
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Michigan Tech Publications 

5-12-2022 

Classification of Eurasian Watermilfoil (Myriophyllum spicatum) Classification of Eurasian Watermilfoil (Myriophyllum spicatum) 

Using Drone-Enabled Multispectral Imagery Analysis Using Drone-Enabled Multispectral Imagery Analysis 

Colin Brooks 
Michigan Technological University, cnbrooks@mtu.edu 

Amanda Grimm 
Great Lakes Commission 

Amy Marcarelli 
Michigan Technological University, ammarcar@mtu.edu 

Nicholas Marion 
Michigan Technological University, npmarion@mtu.edu 

Robert Shuchman 
Michigan Technological University, shuchman@mtu.edu 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.mtu.edu/michigantech-p 

 Part of the Biology Commons 

Recommended Citation Recommended Citation 
Brooks, C., Grimm, A., Marcarelli, A., Marion, N., Shuchman, R., & Sayers, M. (2022). Classification of 
Eurasian Watermilfoil (Myriophyllum spicatum) Using Drone-Enabled Multispectral Imagery Analysis. 
Remote Sensing, 14(10). http://doi.org/10.3390/rs14102336 
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/15998 

Follow this and additional works at: https://digitalcommons.mtu.edu/michigantech-p 

 Part of the Biology Commons 

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/michigantech-p
https://digitalcommons.mtu.edu/michigantech-p?utm_source=digitalcommons.mtu.edu%2Fmichigantech-p%2F15998&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/41?utm_source=digitalcommons.mtu.edu%2Fmichigantech-p%2F15998&utm_medium=PDF&utm_campaign=PDFCoverPages
http://doi.org/10.3390/rs14102336
https://digitalcommons.mtu.edu/michigantech-p?utm_source=digitalcommons.mtu.edu%2Fmichigantech-p%2F15998&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/41?utm_source=digitalcommons.mtu.edu%2Fmichigantech-p%2F15998&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Colin Brooks, Amanda Grimm, Amy Marcarelli, Nicholas Marion, Robert Shuchman, and Michael Sayers 

This article is available at Digital Commons @ Michigan Tech: https://digitalcommons.mtu.edu/michigantech-p/
15998 

https://digitalcommons.mtu.edu/michigantech-p/15998
https://digitalcommons.mtu.edu/michigantech-p/15998


Citation: Brooks, C.; Grimm, A.;

Marcarelli, A.M.; Marion, N.P.;

Shuchman, R.; Sayers, M.

Classification of Eurasian

Watermilfoil (Myriophyllum spicatum)

Using Drone-Enabled Multispectral

Imagery Analysis. Remote Sens. 2022,

14, 2336. https://doi.org/10.3390/

rs14102336

Academic Editors: Natascha Oppelt

and Thomas Schneider

Received: 25 March 2022

Accepted: 9 May 2022

Published: 12 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Classification of Eurasian Watermilfoil (Myriophyllum
spicatum) Using Drone-Enabled Multispectral
Imagery Analysis
Colin Brooks 1,* , Amanda Grimm 2, Amy M. Marcarelli 3 , Nicholas P. Marion 1, Robert Shuchman 1

and Michael Sayers 1

1 Michigan Tech Research Institute, Michigan Technological University, 3600 Green Court, Suite 100,
Ann Arbor, MI 48105, USA; npmarion@mtu.edu (N.P.M.); shuchman@mtu.edu (R.S.);
mjsayers@mtu.edu (M.S.)

2 Great Lakes Commission, 1300 Victors Way, Suite 1350, Ann Arbor, MI 48108, USA; agrimm@glc.org
3 Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr.,

Houghton, MI 49931, USA; ammarcar@mtu.edu
* Correspondence: cnbrooks@mtu.edu

Abstract: Remote sensing approaches that could identify species of submerged aquatic vegetation
(SAV) and measure their extent in lake littoral zones would greatly enhance SAV study and manage-
ment, especially if these approaches can provide faster or more accurate results than traditional field
methods. Remote sensing with multispectral sensors can provide this capability, but SAV identifica-
tion with this technology must address the challenges of light extinction in aquatic environments
where chlorophyll, dissolved organic carbon, and suspended minerals can affect water clarity and
the strength of the sensed light signal. Here, we present an uncrewed aerial system (UAS)-enabled
methodology to identify the extent of the invasive SAV species Myriophyllum spicatum (Eurasian
watermilfoil, or EWM), primarily using a six-band Tetracam multispectral camera, flown over sites
in the Les Cheneaux Islands area of northwestern Lake Huron, Michigan, USA. We analyzed water
chemistry and light data and found our sites clustered into sites with higher and lower water clarity,
although all sites had relatively high water clarity. The overall average accuracy achieved was 76.7%,
with 78.7% producer’s and 77.6% user’s accuracy for the EWM. These accuracies were higher than
previously reported from other studies that used remote sensing to map SAV. Our study found that
two tested scale parameters did not lead to significantly different classification accuracies between
sites with higher and lower water clarity. The EWM classification methodology described here should
be applicable to other SAV species, especially if they have growth patterns that lead to high amounts
of biomass relative to other species in the upper water column, which can be detected with the type
of red-edge and infrared sensors deployed for this study.

Keywords: multispectral; aquatic; invasive; remote sensing; UAS; macrophyte; SAV

1. Introduction

Being able to remotely identify individual species or taxa of invasive aquatic plants
and map their extent would be useful to their management. Identifying a vegetation class
or dominant vegetation group may also be useful. The management of submerged aquatic
vegetation (SAV) is common because of verified and perceived negative impacts. For
example, invasive plants that grow as SAV can have significant impacts on aquatic systems,
such as reduced dissolved oxygen levels, a greater presence of non-native fishes, reduced
plant species richness, reduced forage value for waterfowl and macroinvertebrates, reduced
human use of littoral zones, and a negative influence on zooplankton abundance [1–4].
However, in some cases, total species diversity may not be lower in invaded aquatic plant
communities [2], the overall productivity can be the same [5], and invasive aquatic plants

Remote Sens. 2022, 14, 2336. https://doi.org/10.3390/rs14102336 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14102336
https://doi.org/10.3390/rs14102336
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-4544-2569
https://orcid.org/0000-0002-4175-9211
https://orcid.org/0000-0003-3008-1668
https://doi.org/10.3390/rs14102336
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14102336?type=check_update&version=1


Remote Sens. 2022, 14, 2336 2 of 26

may provide their own level of beneficial ecosystem services [6]. Therefore, understanding
the identity and distribution of species of SAV in lake littoral zones is an important challenge
that could be addressed using remote sensing. Addressing this challenge will depend on
our ability to remotely identify SAV in the optically complex waters characteristic of lake
littoral zones.

This paper focuses on the deployment of multispectral cameras from an uncrewed
aerial system (UAS or “drone”) platform to enable rapid, timely imaging of Myriophyllum
spicatum (Eurasian watermilfoil, or EWM) to identify its extent in littoral zones. EWM
has been shown to reduce native species abundance [7,8] and suppress native plants [9],
lower lakeshore property values through interference with boating recreation [10], impact
swimming recreation [9], and it can increase phosphorus (P) loads during decomposing
after herbicide application [11]. EWM was known to be present in the Laurentian Great
Lakes by the early 1950s [12], and it grows most abundantly in one to four meters of
water [13].

The capabilities of UAS have been increasing in recent years, gaining the attention of
ecologists as useful tools for meeting environmental data needs, including the mapping
of SAV and other features of interest [14–16]. Recent work has shown the utility of UAS
imagery for identifying the extent of invasive wetland plants [17] and further investigated
floating and aquatic plant mapping [18]. The intermediate scale between satellite imagery
and field observations that UAS data can produce is able to provide ecologically relevant
results of aquatic plant identification, extent, and change [19]. A UAS can also be deployed
during optimal weather conditions (low winds, more sunlight, optimal sun angles) and
collect high-resolution imagery that may help with the differentiation of species of interest,
from animals to aquatic plants [19–21]. The highest resolution multispectral satellite
imagery bands available at the start of this study were 1.84 m pixel size, and we anticipated
that the higher-resolution capabilities of UAS multispectral sensing would provide data
more useful for the identification of EWM.

The amount of light penetration into a lake’s water column is a controlling factor for
the species that exist in particular areas and helps to define the littoral zone where SAV
grows. Some invasive species of SAV have an advantageous ability to grow in littoral
zones with lower light penetration than many native species [22]. Therefore, being able
to reliably identify SAV to species or taxon in areas with higher extinction coefficients
(lower water clarity) could help with understanding the extent of invasive SAV taxa. The
extinction coefficient of light in water is impacted by three main color-producing agents
(CPAs): chlorophyll (CHL), suspended minerals (SM), and the colored dissolved organic
matter (CDOM) component of dissolved organic carbon (DOC) [23]. Because of these CPAs,
inland waters can be highly optically complex [24], and CPA concentrations can change
significantly over relatively short time intervals [25]. We expect that SAV will be harder to
identify in areas affected by one or more CPAs, reducing light transmission, than in areas
that have higher water clarity. For example, in areas with a local tributary contribution
of CDOM, it may be more difficult to identify where SAV is located than in areas without
sources contributing this CPA component.

Potentially important to EWM identification is how well mixed it is with other SAV
species. The presence vs. absence of EWM, such as EWM vs. open water, is likely
to be relatively simple to differentiate. However, when EWM is mixed in with several
other species that may appear similar to the naked eye in visible light, it is likely to be
more difficult to separate using readily available natural color (red/green/blue or RGB)
cameras or those with a relatively small number of multispectral bands. In our previous
research [26], we demonstrated that spectral profiles of submerged aquatic vegetation
(SAV) can be used to identify EWM when using certain indices and bands. A modified
Normalized Difference Vegetation Index (mNDVI) was significantly different for EWM
vs. other submerged aquatic vegetation, providing a potential means of identifying EWM
with high-resolution remote sensing data. The mNDVI replaced the use of infrared light,
normally around 850 nm, with a shorter wavelength of 720 nm that penetrates further into
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the water. This was tested for EWM detection in depths up to 2.5 m, the maximum depth
recorded for EWM that was later interpreted into classification results. Averaging spectral
data to sixty-five 10 nm wide bands, similar to available hyperspectral systems, provided
an ability to differentiate EWM from other species of SAV, whereas using only six to eight
bands only worked occasionally. At particular sites on certain dates, individual taxa could
be identified using only the six to eight multispectral bands that corresponded to the bands
of the project’s main multispectral sensor. However, for a majority of spectral comparisons,
this number of bands was not sufficient to differentiate EWM from other taxa.

We have applied the finding that the mNDVI could possibly differentiate EWM from
other SAV species [26] to identify the extent of EWM in a part of the Laurentian Great
Lakes. We focused on understanding the accuracy of our EWM mapping using the mNDVI
derived from multispectral UAS imagery. The paper includes an analysis of whether
accounting for water clarity using two different classification parameters can improve the
mapping of SAV, as described below. Moving from analyzing spectral profiles to imaging
EWM and other SAV in the field is the next step in a process for using remote sensing as a
practical tool in invasive SAV management.

2. Methods
2.1. Collection Sites and UAS-Based Sensors Deployed for the Project

We collected data on CPAs and vegetation characteristics at several sites in the Les
Cheneaux Islands area of northwest Lake Huron (MI, USA) (Figure 1), our study site
from [26] that has previously been reported as having significant presence of EWM [27].
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We sampled 11 sites in the Les Cheneaux Islands over six trips in 2016–2018; the
sampling months and the sensor we were able to deploy on each sampling occasion are
shown in Table 1. Three RGB-only camera systems were deployed via UAS, primarily
to provide basemaps of the sites; these cameras were a Nikon D810 36mp camera flown
onboard a Bergen hexacopter, the 12mp camera of a Phantom 3 Advanced (3A) UAS, and
the 12mp camera of a Mavic Pro UAS. The U.S.-made Bergen hexacopter is a larger system
that can carry payloads up to 5 kg for up to 15 min of flight. The Phantom 3 Advanced and
Mavic Pro UAS are made by DJI and are designed to easily obtain RGB aerial photos but
are not intended to carry additional payloads.

Table 1. Collection sites and sensors deployed by date in the Les Cheneaux Islands from 2016 to 2018.

Collection
Sites

July
2016

August
2016

June
2017

July
2017

August
2017

August
2018

Breezeswept
North P3A

D810/P3A/
TCAM/
VISNIR

P3A/TCAM Mavic

Court
Dock D810/P3A D810/

TCAM
P3A/
VISNIR

D810/P3A/
VISNIR P3A Mavic

Court East D810/P3A D810/
TCAM

D810/P3A/
VISNIR

D810/P3A/
TCAM/
VISNIR

P3A/TCAM Mavic/
VISNIR

Court West P3A D810/P3A/
VISNIR P3A Mavic

CRAMP P3A P3A P3A/
VISNIR P3A

Mavic/
TCAM/
VISNIR

FDS D810/P3A D810/
TCAM

D810/Mavic/
P3A/VISNIR

P3A
/TCAM/
VISNIR

P3A/TCAM Mavic

Chappell D810/P3A/
VISNIR P3A

Hessel
Marina

P3A/
VISNIR

D810/P3A/
TCAM/
VISNIR

D810/P3A/
TCAM Mavic

Neil D810/P3A/
VISNIR

D810/P3A/
TCAM/
VISNIR

D810/P3A/
TCAM Mavic

Howells
Dock

D810/P3A/
TCAM

D810/P3A/
VISNIR

D810/P3A/
TCAM

Mavic/
TCAM/
VISNIR

Urie Point Mavic/
VISNIR

Sensors: D810 = Nikon D810 RGB, P3A = Phantom 3 Advanced RGB, TCAM = Tetracam, VISNIR = Visible +
Near-Infrared dual Canon, Mavic = Mavic Pro RGB.

The six-band Tetracam Micro-MCA (Tetracam Inc., Chatsworth, CA, USA) described
in [26] was deployed onboard the Bergen hexacopter to evaluate whether its multispectral
capabilities could help distinguish EWM from other aquatic cover types. Also described
in [26] is the VISNIR system which used a 16mp RGB Canon camera and a near-infrared-
sensitive Canon camera. This was deployed on occasion using the Bergen hexacopter
as a less costly potential alternative to the Tetracam for EWM identification purposes.
The Tetracam sensor was not always available as it was a rental unit used starting in the
second data collection of August 2016. When it was not available, we usually deployed
the VISNIR system, such as in June 2017. We anticipated that the VISNIR near-infrared



Remote Sens. 2022, 14, 2336 5 of 26

image band would not penetrate as far in the water with its longer wavelength than
the red-edge capabilities of the Tetracam. Time limitations in the field, or issues with
equipment operating properly, sometimes prevented operation of either system. Optical
(RGB) imagery was collected at every site on every visit (Table 1).

The Bergen hexacopter was used to deploy the Nikon RGB, Tetracam multispectral, or
VISNIR system one at a time. The RGB camera systems used in this project had on-board
global positioning systems (GPS) to provide positional data for every RGB photo. The
Phantom 3A Advanced and Mavic 2 Pro were used to collect RGB imagery over larger areas.
The RGB image sets for each site were developed into georeferenced orthophotos using
Agisoft Metashape with approximately three-meter positional accuracy. Marker buoy loca-
tions recorded with a Trimble GeoExplorer 6000 with approximately 10 to 50cm positional
accuracy (after differential correction) provided additional information for georeferencing.
The RGB basemaps were also used to provide georeferencing of the Tetracam images, as
that sensor did not have a built-in global navigation satellite system (GNSS) receiver for
recording position. For multispectral imagery in 2016, we mostly flew at heights of 10–15 m,
which produced images covering approximately a 3 × 3 m area with approximately 5 cm
water surface resolution for the Tetracam, whereas we flew at heights of 25–30 m to cover
larger areas in each image for 2017 and 2018 with approximately 8 to 10 cm resolution.
Each sensor usually took one flight ranging from 10 to 20 min to complete, although larger
RGB basemap flights for areas with multiple sites, such as the “Court sites”, could take up
to three or four flights. RGB imagery was approximately 1 cm resolution with the Nikon
D810 camera and approximately 2 cm with the P3A, Mavid, and VISNIR systems. After
our first year of data collection, we decided that being able to cover larger areas was worth
the trade-off of producing lower-resolution imagery when flying higher.

Figure 2 shows an example of three sources of RGB imagery, from the Mavic Pro at
Hessel Marina (a), the Canon RGB camera at Howells Dock (b), and the Nikon D810 36mp
RGB camera, also for Howells Dock.

Tetracam imagery consisted of six spectral bands collected at 490 (blue), 530 (green),
550 (upper range of green), 600 (orange), 680 (red), and 720 nm (red edge), with the modified
mNDVI calculated from the red-edge and red bands as described in [26]. The Tetracam
was calibrated before each flight against a standard grey reference target provided by the
manufacturer for this purpose. The VISNIR system and RGB cameras were not calibrated
systems. An example of the Tetracam data collected at the Hessel Marina site in July 2017
is shown in the top part of Figure 3, overlaid on an RGB image taken the same day with a
Phantom 3A. The Tetracam imagery is shown in color infrared (CIR), with bands 6 (720
nm—red edge), 5 (680 nm—red), and 2 (530 nm—green 1) displayed in the red, green,
and blue channels, respectively. Two different views of the VISNIR data are shown in
the bottom part of Figure 3, with the left figure (a) showing RGB imagery and the right
figure (b) showing the near-infrared image, with vegetation showing as shades of the more
prominent pink color.

Collection and analysis of spectral data at the project sites are described in [26] with
results reviewed here. That study found that a modified Normalized Difference Vegetation
Index (mNDVI) using red-edge and red bands was significantly different among domi-
nant vegetation groups using our 2016 and 2017 spectral data, with no difference among
months of data collection and no significant interaction between collection month and
dominant vegetation group. It appeared that mNDVI was detecting different amounts
of SAV biomass, even given the limited water penetration of the red-edge (720 nm) band.
mNDVI also appeared to be scale independent and more appropriate for identifying EWM
than other species of SAV. Using the six spectral bands alone rarely resulted in EWM
being identified separately from other vegetation. As noted in the sensor descriptions, the
available multispectral systems included either six bands for Tetracam that could be used to
calculate mNDVI or four bands for VISNIR that could be used to calculate standard NDVI.
All of these bands were included for image classification in case some bands in addition to
mNDVI or NDVI could help provide differentiation for individual sites, if not consistently.
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Figure 3. Two Tetracam images (top center (a), shown in color infrared) from July 2017, displayed
over an RGB composite Phantom 3A image for the Hessel Marina site taken on the same day; green
pentagons indicate field sampling sites. VISNIR imagery for the Court East site (bottom, (b)) in June
2017, with RGB imagery shown at left (A) and near-infrared imagery shown at right (B).

2.2. Water Chemistry Data and Analysis Methods

At each site during each visit, we collected a set of standard water chemistry and light
data [28] to quantify the CPA values at each site and characterize the sites as having lower
or higher water clarity. Primary data collected included the following:

• Chlorophyll-a concentrations, in mg/m3;
• Light intensity, used to calculate extinction coefficient Kd(PAR);
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• Secchi disk transparency (SDT), in meters;
• Depth to bottom, in meters;
• Total suspended solids (TSS), in mg/L;
• Dissolved organic carbon (DOC) concentration, in mg/L;
• Depth to EWM for each collection site, as a range of estimated values;
• Percent open water, averaged for each collection site by date.

We derived the following variables to help characterize water clarity:

• Depth to 10% light remaining, in meters, which approximates Secchi depth (Dodds
and Whiles, 2010);

• Depth to 1% light remaining (photic zone), in meters;
• 1/Kd(PAR);
• Percent light remaining at depth of bottom.

The method we used for measuring chlorophyll-a was based on standard methods [29],
including collecting water into 1 L plastic bottles and storing samples on ice until returning
to the lab within eight hours. Water was filtered through 47 mm diameter 0.7 µm glass fiber
filters, with filters wrapped in aluminum foil and frozen at −20 ◦C until analysis within
a month. Chlorophyll-a filters were extracted in 95% ethanol and analyzed spectropho-
tometrically following APHA method 10200H.2.b/EPA method 446.0, with calculations
following [30].

To calculate the extinction coefficient of photosynthetically active radiation Kd(PAR),
we used a Li-Cor LI-193 SA spherical underwater quantum sensor with a LI-1400 datalogger
(LI-COR, Inc., Lincoln, NE, USA), with light intensity values recorded above the surface,
immediately below the surface, and every 0.5 m until the bottom was reached, with the
bottom depth also being recorded [31]. The log-transformed light intensity values were then
fit to a regression line, with the negative slope of the line being the extinction coefficient.
We also recorded Secchi disk transparency depth at each site.

For TSS, we used APHA method 2540B [29] to calculate the mass of total suspended
solids (TSS) in mg/L. Water was collected into 1 L plastic bottles and stored on ice until
returning to the lab within eight hours. A well-mixed, measured volume of a water sample,
typically 750–1000 mL, was filtered through a pre-weighed 47 mm diameter 0.7 µm glass
fiber filter. The filter was heated to constant mass at 104 ± 1 ◦C and then weighed. The
mass of material captured on the filter divided by the water volume filtered is equal to
the TSS.

For DOC, we collected water samples in 60 mL Nalgene bottles. Samples were filtered
through 0.45 µm membrane filters and frozen at −20 ◦C until analysis. DOC samples were
acidified with hydrochloric acid and quantified using a Shimadzu TOC-VCSN (Shimadzu
Scientific Instruments, Columbia, MD, USA).

The depth to EWM was based on visual estimation of the field team to the top of
visible EWM growth at each site. The depth to bottom was measured as part of the SDT
measurements by dropping the Secchi disc all the way to the bottom.

Percent open water was also based on visual estimation of the field team, with open
water defined as areas with no emergent or submerged aquatic vegetation present within
the visible water column at each site.

The depth to 10% light remaining is calculated by taking a constant (2.3) and dividing
it by the Kd(PAR) value [32].

The depth to 1% light remaining is calculated by taking a constant (4.605) and dividing
it by the Kd(PAR) value [32].

The percent of light remaining at the depth of the lake bottom was calculated using
the formula e(−Kd(PAR) × (depth to bottom), reported as a percentage (result × 100) [33].

2.3. Site Type Analysis

Based on fieldwork observations, we expected that at least two types of sites might
exist in our study area: sites with relatively clear waters and lower levels of CPAs that
reduce water clarity, and sites with relatively darker (more turbid) waters and higher levels
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of CPAs that result in lower water clarity. For the purpose of this paper, we call sites with
higher water clarity “Type A” and sites with lower water clarity “Type B”. We hypothesized
that EWM identification methods developed for areas with a lower water clarity (Type
A) will work better (be more accurate) in darker waters than in clearer waters and that
EWM identification methods developed for areas of higher water clarity (Type B) will
work better (be more accurate) in clearer waters than in darker waters. In this paper, we
explored whether different image analysis parameters might lead to higher classification
accuracy depending on site type. This can be summarized as Table 2, with our hypothesis
that accuracies are higher when classification and water type match:

Table 2. Diagram of hypothesis prediction if Ho is rejected and the Type A (higher water clarity) and
Type B (lower water clarity) algorithms produce higher accuracies for their own water types.

Classification Type

Type A Type B

Water type Type A Higher Lower
Type B Lower Higher

(Accuracy results)

We organized data by site and by date (see Supplementary Material Table S2). We
then averaged light and water chemistry values by site to help understand whether the
sites could be clustered into types based on their color-producing agents (represented by
TSS, Chl-a, and DOC), with water clarity estimated by the extinction coefficient Kd(PAR).
Table 3 shows the average data, and the data for each individual site by date are included
in the supplementary materials. We used the R cluster package for computing hierarchical
clustering [34] and the factoextra package for visualizing the results [35], all in R version
3.6.0 [36]. To investigate the optimal number of clusters, we performed k-means clustering
on the site-averaged data initially using 2, 3, 4, and 5 clusters to help understand potential
site clusters present in the data. We used the gap statistic method to estimate the optimal
number of clusters using the fviz_nbclust function available in the factoextra package. We
used the ward.D2 method to compute hierarchical clustering using a Euclidean dissimilarity
matrix. The fviz_dend function was used to create a dendrogram to visualize the results
of the cluster analysis. As part of site type analysis, we averaged the values of each site
according to whether they were lower or higher water clarity and also calculated the
standard deviation. Using R, we applied a two-sample t-test to see if the means were
different between the two water types, testing for a normal distribution using the Shapiro–
Wilk test and that the variances were equal using the F-test.

Table 3. Summary of water chemistry and light calculations by site.

Collection Sites TSS
(g/L)

TSS
(mg/L)

Chl-a
(mg/m3)

DOC
(mgC/L)

Kd(PAR)
(m−1) SDT

Depth to
Bottom

(m)

Depth to
10% Light
Remaining

(m)

Depth to 1%
Light

Remaining
(Photic Zone)

1/Kd(PAR)
Percent
Light at
Depth

% Open
Water (avg.)

Breezeswept South 0.00555 5.55 2.516 6.996 1.559 0.9 1.20 1.48 2.97 0.64 17.7% 69.1%
Breezeswept North 0.00235 2.35 1.332 8.016 0.922 NA 1.08 2.53 5.06 1.10 39.1% 17.3%

Court East 0.00364 3.64 1.283 10.249 1.433 1.5 1.50 1.74 3.48 0.76 13.7% 19.2%
Court West 0.00150 1.50 0.74 12.730 1.888 1.75 2.00 1.26 2.52 0.55 5.1% 36.5%

CRAMP 0.00722 7.22 4.973 5.059 1.226 2.5 2.60 1.88 3.76 0.82 4.1% 77.2%
FDS 0.00089 0.89 2.269 6.138 1.157 1.68 2.00 2.07 4.15 0.90 12.9% 35.4%

Chappell 0.00751 7.51 0.148 2.906 0.501 2.35 2.35 4.65 9.30 2.02 31.2% 30.3%
Hessel Marina 0.00048 0.48 0.970 2.875 0.619 2.97 3.18 5.02 10.06 2.18 21.9% 42.8%

Neil 0.00124 1.24 0.656 2.568 0.528 1.8 1.93 7.04 14.10 3.06 46.6% 27.7%
Howells Dock 0.00110 1.10 1.556 3.200 0.983 2.65 2.65 2.82 5.65 1.23 11.5% 28.9%

Urie Point 0.00114 1.14 1.733 2.710 0.440 3.2 3.20 5.23 10.48 2.27 24.5% 70.0%

2.4. Vegetation Data and Analysis Methods

Field sampling of vegetation type and density was completed through visual esti-
mates, rake tosses, and rake twists, with results recorded on standardized field sheets [28].
Visual estimate methods and percent vegetation by sampling location were described in
Brooks et al. 2019 and based on the Michigan Department of Environmental Quality guid-
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ance of 2005 [37]. Visual estimates were made by an experienced aquatic vegetation expert
at the same locations used to create the spectral profiles analyzed for [26], representing
an approximately 3 m radius. In 2016, visual estimates were made in approximately the
center of each sampling site and recorded on a field data sheet, and location coordinates
were recorded with a Trimble GeoExplorer GPS with sub-meter accuracy. In 2017 and
2018, three marker buoys were placed in the water around each site and three visual esti-
mates were made per buoy in different directions, with locations recorded with the same
Trimble GPS and visual estimate data recorded on field sheets. These field sheets were
later transferred into a project spreadsheet that documented all three years of field survey
vegetation and water sampling data. These data formed the primary source of information
for classifying the multispectral UAS-collected images and in assessing accuracy of the
classification results.

Rake twists provided a more benthic-oriented sampling of vegetation types than
rake tosses. For rake tosses, a rake end was tied to a rope, thrown approximately 10 m,
and dragged back toward the boat. Rake fullness was scored on a four-point scale
(1, 2, 3, or 4 = found, sparse, common, dense) based on a visual estimation, and vege-
tation types were recorded by approximate predominance. With rake twists, a rake end
mounted on a two-meter pole was thrust downwards into the water immediately off the
side of the research vessel [38]. Vegetation caught in the rake was deposited in buckets for
sorting and identification, including predominance on a five-point scale. The macrophytes
from each twist rake sample were separated and identified to species using [39,40]. Species
of Chara and Elodea were identified to genus. EWM and hybrid EWM (M. spicatum x sibir-
icum) were grouped together, as they are not distinguishable in the field and are difficult to
separate [41]. The samples were dried for 48 h at 60 ◦C to determine dry weight (see [5] for
more detail).

Photographs of sampling sites were taken with a rugged, waterproof GPS-enabled
camera. Photos were generally taken both above and below water to help capture the
appearance of SAV and provide supplementary information on species identification.

2.5. Imagery Analysis and Classification

To create geospatial output layers of EWM location and extent, we used the object-
based image analysis (OBIA) software eCognition Developer, version 9 [42]. Recent work,
particularly by [43,44], has shown promise in applying eCognition’s OBIA capabilities to
mapping submerged aquatic vegetation, including EWM, in a riverine environment.

We used eCognition Developer’s multiresolution segmentation tool to create segmen-
tation objects, with mean brightness, means of each band, and mean maximum difference
as the classification features for a supervised nearest neighbor analysis. The standard
nearest neighbor was applied to all classes. Training data for classification was based on the
vegetation data [28] collected on the same day that we collected UAV imagery mostly using
the visual estimate data described above as this provided a similar view to UAV imagery.

Based on initial visual assessment of image segmentation, we modified the scale
parameter to develop segmentation objects (polygons) that appeared to capture the extent
of submerged aquatic vegetation patches without the polygons being mixed with dissimilar
appearing areas. Scale parameter is a user-specified threshold in eCognition where a higher
value results in a smaller number of larger segments; smaller values result in smaller, more
fine-scale segments. We primarily focused on two scale parameters, one larger and one
smaller, to test whether the scale parameter could be optimized for accuracy based on
water characteristics. Based on these initial investigations, a scale parameter of 25 (smaller
segments) appeared to capture the extent of SAV well for Type A higher water clarity sites,
while a larger scale parameter (larger segments) of 50 appeared best at this for representing
SAV extent for Type B lower water clarity sites.

We explored whether these different scale parameters might lead to higher classifica-
tion accuracy depending on site type. We focused on analyzing the impacts on accuracy
of these two scale parameters based on water clarity. Other eCognition parameters used
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for the classification included no differences in weighting for image layers and the default
composition of homogeneity criterion with Shape = 0.1 and Compactness = 0.5.

After developing these classification schemes that appeared more appropriate for Type
A and Type B sites, we then also applied the classification scheme to the opposite water type.
Visual interpretation of classification results was used, informed by field data including
estimation of vegetation species present and their extent, with rake toss and rake twist
data also helping to verify visual estimate results. We followed the accuracy assessment
methods of [45], including selecting their recommended number of assessment points per
classification type and randomly locating those points within each class (such as EWM,
open water, etc.) using ESRI ArcMap versions 10.6 and 10.7. Any segmentation polygons
used for classification training were not used for accuracy assessment. The number of
training polygons varied but was typically approximately 10 for more common classes and
about 5 for less common classes.

For each randomly located point in the accuracy assessment, the classifier’s iden-
tification was compared to what the field team identified the point as in the vegetation
surveys, primarily using the visual estimate data because that represented the upper-
most layer of vegetation, which was similar to what the UAS imagery was capturing.
UAS RGB orthoimagery, the multispectral imagery used for classification, and location-
tagged photos collected with a rugged GPS-enabled camera were also used to determine
classification accuracy.

The number of sampling points for the accuracy assessment of classification results
was determined using the multinomial distribution described in [46] as recommended
by [45]. To help understand whether the accuracy of EWM discrimination was dependent
on the area of EWM present at a site, the total number of classification points used for
accuracy assessment (as recommended by [45]) are included in our results. Error matrices
were calculated for all classifications following [47].

Applying the two sets of classification parameters developed for Type A and Type
B sites yielded two accuracy assessments per classification mapping result. To test the
hypothesis that classification accuracy was affected by scale parameter, we applied a
mixed linear model in JMP version 14.0.0 (SAS Institute Inc., Cary, NC, USA), with fixed
model effects, Scale and Site_type and the interaction Scale*Site_type, as well as a random
factor for sampling site to account for the fact that observations from the same site are not
independent. Significance for all fixed and random factors was considered at a confidence
level alpha value of 0.05. Scale represented whether the accuracy result was based on
using the smaller or larger eCognition scale parameter (i.e., 25 or 50 as described above).
Site type was determined from the cluster analysis based on CPA at each site as described
above. The mixed linear model was run for three different response variables, overall
accuracy, EWM producer’s accuracy, and EWM user’s accuracy, using all classification
accuracy results, to evaluate whether scale or site type might differ for one or more of these
accuracy calculations.

3. Results
3.1. Types of Sites

The TSS values were very low at all of the sampling sites (see Table 3), with values in
the range of 0.0011 to 0.0183 g/L (1.1 to 18.3 mg/L). The Chl-a values were characteristic
of oligotrophic conditions (defined as <2.5 mg/m3, see [48]), with only single samples at
Breezeswept South, Court East, CRAMP, and Howells Dock above 2.5 mg/m3. The DOC
values were relatively high, with the highest values occurring at the sites near Cedarville
(averaging 5.06 to 12.73 mg C/L) where a stream (Pearson Creek) empties into Cedarville
Bay. Other sites, which do not have a stream near them, had values in the range of
2.57 to 3.02 mg C/L. Reflecting these inputs, the Kd(PAR) extinction coefficient values were
highest, indicating the lowest water clarity, for the Cedarville area sites of Breezeswept
North, Court Dock, Court East, Court West, CRAMP, and FDS (0.92 to 2.20 /m) but lower
for the other, higher water clarity sites of Chappell, Hessel Marina, Neil, Howells Dock,
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and Urie Point (0.50 to 0.74 /m). The SDT and depth to bottom were highest at the Hessel
Marina and Howells Dock sites. The SDT and depth to bottom were the same value at most
of the sites (i.e., the Secchi Disk was visible at the lake bottom). The depth to 10% light
remaining were sometimes more and sometimes less than the depth to bottom; the photic
zone (depth to 1% light remaining) was always more than the depth to bottom. The percent
light at depth values varied from as low as 0.4% to as high as 65.6%. The depth at which
the EWM was present was often at the surface (0) but could be from 1.4 to 1.8 m (at Neil,
for example). The % open water varied from as low as 0% at Court East to as high as 87.0%
at Breezeswept South.

Figure 4 shows the results of the five-group dendrogram analysis. The five sites in the
first dendrogram branch (Chappell, Hessel Marina, Neil, Howells Dock, and Urie Point)
are the same ones that are not near a stream source and that we labeled as Type A high
water clarity sites; the remaining sites in the second branch (Court Dock, CRAMP, Court
East, Court West, Breezeswept South, Breezeswept North, and FDS) are all close to Pearson
Creek with its relatively high DOC waters and were labeled as Type B low water clarity
sites. The dendrogram analysis showed that the sites with a higher average DOC (higher
light extinction coefficient) could be differentiated into different clusters, but all within the
same branch. All sites in the clearer water cluster had k values of below 0.8 m−1, while all
sites in the darker water cluster had k values of above 0.9 m−1.
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With the log transformation of the TSS and Chl-a data, the data for all of the variables
were normally distributed. Whether variances were equal for each variable (by site type)
was tested using the F-statistic. For data where the variance was equal, the regular t-test
was used; where it was not, the Welch’s t-test was used. These t-tests showed that the
means between the Type A higher water clarity and the Type B lower water clarity sites
were not equal for the DOC, KdPAR, SDT, depth to bottom, depth to 10% light, depth to 1%
light, and 1/Kd(PAR) (Table 4). The means were equal for the TSS, Chl-a, percent light at
depth, and percent open water.

Table 4. Statistical test results for establishing whether means are equal by site type for each variable.

Variable
Shapiro–Wilk Test for Normality F-Test for Equal Variance, by Site Type t-Test (Regular for Equal Variances, Welch’s

for Non-Equal), by Site Type

W
Statistic p-Value Assume

Normality?
F

Statistic
Numerator,

Denominator df p-Value Variances
Equal?

t
Statistic df p-Value Means

Equal?

log TSS (mg/L) 0.92945 0.4053 Yes 1.612 4.5 0.6073 Yes −1.2448 9 0.2446 Yes
log Chl-a 0.93005 0.4113 Yes 2.251 4.5 0.3971 Yes −1.7408 9 0.1157 Yes
DOC 0.86826 0.0736 Yes 0.007 4.5 0.0003 No −4.5923 5.1 0.0080 No
Kd(PAR) 0.94101 0.5325 Yes 0.407 4.5 0.4041 Yes −4.2581 9 0.0021 No
SDT 0.96694 0.8611 Yes 0.911 4.5 0.9298 Yes 2.6172 9 0.0308 No
Depth to bottom 0.94801 0.6186 Yes 0.902 4.5 0.9469 Yes 2.7283 9 0.0233 No
Depth to 10% light remaining 0.87574 0.0918 Yes 11.302 4.5 0.0204 No 4.4785 4.6 0.0080 No
Depth to 1% light remaining 0.87574 0.0918 Yes 11.302 4.5 0.0204 No 4.4785 4.6 0.0080 No
1/Kd(PAR) 0.87574 0.0918 Yes 11.302 4.5 0.0204 No 4.4785 4.6 0.0080 No
Percent light at depth 0.93824 0.5001 Yes 1.405 4.5 0.9363 Yes 1.5052 9 0.1665 Yes
Percent open water 0.86506 0.0670 Yes 0.502 4.5 0.5247 Yes −0.18591 9 0.8566 Yes

The variables where means were not equal are those more likely to be contributing
to differences between the Type and Type B water clarity sites. The DOC was the water
chemistry variable where the means were not equal. This is likely to affect all of the
variables related to water clarity—Kd(PAR), SDT, depth to bottom, depth to 10% light,
depth to 1% light, and 1/Kd(PAR).

3.2. Classification Results

We had sufficient project resources and usable multispectral imagery to create classifi-
cation mapping results for five sites with varying numbers of dates: Breezeswept North
(for one date, July 2017), Court East (three dates: August 2016, June 2017, and July 2017),
Hessel Marina (one date: July 2017), Howells Dock (three dates: August 2016, August
2017 using two separate images, and August 2018), and Neil (one date: July 2017) for ten
site/date combinations total.

As noted, every site was classified using both the Type A and Type B eCognition scale
parameters (clear = 25 and dark = 50), resulting in two results per analyzed site and date
combination for 20 total classification results (summarized in Table 5). Supplementary
Materials Section S3 has the complete results for each site/date combination. Included for
each result set are representations of the input multispectral image, a background UAS
image if available, the classification result with the scale parameter 25, and the classification
result with the scale parameter 50. Also included is a description of the site, the vegetation
found there, and representative field photos that help describe the site.

We review 5 of the site/date/scale parameter combinations here, out of the 20 available,
which are:

• Breezeswept North, for July 2017, with Tetracam imagery, and scale parameter = 50;
• Court East, for June 2017, with VISNIR imagery, and scale parameter = 25;
• Hessel Marina, for July 2017, with Tetracam imagery, and scale parameter = 25;
• Howells Dock (image 916), for August 2017, with Tetracam imagery, and scale param-

eter = 50;
• Neil, for July 2017, with Tetracam imagery, and scale parameter = 50.



Remote Sens. 2022, 14, 2336 14 of 26

Table 5. Summary of error analysis results for 2016–2018 classifications.

Site Date Image Type
(and No.)

Overall
Accuracy

EWM
Producer’s
Accuracy

EWM User’s
Accuracy Water Type Scale

Parameter
No. of SAV
Classes

Breezeswept N. July 2017 TC 74.5%
(38/51)

0.0%
(0/2)

0.0%
(0/1) Dark 25 3

Breezeswept N. July 2017 TC 71.7%
(33/46)

25.0%
(1/4)

100%
(1/1) Dark 50 3

Court East Aug. 2016 TC 83.3%
(40/48)

93.3%
(14/15)

73.7%
(14/19) Dark 25 1

Court East Aug. 2016 TC 80.9%
(38/47)

90.0%
(9/10)

56.2%
(9/16) Dark 50 1

Court East June 2017 VN 67.9%
(38/56)

56.0%
(14/25)

66.7%
(14/21) Dark 25 2

Court East June 2017 VN 67.9%
(38/56)

73.7%
(14/19)

51.9%
(14/27) Dark 50 2

Court East July 2017 TC 97.7%
(43/44)

100% 1

(14/14)
93.3% 1

(14/15) Dark 25 1 1

Court East July 2017 TC 88.9%
(40/45)

80.0% 1

(12/15)
85.7% 1

(12/14) Dark 50 1 1

Hessel Marina July 2017 TC 60.4%
(32/53)

73.3%
(11/15)

57.9%
(11/19) Clear 25 2

Hessel Marina July 2017 TC 60.0%
(30/50)

60.0%
(12/20)

60.0%
(12/20) Clear 50 2

Howells Dock Aug. 2016 TC 93.0%
(40/43)

100%
(19/19)

95.0%
(19/20) Clear 25 2

Howells Dock Aug. 2016 TC 88.4%
(38/43)

89.5%
(17/19)

85.0%
(17/20) Clear 50 2

Howells Dock Aug. 2017 TC–910 74.5%
(35/47)

80.8%
(21/26)

77.8%
(21/27) Clear 25 2

Howells Dock Aug. 2017 TC–910 74.5%
(35/47)

76.7%
(23/30)

85.2%
(23/27) Clear 50 2

Howells Dock Aug. 2017 TC–916 72.5%
(37/51)

65.5%
(19/29)

95.0%
(19/20) Clear 25 2

Howells Dock Aug. 2017 TC–916 84.6%
(44/52)

79.2%
(19/24)

90.5%
(19/21) Clear 50 2

Howells Dock Aug. 2018 TC 86.7%
(26/30)

100%
(17/17)

81.0%
(17/21) Clear 25 1

Howells Dock Aug. 2018 TC 82.4%
(28/34)

100%
(19/19)

76.0%
(19/25) Clear 50 1

Neil July 2017 TC 73.2%
(41/56)

72.2%
(13/18)

92.9%
(13/14) Clear 25 2

Neil July 2017 TC 79.6%
(43/54)

75.0%
(12/16)

92.3%
(12/13) Clear 50 2

All sites and
classifications

76.7%
(731/953)

78.7%
(280/356)

77.6%
(280/361)

TC = Tetracam system; VN = VISNIR system; 1 = In July 2017, the Court East site was a matrix of EWM and
Elodea that was not visibly separate in imagery or field photos, so this was treated as a mixed EWM/Elodea class
for accuracy assessment.

Breezeswept North is a darker water site that was selected as it was the only site with
three major taxa of SAV present, with EWM, Elodea canadensis (Canadian waterweed), and
Potamogeton zosteriformis (flat-stem pondweed). The EWM was also scarcer here than the
other four sites, with the Elodea being predominant. Figure 5 shows the input Tetracam
image with a color-infrared display and the classification result using scale parameter = 50.

Court East is a lower water clarity site, and the June 2017 date was selected to help
demonstrate the results of the classifying imagery from the four-band VISNIR system.
Figure 6 shows these results, with the EWM and Potamogeton pusillus ssp. pusillus (small or
small-leaf pondweed) present, along with areas of detached SAV floating at the surface.

Hessel Marina is a higher water clarity site, with the July 2017 result selected because of
the presence of two invasive aquatic plant species, EWM and Potamogeton crispus (curlyleaf
pondweed). Figure 7 shows the Tetracam input image and classification result for scale
parameter = 25. This image was taken a few days before treatment to reduce EWM growth
was started with a native fungus and was intended to form a baseline for monitoring
treatment effectiveness.
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The Howells Dock input Tetracam image and resulting classification with the scale
parameter = 50 for August 2017 are shown in Figure 8. This higher water clarity site did
not undergo treatment for EWM removal during the study period of 2015–2018. This result
was chosen because of the presence of both eelgrass (Vallisneria americana, also known as
water celery or tapegrass) and EWM. In a transition area, the presence of both eelgrass and
EWM necessitated the use of a mixed EWM/eelgrass class type.

Neil is a higher water clarity site immediately west of Hessel Marina, with the July
2017 result shown. This example was included because the two types of SAV present, Chara
and EWM, were both deeper than the SAV at other sites, at approximately 1.75 m beneath
the surface in 2.4 m of water. This provided the opportunity to determine if Chara and
EWM could still be differentiated in a deeper water site where the plants were in a relatively
short growth form, not near the surface. Figure 9 shows the Tetracam input image and the
classification results for scale parameter = 50. The presence of exposed, algae-covered rocks
just beneath the surface and a visible sandy bottom also provided a useful example of the
need to have multiple non-SAV classes to complete the classification.
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3.3. Error Analysis

The error matrices for each classification are summarized in Table 5, and the full error
matrices are available as supplementary material in Supplementary Materials Section S2.

The overall accuracies varied from a low of 60.0% at Hessel Marina in July 2017 with
the scale parameter = 50 (30/50 interpretation points correct) to a high of 97.7% at Court
East in July 2017 with the scale parameter = 25 (43/44 correct). The lowest EWM producer’s
accuracy was 0.0% at Breezeswept North in July 2017 with the scale parameter = 25, but
this was at a site with a limited presence of EWM and 0/2 interpretation points correct;
excluding this site, EWM producer’s accuracies ranged from a low of 56.0% at Court East
in June 2017 (for the only pair of classifications conducted from the VISNIR imagery) with
the scale parameter = 25 (14/25 correct) to three sites having a high of 100%: at Court East
in July 2017 with the scale parameter = 25, with this site having a mixed EWM/Elodea class
(14/14 correct); Howells Dock in August 2016 with the scale parameter = 25 (19/19 correct);
and Howells Dock in August 2018 for scale parameters 25 and 50 (17/17 correct for the scale
parameter = 25 and 19/19 correct for the scale parameter = 50). Excluding Breezeswept
North again, where EWM was present but scarce, EWM user’s accuracies ranged from a
low of 51.9% at Court East in June 2017 with the scale parameter = 50 (14/27 correct, for the
only VISNIR classification pair) to two sites with a high of 95.0%: Howells Dock in August
2016 with the scale parameter = 25 (19/20 correct) and Howells Dock, image 916, in August
2017 with the scale parameter = 25 (19/20 correct).

Average accuracies using all 20 classification results were 78.1% for overall accuracy,
74.5% for producer’s accuracy for EWM, and 75.6% for user’s accuracy for EWM. The
average accuracies for the 18 out of 20 classifications that used Tetracam multispectral
data, which was used to calculate the mNDVI, were 79.3% for overall accuracy, 75.6%
for producer’s accuracy, and 77.4% for user’s accuracy. For the 2 out of 20 classifications
that used the VISNIR data, which was used to calculate the standard NDVI, the average
accuracies were lower with 67.9% for overall accuracy, 64.9% for producer’s accuracy, and
59.3% for user’s accuracy.

These results can also be summarized to match the format of Table 1, with the averages
plus or minus one standard deviation (see Table 6). For the Type A sites with greater light
penetration on average, the average accuracy for the Type A type classification with the
scale parameter = 25 was not higher than that for the lower clarity Type B classification
with the scale parameter = 50. For the Type B sites with lower light penetration on average,
the accuracy was higher using the Type A type scale parameter than the Type B type
scale parameter.

Table 6. Summary of average accuracy results by site (water) type and classification type (small-scale
parameter = light or large-scale parameter = dark).

Classification Type

Higher Water Clarity
(A)

Lower Water Clarity
(B)

Water type

Higher water clarity
(A) 76.7% (+/−10.5%) 78.3% (+/−9.2%)

Lower water clarity
(B) 80.9% (+/−11.2%) 77.4% (+/−8.2%)

(+/− one standard deviation)
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The mixed linear model was designed to understand whether the classification ac-
curacies were significantly affected by the scale parameter. Table 7 shows these mixed
model results.

Table 7. Results for the mixed linear analysis for each tested accuracy (overall, EWM producer’s, and
EWM user’s) using all sites and years. The random effect of site was not significant for all tests with a
Wald p > 0.05.

Dependent Variable

Effect Num DF Den DF F Value Pr > F

Overall accuracy
Scale 1 8.0 0.291 0.6042
Site_type 1 8.0 0.055 0.8199
Scale*Site_type 1 8.0 1.907 0.2047

Producer’s accuracy
Scale 1 8.0 0.096 0.7641
Site_type 1 8.0 1.020 0.3421
Scale*Site_type 1 8.0 0.505 0.4976

User’s accuracy
Scale 1 8.0 0.387 0.5512
Site_type 1 8.0 2.879 0.1282
Scale*Site_type 1 8.0 0.496 0.5012

None of the results were significant at the p = 0.05 level. Neither the scale parameter
nor the site type had a significant effect on overall accuracy, and there was not a significant
interaction between the scale and site type.

As the classification process was carried out, it seemed possible that the accuracy
was influenced by the number of SAV species classes that we were attempting to map
for each image. The number of SAV classes ranged from one (such as at Howells Dock
in August 2018 when only EWM was mapped based on vegetation field surveys) to as
many as three (at Breezeswept North, with EWM, Elodea, and flat-stem pondweed all
identified and mapped, Figure 8). To test this, we used the Kruskal–Wallis rank-sum test in
JMP version 14.0.0 to compare the accuracy as the response variable among groups with
1, 2, or 3 SAV classes with post hoc Dunn tests to compare among the three groups. We ran
separate tests for the overall accuracy, producer’s accuracy, and user’s accuracy.

For the overall accuracy, the Kruskal–Wallis test indicated that the groups were signifi-
cantly different (χ2(2) = 6.26, p = 0.044), but the post hoc Dunn tests did not identify any
significant differences between the groups (Figure 10, top).

For the producer’s accuracy, the groups were again significantly different (χ2(2) = 11.45,
p = 0.0033), and the Dunn test indicated that the accuracy was significantly higher for
classifications with one class vs. those with two or three, but there was no difference
between classifications with two or three groups (Figure 10, bottom).

For the user’s accuracy, there was no significant difference in the classification accuracy
based on the number of SAV classes present (χ2(2) = 0.26, p = 0.88).
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3.4. Discussion
3.4.1. Accuracy Discussion

Accuracies for classified multispectral UAS images are higher than previously re-
ported in the literature for the identification and mapping of different types of SAV. We
obtained an average overall accuracy of 76.7%, a producer’s accuracy of 78.7%, and a user’s
accuracy of 77.6% across the 20 classifications. With the Tetracam results, we were able to
exceed the 61% maximum overall accuracy noted in [43] on a consistent basis across both



Remote Sens. 2022, 14, 2336 21 of 26

dark and clear water sites. The authors of [49] compared the field data of emergent and
submerged aquatic vegetation to distribution mapping created using remote sensing and
echo-sounding techniques. Echo sounding produced the most comparable results to field
data, with 71% producer’s accuracy and 73% user’s accuracy for non-canopy-forming SAV
species (such as eelgrass and Chara), but they were not able to map canopy-forming SAV
such as Myriophyllum spp. They tested an early multispectral airborne sensor with eight
bands ranging from 390 to 1100 nm (ultraviolet edge to near-infrared) but only achieved
18% overall accuracy with 7 m pixel resolution and concluded that image-based remote
sensing was “expensive and problematic”. While they noted problems with the water color,
including turbidity, we were able to identify EWM in sites such as Court East where it was
found a meter below the surface and at two meters below the surface in clear water sites
such as Howells Dock.

The authors of [43] note that there are many factors that affect the overall accuracy for
SAV identification, including band alignment problems for multispectral imaging devices
and the radiometric impacts of sky factors (sunglint, specular reflection, shading). We
focused our data collections as much as possible to within two hours of solar noon, which
helped reduce these issues. We did see some alignment issues, particularly in the red-edge
bands, but these did not appear significant over the scale of the images being analyzed, at
least based on the mapping accuracies we obtained. We found that clear sky, sunny days
with low winds were optimal for obtaining images where the SAV was most easily visible,
while cloudy days produced a large amount of cloud reflectance on the water surface and
limited light penetration that made SAV identification much more difficult. We eliminated
all of the imagery collected on overcast days from our analysis because of these issues;
therefore, this issue should not affect the results and analyses we present here.

The quality and quantity of field data also impacted our ability to create relatively
accurate SAV mapping results. The authors of [43] compared their OBIA-derived results to
manually delineated class boundaries and types to assess accuracy and noted that this can
have limitations, as manual interpretation is not error-free. We found that above-water and
below-water photos, taken with a waterproof digital camera with GPS capability, were very
important for evaluating multispectral imagery, especially when referenced to standardized
recording of visual estimates of percent cover by SAV species. After our first year and
initial attempts to classify the collected imagery, we had found it challenging to relate the
visual interpretation (and other vegetation estimates) to specific locations in the imagery,
despite recording the position of the boat during field visits. We found that deploying
numbered buoys, and being able to see those in UAS imagery, made this process much
easier, especially when significant time (months or years) could sometimes go by between
field visits and the final image classification and accuracy assessment. We recommend the
adoption of these types of marker buoys when using UAS imagery to identify SAV taxa
and other applications with a similar scale. As we recorded the locations of the marker
buoys with a Trimble GeoExplorer 6000 GPS unit, these could also serve as an additional
source of positioning information for orthophoto georeferencing, along with the GPS data
embedded in the UAS aerial images.

We also found evidence for an effect of the number of SAV classes on the overall and
producer’s accuracy. Sites with two or three species of SAV produced lower accuracy results
than sites with just one SAV type to identify for the producer’s accuracy, and the difference
was also evident among groups for the overall accuracy. With multiple SAV types, there
is the potential for them to be spectrally similar, at least with the multispectral sensors
deployed in our work [19,26]. With only one SAV class, we were generally only trying
to differentiate it from open water or uncolonized bottom substrate, which is easier to
accomplish due to larger spectral differences. Our methods have the greatest applicability
if the purpose of EWM identification is to map its extent in underwater stands where it
is predominant. This would be most useful when tracking changes in its extent due to
management efforts that focus on EWM-dominated stands.
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3.4.2. Light Penetration, Water Clarity, and Color-Producing Agents

The limited penetration of near-infrared light into water is well known, with the
absorption coefficient of water rising rapidly between 700 and 750 nm [50], and the pene-
tration can be further limited by higher CPA values. With an mNDVI apparently important
for identifying EWM from other SAV taxa, these could be expected to reduce our ability to
identify this species. However, no site used in our mapping analysis had depths greater
than 2.97 m (Table 3), and the depth to the top of the EWM plants was never greater than
2.0 m and was normally less than 1.25 m. At every site except for Court East and Court
West, the depth to 10% light remaining exceeded the depth to the bottom, and except for
Court West and CRAM, there was more than 10% light remaining at the bottom depth
(Table 3). In reviewing the imagery visually, we could always identify where the EWM
was present in the imagery for the five sites used for multispectral image classification. For
these reasons, the mNDVI was effective in identifying EWM with relatively high accuracy
in our study, even with the limited penetration of near-infrared light.

Despite the clustering of sites based on the differences in water clarity, it is impor-
tant to note that all of our sites have relatively clear water, with average k values of
0.5010 to 2.1960. While [43,44] do not report a light extinction coefficient for their river site
in Belgium, values for other waters indicate that our nearshore areas of the Les Cheneaux
Islands were relatively clear. For a shallow, turbid reservoir in Texas, [51] report k values of
2.49 to 7.93 m−1, while values up to 8 m−1 were reported in eutrophic Lake Okeechobee,
FL, depending on the season and lake location [52]; our values are more similar to Lake
Mendota in Wisconsin which have been reported in the range of 0.35 to 0.85 m−1 [53].

With SAV, we have been attempting to measure the presence and extent of specific
species at sites that have a greater variability in the sensing environment than terrestrial
sites. The atmospheric correction of the imagery of terrestrial areas is a standard procedure,
especially for satellite imagery, but we are dealing with apparent optical properties of water
affected by the CPAs and the inherent optical properties affected by the absorption and
backscatter of the light signal that gets attenuated. The authors of [43] noted that standard
targets of 85% accuracy are based on terrestrial environments but are more challenging
in aquatic environments due to these types of complication factors. In our sites, we have
areas with higher DOC values, most likely because of a local creek that drains wetland
areas, while sites further away without a local DOC source have higher water clarity. Even
without DOC, absorption, backscatter, and surface glint make aquatic remote sensing more
challenging [32,54]. In sites with higher CPA values, we anticipate that these may alter
the spectral signature and mNDVI values of EWM, complicating classifications in lower
clarity sites.

3.4.3. Site Types

The cluster analysis showed that we had two types of sites based on the water chem-
istry data that were collected: those with relatively high water clarity and those with
relatively low water clarity. This informed our classification methods, with the idea that a
smaller scale parameter was more appropriate for high water clarity sites and a larger scale
parameter was more appropriate for dark water sites. However, classification accuracy did
not differ significantly between the higher and lower water clarity sites in our analyses,
with some local variation. We had expected that the scale parameter of 25 would produce
more accurate results for clear water sites and the scale parameter of 50 would produce
more accurate results for dark water sites. This was based largely on a visual impression
from the initial classification results that a smaller scale parameter appeared to capture finer
details in the extent of the SAV more accurately than larger ones. It had seemed that greater
detail was visible for the SAV areas in high water clarity sites and that the smaller scale
parameter would help capture this. These more detailed features could then be resolved
into image objects representing areas of SAV, rather than treating each pixel individually.

For the lower water clarity sites, SAV areas appeared to be less distinct in early
classifications, with DOC being the primary CPA affecting water clarity here. However,
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this was not borne out when all of the classifications and the accuracy assessment were
complete, as shown in Table 6. Indeed, the mixed linear model results showed that the
scale parameter was not associated with a significant difference in the overall, producer’s,
or user’s accuracy. It may be that each SAV type has its own optimal scale parameter for the
highest accuracy results; this idea has been investigated for terrestrial land-cover types [55].
Scale parameters are designed to help reflect the landscape heterogeneity captured by
imagery [56], and further investigation of how this parameter can best be used to help
identify specific SAV species of interest may be warranted. It appeared that the smaller
scale parameter enabled a more precise selection of training areas for classification, but this
could also mean that inherent variability within a cover class could be missed. This may
be what occurred with the large visible differences in the extent between the maps created
using the two scale parameters for the flat-stem pondweed at Breezeswept North, the small
pondweed at Court East in June 2017, and the deeper rocks class at Neil.

3.4.4. Biomass

The authors of [57] noted that percentage cover, percentage volume, and dry weight
biomass mass could be strongly correlated (R2 range of 54–96%) for SAV in shallow rivers,
with seasonal and site variations in these relationships. We have previously demonstrated
that percent cover can be reasonably related to biomass for SAV in our Cladophora algae
remote sensing work that used Landsat data to map the SAV extent with 83% overall
accuracy across Lakes Michigan, Huron, Erie, and Ontario [58,59]. Relatively accurate
mapping of EWM could potentially be used to estimate EWM biomass and how this could
change when EWM undergoes management methods.

4. Conclusions

Multispectral UAS-enabled sensing of a specific invasive aquatic plant, Eurasian
watermilfoil, was demonstrated as being possible through this research, including when
it was mixed with other taxa. The average accuracy we obtained for the identification
of different taxa of SAV is higher than previously reported efforts for SAV mapping and
shows promise for the multispectral UAS-enabled identification of EWM extent as part of
SAV management efforts.

We found that the inclusion of the mNDVI appeared useful in identifying EWM,
most likely because this index is sensitive to green vegetative biomass. Despite limited
penetration of the red, red-edge, and near-infrared wavelengths into the water column,
we found sufficient penetration that multispectral sensing including a red-edge or near-
infrared sensitive camera system could help identify SAV. This was demonstrated where
EWM was present in the first meter of water at sites with higher DOC concentrations or the
first two meters at relatively clear water sites. The ability to detect greater or lesser amounts
of biomass in the water column likely contributed to our relatively high accuracy results
for SAV identification. In [19,26], we found that additional spectral bands were more likely
to lead to reliable EWM identification, and the exploration of the specific wavelengths in
the red to near-infrared that help identify shallow-depth SAV species is recommended.

With multispectral sensors now deployable onboard UASs on a practical basis, together
they can be a valuable tool for ecologists and aquatic managers wanting to understand
the extent of specific species of SAV, such as EWM, particularly where the species is
dominant in the area of interest. With the dominance of SAV species changing year by
year, as seen at some of our sites, UAS-based methods can provide information on the
variability of these sites. Future research could compare additional sensors and remote
sensing platforms to produce detailed results in time periods useful for field monitoring
and management. We expect that our methods will be most applicable to monitoring the
effects of the anthropogenic management of aquatic vegetation, which may lead to rapid
changes in SAV biomass, extent, and composition.
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