation rates (More details of GPM data 

are available in https://disc.gsfc.nasa.gov/datasets/GPM _ 3IMERGDL _ 

06/summary?keywords=imerg . The research-ready product is avail- 

able at a latency of about 40 days and cannot be used for near 

real-time modeling. Early warning systems need near-real-time in- 

put. Therefore, in this study, we have utilized the IMERG-L daily 

product for August 2018 as this period corresponds to the events 

in the landslide database. 

To establish the difference between rain gauge and satellite 

data products, the satellite pixel value corresponding to the rain 

gauge locations were compared with the actual rain gauge mea- 

sures. Previous literature on the study area ( Sajinkumar et al., 

2020 ) considered antecedent rainfall over 2, 3, and 5 days to ar- 

rive at rainfall thresholds to model landslides and found that the 

5-day antecedent rainfall performed better. Thus, in this study, 

we opted to choose a 5-day antecedent period as the threshold 

for the landslides to compare the rain gauge and satellite rain- 

fall measurements. Therefore, a comparison between range gauge 

and GPM IMERG-L precipitation measurement was carried out for 

a daily timestep and cumulative 5-day antecedent periods. 5-day 

antecedent values were computed for all dates from 6 th August to 

31 st August. Pearson’s correlation coefficients (CC) and Root Mean 

Squared Errors (RMSE) were calculated between the rain gauge and 
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Fig. 1. Location map of the (a) Southern India (SRTM DEM in background) and (b) study area with landslide distribution (SRTM DEM draped in background). 

GPM IMERG-L products for both the time steps. The short-time 

window of the study period was selected for this work due to the 

following reasons: (a) anomalous rainfall was observed during this 

period, and that difference is statistically significant; (b) the num- 

ber of landslides is also significantly different from other duration 

of this year as well as any other years, and (c) sparse rain gauge 

networks fail to capture the spatial variability of rainfall within a 

short timescale. 

In the next step, the satellite data was conditionally merged 

with the rain gauge data to improve accuracy. In this study, the 

conditional merging process was applied to GPM IMERG-L satellite 

precipitation values through four steps: 

(a) The rain gauge values were interpolated to create a contin- 

uous rain gauge-based rainfall field to obtain the best linear 

unbiased estimate of rainfall for all grid points (I rg ). 

(b) The GPM IMERG-L pixel values corresponding to the rain 

gauge locations were interpolated to create a continuous 

rainfall field (S rg ). 

(c) The continuous rainfall field thus obtained (Srg) was differ- 

enced with the GPM IMERG-L product (S). This difference (S 

- Srg) gives an error field due to interpolation, with the val- 

ues at rain gauge locations being zero. 

(d) The error field obtained in step (c) is added to the rainfall 

field obtained in step (a). The result is a rainfall field that 

follows the mean field of the rain-gauge interpolation while 

preserving the rainfall pattern of the gridded -GPM IMERG-L 

information. 

The final model is represented as: 

CM = I rg + S − −S rg (1) 

where, CM is the conditionally merged rainfall product. I rg is 

the rain gauge interpolated rainfall field. S is the GPM IMERG- 

L daily rainfall product and S rg is the rainfall field created from 

GPM IMERG-L pixel values’ interpolation corresponding to the rain 

gauge locations. 

Fig. 2 represents the schematic diagram of the conditional 

merging process adopted in this study. Since the error field value is 

always zero at rain gauge locations, the algorithm shows the per- 

fect conditioning to the rain values at the observed rain gauge lo- 

cations. This is a unique advantage of the conditional merging al- 

gorithm over other bias-adjusted algorithms. Conditional merging 

is computationally efficient and robust. Since it only uses unbiased 

spatial interpolation, it is not affected by numerical uncertainties. 

Spatial interpolation in conditional merging is generally done 

using kriging ( Pegram and Clothier, 2001 ; Berndt et al., 2014 ; 

Guenzi et al., 2017 ; Jung et al., 2017 ). However, a sample data 

of just five rain gauges is not capable of generating any vari- 

ogram shape and could lead to overestimation of spatial corre- 

lations. Thus, in this study, we resorted to using Inverse Dis- 

tance Weighted (IDW) interpolation in place of kriging to cre- 

ate the continuous rainfall fields I rg and S rg . IDW interpolation 

was performed at the same spatial grid size as the IMERG-L data. 

Yang et al. (2015) compared different spatial interpolation tech- 

niques for rainfall in the Greater Sydney Region and found that 

IDW performs better than ANUDEM, Ordinary Kriging, and Spline. 

Dirks et al. (1998) , Hsieh et al. (2006) , Ly et al. (2010) per- 

formed comparisons of different spatial interpolation techniques 

for rainfall interpolation and found that IDW was better or as 

good as other techniques. Thus, even though IDW cannot capture 

anisotropy or provides error variance, due to the sparse rain gauge 

network and kriging’s inability to generate any variogram shape 

with such a small number of data points, we used IDW to create 

interpolated surfaces required for conditional merging. The condi- 

tionally merged GPM IMERG-L data was again compared with the 

rain gauge data, on a daily and 5-day antecedent time step using 

Pearson’s CC and RMSE. A cross validation of the resultant condi- 

tionally merged product was also conducted using Leave One Out 
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Fig. 2. Flowchart of conditional merging. 

Cross-Validation (LOOCV) ( Wong, 2015 ). In LOOCV, with k number 

of rain gauges, the conditional merging operations were performed 

k number of times, and each time, one rain gauge data was kept 

aside, and the remaining k-1 number of rain gauges was used to 

predict the CM estimated value, which was then compared with 

the actual rain gauge value at that location. The error, the differ- 

ence between the actual value and CM estimated value, was cal- 

culated for k number of times. The error statistics from k number 

of error values were used to evaluate the model performance. The 

LOOCV ensures the validation data is never used for the CM algo- 

rithm for unbiased error calculation. 

The ability of both the rain gauge derived and conditionally 

merged satellite rainfall products to capture landslides’ spatial vari- 

ability is a significant factor in developing reliable landslide pre- 

diction models. Here, the rain gauge network is sparse. There- 

fore, we considered a scenario where the landslide thresholds were 

solely derived from the rain gauge values. The satellite precipita- 

tion was used as a reference product to see how the lack of spa- 

tial variability of rain gauge-based precipitation affects the thresh- 

old computations. Idukki observed the highest rainfall on 16 th Au- 

gust, and the peak flood was on 18 th August. Since dates of land- 

slides were not available in the landslide database, we took 17 th 

August as a common date of occurrence of all the landslides as it 

falls between the day of maximum rainfall and peak flood. Thus, 

5-day antecedent values corresponding to the 17 th of August, de- 

rived from conditionally merged GPM IMERG-L, were compared 

with 5-day antecedent values derived from rain gauges. For this, 

the landslides were classified based on the zones of influence of 

each rain gauge into five distinct zones/classes. Each class had a 

5-day antecedent value corresponding to that recorded by the as- 

sociated rain gauge. All landslides having a conditionally merged 

GPM IMERG-L threshold within a range of -10 mm to + 10 mm 

about the rain gauge threshold were considered as true positives. 

All other landslides having a conditionally merged GPM IMERG-L 

Fig. 3. Flow-chart of methodology. 

threshold below the rain gauge threshold were considered as false 

negatives and above the rain gauge threshold were considered as 

false positives. Fig. 3 shows a flowchart of the methodology. 

4. Results 

Fig. 4 a shows the distribution of landslides with respect to the 

rain gauge stations. The blue circles in the figure show areas hav- 

ing high landslide frequency but occurring farther away from rain 

gauge stations. This is a primary indication of the inadequacy of 

sparse rain gauge networks to provide reliable input for any land- 

slide prediction model in Idukki. The entire study area was divided 

into five Thiessen polygons, with each region falling under the in- 

fluence of one rain gauge station (cf. Brassel and Reif, 1979 ). Fig. 4 b 

shows the distribution of landslides over the rain gauge generated 

Thiessen polygons. The landslides are predominantly spread over 

the influence of the Idukki and Munnar rain gauge stations. The 

area to the north and northwest of Idukki is heavily underrepre- 

sented with rain gauges. 

Satellite rainfall products have better spatial variability when 

compared to rain gauges. But their accuracy is debated in litera- 

ture, and therefore we performed a comparison of the rain gauge 

and GPM IMERG-L rainfall values to check this case in Idukki. 

This comparison was carried out for both the daily and 5-day 

antecedent products. Pearson’s CC and RMSE were computed for 

four cases: GPM IMERG-L vs rain gauge (daily), GPM IMERG-L vs 

rain gauge (5-day antecedent), conditionally merged GPM IMERG-L 

vs rain gauge (daily), and conditionally merged GPM IMERG-L vs 

rain gauge (5-day antecedent). The results are shown in Tables 2 
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Fig. 4. Comparison of rain gauge locations and landslide distribution. (a) Landslide distribution and rain gauge locations; (b) landslide distribution and area of influence of 

rain gauges. 

Table 2 

Comparison of correlation coefficients and RMSE between GPM and rain gauge products for August 2018, for 

4 scenarios: 5-day antecedent - before and after conditional merging and daily - before and after conditional 

merging. 

Statistic Station1 Station2 Station3 Station4 Station5 

GPM vs Rain Gauge (5-day 

Antecedent) 

CC 0.912 0.918 0.821 0.911 0.905 

RMSE 234.52 154.47 222.80 137.02 89.27 

GPM vs Rain Gauge (Daily) CC 0.842 0.712 0.589 0.758 0.748 

RMSE 60.14 54.34 65.22 48.93 36.68 

GPM CM vs Rain Gauge (5-day 

Antecedent) 

CC 0.998 0.999 0.995 1.000 0.994 

RMSE 24.83 20.65 65.51 2.37 47.75 

GPM CM vs Rain Gauge (Daily) CC 0.984 0.997 0.974 1.000 0.983 

RMSE 16.95 4.62 20.01 0.76 12.81 

Station 1-Peermade, Station 2-Thodupuzha, Station 3-Munnar, Station 4-Idukki, Station 5-Myladumpara. 

CC- –Coefficient of Correlation. 

RMSE-Root Mean Squared Error. 

and 3 . From Table 2 , while GPM IMERG-L has positive correlations 

for all stations, the daily rainfall values have a rather large range 

in correlation coefficients (from 0.589 to 0.842). Moreover, the 

5-day antecedent rainfall values from GPM IMERG-L have a better 

correlation than the daily rainfall values. The comparison of RMSE 

values before and after conditional merging shows that the RMSE 

improves for both 5-day antecedent and daily rainfall values. 

A mean RMSE for the five stations over the 5-day antecedent 

values before conditional merging stands at 167.62 mm. How- 

ever, upon conditional merging, this reduces to 32.22 mm while 

mean RMSE for daily rainfall after conditional merging reduced 

to 11.03 mm from a mean RMSE before conditional merging of 

53.06 mm. Looking closely into the change in CC and RMSE, it 

is observed that the 5-day antecedent rainfall have better CC but 

larger RMSE prior to conditional merging. A possible explanation 

is that the GPM has lesser reliability on shorter temporal scales, 

thereby reporting smaller CC. Since on conditional merging, the 

CC is improving manifold for daily rainfall, it points towards 

the importance of conditional merging as a process to improve 

the accuracy of GPM IMERG-L on a daily scale. Table 3a shows 

a sample case of 5-day antecedent rainfall difference between 

GPM IMERG-L and rain gauge measurements before and after 

conditional merging, on a station-wise basis. The difference in 

the rain gauge and GPM IMERG-L observations also fall in a large 

range (from 13.4 to 397.1 mm), which upon conditional merging 

is reduced to a range within 3.1 to 144.6 mm. The largest differ- 

ence in the conditionally merged IMERG-L product was seen in 

the Munnar station, while the Myladumpara station observed a 

spike in the difference after conditional merging. However, upon 

observing data from the Myladumpara station for other dates, it 

is observed that this spike is not consistent. Table 3b analyses the 

rain gauge and GPM IMERG-L observations in Myladumpara (5-day 
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Table 3a 

Comparison between rain gauge and GPM IMERG-L precipitation before and after conditional merging (for 

5-day antecedent rainfall corresponding to August 17, 2018). 

Station Name Station 1 Station 2 Station 3 Station 4 Station 5 

Rain gauge value (mm) 779.7 398.9 798.1 709.4 479.8 

GPM Before Conditional Merging (mm) 573.5 796.0 480.4 690.5 493.2 

Difference (mm) 206.2 397.1 317.7 18.9 13.4 

GPM After Conditional Merging (mm) 782.6 438.5 653.5 706.3 407.2 

Difference (mm) 2.9 39.6 144.6 3.1 72.6 

Station 1- Peermade, Station 2- Thodupuzha, Station 3 – Munnar, Station 4 – Idukki, Station 5 – Mylad- 

umpara. 

Table 3b 

Comparison between rain gauge and GPM IMERG-L precipitation (5-day antecedent) be- 

fore and after conditional merging for the Myladumpara station from August 13 to August 

16, 2018. 

Date 13 Aug 14 Aug 15 Aug 16 Aug 

Rain gauge value (mm) 361.6 367 252.8 338.8 

GPM Before Conditional Merging (mm) 207.6 149.1 247.1 367 

Difference (mm) 148.6 217.9 5.7 28.2 

GPM After Conditional Merging (mm) 274.3 313.6 186.5 282.6 

Difference (mm) 87.9 53.4 66.3 56.2 

Table 4 

Result of leave one out cross- 

validation (LOOCV) for condi- 

tional merging applied over GPM 

IMERG-L. 

Station Name RMSE (cm) 

Peermade 50.43 

Thodupuzha 56.17 

Munnar 57.08 

Idukki 23.91 

Myladumpara 21.42 

antecedent) before and after conditional merging from August 13 

to August 16. It is seen that while August 15 and 16 reports sim- 

ilar spikes as in the case of August 17, for August 13 and 14, the 

difference between rain gauge and GPM IMERG-L is reduced 

after conditional merging. However, such inconsistencies are not 

observed in other stations and thus, should be considered as an 

anomaly. This also points to the need of denser rain gauge net- 

works so that more rain gauges with consistent data are available 

for gauge adjusting satellite precipitation. The complete result set 

with comparisons for rainfall values between the products are 

shown in Supplementary Data (Tables S1-S4). A line plot showing 

the change in GPM IMERG-L with respect to rain gauge measures 

before and after conditional merging is shown in Supplementary 

Data (Fig. S1). LOOCV was performed on the conditional merging 

process to ascertain its performance, and the results are shown in 

Table 4 . 

Fig. 5 shows the distribution of landslides with respect to 5- 

day antecedent rainfall from three data products: (a) GPM IMERG- 

L, (b) the conditionally merged GPM IMERG-L, and (c) IDW based 

interpolation of rain gauge values. In Fig. 5 a, the majority of the 

landslides are spread across the high rainfall area, while some are 

spread across low rainfall areas in the south and southeast. In 

Fig. 5 b, the landslide spread is more in accordance with the rainfall 

spread with most of the landslides falling in the high rainfall area. 

In Fig. 5 c, the landslide spread is almost entirely in accordance 

with the rainfall spread, with little landslides falling in low rain- 

fall pixels. However, it should be noted that pixels of similar high 

or low values are seen about the rain gauges as this is an inter- 

polation product that is generated based on distance from known 

points as the main criteria. Thus, the IDW product will be biased 

towards the actual rain gauge location and may not always repre- 

sent the actual spatial variability of the rainfall, unless more rain 

gauges are added in the network. 

To further analyze the ability of the present rain gauge network 

to capture the spatial spread of landslides, we divided the land- 

slides into five categories based on the area of influence of the rain 

gauges. Each landslide falling within a particular Thiessen poly- 

gon has a single 5-day antecedent value. On the other hand, using 

the conditionally merged GPM IMERG-L observed 5-day antecedent 

values, the landslides have a range of values. Table 5 shows the re- 

sult of this comparison. A larger range indicates an increased likeli- 

hood that a landslide model would produce false positives or nega- 

tives. For example, in the area of influence of the Idukki rain gauge, 

1156 landslides are recorded, having a 5-day antecedent value of 

709.4 mm as recorded by the rain gauges. For a model relying 

solely on rain gauges, 709.4 mm will be the precipitation mea- 

sure to identify the rainfall threshold in the entire area of influence 

of the Idukki rain gauge. However, the conditionally merged GPM 

IMERG-L predicts that the landslide threshold within the area of 

influence of the Idukki rain gauge could be as low as 532.4 mm in 

some places and as high as 847.9 in some places. Thus, the condi- 

tionally merged GPM IMERG-L product will identify an area having 

rainfall of 532.4 mm as a possible landslide occurrence, whereas 

the rain gauge product will identify this as a no landslide location. 

Similarly, the rain gauge product will identify an area with rain- 

fall above 709.4 mm as a landslide, but if that area has a rainfall 

threshold of 847.9 mm for the conditionally merged GPM IMERG-L 

product, then it will identify that as a no landslide location. Thus, 

a landslide model depending solely on rain gauges would gener- 

ate false negatives in areas where rainfalls are in between 532.4 

and 709.4 mm and false positives in areas having rainfalls between 

709.4 and 847.9 mm. In this study, false negatives can be consid- 

ered as those landslides that are identified as ‘no landslide loca- 

tion’ by the rain gauge product but which are identified as land- 

slides by conditionally merged GPM IMERG-L, while false positives 

are locations identified as landslides by the rain gauge product but 

as ‘no landslide’ by the conditionally merged GPM IMERG-L. How- 

ever, it is to be noted that this is an exercise to point out the in- 

adequacy of the current rain gauge locations to accurately identify 

spatial variations in rainfall, and we are not making a statement 

that GPM IMERG-L conditionally merged or otherwise represents 

the exact values of actual rainfall. 

To further support this finding, we have computed the number 

of false positives, false negatives, and true positives falling within 
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Fig. 5. (a) GPM IMERG-L 5-day antecedent rainfall product and landslide distribution. (b) Comparison of conditionally merged GPM IMERG-L 5-day antecedent rainfall 

product and landslide distribution. (c) Comparison of IDW interpolated rain gauge product for 5-day antecedent rainfall and landslide distribution. The blue circles show the 

region where there is landslide activity but have clear underrepresentation of rain gauges. The 5-day antecedent rainfall corresponds to August 17, 2018. 

Table 5 

Comparison of 5-day antecedent rainfall values between rain gauge and conditionally merged GPM 

IMERG-L. 

Station Name No. of 

Landslides 

5-day antecedent 

value (mm) 

5-day antecedent range for 

landslides from GPM (mm) 

Range 

(mm) 

Idukki 1156 709.4 532.4 – 847.9 315.5 

Munnar 843 798.1 463.3 – 847.9 384.6 

Myladumpara 71 479.8 434.8 – 602.5 167.7 

Peermade 75 779.7 476.6 – 782.6 306.0 

Thodupuzha 78 398.9 438.4 – 847.9 409.5 

Table 6 

Landslide classification statistics based on the scenario were the rain 

gauge measures are solely relied upon. 

Station 

Name 

Number of landslides 

False Positives True Positives False Negatives 

Idukki 237 376 543 

Munnar 92 0 751 

Myladumpara 53 5 13 

Peermade 1 34 40 

Thodupuzha 78 0 0 

Total 461 415 1347 

the area of influence of each rain gauge. True positives are con- 

sidered for all landslides with a rainfall value within a range of 

-10 mm to + 10 mm from the rain gauge observed rainfall thresh- 

old. All other values falling below the rain gauge observed thresh- 

old are counted as false negatives and all other values falling above 

the rain gauge observed threshold are counted as false positives. 

Table 6 classifies the landslides into false negatives, true positives, 

and false positives, falling under each rain gauge station’s area 

of influence. A total of 1347 landslides fall in the false-negative 

category, while there are 461 false positives and 415 true posi- 

tives. Such a scenario will give rise to 18.7% true-positives, while 

the false-negative rate is 60.7%. Munnar records the highest false- 

negative rate out of the five stations with 89.1% while having zero 

true positives. Thodupuzha records a 100% false-positive rate. Fig. 6 

is a graphical representation of this scenario. 

5. Discussion 

A comparison of the landslide database and the rain gauge lo- 

cations showed that the existing rain gauge network has limited 

capability to cover the landslide spread. More rain gauges are re- 

quired to accurately capture the spatial variations in rainfall as 

well as provide more reliable input for landslide monitoring. The 

ability of satellite rainfall products to be used as an alternative 

was checked using the rainfall measurements from GPM IMERG- 

L. However, it was found that GPM IMERG-L was underpredicting 

the rainfall and thus, a conditional merging process was applied to 

improve its accuracy. 

The GPM IMERG-L and rain gauge products were compared be- 

fore and after conditional merging, and correlation coefficients and 

RMSE were calculated. A general reduction in RMSE and improve- 

ment in correlation with rain gauge values were seen after per- 

forming the conditional merging, and this point towards the ef- 

ficacy of the method in improving the accuracy of GPM IMERG-L 

precipitation measure in the study area. 

The conditional merging process was subjected to a LOOCV as a 

means of validating the process. The result of the LOOCV indicates 

that Myladumpara has the least RMSE while Munnar records the 

maximum. The RMSE values range from 21.42 to 57.08. The large 

8 



C.L. Vishnu, T. Oommen, S. Chatterjee et al. Geosystems and Geoenvironment 1 (2022) 10 0 060 

Fig. 6. Representation of landslide classification statistics for a scenario in which only rain gauge measurements are relied upon for modeling. 

difference in RMSE is indicative of the large spatial variation in 

rainfall and the inadequate spread of rain gauge stations to cap- 

ture it, as leaving out certain stations contributes to a larger error 

than other stations. 

Comparing the spatial spread of landslides with three rainfall 

products viz., (a) GPM IMERG-L, (b) conditionally merged GPM 

IMERG-L, and (c) IDW interpolated rain gauge product, showed 

that the conditionally merged product captures the spatial spread 

of landslides better than the unconditioned one. Although the IDW 

interpolated rain gauge product conformed to the landslide pattern 

better than the other products, it showed a bias towards the rain 

gauge locations evidently showing the lack of spatial variations. 

An example scenario that took 5-day antecedent rainfall for the 

17 th of August as a rainfall threshold to trigger landslides was 

considered and compared with the rain gauge and conditionally 

merged GPM IMERG-L products. This showed that relying solely 

on rain gauges for landslide monitoring would result in threshold 

values that may fall far off from the actual scenario and result in 

many false positives and false negatives. However, GPM IMERG-L 

could not be relied upon alone as well as it underpredicts rain- 

fall, and rain gauge observations are required to condition them. 

This points to the need to improve the existing rain gauge net- 

work by installing new rain gauges in locations that can optimally 

capture landslide activity. GPM IMERG-L can be used as a contin- 

uous dataset as any number of rain gauges would still result in a 

discrete dataset, and interpolating them would still give products 

that are biased towards the rain gauge locations. 

Another point of concern in adopting GPM IMERG-L is its spa- 

tial resolution. The GPM IMERG-L has a coarse spatial resolution 

of about 10 km, which will be inadequate to capture the scale of 

landslides. For example, the 5-day antecedent rainfall values ob- 

tained from the conditionally merged GPM IMERG-L had 38 unique 

values, each corresponding to one pixel. This would indicate an av- 

erage of 58.5 landslides per pixel. Such a spatial resolution is still 
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not representative of capturing the spread of landslides in Idukki, 

and thus data of better spatial resolution is required to have fur- 

ther accurate models. 

6. Conclusions 

The study probed the utility of rain gauge and satellite rain- 

fall data for developing a landslide prediction model in Idukki. 

The study area had sparse rain gauge density with only five rain 

gauges for 4366 sq. km. GPM IMERG-L daily rainfall product was 

underpredicting rainfall when compared with ground-based rain 

gauge data. However, on applying a conditional merging process, 

the rain gauge and satellite rainfall products were merged to cre- 

ate a rainfall product that preserved the accuracy of the rain gauge 

and the spatial variability of GPM IMERG-L. A comparison between 

GPM IMERG-L, conditionally merged GPM IMERG-L and IDW inter- 

polated rain gauge products showed that the interpolated product 

captured the spatial spread of landslides best, followed by the con- 

ditionally merged GPM IMERG-L. However, the interpolated prod- 

uct is biased towards the rain gauge locations and is thus, not re- 

liable in a sparse rain gauge network. An example scenario that 

considered a rain gauge-based threshold for landslide trigger found 

that such a model would result in many false negatives and false 

positives and will not provide reliable precipitation information for 

a landslide prediction model. 

It can be concluded that conditional merging the GPM IMERG- 

L with rain gauge observations will improve its accuracy. How- 

ever, sparse rain gauge networks affect the efficacy of this pro- 

cess as well as rainfall thresholds derived for landslide modeling. 

Sparse rain gauges impede the conditional merging process as lo- 

cations farther away from the rain gauges may have large varia- 

tions from accurate rainfall values. Moreover, the spatial resolution 

of GPM IMERG-L is inadequate to capture the landslide occurrences 

in Idukki. Thus, future work should be focused on the direction of 

improving the existing rain gauge network by installing new rain 

gauges at optimal locations and improving the spatial resolution of 

GPM IMERG-L. The installation of new rain gauges would facilitate 

the better prediction of rainfall over Idukki, thereby aiding land- 

slide and rainfall modelling systems, ultimately providing credible 

early warning to the population. 
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