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Abstract. Thermokarst lake dynamics, which play an essen-
tial role in carbon release due to permafrost thaw, are affected
by various geomorphological processes. In this study, we de-
rive a three-dimensional (3D) Stefan equation to character-
ize talik geometry under a hypothetical thermokarst lake in
the continuous permafrost region. Using the Euler equation
in the calculus of variations, the lower bounds of the talik
were determined as an extremum of the functional describ-
ing the phase boundary area with a fixed total talik volume.
We demonstrate that the semi-ellipsoid geometry of the talik
is optimal for minimizing the total permafrost thaw under the
lake for a given annual heat supply. The model predicting el-
lipsoidal talik geometry was compared to talik thickness ob-
servations using transient electromagnetic (TEM) soundings
in Peatball Lake on the Arctic Coastal Plain (ACP) of north-
ern Alaska. The depth :width ratio of the elliptical sub-lake
talik can characterize the energy flux anisotropy in the per-
mafrost, although the lake bathymetry cross section may not
be elliptic due to the presence of near-surface ice-rich per-
mafrost. This theory suggests that talik development deep-
ens lakes and results in more uniform horizontal lake expan-
sion around the perimeter of the lakes, while wind-induced
waves and currents are likely responsible for the elongation
and orientation of shallow thermokarst lakes without taliks
in certain regions such as the ACP of northern Alaska.

1 Introduction

Thermokarst lakes are abundant in regions underlain by ice-
rich permafrost including the Arctic Coastal Plain (ACP) of
northern Alaska, northwestern Canada, and Siberia (Grosse
et al., 2013; Jones et al., 2022). These lakes are formed due
to permafrost degradation, and their basin evolution is funda-
mentally different from lakes formed in temperate and trop-
ical regions. Thermokarst lakes affect the thermal regime of
the surrounding permafrost, which controls the geomorphol-
ogy and evolution of the lake basin (Brewer, 1958). If the
lake bed has a mean annual temperature greater than 0 ◦C,
the sub-lake permafrost will begin to thaw (Burn, 2002; Arp
et al., 2016). This typically occurs in lakes that are deeper
than the maximum winter ice thickness, where the ice cover
floats above an unfrozen water layer (Jeffries et al., 1996;
Burn, 2002). In this case, unfrozen lake bed sediments per-
sist, and the thaw front continues to penetrate deeper into
the underlying permafrost. This results in a “talik”, or a
perpetually unfrozen zone confined by permafrost, beneath
the lake depending on local anomalies in thermal, hydro-
logical, hydrogeological, or hydrochemical conditions (van
Everdingen, 1998). In ice-rich permafrost, the conversion
of ice to water with thaw causes a volumetric reduction in
the unconsolidated material, and the lake bed consequently
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1248 N. Ohara et al.: Stefan equation for a sub-lake talik

subsides significantly, increasing the depth of initial basins
(Czudek and Demek, 1970; Jorgenson and Shur, 2007; Shur
and Osterkamp, 2007; Jorgenson, 2013; French, 2018). The
total depth of thaw subsidence is determined by the amount
and distribution of excess ice content in the permafrost with
depth. As the lake expands by lateral thermomechanical ero-
sion of the banks, mineral and organic sediments from re-
treating shores are delivered to the lake basin (Farquharson et
al., 2016). However, thaw-induced ground subsidence effec-
tively deepens the basin, so volumetric capacity can increase
over time. Over decades and centuries, the talik increases in
thickness, and lake bed subsidence continues as long as the
thawing permafrost is ice-rich (West and Plug, 2008).

In certain ice-rich permafrost regions in the Arctic, there is
a preferential orientation and elliptic shape to the thermokarst
lakes (Black and Barksdale, 1949; Hinkel et al., 2005; Grosse
et al., 2013). In particular, elliptical-oriented lake districts
are found predominantly along the central north Siberian
coast, northern Alaska, and in northwest Canada (Grosse
et al., 2013). On the ACP of northern Alaska, many el-
liptical thermokarst lakes have a long axis oriented 10–
20◦W from true north, which is nearly perpendicular to the
prevailing wind direction (Carson, 1968; Sellmann, 1975;
Carter, 1981). Hinkel et al. (2005, 2012) also showed sig-
nificant correlation between lake orientation and summer
wind direction by analyzing the geometric shape metrics of
the thermokarst lakes and drained thermokarst lake basins
(DTLBs) on the ACP of Alaska. It has been proposed that
winds at the lake surface cause currents and water waves,
which trigger thermomechanical bank erosion, resulting in
asymmetrical elliptical orientation (Livingstone, 1954; Rex,
1961; Carson and Hussey, 1962; Mackay, 1992; Arp et al.,
2011). The sublittoral shelves and bars typically found in
the deeper thermokarst lakes may also be formed by wind-
driven currents and waves, as well as warmer water temper-
atures (Carson and Hussey, 1962). The axis-oriented sublit-
toral shelves make the orientation appear more pronounced
in larger basins. Other processes also influence the orienta-
tion of thermokarst lakes such as historical drained lake ge-
ometry, ground ice distribution, and dune ridge orientation
by aeolian sand transport (Carter, 1981).

Several numerical models have been proposed and applied
that describe permafrost thaw for the purpose of analyzing
water and carbon cycles (e.g., Kessler et al., 2012). How-
ever, Schuur et al. (2015) stress the need to better represent
talik formation and geometries to parameterize numerical
models more effectively. Painter et al. (2016) demonstrated
a coupled surface–subsurface permafrost thermal hydrology
model at the multiple ice-wedge polygon scale. Kessler et
al. (2012) simulated carbon mobilization over 10 000 years
on two neighboring thaw lakes located on ice- and organic-
rich Yedoma permafrost terrain (Kanevskiy et al., 2011;
Schirrmeister et al., 2013) in the northern Seward Peninsula,
Alaska, using a three-dimensional (3D) numerical thermal
model. They demonstrated the effectiveness of model simu-

lations for methane emission from thermokarst lakes. Ling
and Zhang (2003b) provided a numerical parametrization of
lake talik development and showed that shallow thermokarst
lakes are a significant heat source affecting permafrost and
talik geometries. Rowland et al. (2011) advanced the tech-
nique by including advective heat transport on talik evolu-
tion. West and Plug (2008) and Plug and West (2009) char-
acterized the lake bathymetry including the effects of lake
ice and littoral shelves. These thermal models use long-term
mean lake temperature as the Dirichlet boundary condition
and a uniform annual mean temperature profile as the ini-
tial condition. Analytical and numerical models can provide
dynamic solutions for the heat transfer equation under quasi-
steady-state climate conditions. However, the existing mod-
els require prescribed lake shapes (circle or ellipse) to obtain
information on talik depths as opposed to modeling the likely
influence of talik evolution on lake shape – this work, in part,
attempts to address this shortcoming.

Direct drilling measurements of taliks below thermokarst
lakes are difficult to obtain and only exist in a few rare
case studies (Brewer, 1958; Johnston and Brown, 1966; Roy-
Leveilee and Burn, 2017; Heslop et al., 2015). Geophysi-
cal methods can be used (e.g., Schwamborn et al., 2000;
Parsekian et al., 2019; Creighton et al., 2018; Sullivan et
al., 2021; O’Neill et al., 2020); however, it is time consum-
ing and laborious to produce 3D subsurface images at the
large scale of lakes found in permafrost lowland regions.
Since field measurements (coring, geophysics, etc.) are spa-
tiotemporally limited, numerical and analytical modeling is
used to gain critical insights into talik evolution. Mackay
(1962) obtained the analytical vertical temperature profiles
below the water at the center of a circular lake by analyt-
ically solving the heat transfer equation. Burn (2002) sub-
sequently extended the solution for an elongated lake. This
analytical model has been used for lake process characteri-
zation because the quasi-steady-state model was able to rea-
sonably quantify the talik thickness. For example, Hinkel and
Arp (2015) applied the temperature profile to 2100 lakes and
found that larger, long-lived lakes (more than 66 ha) may
have taliks that penetrate through the permafrost (open taliks)
to the groundwater system below in a region with permafrost
that is up to 600 m thick.

These existing models require the prescribed lake shapes
(circle or ellipse) to obtain the talik depth; in fact, no existing
studies explicitly provide an answer to the following funda-
mental question: why do thermokarst lakes tend to be ellipti-
cal and/or round? Also, in spite of several decades of research
focused on the orientation of thermokarst lakes in certain re-
gions, no existing studies explicitly explain why thermokarst
lakes in some regions orient perpendicular to the prevail-
ing wind direction. The objective of this work is to imple-
ment a novel mathematical framework that concurrently de-
scribes both the oriented nature of the thermokarst lakes and
the talik depth below the lakes. Previous models have calcu-
lated the talik development due to heat flow, though most
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use some simplifying assumptions to reduce dimensional-
ity. Separately, researchers have hypothesized about ellipti-
cal lake morphology by invoking winds, currents, and ero-
sion. Here, we couple both the talik evolution and lake shape
questions together in a single mathematical model. Addition-
ally, we intend to use this theory to demonstrate that the ther-
mal gradient could exert control on the depth :width ratio of
the talik. In other words, the proposed theory aims to isolate
the most important process – sub-lake permafrost thaw and
subsidence – from other effects such as wind wave erosion,
thaw slumping, sediment redistribution and incoming radia-
tion imbalance, using thermally optimized lake geometry.

2 Theory

2.1 Basin-integrated energy equation

The approach used in this study is based on Lagrangian me-
chanics, which generalizes the classical Newtonian mechan-
ics, using the stationary action principle (the principle of
least action). The action is defined as the integral of the La-
grangian, which consists of kinetic and potential energy of
the system. In this application, the Lagrangian simply be-
comes the potential energy due to the absence of kinetic en-
ergy. The variational principle that is the main tool in La-
grangian mechanics can indeed derive the equations in New-
tonian mechanics. One of the related research topics using
the variational principle to fluid mechanics is phase boundary
propagation, which can be analyzed by the phase field model
or diffusion interface model (Cassel, 2013). This model ex-
plains the diffuse phase boundary without surface tension
that appears in Newtonian interfacial physics between a liq-
uid and a gas. According to the second law of thermodynam-
ics, the free energy of the system must decrease monoton-
ically to ensure a non-negative entropy production (Singer-
Loginova and Singer, 2008). This requires that the time rate
of change in the phase boundary be expressed by the func-
tional derivative of the free energy functional, which corre-
sponds to the total energy flux into the talik in relation to
permafrost thaw. This study directly and analytically solves
the Euler–Lagrange equation based on the stationary action
principle rather than the entropy functional used in the phase
field method.

Heat energy collected by a waterbody is used for phase
boundary expansion, as well as heat conduction into the ad-
jacent permafrost (e.g., French, 2018). From the energy bal-
ance equation around the phase boundary, the energy for per-
mafrost thaw is expressed as the subtraction of heat conduc-
tion from the input energy at the phase boundary (Carslaw
and Jaeger, 1959; Patel, 1968; Lunardini, 1981). The material
of permafrost and talik is assumed to be fully saturated with
ice and water, respectively. Also, the thermal constants (ther-
mal conductivity, latent heat, and thawing temperature) are
constant and isotropic, and the change in volume of water on

thawing and freezing is negligible. Under such assumptions,
the energy conservation equation at the phase boundary can
be expressed as

φvρL= qsuf− kL
dT
dn
−

(
−kp

dT
dn

)
, (1)

where φ is volumetric water content (m3 m−3), v is thaw rate
or advancement of talik boundary (m s−1), ρ is density of
water (kg m−3), L is latent heat for ice thaw (liquid–solid)
(J kg−1), qsuf is additional heat input from ground surface
around the lakeshore (W m−2), kL is thermal conductivity
of unfrozen soil (W (m ◦C)−1), kp is thermal conductivity
of frozen soil (permafrost) (W (m ◦C)−1), T is temperature
(◦C), and n is outward normal from the interface into the
soil (m). The energy terms can be grouped into heat for per-
mafrost thaw qth (W m−2), incoming heat at the phase bound-
ary qin (W m−2), and outgoing heat by conduction to the per-
mafrost qout (W m−2). These heat fluxes can be evaluated by
the following formulas:

qth = φvρL, (2)

qin = qsuf− kL
dT
dn
, and (3)

qout =−kp
dT
dn
. (4)

When heat input from the surface is consumed for phase
change without any loss (qout = qsuf = 0), the well-known
Stefan equation can be obtained from Eqs. (1) through (4)
under the quasi-steady-state approximation (Stefan, 1891;
Kurylyk and Hayashi, 2016). This study also adopts the
quasi-steady-state approximation for the talik shape charac-
terization.

As the thawing process is direction-dependent, it is conve-
nient to use vector notation (Fig. 1). That is,

q th = q in− qout. (5)

A vector is denoted by a bold and italic letter. The talik ex-
pansion flux vector corresponds to thaw direction, which is
affected by the other two heat fluxes. Figure 1 illustrates the
thermal profiles around the thaw lake in warm and cold sea-
sons. The horizontal near-surface heat conduction is influ-
enced by the seasonality of the surface heat budget, while
the vertical heat conduction under the lake remains unidi-
rectional throughout the years. Clearly, the presence of the
thaw lake considerably alters the heat environment of the
permafrost, while the temperature slope at the bottom of the
permafrost may be approximated by the geothermal gradi-
ent in regions with thick continuous permafrost such as the
ACP. This directionality in the heat environment around the
lake may cause anisotropic talik expansion. Here, the phase
change heat vector is expressed as being proportional to the
normal heat input qin as follows:

q th =
(
qth,x , qth,y , qth,z

)
= (ξqin, ηqin, ζqin)= qin (ξ,η,ζ ), (6)

https://doi.org/10.5194/tc-16-1247-2022 The Cryosphere, 16, 1247–1264, 2022
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Figure 1. Definitions of variables associated with the overall shape of phase boundary ϕ during warm (a) and cold seasons (b) and incoming
and outgoing heat transfers on ϕ (x,y) (c). Incoming heat (red-colored vector) is perpendicular to the phase boundary ϕ (x,y), while thaw
direction (blue-colored vector) is modified by the anisotropic heat conduction (green-colored vector) in the permafrost.

where qin is the input heat normal to the phase boundary, and
ξ,η, and ζ are the thaw energy fractions of the heat input
normal to the phase boundary with respect to x, y, and z di-
rections, respectively. The depth of the phase boundary (m),
z= ϕ(x,y), may be expressed as an arbitrary 3D surface as

g (x,y,z)= ϕ (x,y)− z= 0. (7)

Hence, the normal vector n at any location on the phase
boundary g can be written as follows:

n=
∇g

|∇g|
=

1
|∇g|

(
gx,gy,gz

)
=

1√
ϕ2
x +ϕ

2
y + 1

(
ϕx,ϕy,−1

)
, (8)

where the subscript in this expression denotes partial deriva-
tive (e.g., ϕx = ∂ϕ/∂x), and ∇ is a vector differential opera-
tor (∂/∂x, ∂/∂y,∂/∂z). As such, the vector of the input heat
to the phase boundary ϕ is

q in =
∣∣q in

∣∣n= qinn=
qin√

ϕ2
x +ϕ

2
y + 1

(
ϕx,ϕy,−1

)
, (9)

and the corresponding thaw heat vector is

q th =
qin√

ϕ2
x +ϕ

2
y + 1

(
ξϕx,ηϕy,−ζ

)
. (10)

Next, the thaw heat magnitude can be evaluated using a Eu-
clidian norm as∣∣q th

∣∣= qin√
ϕ2
x +ϕ

2
y + 1

√
ξ2ϕ2

x + η
2ϕ2
y + ζ

2

=
ζqin√

ϕ2
x +ϕ

2
y + 1

√
α2
xϕ

2
x +α

2
yϕ

2
y + 1, (11)

where

αx =
ξ

ζ
,αy =

η

ζ
. (12)

The parameters αx and αy (unitless ratio) describe the
anisotropic thermal condition between horizontal and verti-
cal directions. The parameters αx and αy are greater than 1
when the vertical temperature gradient is steeper than in the
horizontal gradient. The total thaw energy over the lake can
be computed by the area integral on the phase boundary 0.
That is,∫
0

∣∣q th
∣∣ d0 =

∫ ∫
B

∣∣q th
∣∣ √ϕ2

x +ϕ
2
y + 1dxdy, (13)

= ζqin

∫ ∫
B

√
α2
xϕ

2
x +α

2
yϕ

2
y + 1dxdy. (14)
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This expression indicates that the heat required for lake ex-
pansion is proportional to the weighted phase boundary area
with the weights αx and αy .

2.2 Optimum phase boundary shape

The calculus of variation, often referred to as a functional
analysis, is the mathematical technique to find an extremum
(minimum or maximum) of the system in terms of a func-
tion type instead of a variable (e.g., Courant and Hilbert,
1954; Gelfand and Fomin, 1963). Thermally optimum func-
tion types ϕ (x,y) of the phase boundary can be derived us-
ing this method. As presented in the previous section, the
heat consumption rate for talik expansion is represented by
the weighted phase boundary area, while the time-integrated
heat supply is equivalent to the thawed permafrost volume.
Assuming heat thaws the most susceptible region of the per-
mafrost near the heat source first, the shape of a talik may
minimize the total permafrost thaw with a given amount
of incoming energy. In other words, as the free energy of
the system must decrease monotonically to ensure a non-
negative entropy production (the second law of thermody-
namics), the optimum talik shape should minimize the phase
boundary area for a specified talik volume. The weighted
phase boundary area A and its volume V can be expressed
as follows:
V [ϕ]=

∫∫
B

ϕ dxdy

A [ϕ]=
∫∫
B

√
α2
xϕ

2
x +α

2
yϕ

2
y + 1dxdy

. (15)

To obtain the optimum talik shape, the functional F is for-
mulated using the method of Lagrange multipliers as

F [ϕ]= λV [ϕ]+A [ϕ]

=

∫ ∫
B

(
λϕ+

√
α2
xϕ

2
x +α

2
yϕ

2
y + 1

)
dxdy, (16)

where λ is the Lagrange multiplier. The minimum of the
functional F can be determined for λ < 0 because both V
and A are monotonic functions. Let

f
(
ϕ,ϕx,ϕy

)
= λϕ+

√
α2
xϕ

2
x +α

2
yϕ

2
y + 1 . (17)

Equation (15) becomes

F [ϕ]= λV [ϕ]+A [ϕ]=
∫ ∫
B

f
(
ϕ,ϕx,ϕy

)
dxdy. (18)

Note that this functional can be interpreted as the La-
grangian of the system. Therefore, to find the extremal phase-
boundary shape ϕ that minimizes the functional F [ϕ], the

Euler–Lagrange equation can be formulated as

∂f
(
ϕ,ϕx,ϕy

)
∂ϕ

−
∂

∂x

(
∂f
(
ϕ,ϕx,ϕy

)
∂ϕx

)

−
∂

∂y

(
∂f
(
ϕ,ϕx,ϕy

)
∂ϕy

)
= 0. (19)

Substituting Eqs. (16) to (18) yields

λ−
∂

∂x

 α2
x ϕx√

1+α2
x ϕ

2
x +α

2
yϕ

2
y


−
∂

∂y

 α2
y ϕy√

1+α2
xϕ

2
x +α

2
yϕ

2
y

= 0. (20)

By analogy to the two-dimensional (2D) application in Ohara
and Yamatani (2019), an ellipsoid is one of the solutions of
Eq. (20) as follows:

z=−ϕ =−

√
4
λ2 −

x2

α2
x

−
y2

α2
y

+ d, (21)

(
x

2αx
|λ|

)2

+

 y

2αy
|λ|

2

+

(
z− d

2
|λ|

)2

= 1. (22)

Detailed alternative derivation using isoperimetric inequality
is available in Appendix A. The coefficients d and λ can be
determined by further variational analysis explained in Ap-
pendix B. As such, Eqs. (21) and (22) become

ϕ =

√
D2−

x2

α2
x

−
y2

α2
y

and (23)(
x

αxD

)2

+

(
y

αyD

)2

+

( z
D

)2
= 1, respectively. (24)

D is the talik center depth, and αx and αy are the cross-
sectional aspect ratios. Hence, the semi-ellipsoidal geom-
etry of the phase boundary (i.e., the boundary between
the permafrost and talik) was explicitly derived as a ther-
mally optimum shape based on the variational principle us-
ing the thermal quasi-steady-state approximation. This re-
sult is consistent with the existing numerical thermal mod-
els (Schwamborn et al., 2000; Plug and West, 2009; Ling
and Zhang, 2003b; Kessler et al., 2012) which predicted
nearly elliptic talik cross sections under thaw lakes in a
continuous permafrost. As the Stefan equation describes the
phase boundary depth (active layer depth or frost depth) un-
der a uniform and flat landscape, the solution of the Euler–
Lagrange equation (Eq. 23) is the 3D Stefan equation for the
talik beneath a thermokarst lake.

https://doi.org/10.5194/tc-16-1247-2022 The Cryosphere, 16, 1247–1264, 2022
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Figure 2. Lake bathymetry models for a thermokarst lake and
the talik underneath based on the quasi-steady state. (a) The lake
bathymetry is proportional to the talik geometry with uniform ice
distribution. (b) The lake bathymetry tends to have a flat bottom
due to the widespread ice-rich layer near the surface.

2.3 Thermokarst lake bathymetry and phase boundary
geometry

When top-down permafrost thaw dominates the process, the
thermokarst lake bottom shape ψ (x,y)may be similar to the
phase boundary shape, as illustrated in Fig. 2. However, the
lake bathymetry can be related to the permafrost degradation
rate rdeg (ratio; m /m) defined as

rdeg =
Dthaw

Dfrzn
∼ 1−

ψ (x,y)

ϕ (x,y)
∼ 1−

H

D
, (25)

where H and D denote the water depth and the talik thick-
ness at the lake center, respectively. Dfrzn is the frozen soil
thickness (m), and Dthaw is the corresponding thawed soil
thickness depth (m), which is strongly dependent on the ex-
cess ground ice content; excess ice is defined as the volume
of ice in the ground, which exceeds the total pore volume
that the ground would have under natural unfrozen condi-
tions (van Everdingen, 1998). Therefore, thaw settlement is
typically computed from excess ice content and the thickness
of the layer with excess ground ice. However, as the consol-
idation settlement effect, which is a function of void ratio
and effective stress, may not be separated, we use the simple
permafrost degradation rate (Eq. 25) in this study.

If the permafrost degradation rate is uniform and constant
throughout the basin (Fig. 2a: uniform permafrost), the lake
bathymetry tends to be an ellipsoid shape. However, as the
ice-rich layer is typically developed near the surface on the
ACP (e.g., Kanevskiy et al., 2011, 2013), the bathymetry may
have a flatter bottom like a rectangular cross section (Fig. 2b:
layered permafrost) because the ice-rich layer is character-
ized by much higher thaw settlement than the ice-poor per-
mafrost at depth. Therefore, proportionality between talik

Figure 3. Map of the study area: Peatball Lake and subregions for
lake characterization (red).

thickness and lake water depth is unlikely a reasonable as-
sumption due to the ice-rich layer presence. Indeed, Hinkel
et al. (2012) showed many flat-bottomed lakes through the
extensive bathymetry surveys across the ACP of Alaska us-
ing a GPS-enabled sonar from a boat.

Additionally, as hydrology also affects the lake water
level, the apparent lake bathymetry, or lake water depth,
h(x,y) must be adjusted by the water loss (or gain) per unit
area. Therefore,

h(x,y)=
[
1− rdeg

]
ϕ (x,y)−Hloss, (26)

where Hloss (m) is the elevation difference between the cur-
rent water surface and original ground surface before lake
formation. At the lake center,

H =
[
1− rdeg

]
D−Hloss. (27)

Thus, the thermokarst lake bathymetry is affected by the ice-
rich layer thickness, interannual water balance, lake age, and
talik geometry.

3 Case study

3.1 Study area

Peatball Lake (70◦42.40′ N, 153◦55.50′W; 3 m above sea
level) on the ACP of Alaska was chosen for the demon-
strative model application in this study as it has been rela-
tively well documented in previous studies (Lenz et al., 2016;
Creighton et al., 2018; Parsekian et al., 2019). Figure 3 shows
the location of Peatball Lake within the Teshekpuk Lake sub-
region, as well as other subregions that will be discussed
later.

Peatball Lake, named for the abundant submerged peat
balls on the lake bed, is a subcircular lake on the Outer
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Coastal Plain of Alaska with a surface area of 1.18 km2. Per-
mafrost in this area is as thick as ∼ 400 m (Jorgenson et al.,
2008), and the average volumetric ground ice content is about
77 % in the near surface to a depth of 4 m (Kanevskiy et al.,
2013). A talik has formed under Peatball Lake because the
maximum water depth of 2.5 m exceeds the maximum win-
ter ice thickness of 1.5 to 2.0 m (Arp et al., 2015; Lenz et al.,
2016). The talik depth was estimated as 91 m at the lake cen-
ter based on noninvasive transient electromagnetic (TEM)
measurements (Creighton et al., 2018). However, the talik
may not be present beneath the shallow sublittoral shelves
on the western shore determined from the bathymetry (Lenz
et al., 2016). Additionally, Lenz et al. (2016) reported that,
based on remote sensing imagery, Peatball Lake has ex-
panded laterally between 0.02 and 1.36 m yr−1 from 1955 to
2002.

3.2 Geophysical survey of talik

Geophysical field methods are effective for identifying and
visualizing the frozen–unfrozen interface, which is a key
feature in permafrost dynamics (e.g., Pilon et al., 1985;
Doolittle et al., 1990; O’Neill et al., 2020; Rangel et al.,
2021). For sub-lake taliks in the continuous permafrost zone,
Schwamborn et al. (2000) analyzed the sedimentary history
of Lake Nikolay in the western Lena River Delta using seis-
mic reflection and ground penetrating radar (GPR). Other
geophysical methods such as surface nuclear magnetic res-
onance (NMR) can be used to detect lake taliks (Parsekian et
al., 2019) and remnant taliks in drained lake basins (Rangel et
al., 2021). At Peatball Lake, Creighton et al. (2018) estimated
the talik depth using transient electromagnetic (TEM) sur-
veys along transects perpendicular to lakeshores. The dataset
(Parsekian et al., 2018) at Peatball Lake is, to our knowl-
edge, the only quasi-3D talik model available under an iso-
lated lake in the continuous permafrost zone because others
are mostly sporadic talik depth measurements at single drill
points.

We applied the derived 3D Stefan equation to Peatball
Lake based on 27 talik thickness point measurements across
the lake (Fig. 4), estimated using TEM soundings (Creighton
et al., 2018) during spring 2016 and 2017. Figure 4 shows
the observed talik thicknesses by the TEM sounding (dots)
and the fitted theoretical talik thickness estimates (contour
lines) superimposed over the corresponding lake bathymetry
measured by Lenz et al. (2016).

The geometric parameters of the semi-ellipsoid model
such as the talik center depth (D), the cross-sectional as-
pect ratios (αx and αy), lake orientation azimuth angle, and
the lake center location were systematically determined by
grid searching to minimize the root mean square difference
(RMSD) between the model and thaw front obtained from
the TEM data. The optimum parameters for the smallest
RMSD (5.94 m) are shown in Fig. 4. Unexpectedly, the basin
orientation angle was found to be 23◦ E from true north, un-

Figure 4. The theoretically extrapolated talik thickness map (con-
tour lines) based on 27 TEM soundings (dots) in Peatball Lake,
ACP of Alaska. The red contour lines and the observation points are
consistent. The corresponding observed lake bathymetry (adopted
from Lenz et al., 2016) is also included in blue gradation. The TEM
sounding transects start on the lakeshore and end near the center of
the lake.

like the orientation of other surrounding lakes in the region.
A comparison between the extrapolated talik geometry and
the lake bathymetry (Lenz et al., 2016) suggests the possi-
bility of the coalescence of two basins in the past, a rela-
tively common occurrence on the ACP of Alaska. However,
if we had more TEM measurement points, particularly in the
“possible talik sub-basin”, the fitted talik geometry could be
different as the model was only fitted for the 27 TEM sound-
ings. Despite irregularity due to the complex lake formation
history, the overall sub-lake talik geometry may be approxi-
mated by a semi-ellipsoidal shape as indicated by the very
good fit of the elliptic model to the TEM-measured talik
thicknesses (see Fig. 4 with overall RMSD = 5.94 m, 6.7 %
of the maximum talik depth). The idealized, thermally opti-
mum model geometry can partition talik irregularity associ-
ated with multi-generation lakes such as Peatball Lake.

Additionally, the gaps between the shoreline and the mod-
eled talik extent located along the north and east shores oc-
cur where lake expansion is most rapid (Lenz et al., 2016). It
has been reported that thaw lake banks continuously retreat
through a combination of thermal and mechanical processes,
although there is significant variability in rate of bank re-
treat depending on the region (Hopkins, 1949; Hopkins et al.,
1955; Tomirdiaro, 1982; Rampton, 1982; Burn and Smith,
1990; Jones et al., 2011; Lenz et al., 2016). Cross-sectional
numerical thermal models demonstrated that the expansion
rates are affected by the talik thickness (Plug and West, 2009)
and seasonal snow cover (Ling and Zhang, 2003a). The dis-
agreement between the lake and talik extents on the north
and east shores of Peatball Lake implies that rapid horizon-
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Figure 5. (a) Cross-sectional comparisons of the lake bed and the talik profiles along the two TEM transects (b) through (c) (Lenz et al.,
2016) in Peatball Lake. Panel (b) displays the cross plot of the observed talik and lake depths at all 27 TEM data points.

tal lake expansion can locally dominate permafrost thaw and
subsidence processes even in a lake with a talik.

Figure 5 compares the observed lake bed and talik pro-
files in Peatball Lake along the north–south center line and
along the transects (b) and (c), respectively. Note that the
TEM transects for the talik is not a straight line (See Fig. 4);
therefore, the fitted theoretical line shows irregularity. Fig-
ure 5a illustrates that the lake bed profile is characterized by
flatter trapezoidal geometry compared to the elliptic talik. In
fact, there is a clear inflection in the linear regression line
at a talik depth of ∼ 50 m in Fig. 5b. From the slopes of
the regression lines, the permafrost degradation rates rdeg are
computed as 97.3 % and 99.7 % for the shallow talik section
(50 m or less) and the deep section (50 m or more), respec-
tively. This analysis suggests that the subsidence due to per-
mafrost thaw continues even after the shallow ice-rich part
of the permafrost (about 4 m; Kanevskiy, 2013) is thawed,
while it has diminished around the depth of 50 m under Peat-
ball Lake. This case study demonstrates a link between lake
bathymetry and talik thickness associated with a layered per-
mafrost structure.

3.3 Depth : width ratio and temperature gradient

The analysis (Eqs. 23 and 24) suggests the proportional re-
lationship between lake and talik geometry and thaw energy.
That is,

a : b :D = αx : αy : 1= ξ : η : ζ = qf,x : qf,y : qf,z. (28)

Combining Eqs. (28), (1), and (4), the depth :width (radius)
ratio of the talik may be written as follows:

a :D =

(
qin,x + kp

dT
dr

)
:

(
qin,z+ kp

dT
dn

)
, (29)

where r and n are the horizontal and vertical distances from
the original permafrost surface center, respectively, and a is
the representative horizontal radius of the lake. This expres-
sion states that the anisotropic top-down permafrost thaw is

caused by anisotropy of the thermal gradient for uniform
incoming energy and uniform thermal properties of near-
surface permafrost. For example, since the vertical thermal
gradient is typically steeper than the horizontal gradient dur-
ing the critical summer months (Carson and Hussey, 1962;
illustration in Fig. 1), the heat energy in the vertical direc-
tion is used more for heat conduction rather than permafrost
thawing. The vertical temperature gradient is always nega-
tive near the talik boundary in the permafrost

(
dT
dn < 0

)
at

the center of the lake, while the inter-seasonal average of the
horizontal thermal gradient may be negligible

(
dT
dr ≈ 0

)
. As

a result, lateral thaw is faster than vertical thaw due to less
energy loss to horizontal heat conduction (McClymont et al.,
2013; Devoie et al., 2021). Assuming the normal heat flux to
the phase boundary is uniform throughout the phase bound-
ary surface (qin,x = qin,z = qin), Eq. (29) can be simplified as
follows:

D

a
= 1+

kp

qin

dT
dn

or qin =−
akp

a−D

dT
dn
. (30)

This simple expression may be a useful tool to link the lake
depth :width ratio, the lake average heat flux qin, and the ver-
tical temperature gradient dT

dn at the base of the talik. Since
dT
dn < 0 in the permafrost near the talik boundary, the D/a is
always less than 1 (flatter than a semi-sphere). However, the
depth :width ratio of the talik depends on the vertical temper-
ature slope near the talik boundary, which is likely affected
by talik age. For instance, Mackay’s analytical model (1962)
suggests that the vertical temperature gradient below the lake
center begins steeply at the talik initiation, and then over time
it approaches a lower slope at equilibrium. Therefore, the for-
mula in Eq. (30) suggests that a younger talik should be flat-
ter, while an older talik approaches a deeper semi-spherical
shape (D/a→ 1).

Table 1 shows the estimated incoming heat flux with
the key parameters using the proposed formula (Eq. 30).
Creighton et al. (2018) applied the CRYOGRID2 model
(Westerman et al., 2013) to Peatball Lake. The tempera-
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ture slope at the talik bottom at the lake center was esti-
mated by Mackay’s analytical model assuming the lake age
of 1400 years since the talik initiation with the same model
configuration that Creighton et al. (2018) adopted. Creighton
et al. (2018) estimated the interannual mean heat flux qin to
be 0.070 (W m−2), which is very close to our estimate. As
this simplified formula is consistent with the well-configured
modeling result, the horizontal thermal gradient contribution
to the vertical aspect ratio of the talik seems to be very small
in Peatball Lake.

Moreover, this relationship may be useful to incorporate
the 3D talik expansion effect in a simple analysis without
fully integrated permafrost thermal modeling. For example,
if the mean energy flux increases 10 % from current cli-
mate conditions (e.g., shorter lake freeze period), assuming
all other properties and horizontal thermal gradient variation
remain unchanged, the talik depth :width ratio D/a would
shift from 0.171 to 0.234 toward the new equilibrium state.
Therefore, this analysis suggests that a warmer climate may
promote permafrost thaw in the vertical direction more than
in the horizontal direction. Hence, it is important to quantify
the vertical thawing, as well as the visible lake horizontal ex-
pansion, in order to evaluate the impact of the climate change
on permafrost thaw beneath thermokarst lakes.

4 Discussion

4.1 Relationship between hypothetical models

To illustrate the applicability of the thermal model presented
here, the available hypothetical models of thermokarst lake
growth are compiled in Fig. 6. This diagram focuses on the
physical processes after the lake initiation stage assuming the
bio-ecological effects are negligible.

Figure 6 illustrates the evolution of the talik in ice-rich per-
mafrost over time, with driving processes shown in the right
panel. In Stage A, the mechanical processes of wave erosion
and thaw slumping along lake margins dominate lake expan-
sion in summer, and shallow water favors grounded lake ice
in the winter. In time (Stage B), the lake deepens from thaw
subsidence beneath the older lake center. Winter ice may
freeze to the lake bed, but heat loss is insufficient to freeze
the underlying thawed lake bed sediments. A shallow talik
develops as thermal processes work in tandem with mechani-
cal processes, the latter now enhanced by more vigorous lake
circulation. By Stage C, the talik is well developed beneath
the entire lake basin as ground subsidence continues. Even-
tually (Stage D), the winter ice cover no longer extends to the
lake bed but instead floats atop a residual pool of lake water,
while the milder vertical temperature gradient beneath the
lake deepens the talik as the lake matures. Thermomechani-
cal erosion of lake margins, especially if there are prominent
banks in hilly terrain, promotes sedimentation on near-shore
shelves, and the underlying talik may begin refreezing. If the

lake has not drained by this point (Stage E), the talik beneath
the lake center extends deeper into the permafrost, although
subsidence may cease as the excess ice content diminishes
with depth. Where many large, old lakes exist, the permafrost
may be riddled with deep taliks, and some may eventually
penetrate to the permafrost base to create an open talik.

Talik development is affected by climatic and local condi-
tions that favor talik initiation and growth including

– deepening lake waters triggered by greater precipitation
and/or reduced evaporation which promotes a floating
ice regime

– the presence of ice-rich sediments (e.g., Yedoma) be-
neath lakes

– warmer lake water induced by regional warming or by
longer ice-free summers

– thinner winter ice cover due to warmer winter tempera-
tures and/or deeper snow.

Conversely, talik growth cessation or contraction can occur
when the same drivers are reversed if the lake partially or
completely drains or when the lake basin is filled with sedi-
ments. The latter scenario is more likely in hilly terrain when
the expanding lake erodes high banks and lake currents re-
distribute sediments.

4.2 Thermal process and preferential expansion

4.2.1 Lake geometry and heat balance

The analytical expression of the lake geometry may be use-
ful to analyze horizontally oriented lakes with direction-
dependent elongation as well. From Eqs. (28) and (1), we
have

a : b = qf,x : qf,y =
(
qin,x − qc,x

)
:
(
qin,y − qc,y

)
, (31)

where a and b are the semi-major and semi-minor axes of
the elongated lake, respectively. When horizontal heat con-
duction into the tundra is negligible (qc,r = kp dT

dr ≈ 0), this
equation can be reduced to

a : b = qin,x : qin,y . (32)

Hence, the aspect ratio of elliptic lakes can be explained by
heat supply inequality if the lake geomorphology process is
dominated by the thermal process. As expressed in Eq. (3),
there are two different components in the incoming heat flux
to the lake banks: surface energy flux and heat conduction
from the lake water body. Thus, the lake aspect ratio may be
written as

a : b =

(
qsuf,x − kL

dT
dx

)
:

(
qsuf,y − kL

dT
dy

)
. (33)
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Table 1. Computed incoming heat flux with the estimated parameters.

Parameter Estimates Unit Note

Porosity 0.18 Sandstone > 15 m deep; Creighton et al. (2018)
Thermal conductivity of permafrost 2.20 W (m K)−1 From porosity and typical thermal properties of ice and mineral in this region
Talik depth, D 88.0 m Fitted ellipsoid
Talik width (radius), a 514.8 m Fitted ellipsoid
Aspect ratio, D/a 0.1709 Fitted ellipsoid
Geothermal gradient 0.0250 K m−1 Kessler et al. (2012)
dT/dz at the talik bottom −0.0259 K m−1 From Mackay model (1962)
Basin average heat flux, qin 0.0689 W m−2 Computed from Eq. (30)

Figure 6. Combined hypothetical models of thermokarst lake evolution and diagram of major influencing factors through time. The left
column represents summer conditions, the center column represents winter conditions, and the right column indicates the corresponding
importance of mechanical versus thermal processes through time as the lake ages (top is younger, bottom is older). Row (a) indicates the
early processes under bedfast ice conditions before talik initiation. Row (b) shows the onset of vertical thaw and subsidence as talik begins
to develop. Row (c) shows early, shallow talik growth conditions. Row (d) indicates later-stage processes on deepened talik due to vertical
thaw. Row (e) is the mature stage of development when complex bathymetry has set in as a result of sediment transport.

4.2.2 Incoming radiation imbalance effect

One of the incoming surface energy flux inequalities qsuf may
be caused by shortwave radiation along the lake shoreline.
The daily potential solar irradiation on a sloping surface can
be computed by the trigonometric function (e.g., Eq. B.11
in DeWalle and Rango, 2008). The total daily radiation is a
function of latitude and bank slope angle, which depend on
the permafrost degradation rate, the maturity of the talik, and
ground ice distribution.

Figure 7 shows the computed mean daily potential solar
irradiation on the sloping lakeshore (I ′q ) relative to a flat sur-
face (Iq ) during the summer period (June–August) at three
different latitudes. The shape of this diagram may correspond
to the shape of a thermokarst lake as the enhanced radia-
tion results in more permafrost thaw. The difference in rel-
ative incoming radiation will diminish as bank slope angle
lessens. In general, the south-facing slope along the northern
shore tends to receive more radiation than the north-facing
slope (e.g., Séjourné et al., 2015). This tendency is more pro-
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Figure 7. Computed mean daily potential solar radiation on slop-
ing lakeshore relative to the flat surface during the summer period
(June–August) with respect to latitude. Iq is the potential solar radi-
ation on a flat surface, and I ′q is radiation on the sloping lakeshore.

nounced in lower-latitude zones due to the higher mid-day
sun angle.

It is interesting that at 65 and 60◦ latitude the north- and
south-facing banks receive slightly less radiation than east-
and west-facing slopes, while an opposite result occurs at
70◦ latitude (Fig. 7). Therefore, the radiation imbalance may
partially explain the north–south elongation along the 70◦

latitude line and the west–east elongation of lower latitude
(60–65◦) of lowland thermokarst lakes shown by Grosse et
al. (2013, their Fig. 19). However, because these small differ-
ences in incoming radiation imbalance alone are insufficient
to result in the distinctive lake elongation in the ACP, they
likely introduce rather minor additional complexities in lake
spatial shape.

4.3 Wind wave erosion and preferential expansion

Wind wave erosion plays an important role in horizontal ex-
pansion of shallow lakes because waves can undercut the
vegetated bank (Hopkins, 1949). Wind waves make the wa-
ter bodies (e.g., lakes and bays) round by local net sedi-
ment flux even in low-latitude regions (e.g., Ashton et al.,
2009). The effect of waves on shoreline morphology has been
analyzed in the coastal engineering field: for example, Sil-
vester (1974) investigated the equilibrium shape of bays un-

der different wave conditions using laboratory wave exper-
iments and found that the stable beach in the bay adapted
a half-heart or cardioid shape for a fixed wave direction in
the absence of sediment supply. Reeve et al. (2018) showed
theoretically that the equilibrium coastline shape can be ex-
pressed as a diffusion-type equation through incorporating
the wave diffraction effect, which makes the wave crest line
nearly parallel to the shore. However, according to the shal-
low water wave theory, which is applicable for small fetch
distances on lakes in the ACP, water waves do not cause any
sediment transport without current, although wave motion is
a key factor for the mobilization of the sediment (e.g., Carson
and Hussey, 1962).

Wind-induced water circulation in a shallow, oval lake was
perhaps first analyzed by Livingstone (1954) who showed
theoretically that the current around the lake ends may be
accelerated efficiently by wind-induced return rip currents.
However, the lake water circulation pattern assumed in his
study (shown in Fig. 8a) was less common than the pattern
described by Carson and Hussey (1962), who observed re-
verse circulation patterns near the lake ends, as shown in
Fig. 8b. For convenience, we refer to two distinctive current
patterns: the Livingstone type and the Carson and Hussey
(CandH) type. CandH-type circulation can indeed explain
the commonly observed peat and sediment bars near the lee-
ward lake side shores. Carson and Hussey (1962) noted that
sedimentation on the leeward lake side can provide protec-
tion from mechanical wave erosion, as well as insulation
from permafrost thaw, which results in lake elongation. They
also observed that preferential bank erosion is typically fo-
cused in zones oriented 50◦ to wave approach. The return
flow was found to concentrate around the windward lake
side, which accelerates the mechanical erosion and sediment
transport at the lake ends. However, the Livingstone-type cir-
culation might occur depending on the local wind field as it
can explain the sublittoral shelf formation on the windward
shore. In either case, the wind-induced current effect on lake
elongation can be supported by Livingstone’s theory (1954)
which should be valid for both circulation types. Thus, the
combination of wind wave mobilization and lake water cir-
culation is the most accepted hypothesis for lake elonga-
tion during the relatively young shallow lake expansion stage
(Carson, 1968; Arp et al., 2011; Hinkel et al., 2012).

The shallow wave theory states that the sediment mobi-
lization due to wind wave only occurs in shallow water (wave
height> 4 % of water depth; e.g., Reeve et al., 2018). There-
fore, the contribution of the wind wave effect to lake elonga-
tion may be reduced as the lake deepens. Figure 9 shows a
plot of lake length :width ratios versus the percent of lakes
with a bedfast ice regime in seven study regions in Alaska
determined with satellite-based synthetic aperture radar im-
agery (Engram et al., 2018). The study regions represent dif-
ferences in permafrost characteristics and climate that appear
to be reflected in this comparison of length :width ratio and
the percent of lakes in a region that freeze to their bed and
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Figure 8. Two distinctive lake water circulation patterns created
by unidirectional wind. Livingstone-type circulation (a) and Carson
and Hussey (CandH)-type circulation (b) cause opposite flow direc-
tions around lake ends. This also results in differences in sediment
and peat deposition patterns.

thus likely do not have a sub-lake talik. For example, lakes in
the Teshekpuk Lake and Kuparuk study areas have a shape
that is nearly twice as long as it is wide. In both of these re-
gions, more than 80 % of the lakes freeze to their bed and
likely do not have a talik. This is in contrast to lakes located
near Umiat and on the Seward Peninsula that have primar-
ily developed in Yedoma permafrost deposits. Lakes near
Umiat and on the Seward Peninsula tend to be more circu-
lar (L :W= 1.3 to 1.4), and more than 90 % likely have a
talik since they do not freeze to their bed in the winter. The
differences observed here relative to elongation of lakes and
whether the region primarily has lakes that freeze to their bed
or not likely demonstrates a key aspect related to the role of
wind wave erosion. In general, the shallower lakes common
in coastal areas, such as Teshekpuk, Barrow, and Kuparuk,
are more elongated likely due to wind wave erosion, whereas
lakes in Umiat (ice-rich permafrost), Seward Peninsula (ice-
rich permafrost), and Inigok (ice-poor permafrost) tend to be
rounder because of talik development and the presence of
deeper lakes (on the order of 10–20 m in some instances).
This remote-sensing-based evidence implies that the wind ef-
fect seems to be limited by the lake thermal subsidence due
to sub-lake talik development, while shallow lakes with the
bedfast ice may continue elongating by wind erosion.

4.4 Applicability of the 3D Stefan equation

The limitations of the derived 3D Stefan equation (Eq. 23)
are summarized in this section along with Fig. 6. Once a
seasonal pond is formed on the permafrost, it primarily ex-
pands horizontally by wind wave erosion and the thaw slump
process (Livingstone, 1954; Carson and Hussey, 1962; Rex,
1961; Hinkel et al., 2012; Grosse et al., 2013) because the ac-
tive layer beneath the pond likely freezes every year. On the

Figure 9. Comparison of length to width ratio versus the percent
of a particular region exhibiting a bedfast lake ice regime for seven
study areas in Arctic Alaska. This analysis is based on synthetic
aperture radar (SAR) satellite remote-sensing data presented in En-
gram et al. (2018). Lakes that are more elliptical in shape tend to
occur where the majority of the lakes in the area freeze to their bed
and thus likely do not have a talik. Lakes that are more circular in
shape tend to occur where the majority of lakes in an area do not
freeze to their bed and thus likely have a sub-lake talik.

flat ACP of Alaska, lake thaw slumps tend to be the result
of topography (e.g., slope and aspect of the ground surface),
while lake elongation is likely caused by wind wave erosion.
As described above, preferential bank thaw at the lake ends
can be explained by the insulation effect of the sediments car-
ried by the water current (likely the CandH-type circulation)
because the sublittoral shelf may be initiated at this stage.

When seasonal thawing penetrates more deeply than the
annual freezing depth, a talik may be initiated, typically
around the deepest point near the center of the lake (Lachen-
bruch et al., 1962). Sellmann (1975) described this process,
which is one of the mechanisms for shelf formation in a
thermokarst lake. For the horizontal expansion stage, A in
Fig. 6, the proposed quasi-steady-state thermal model may
not be appropriate because the lakeshore expansion imbal-
ance occurs at least minimally throughout the lake expansion
process. However, the 3D Stefan equation may be able to
characterize the talik in the initiation stage B in Fig. 6.

Once the talik is established, the 3D Stefan thermal model
proposed here suggests that the talik may begin to influence
lake geometry. Since sediment mobilization due to wind-
driven waves occurs in shallow water, lake elongation by
waves may diminish as the lake deepens via ground subsi-
dence (Fig. 9). Lake water effectively collects energy from
the surface during summer, and the talik stores the excess
heat throughout the winter. Arp et al. (2010, 2011) and Jef-
fries et al. (1999) discussed the difference in heat conduction
between a grounded ice lake and a floating ice lake. Their
observations are generally consistent with the proposed the-
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ory because a deeper talik under a floating ice lake should
have a greater heat capacity. Since lake elongation likely oc-
curs before talik formation, the horizontal lake characteri-
zation derived in this study may not be fully applicable to
the analysis of thaw lakes on the ACP. In fact, the disagree-
ment of the talik and lake extents in the Peatball Lake appli-
cation illustrates the multiple effects on the lake bathymetry
and orientation. Clearly, however, talik expansion and con-
current subsidence stabilize lake geometry and contribute to
lake roundness.

The applicability of the proposed 3D Stefan equation is
limited for lakes with high sediment influx and for lakes with
talik. The paired sublittoral shelves on both lake sides are
commonly found in the sand dune areas of the southern ACP.
The talik shape is likely altered by uneven sediment deposi-
tion that affects the temperature gradient normal to the phase
boundary as mentioned by several researchers (Hunter et al.,
1981; Mackay, 1992; West and Plug, 2008). The shelves cre-
ated by sediment redistribution due to lake water circulation
adds complexity to the ellipsoidal talik shape described in
this study. Finally, if the talik penetrates through the per-
mafrost and becomes a throughgoing talik (Hinkel and Arp,
2015), the proposed thermal theory herein is no longer appli-
cable for thermokarst lake and talik characterization.

Lastly, the 3D Stefan equation assumes fully saturated
talik and isotropic thermal properties. However, uneven con-
solidation of thawed porous media and layered structure of
the permafrost may cause anisotropic thermal conductivities.
When the effect of direction dependency in the thermal con-
ductivity is found to be significant, it can be incorporated
into the formulation of the anisotropic heat conduction into
the permafrost.

5 Conclusions

The theory presented here addresses the origin of the
thermokarst lake ellipticity on the ACP. Elliptic lake geom-
etry results from minimizing overall thawing energy con-
sumption for a given incoming energy load. This is partic-
ularly applicable for mature, deep thermokarst lakes with
well-developed taliks. Additionally, existing hypothetical
models were reviewed to illuminate the thermal effect (e.g.,
ellipsoidal talik geometry) on the thermokarst lake morphol-
ogy.

The derived ellipsoid talik model integrates the atmo-
spheric forcing (or incoming energy), the vertical thermal
gradient, the thermal diffusivity of the permafrost, and the
talik geometry. Heat flux by conduction into the permafrost
depends on the heat gradient of the underlying permafrost
(Fourier’s law). As the vertical temperature slope diminishes
with talik maturation, the depth :width ratio of the talik be-
comes larger, creating a deeper talik; thus, much of incom-
ing energy is likely consumed for vertical rather than hori-
zontal expansion. Conversely, during the early stages, ther-

momechanical processes such as wind-driven wave erosion
dominate horizontal expansion and elongation of the lake.
Consequently, this theory elucidates how talik expansion and
concurrent permafrost degradation stabilize the shape of a
thermokarst lake to one that is more round rather than ellip-
tical.

The semi-ellipsoidal 3D Stefan equation is, to our knowl-
edge, the first geometric model explicitly derived only from
the energy conservation equation at the phase boundary. The
vector form of the energy conservation equation (Eq. 5) in
a 3D anisotropic thermal field was integrated at the phase
boundary area under the isolated general-shaped lake to
quantify the total energy balance. It was shown that the basin
total thaw energy or talik expansion rate is equivalent to
the weighted phase boundary area. The optimum talik shape
function was determined by the variational principle as an
extremum of the functional that minimizes the total thawing
energy consumption (the stationary action principle). Thus,
the resultant semi-ellipsoid equation (Eq. 23) can be consid-
ered the 3D Stefan equation because it describes the optimum
geometry of phase boundary.

The derived semi-ellipsoid function was applied to Peat-
ball Lake, ACP of Alaska, where the talik was extensively
surveyed using TEM soundings. The pure geometric fit-
ting exercise met the 27 measured TEM data point well
with RMSD of 5.94 m, although the talik orientation dis-
agreed with orientation of Peatball Lake and other surround-
ing lakes. This may be induced by the irregularity due to the
rapid and uneven horizontal lake expansion or possibly by
basin coalescence. Comparing the observed talik thickness
to the observed lake bathymetry indicated two distinctive
permafrost degradation scenarios: significant subsidence by
near-surface ice-rich-layer thaw and the minor contribution
of subsidence due to ice-poor permafrost thaw at depth. Con-
sequently, lake water depth is affected by uneven subsidence
of thawing permafrost and the interannual water balance; the
spatial lake shape irregularity was determined during an ear-
lier stage of development. Therefore, careful consideration
is required for the analysis of the relationship between lake
bathymetry and talik thickness. Nevertheless, this theoretical
technique can be used as guidance to partition various ef-
fects such as talik development and thaw subsidence, wind
wave erosion, lake ice thickness, surficial geology type, and
sediment transport by lake water current. Moreover, the an-
alytical expression of the 3D Stefan equation can be poten-
tially incorporated in the global- or regional-scale Earth sys-
tem model to describe missing sub-grid-scale processes such
as lake dynamics with minimal additional computational re-
sources.
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Appendix A: Alternative derivation using isoperimetric
inequality

Alternative derivation may provide the thermally optimum
talik shape minimizing the phase boundary area A with a
fixed talik volume V . Equation (15) establishes talik vol-
ume and phase boundary area under the thermokarst lake by
a general function of the phase boundary ϕ. The horizontal
coordinate system may be transformed by (u,v)=

(
x
αx
,
y
αy

)
.

Then, the phase boundary can be expressed as a scaled func-
tion:

ϕ̂ (u,v)= ϕ (x,y)= ϕ
(
αxu,αyv

)
, (u,v) ∈ B̂. (A1)

According to


du
dx =

1
αx

dv
dy =

1
αy

∂
∂u
ϕ̂ (u,v)= ∂

∂u
ϕ
(
αxu,αyv

)
= αxϕx

∂
∂v
ϕ̂ (u,v)= ∂

∂v
ϕ
(
αxu,αyv

)
= αyϕy

, (A2)

the talik volume and the phase boundary area can be written
as


V [ϕ]= αxαy

∫∫̂
B

ϕ̂ dudv

A [ϕ]= αxαy
∫∫̂
B

√
ϕ̂2
u+ ϕ̂

2
v + 1dudv = αxαy

∫̂
S

dŜ
, (A3)

where B̂ denotes the extent of ϕ̂ (u,v) on the uv plane, and
Ŝ is the surface on z= ϕ̂ (u,v) as

Ŝ =
{
(u,v,z) ∈ R3

|(u,v) ∈ B̂z= ϕ̂ (u,v)
}
. (A4)

The horizontal scaling transform makes it a symmetric closed
surface on z= 0:

S∗ =
{
(u,v,z) ∈ R3

|(u,v) ∈ B̂,z=±ϕ̂ (u,v)
}
. (A5)

It is known that volumeU enclosed by the ovaloid surface S∗

and its surface area satisfy the isoperimetric inequality for an
ovaloid surface, which can be written as

 ∗∫
S

dS∗

3

≥ 36πU2. (A6)

As the volume and the surface area of the convex closed sur-
face S∗ can be expressed as

U = 2

∣∣∣∣∣∣∣
∫ ∫
B̂

ϕ̂dudv

∣∣∣∣∣∣∣=
2

αxαy
|V [ϕ]| and (A7)

∗∫
S

dS∗ = 2
∫
Ŝ

dŜ =
2

αxαy
A [ϕ] , respectively, (A8)

we have(
2

αxαy
A [ϕ]

)3

≥ 36π
(

2
αxαy

V [ϕ]
)2

or (A9)

A [ϕ]≥ 3
√

18παxαy(V [ϕ])2. (A10)

The equality in Eq. (A10) holds only if the surface S∗ is a
sphere, which maximizes the volume. Let the radius of this
sphere be

D =
3

√
3

4π
V = 3

√
3 |A [ϕ]|
2παxαy

. (A11)

From the symmetricity to the planez= 0, we can obtain

ϕ̂ (u,v)=−D

√
1−

( u
D

)2
−

( v
D

)2
(u,v) ∈ B̂. (A12)

Inverse scaling coordinate transformation yields the ellipsoid
phase boundary function as follows:

ϕ (x,y)=−D

√
1−

(
x

αxD

)2

−

(
y

αyD

)2

(x,y) ∈ B, (A13)

where D is the depth of the talik at the center. The ellip-
soid, the 3D Stefan equation for talik, can be obtained by the
isoperimetric inequality, as well as the functional analysis.

Appendix B: Determination of the coefficients d and λ

We can determine two coefficients in the ellipsoid (Eq. 21)
by further application of the variational principle. Let

D =
2
|λ|
. (B1)

Also, let the intersect d be proportional to the vertical radius
of the ellipsoid as follows:

d = tD(−1≤ t < 1), (B2)

where t is a parameter describing the relative elevation of the
basin to the original ground surface. Then, Eqs. (20) and (21)
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can be rewritten as

z=−ϕ =−

√
D2−

x2

α2
x

−
y2

α2
y

+ tD and (B3)(
x

αxD

)2

+

(
y

αyD

)2

+

(
z− tD

D

)2

= 1,

respectively. (B4)

Now, the phase boundary area and volume can be evaluated
as functions of the parameter t :

V [ϕ]=
∫ ∫
B

ϕ dxdy

=

∫ ∫
B

(
−

√
D2−

x2

α2
x

−
y2

α2
y

+ tD

)
dxdy

= παxαy

0∫
−(1−t)D

{
D2
− (tD− z)2

}
dz

=
π

3
αxαyD

3(t3− 3t + 2); (B5)

A [ϕ]=
∫ ∫
B

√
α2
xϕ

2
x +α

2
yϕ

2
y + 1dxdy

=

∫ ∫
B

1√
1−

(
x
αxD

)2
−

(
y
αyD

)2
dxdy

= παxαyD
2


(

1− t2
)
+

1
t∫

1

(
1
z2 − t

2
)

dz


= 2παxαyD2(1− t). (B6)

Eliminating D from these expressions yields

A[ϕ]3
=M

(1− t)3(
t3− 3t + 2

)2 , (B7)

where M is a positive constant. Therefore, as

d

dt

(
A[ϕ]3

)
=M

3t
(1− t)2(t + 2)3

> 0 (−1≤ t < 1), (B8)

the phase boundary area A [ϕ] is the minimum at t = 0.
Hence, d = 0, which corresponds to a semi-ellipsoid with
depth D at the center.
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