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Comparison of performance of self-expanding and
balloon-expandable transcatheter aortic valves

Hoda Hatoum, PhD,a,b Milad Samaee, PhD,c Janarthanan Sathananthan, MBChB, MPH,d

Stephanie Sellers, MSc, PhD,d Maximilian Kuetting, PhD,e Scott M. Lilly, MD, PhD,f

Abdul R. Ihdayhid, MBBS, PhD,g Philipp Blanke, MD,h Jonathon Leipsic, MD,h Vinod H. Thourani, MD,i

and Lakshmi Prasad Dasi, PhDc

ABSTRACT

Objective: To evaluate the flow dynamics of self-expanding and balloon-expandable
transcatheter aortic valves pertaining to turbulence and pressure recovery. Trans-
catheter aortic valves are characterized by different designs that have different
valve performance and outcomes.

Methods: Assessment of transcatheter aortic valves was performed using self-
expanding devices (26-mm Evolut [Medtronic], 23-mm Allegra [New Valve Technol-
ogies], and small Acurate neo [Boston Scientific]) and a balloon-expandable device
(23-mm Sapien 3 [Edwards Lifesciences]). Particle image velocimetry assessed the
flow downstream. A Millar catheter was used for pressure recovery calculation. Ve-
locity, Reynolds shear stresses, viscous shear stress, and pressure gradients were
calculated.

Results: The maximal velocity at peak systole obtained with the Evolut R, Sapien 3,
Acurate neo, and Allegra was 2.12 � 0.19 m/sec, 2.41 � 0.06 m/sec, 2.99 � 0.10 m/
sec, and 2.45� 0.08 m/sec, respectively (P<.001). Leaflet oscillations with the flow
were clear with the Evolut R and Acurate neo. The Allegra shows the minimal range
of Reynolds shear stress magnitudes (up to 320 Pa), and Sapien 3 the maximal (up to
650 Pa). The Evolut had the smallest viscous shear stress magnitude range (up to
3.5 Pa), and the Sapien 3 the largest (up to 6.2 Pa). The largest pressure drop at the
vena contracta occurred with the Acurate neo transcatheter aortic valve with a
pressure gradient of 13.96� 1.35 mmHg. In the recovery zone, the smallest pressure
gradient was obtained with the Allegra (3.32 � 0.94 mm Hg).

Conclusions: Flow dynamics downstream of different transcatheter aortic valves
vary significantly depending on the valve type, despite not having a general trend
depending on whether or not valves are self-expanding or balloon-expandable.
Deployment design did not have an influence on flow dynamics. (JTCVS Open
2022;10:128-39)
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CENTRAL MESSAGE

Flow dynamics downstream of
different TAVs vary significantly
depending on valve type and size,
despite not having a general
trend depending on whether
valves are self-expanding or
balloon expandable.

PERSPECTIVE
TAVs are characterized by different designs (eg
self-expanding vs balloon-expandable) that dictate
different valve performance and outcomes. This
study aims to evaluate the flow dynamics down-
stream of self-expanding and balloon TAVs pertain-
ing to turbulence and pressure recovery. More
studies are needed to correlate hemodynamic
data with those observed in vivo.
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Video clip is available online.

Current commercially available transcatheter aortic valves
(TAV) are either self- or balloon-expandable. During the
past 2 decades, tremendous improvements in TAV designs
and materials took place to optimize valve performance
and maximize its benefits.1 Metals were replaced (stain-
less steel vs cobalt chromium) to ensure stronger and
more efficient anchoring, skirts were added and later
modified to limit regurgitation, and valve profiles were
altered to allow minimal interference with the downstream
flow. Despite these improvements, the interaction of each
TAV with the flow in the aortic root is associated with
nonphysiological flow properties compared with flow in
a native annuli.

Clinical, in vitro, and in silico studies have shown that
TAV performance varies with valve type (self-expanding
vs balloon-expandable),2-5 the unique design of each
valve within the same type group,6-8 the deployment
(axial and commissural),9-11 and the surrounding patient-
specific anatomy.12-14 It is important to evaluate the flow
downstream of the aortic valve because it instructs
directly on the performance parameters and ultimately
durability (after sufficient follow-up). The turbulence of
the flow downstream of the TAV informs on the pressure
drop across the valve and explains some of the reasons
behind differences in pressure recovery among different
valves, as identified by different measurement modalities
such as echocardiography and catheterization.15 The turbu-
lence of the flow downstream of the TAValso informs on the
forces that the platelets and red blood cells undergo, in the
context of general blood damage such as platelet activation,
thrombus formation, and hemolysis.2,16

In this study, we aim to characterize the differences in the
resulting flow dynamics and pressure recovery downstream
of multiple self-expanding and balloon-expandable TAVs.

METHODS
The hemodynamic assessment of a 26-mm Evolut (Medtronic), a 23-

mm Sapien 3 (Edwards Lifesciences), a small Acurate neo (Boston Scien-

tific) and a 23-mm Allegra (New Valve Technologies) transcatheter heart

valve was performed in a left heart simulator under pulsatile physiological

conditions. These sizes are equivalent in that they treat similar-sized annuli

(20-23 mm). For the study, the TAVs were implanted into a rigid test cham-

ber described in previous publications.2,3,9,17 The aortic pressures ranged

from 80 to 120 mm Hg, the peak aortic pressure was set at 24 L/min,

and the heart rate at 60 beats per minute. The fluid used in the experiments

was a mixture of water-glycerin (60/40 by volume) with properties similar

to those of blood (density of 1060 kg/m3 and a kinematic viscosity of

3.5 cSt). The valves were placed in the same annulus of the same aortic

root as described in previous studies.2 Flow data were acquired using ultra-

sonic flow probes (HXL; Transonic Inc), and pressures at all the measure-

ment locations were measured with a Millar catheter (ADInstruments Inc).

The Millar catheter was inserted along the centerline of the aortic valve

chamber. Recordings of the pressure at every axial location along the

ascending aorta with intervals of 5 mm downstream of the valves and

1 mm inside the valves. Position 0 mm corresponds to the most upstream

measurement (ventricular), and position 120 mm corresponds to the last

measurement point in the measurement region of the chamber. Fifty

consecutive cardiac cycles of aortic pressure, ventricular pressure, and

flow rate data were recorded at a sampling rate of 100 Hz at every measure-

ment location. The mean transvalvular pressure gradient (PG) is defined as

the average of positive pressure difference between the ventricular and

aortic pressure curves during forward flow. The peak PG was obtained

from the instantaneous pressure waveforms. High-speed recording en-

face of the valve opening, and closing was performed at a frame rate of

1000 Hz.

Particle image velocimetry experiments were performed to assess the

flow downstream of each TAV. The flow was seeded with fluorescent

poly (methyl methacrylate)-rhodamine B particles with average diameter

of 10 mm. A laser sheet created by pulsed neodymium-doped yttrium

lithium fluoride single-cavity diode pumped solid-state laser coupled

with external spherical and cylindrical lenses shone on the region of interest

while acquiring high-speed images of the fluorescent particles within the

downstream region. Time series recordings were acquired at a temporal

resolution of 500 Hz. Phase-locked recordings were acquired to calculate

the resulting flow statistical parameters (Reynolds shear stress [RSS])

over 250 images. The RSS, an established metric to evaluate turbulence

and any associated blood damage potential, is a statistical quantity that is

used to describe a turbulent flow field.18,19 The principal RSS is calculated

as per Equation 1.

RSS¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�u0u0�v0v0

2

�2

þðu0v0Þ2
s

(Equation 1)

Where r is the blood density and u0 and v0 are the instantaneous velocity
fluctuations in the x and y directions, respectively.

In addition, viscous shear stress (VSS) was also computed as per Equa-

tion 2 and probability density functions (PDF) were calculated and plotted.

t¼m

�
du

dy
þ dv

dx

�
(Equation 2)

Where t is in Pa and m is the dynamic viscosity in Ns/m2.

Statistics
The results are presented as mean � SD. Statistical analysis was per-

formed using JMP Pro version 15.2.0 (SAS Institute Inc). All data were

distributed normally, and therefore, t test for paired comparison between

the vena contracta and recovery zone for each valve was performed

along with Tukey test for unpaired comparison for vena contracta and

recovery zone gradients of all valves. The instantaneous VSS over the

cardiac cycle are plotted as PDFs. The PDF displays all the values

(all the range) of a certain parameter distributed over a certain region

of interest and gives the relative or differential likelihood (frequency)

of any parameter. The area under the probability density function curve

is always equal to 1 and therefore can also be considered as a normal-

ized histogram.20

Abbreviations and Acronyms
PDF ¼ probability density function
PG ¼ pressure gradient
RSS ¼ Reynolds shear stress
TAV ¼ transcatheter aortic valve
VSS ¼ viscous shear stress
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RESULTS
Downstream Flow Field

Figure 1 shows the averaged flow velocity downstream of
each of the TAVs at acceleration, peak systole, and deceler-
ation phases. The dark streaks of red and blue vorticity con-
tours represent the shear layers corresponding to the jet
boundaries and the distance between them represents the
width of the jet. As the flow starts accelerating, reaching
the tip of the fully open valve leaflets, it separates from
the leaflet tip and travels as a free shear layer that is a region
of concentrated vorticity, an indicator of flow rotation.
Because the resulting shear layers and jet stability are

consequences of the interaction between flow and leaflets,
it is important to visualize the opening of the valves.
Videos 1 through 4 show the gradual opening of each of
the valves (Evolut R, Sapien 3, Acurate neo, and Allegra,
respectively). Leaflet flutters are clear with the Evolut R
and Acurate neo; however, less noticeable with the Sapien
3 and the Allegra. From a different angle, Videos 5
through 8 show the flow as imaged in the experiments,
highlighting the leaflet motion during the cardiac cycle.

The maximal velocity at peak systole obtained with the
Evolut R, Sapien 3, Acurate neo, and Allegra was found
to be 2.12 � 0.19 m/sec, 2.41 � 0.06 m/sec,

–500 –250

� (s–1)

0 250

Acceleration

SAPIEN 3 23

Evolut 26

Acurate Neo
S

Allegra 23

Peak Deceleration

500

FIGURE 1. Phase-averaged velocity vectors and vorticity contours at different phases in the cardiac cycle. The dark streaks of red and blue vorticity con-

tours represent the shear layers corresponding to the jet boundaries and the distance between them represents the width of the jet. The resulting shear layers

and jet stability are consequences of the interaction between flow and leaflets and thus, it gives important information on the visualization of the opening of

the valves and the resulting flow. The maximal velocity at peak systole obtained with the Evolut R (Medtronic), Sapien 3 (Edwards Lifesciences), Acurate

neo (Boston Scientific), and Allegra (NewValve Technologies) was found to be 2.12� 0.19m/sec, 2.41� 0.06m/sec, 2.99� 0.10m/sec, and 2.45� 0.08m/

sec, respectively (P<.001).
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2.99 � 0.10 m/sec, and 2.45 � 0.08 m/sec, respectively
(P<.001). Comparing between each valve, significant dif-
ferences were found except between the Sapien 3 and the
Allegra (P ¼ .957).

Downstream Flow Turbulence
Figure 2 shows the principal RSS at different phases in

the cardiac cycle. The maximum RSS occurs during peak
systole where the flow is maximal. The dark blue patches
indicate an elevated RSSmagnitude, and the more prevalent
elevated RSS magnitudes are, the more turbulent the flow is
considered to be. The fluctuations observed in the RSS con-
tours follow in evolution and distribution in the flow field
those seen in Figure 1.

To quantify the RSS distribution more accurately,
Figure 3, A, shows the probability density functions of
RSS for each of the TAVs at peak systole. The Acurate
neo and the Evolut R present the largest distributions of
RSS in all 3 phases (ie, acceleration, peak systole, and
deceleration). The Allegra shows the minimal range of
RSS magnitudes (up to 320 Pa), followed by the Evolut
(up to 600 Pa) and then the Acurate neo and Sapien 3 (up
to 650 Pa). In the literature, it was reported that a limit of
100 Pa to evaluate potential blood damage could be consid-
ered appropriate.21 Any value that exceeds 100 Pa is consid-
ered elevated enough to be associated with blood damage

VIDEO 1. En-face imaging of Evolut R (Medtronic). Video available at:

https://www.jtcvs.org/article/S2666-2736(22)00168-1/fulltext.

VIDEO 2. En-face imaging of Sapien 3 (Edwards Lifesciences). Video

available at: https://www.jtcvs.org/article/S2666-2736(22)00168-1/

fulltext.

VIDEO 3. En-face imaging of Acurate neo (Boston Scientific). Video

available at: https://www.jtcvs.org/article/S2666-2736(22)00168-1/

fulltext.

VIDEO 4. En-face imaging of Allegra (New Valve Technologies). Video

available at: https://www.jtcvs.org/article/S2666-2736(22)00168-1/

fulltext.
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potential. In Figure 3, A, the Sapien 3, Acurate neo, and Al-
legra show equal distribution of RSS<100 Pa. The Evolut
shows a higher prevalence within this limit. For RSS
exceeding 100 Pa, the Allegra still shows the lowest distri-
bution. The Evolut and the Sapien 3 show equal and largest
distribution up until an RSS limit of 210 Pa. When
210<RSS<450 Pa, the Acurate neo shows the largest like-
lihoods of development of elevated RSS. When RSS
>450 Pa, the Evolut shows the highest likelihoods of
elevated RSS up until 600 Pa. The Acurate neo shows
more elevated likelihoods when RSS>600 Pa compared
with the Sapien 3 because both these valves show such
elevated magnitudes.

To evaluate the actual shear force per unit area experi-
enced by blood elements, we calculated the instantaneous
VSS for each of the valve flow fields and we plotted the
probability density function of the VSS in Figure 3, B. All
the instantaneous VSS magnitudes obtained were lower
than 10 Pa, a threshold associated with potential blood dam-
age.18 The Evolut was shown to have the smallest magni-
tude range (up to 3.5 Pa), followed by the Allegra (up to

4.8 Pa), followed by the Acurate neo (up to 5.5 Pa) and
then the Sapien 3 (up to 6.2 Pa).

Pressure Recovery
The importance of accounting for pressure recovery is

that it permits identification of the true PG across the TAV
and accordingly a more accurate assessment of perfor-
mance. Figure 4 shows the variations of PGs along selected
locations in the aortic root with the 4 different valves and
Figure 5 shows the variations of the corresponding standard
deviations. A box-and-whisker plot is provided for the
instantaneous measurements in Figure E1. The results are
plotted from the ventricular side upstream of each valve
to the downstream side up until the end of the aortic testing
chamber (at 120 mm). As the flow crosses the valve, the PG
decreases from the ventricular side to the aortic 1 until it
reaches a minimum at the vena contracta (where the jet is

VIDEO5. Rawvideo showing the flow downstream of the Evolut R (Med-

tronic). Video available at: https://www.jtcvs.org/article/S2666-2736(22)

00168-1/fulltext.

VIDEO 6. Raw Video showing the flow downstream of the Sapien 3 (Ed-

wards Lifesciences). Video available at: https://www.jtcvs.org/article/

S2666-2736(22)00168-1/fulltext.

VIDEO 7. Raw video showing the flow downstream of the Acurate neo

(Boston Scientific). Video available at: https://www.jtcvs.org/article/

S2666-2736(22)00168-1/fulltext.

VIDEO 8. Raw video showing the flow downstream of the Allegra (New

Valve Technologies). Video available at: https://www.jtcvs.org/article/

S2666-2736(22)00168-1/fulltext.
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the narrowest and where maximum jet velocity occurs). Af-
ter that, the recovery process starts through a gradual in-
crease in PG along the various points. All the valves
follow this expected pattern of pressure changes along posi-
tions in the aortic root.

The largest pressure drop at the vena contracta occurs
with the Acurate neo TAV where the minimal pressure rea-
ches 13.96 � 1.35 mm Hg. The PG with the Sapien 3, Evo-
lut, and Allegra reach 10.54 � 0.51 mm Hg,
10.64 � 0.38 mm Hg, and 11.89 � 0.61 mm Hg, respec-
tively. The 23-mm Sapien 3 showed the smallest PG at
the vena contracta. The location of the vena contracta varied
with each valve. The vena contracta of the Acurate neo was
the closest to the valve entrance, and that of the Allegra was
the furthest from the valve entrance. At 12mm, in the recov-
ery zone, the smallest PG was obtained with the Allegra
(3.32 � 0.94 mm Hg), followed by Sapien 3
(3.68 � 0.76 mm Hg), then the Evolut R

(4.77 � 0.87 mm Hg) and the largest PG was obtained
with the Acurate neo (5 � 1.21 mm Hg).
All differences in PGs were statistically significant

(P<.001) except for the Allegra and Sapien 3 at the vena
contracta (P ¼ .1399) and the Acurate neo and Sapien 3
in recovery zone (P ¼ .2105).
The largest pressure recovery (difference between PG at

the vena contracta and PG at 120 mm) was obtained with
Acurate neo (8.96 mm Hg), followed by Allegra
(7.79 mm Hg), then by Sapien 3 (6.86 mm Hg), and then
Evolut R (4.47 mm Hg). From Figure 5, the fluctuations
in the SDs are higher with the self-expanding valves
compared with the Sapien 3. All differences in pressure re-
covery were statistically significant (P<.001).

DISCUSSION
In this study, we evaluated the hemodynamics down-

stream of 4 TAVs with variable leaflet position, 3 of which

0 25 50

RSS (Pa)

SAPIEN 3 23

Evolut 26

Allegra 23

Acurate Neo
S

Acceleration Peak Deceleration

75 100 125 150

FIGURE 2. Principal Reynolds shear stresses (RSS) at different phases in the cardiac cycle. The dark blue patches indicate an elevated RSSmagnitude, and

the more prevalent elevated RSS magnitudes are, the more turbulent the flow is considered to be. Evolut R (Medtronic), Sapien 3 (Edwards Lifesciences),

Acurate neo (Boston Scientific), and Allegra (New Valve Technologies).
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are self-expanding valves (26-mm Evolut R, S Acurate neo,
and 23-mm Allegra) and 1 balloon expandable valve (23-
mm Sapien 3). We report findings on flow turbulence and
its relationship to potential for thrombogenicity due to
flow turbulence, and on pressure recovery along with its
relationship to the assessment of overall valve performance.
The higher the RSS and the VSS, the more the flow is
considered turbulent. Turbulence is an essential and impor-
tant factor to assess after heart valve implantation because it
can lead to blood damage such as platelet activation,
thrombus formation, and hemolysis. Several studies have
specified thresholds above which forces on the platelets
are the red blood cells are nonphysiological, leading there-
fore to adverse effects related to blood damage.18,22 Addi-
tionally, several clinical studies have pointed to the
occurrence of thrombus formation and hemolysis after
various generations of TAVs. These findings were depen-
dent on the type of the valve implanted and how every
unique valve design influences the resulting flow. There-
fore, it is important to assess how valve performance and
behavior (eg, gradients, turbulence, and flutter) influence
or correlate with clinical findings.23-26 The connection
between blood damage and valve durability has also been
a subject of research in the recent years.27,28 Thus, under-
standing how every valve influences the resulting flow is
important to relate the findings to future outcomes after
TAV replacement.

In this study, the RSS (or turbulence shear stresses) were
evaluated to compare the resulting turbulence obtained
among the 4 valves. RSS is a pseudoforce and is often
used to provide a statistical quantitative evaluation of the

influence of turbulent fluctuations on the averaged velocity
field at a given position in space.18 The Allegra TAV showed
the smallest range of RSS, indicating lowest turbulence
levels compared with the other valves. This result was
also accompanied by a small leaflet flutter frequency
(Videos 4 and 8), which helped with the flow stabilization
and with the reduction of RSS.2 The Acurate neo and the
Evolut R showed elevated likelihoods of developing
elevated RSS that exceed 0.1 KPa, a threshold adopted for
blood damage initiation,21 compared with the other valves.
Both valves also showed elevated flutter frequency (Videos
1, 3, 5, and 7) influencing the elevated RSS obtained in this
study. The elevated leaflet flutter could be attributed to the
supra-annular design of the leaflets and the location of the
tip of the leaflet in the Evolut R and the Acurate neo, in
addition to the porcine pericardium material of the leaflets.
Although this was clearly observed with these 2 self-
expanding valves, the Allegra showed minimal flutter (com-
parable with the Sapien 3) despite having supra-annular
leaflet design. This may be due to the small stent spaces (di-
amonds) and the compact frame of the Allegra compared
with a more open stent design with both the Evolut R (larger
diamonds) and the Acurate neo (open frame). This may also
be due to tissue thickness and leaflet geometry that are most
probably the main determinants of a complete circular
opening and the degree of leaflet fluttering at the time of
peak flow, which will ultimately determine flow patterns,
turbulence, shear stresses, pressure drop, and pressure
recovery.

Pressure recovery is an important phenomenon that in-
structs on the performance of the implanted valve.29 As
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FIGURE 3. Probability density function (PDF) of the (A) Reynolds shear stress (RSS) distribution and the (B) viscous shear stress (VSS) distribution down-

stream of the Evolut R (Medtronic), Sapien 3 (Edwards Lifesciences), Acurate neo (Boston Scientific), and Allegra (New Valve Technologies) transcatheter

aortic valves in semi-log scale. 0.1 KPa represents a potential blood damage threshold. The Acurate neo and the Evolut R present the largest distributions of

RSS in all 3 phases (acceleration, peak systole, and deceleration). The Allegra shows the minimal range of RSS magnitudes (up to 320 Pa), followed by the

Evolut R (up to 600 Pa) and then the Acurate neo and Sapien 3 (up to 650 Pa).
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the jet expands downstream, its velocity starts decreasing
and pressure is recovered depending on several factors
such as turbulence, velocity of blood at the vena con-
tracta, and the geometry of the aorta.3,13,14,30 Several
clinical studies presented detailed comparative works

between echocardiogram-based gradients (at the vena
contracta) and catheterization-based gradients (in the re-
covery zone).31-35 Some of these studies highlighted that
balloon-expandable valves are characterized by higher
gradients at the vena contracta and more elevated
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13.96� 1.35 mmHg. The pressure gradient with the Sapien 3, Evolut, and Allegra reach 10.54� 0.51 mmHg, 10.64� 0.38 mmHg, and 11.89� 0.61 mm

Hg, respectively. The 23-mm Sapien 3 showed the smallest pressure gradient at the VC. The location of the VC varied with each valve. The VC of the
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were statistically significant (P<.001) except for the Allegra and Sapien 3 at the VC (P ¼ .1399) and the Acurate neo and Sapien 3 in the recovery

zone (P ¼ .2105).
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pressure recovery.3,35 Some of these studies were
inconclusive.34

In this study, the Allegra TAV was characterized by the
lowest PG in the recovery zone and one of the highest-
pressure recoveries among the 4 valves. The Allegra, as
previously mentioned, was characterized by the smallest
turbulence downstream of the valve. The Acurate neo
was characterized by elevated turbulence, the most
elevated PG at the vena contracta and the most elevated
PG at 120 mm. However, the pressure recovery obtained
from the vena contracta to the 120-mm recovery zone
was the highest. The turbulence downstream of the Evolut
R was among the highest observed in this study, and the PG
at the recovery zone was the second most elevated with the
pressure recovery being the smallest. The effect of turbu-
lence on the downstream flow of the valve was also clear
with the large fluctuations in standard deviations of the
PGs at the different locations. This study shows that pres-
sure recovery is valve-dependent, although it is hard to
generalize the dependence on the self-expanding versus
the balloon-expandable type. With various valve types
and designs, more experiments and more clinical out-
comes are needed to assess the optimally performing valve
type.

Although differences in gradients and pressure recovery
among the four types of valves were demonstrated in this
study, these differences may not be clinically significant
in terms of hemodynamic performance. However, the open-
ing and closing characteristics, the degree of fluttering and
turbulence downstream the aorta may exert relevant influ-
ence in durability and long-term outcomes.

Limitations
In this study, we used an idealized solid aortic root model

that led to a perfect circular TAV replacement deployment,
an advantage that may not be accomplished in many pa-
tients due to the anatomical characteristics of the native
valve and root. The absence of patient-specific factors influ-
ence the flow patterns downstream of the valve and these
characteristics have not been fully characterized at present
in this study. However, we aimed at performing a highly
controlled study that isolates the effect of each transcatheter
heart valve independently from geometric or deployment-
related considerations, similar to previous studies.9,36-40

Moreover, in this study, only the recommended axial
deployment41 was assessed. Additionally, we performed
the hemodynamic assessment of these valves under 1 phys-
iological set of conditions. Whether or not these conclu-
sions hold under different physiological scenarios is yet to
be determined with more studies. Finally, we tested one
type of valves for each experiment. Variability in valve
type is not anticipated because the manufacturability of
these commercial valves is already established. It is also
key to acknowledge that such ex vivo modeling does not
factor in the biological aspects of platelets activation which
come into play.

CONCLUSIONS
The hemodynamics downstream of 4 transcatheter aortic

valves, 3 of which are self-expanding valves (26-mmEvolut
R, S Acurate neo, and 23-mm Allegra) and 1 balloon
expandable valve (23-mm Sapien 3) were evaluated in
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catheter aortic valves. The fluctuations in the standard deviations are higher with the self-expanding valves compared with the Sapien 3. This complements

the elevated turbulent stresses obtained in this study.
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this study under pulsatile conditions in vitro. There was a
distinct trend of performance obtained with each valve in-
dependent of whether they are self-expanding or balloon-
expandable, as summarized in Figure 6. The Allegra valve,
a self-expanding valve, and the Sapien 3 valve, a balloon-
expandable valve, were characterized by the lowest leaflet
flutter and thus, the lowest turbulence downstream. These
results were supported by the lowest PG results along the
pressure recovery zone and minimal fluctuations as evi-
denced by the SDs of the PG downstream of the valve.
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FIGURE E1. Box-and-whisker plot showing the pressure gradient distribution for each valve case. The lower and upper borders of the box (Q1 and Q3)

represent the lower and upper quartiles (25th percentile and 75th percentile). Themiddle horizontal line (Q2) represents the middle value in the data set (50th

percentile). The lower and upper lines (Q0 and Q4, which are known as whiskers) represent variability outside the upper and lower quartiles (0th percentile

and 100th percentile, respectively) and show the minimum andmaximum values of nonoutliers. Extra dots represent outliers, which differ significantly from

the rest of the dataset. Evolut R (Medtronic), Sapien 3 (Edwards Lifesciences), Acurate neo (Boston Scientific), and Allegra (New Valve Technologies). VC,

Vena contracta.
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