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Abstract
Attackers are able to enumerate all devices and computers within a compromised substation
network. Digital relays deployed in the substation are the devices with IP addresses that can
be discovered in the process of trial‐and‐error search. This paper is concerned with studies
of cyberattacksmanipulating digital relays to disruptively disconnect the associated breakers.
The plausible enumeration of such disruptive attack for each relay in a substation is verified
with the dynamic simulation studies with the special protection system for frequency,
voltage, and rotor angle stability. A pertinent approach with smaller scale contingency
analysis results is proposed to reduce the enormous computation burden. The devised
enumeration reduction method is evaluated using IEEE test cases. The proposed method
provides an extensive enumeration strategy that can be used by utility engineers to identify
the pivotal relays in the system and can be further strengthened with security protection.

KEYWORD S
Big Data, distributed control, power system cyber‐security and privacy, power system security, power system
simulation, relay protection, substation automation

1 | INTRODUCTION

Internet Protocol (IP)‐based information communication
technology is increasingly deployed in today's power grids.
Digital relays are the crucial components of protection in
substations. According to the IEC61850 standards [1, 2],
intelligent electronic devices (IEDs) are deployed on the local
area network within substations based on Ethernet and IP
communications [3]. Other deployment modes using older
communications standards, such as DNP3 and IEC60870‐5,
are also possible. Convenient remote connections allow pro-
tection engineers to visualise the connections and relationships
between the control functions and the physical components

through the human‐machine interface. With such remote
connectivity, protection engineers are able to customise the
functional settings of relays to meet the reliability of the power
grid. Such flexibility to remotely connect the software systems
on substations could also introduce a way for the intruders to
log in. Upon successful hacking onto the control system, the
attackers are able to learn from the system and perform stra-
tegically a series of switching actions associated with the
compromised substation network.

The digital protective relay deployed in a substation can be a
target [4–6]. The 2015 Ukraine attack, for example, exploited
remote access to IP‐based substation equipment to covertly
disconnect circuit breakers and then erase the hard drives of
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that equipment. While the attack was not reported to affect
cascading failure, it demonstrated the vulnerabilities of IP‐
based substation equipment to cyberattacks [7]. More
recently, the United States Department of Homeland Security
issued an alert indicating that Russian threat actors targeted
American electric facilities with remote access attacks [8].
Another alert indicated that safety equipment at industrial sites
had been targeted [9].

Available hacking tools, for example, Shodan, Nmap, and
Wireshark, can help attackers enumerate all the IP‐based de-
vices in an interconnected communication network [10, 11].
These software tools identify nearby devices if they are alive
[12–14]. The vulnerabilities of remote connectivity to protec-
tive relays are summarised in [15], categorised as software se-
curity vulnerabilities, network security vulnerabilities, such as
denial‐of‐service (DoS) attacks, system vulnerabilities, and
other miscellaneous malware. The cyberattack against the in-
dividual IED, for example, the false data injection attack, has
already been rigorously discussed, mainly focussing on the
unwanted or undesired IED operation [4, 16]. However, sub-
sequent IED operations that could result in large‐scale power
outages have been well investigated [6]. Such studies are limited
to multiple IED operations at a single substation.

One of the hackers' adversary strategies is to perturb the
grid‐wide instability and pose brownouts or blackouts, dis-
connecting components of a power grid via circuit breakers
[17]. Breakers are generally tripped by switching maneuvers
done by system operators or protective relays. Therefore,
compromising Supervisory Control and Data Acquisition
(SCADA) or IEDs allows hackers to manipulate switchgears in
hand [18]. If a large number of substations are out of service
due to the substation attack, the brownout is inevitable, and the
blackout could occur. A partial power outage is defined here as
the brownout in this paper. The majority of recent work related
to the cyber‐incurred power outages focusses explicitly on
hacking onto the local SCADA system, but a granular detail on
protective device levels is not performed [19–22]. Reference
[18] proposes derivation of the probability that SCADA and
IEDs are compromised in terms of the steady‐state probability
(Figure 1). However, the impact of those compromised
SCADA and IEDs is not discussed. Reference [23] proposes a
risk index and attempts to quantify which IED would give a

more significant impact, refining the relevant work [19–22].
Despite the best efforts using the steady‐state approach, the
measure to identify worse‐case combinations should be veri-
fied with dynamic simulation, including cascaded events.

References [19–22] have evaluated substation outages via
the SCADA, enumerating all the possible combinations of
substations. Combinations of cyberattacks via compromised
IEDs would be extendable to a more complicated combina-
torial problem because a single IED may be associated with
one or more circuit breakers. On the contrary, different IEDs
also disconnect the same circuit breakers. Such studies are
crucial in determining if some cases may detrimentally affect
operation that could lead to cascading implication where it
requires time‐domain simulation with models to verify.

Extreme contingency studies against switching attacks
would provide a perspective beyond status quote N‐1 contin-
gency. It can be computationally taxing but the formulation of
problem based on data flow of the control network provides a
guidance of potential intrusion plausibility. To the best of the
authors' knowledge, impact studies of substation attacks to-
wards an exhaustive enumeration of IED‐initiated contin-
gencies using dynamic models have not been studied. Although
time‐domain simulation starts to be leveraged for the impact
analysis for hypothetical cyberattack studies [24, 25], [24]
restrain the anomaly detection. Reference [25] only covers
transmission line events with underfrequency relays, which
does not capture a wide variety of cascaded events.

Themain contributions of this paper are summarised below:

� Dynamic control and protection models are implemented
into IEEE standard system models to represent cascaded
events more precisely than the power flow calculation.
Specifically, special protection scheme models are detailed.

� A strategy capitalising on simulation results against a smaller
number of equipment failures is proposed to decrease the
explosively growing computation burden in response to the
number of component outages.

The organisation of the paper is as follows: Section 2 gives
the details on the IEDs (i.e. digital protective relays that assure
technical compliance with IEC61850) and circuit breakers.
Section 3 models the disruptive switching actions via the

F I GURE 1 Summary of hypothesised switching attacks using different validation methods
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associated digital relays, including special protection schemes
(also known as special protection system; SPS). Refined IED
combination enumeration that is suited for dynamic simula-
tions is also proposed. Section 4 presents simulation results
using IEEE test systems. Section 5 concludes with future work.

2 | HYPOTHETICAL SWITCHING
ATTACKS VIA COMPROMISED IEDS IN
SUBSTATIONS

2.1 | Theoretical difference between
compromised IED and compromised
substation from enumeration perspective

Extended enumerations of substation outages via the
compromised SCADA have already been established in [19, 20].
They define hypothesised substation outages as an S‐select‐k
contingency, linking it with N‐1 contingency.

The number of the complete combinations of substations
is
PjSj

k¼1C
jSj
k , where S is the substation set and k is the number

of out‐of‐service substations.
On the other hand, once hackers successfully compromise

the protective equipment, that individual would be able to
remotely change relay settings, which may initiate (1) unde-
sired/unwanted relay operation if the grid is in a healthy
condition or (2) failure to operate against a fault condition. The
impact of cyberattacks on IEDs is nontrivial and could lead to
a cascading failure.

As shown in Figure 2, this proposed study extends the
previous work to presume switching attacks via compromised
relays/IEDs associated with the breakers (hereafter, we call it
R‐select‐k contingency as contrasted with S‐select‐k). Let ~R
denotes the set of IEDs in the entire system:

~R¼ R1 ∪ R2⋯ ∪ Ri ∪ ⋯ ∪ RjSj ð1Þ

where Ri is the set of IEDs that are deployed at the substation
i, such as:

Ri ¼ ri1; r
i
2;…; rib;…; riBi

h i
ð2Þ

where rib denotes the bth IED on a specific substation i. The
variable, Bi, denotes the total number of the set of IEDs with
respect to a particular protection zone of the substation i. It is
noted that one set of IEDs at a substation corresponds to a
particular protection type, such as bus protections, line pro-
tections, transformer protections, and generator protections
(see Figure 3). Thus, the total number of the IED combination
enumerations, SR, is:

SR ¼
Xj~Rj

k¼1

Cj
~Rj
k ¼ 2j~Rj − 1¼ 2

PjSj

1
Bi − 1 ≫ SS ¼ 2jSj − 1

ð3Þ

Variables, SR and SS, denote the total number of enu-
merations of R‐select‐k and S‐select‐k contingencies, respec-
tively. It is evident that the total number of combination
enumerations increases enormously when hacking IEDs for
substation outages are considered. For example, let us assume
10 substations in the system and three IEDs on each sub-
station. SR is 220 times larger than SS.

2.2 | Simulation‐based verification against
simultaneous IED outage and sequential IED
outage

In addition, the evaluation volume would further increase if the
sequential operation between IEDs is considered. The
sequential order of those operations would significantly increase
the complexity of the problem. An R‐select‐k contingency
analysis result using the IEEE 14‐bus system with and without
the sequential order of substation outages is illustrated in
Table 1. The sequential events are simulated every 5 seconds.
The number of studied sets of IEDs are fixed as three among
bus protection, generator protection, transmission line protec-
tion, and feeder protections at each substation to limit the

F I GURE 2 Architecture of protective intelligent electronic devices (IEDs) and possible path enumeration within a substation network by hacking tools
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explosively increasing volume of contingency cases. It is noted
that the total substation number is 10. The used models are
illustrated in Section 4. As shown in Table 1, the contingency
analysis results are overall the same with and without sequential
outages. Strictly speaking, sequential order of outages is prone
to provide pessimistic results as k of R‐select‐k increases.
Although this is not always the case, the difference in blackout
rates with and without sequential substation outages is likely to
be negligible, especially for the smaller k. In light of the above,
the sequential operation between the set of IEDs is out of scope
in this paper and treated as the future work in the paper.

3 | R‐SELECT‐k CONTINGENCY

3.1 | Modelling of IED outages

Compromised advanced digital relays (i.e. IEDs) can be
manipulated by hackers to trip those associated breakers in a
substation. Generally, the protective schemes, defined as
relays, would overlap with some circuit breakers in a

substation. In other words, it is common to deploy two or
more protective relays on the same equipment. The relay
deployment and applications of rib can be found in Table 2,
which details the basic relaying fundamentals, applications,
and electrical components [26]. As shown in Table 2, each
substation may deploy numerous relays for single or multiple
power components, which would create a massive set of
switching attack combinations. It is observed that on the
one hand, multiple relays are protecting the same equipment,
which may cause the same impact to the system; on the
other hand, the impact level can also be different depending
on the schemes. For example, compared to bus protection,
which connects multiple components, such as generators,
feeders, and transmission lines, the line protection obtains a
lower level of impact to the system. A ranking method is
introduced for each substation to sort and collect the first R
relays that can cause higher impacts. By accumulating the
number of N relays for each substation, to differentiate
from ~R, the relay set R̂ is introduced where the impactful
relays from power balance perspectives are selected, that is,
R̂‐k contingencies.

F I GURE 3 Modified topology of the original graph G0 and fundamentals of protection deployment in the IEEE 14‐bus system

TABLE 1 Simulated brownout and blackout cases of R‐select‐k contingency analysis using IEEE 14‐bus system with and without sequential outages,
indicating the potential threats of system collapse

R − k

Brownout cases
(simultaneous
outages)

Blackout cases
(simultaneous
outages)

Brownout cases
(with sequential
outages)

Brownout cases
(with sequential
outages)

Blackout rate
(simultaneous
outages)

Blackout rate
(with sequential
outages)

R − 1 23 22 23 22 0.27 0.27

R − 2 258 177 507 363 0.41 0.42

R − 3 1835 2225 10,710 13,650 0.55 0.56

R − 4 9233 18,172 206,883 450,837 0.66 0.69
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Let G(V, E) represents the graph topology of the power
system, where V and E denote the set of bus nodes and the set
of edges. The original topology may not represent the
deployment of the generators and loads. Therefore, the set of
generator and load buses, v0, and the corresponding incident
set of edges, e0, are incorporated. Thus, the graph G0(V0, E0),
where V0 = V ∪ v0 and E0 = E ∪ e0, is introduced to evaluate
attack combinations through IEDs as depicted in Figure 3.
Figure 3 also illustrates the correlation of the various protec-
tion schemes and the corresponding electrical components of a
substation with buses 4, 7, 8, 9, 10, and 14. The dashed circles
with different colours represent the different electrical com-
ponents and their corresponding protection zones comprising
sets of IEDs. The R‐select‐k contingency analyses introduced
in the paper presume that each set of IEDs can be compro-
mised independently. On the other hand, it is assumed that
IEDs in the same protection type (e.g. bus protection) at a
substation are all compromised once one particular IED is
hacked. The protection coordination and backup protections
are not included. The initial event of compromised IED out-
ages, K(VK, EK), is presented in Figure 4.

Figure 4 represents the modelling process of the initial
IED outage event, K. Based on Table 2, the configuration of

IEDs within the system can be initialised by aligning corre-
sponding substation i, connected transmission lines, feeders,
and generators, for the bth IED, rib. The IED set, R̂, can be
derived from (1) and (2). Then, the R̂‐k relay contingency list,
T, is generated, which satisfies the event, K ∈ T. The initial
event K(Vk, Ek) is modelled by collecting all the substation
nodes and lines affected after the set of IEDs, rib, is
compromised. The event, K, would be leveraged for the dy-
namic verification study in the following subsection.

3.2 | Contingency case reduction

Let us define a hypothetical IED switching attack that leads to
a blackout in R‐select‐k contingencies with R‐select‐k critical
IEDs. We define the critical IEDs as an IED‐initiated attack
that incurs direct and cascaded outages in this paper. Once the
critical IEDs are specified in small R‐select‐k combinations,
any larger R‐select‐k combinations that include critical IEDs
generally result in blackouts. This idea was applied to the po-
wer flow‐based approach and enabled to reduce the volume of
the contingency cases tremendously [20]. However, that is not
necessarily the case. That means, combinations of IED attacks
containing critical IEDs can lead to the brownout (referred to
as a blackout error). On the other hand, attack combinations
through IEDs, including no critical IED, can lead to the
blackout (referred to as a brownout error). Such an exceptional
case more emerges in the dynamic simulation. This exceptional
circumstance affects both the accuracy of blackout and
brownout, and those errors increase as k of R‐select‐k in-
creases. Therefore, the trade‐off reducing R‐select‐k contin-
gency cases and mitigation of increase in blackout and
brownout errors needs to be carefully examined. In addition, a
power flow‐based approach can recursively identify critical
IEDs for each R‐select‐k contingency. However, the same
procedure cannot be applied to dynamic simulations due to the
heavier computation burden than power flow calculations. This
paper proposes two countermeasures using critical IEDs
obtained from R‐select‐1 contingencies: (1) Decrease in
brownout error slightly increasing R‐select‐k contingency cases
and (2) decrease in R‐select‐k contingency cases slightly
increasing in blackout error. Features of countermeasures are
summarised in Table 3. The procedure of those countermea-
sures is illustrated in Figure 5. As shown in Table 3, the
examined R‐select‐k contingency cases are IED‐outage com-
binations that include critical IEDs obtained from the

TABLE 2 Fundamental of relay deployment and application on
substation i [27]

Protection zone Typical relays r i
b (if available) Component

Generator Over/underfrequency relay Generator

Inverse time overcurrent relay

Over/under‐voltage relay

Power transformer Percentage differential relay Transformer

Inverse time overcurrent relay

Overload relay

Transmission line Distance relay: Line

Three‐zone phase fault relay

Feeder and load Distance relay: Lumped load

Three‐zone phase fault relay

Busbar Differential relay Generator

Load/Feeder

Line

Transformer

F I GURE 4 Modelling process for switching
attack through compromised associated intelligent
electronic device (IED)
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R‐select‐1 contingency for countermeasure 1 and IED‐outage
combinations that exclude R‐select‐1 critical IEDs for coun-
termeasure 2, that is, there are no overlapped examined cases

in both countermeasures. The right flowchart corresponds to
countermeasure 1 in Table 3, while the left corresponds to
countermeasure 2 in Table 3.

TABLE 3 Pros and cons of two
countermeasures

Countermeasure 1 2

R‐select‐k contingencies R‐select‐k including critical IEDs
obtained from R‐select‐1
contingency

R‐select‐k excluding critical IEDs
obtained from R‐select‐1
contingency

R‐select‐k contingency cases Increase Decrease

Brownout/blackout evaluation
accuracy

Increase Decrease

Abbreviation: IEDs, intelligent electronic devices.

F I GURE 5 Flowchart of two countermeasures
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3.3 | Computational environment and test
case setup

This simulation study evaluates IEEE 14‐ and 30‐bus systems
using a commercially available time‐domain simulation tool,
Central research institute of electric power industry's Power
Analysis Tool [28], in the Unix operating system. For each
hypothesised scenario, the dynamic simulation time is set as
11 s, including the pre‐disturbance time of 1 s.

This simulation study investigates the R̂‐k contingency
with N set to 3, which includes the top three IEDs (protection
categories) with the highest impacts on the system based on
the fundamentals and applications in Table 2. From the
viewpoint of the demand and supply balance following the
switching attack, the bus protection is highly likely to cause the
largest loss of electricity and is ranked as level 1. In the same
manner, the generator and line/feeder protections are ranked
to levels 2 and 3, respectively, grouping feeder protections and
transmission line protections together as the line protection.
The double‐circuit line is assumed for all the transmission lines
in the model. Then, compromised single line protection is
assumed, that is, the disruptive tripping by attackers on one of
the double circuit lines.

3.4 | Implementation of response‐based SPS
model

The special protection system (SPS) is widely used to prevent
cascaded events that pose a blackout. The SPS is classified into
two types: (1) response‐based SPS and (2) event‐based SPS [29]
(see Figure 6a). The response‐based SPS is provoked by
detecting the dynamic behaviour following a severe

disturbance. Because remote or system‐wide electric quantities
are not generally required, this type has been typically imple-
mented and used by utilities across the globe. On the other
hand, the event‐based SPS normally requires system‐wide in-
formation to initiate the corrective action earlier than the
response‐based SPS, matching the event with decision tables.
As shown in Figure 6b, a fault detection function is often
applied to activate the event‐based SPS for higher reliability.
The disruptive switching actions lead to the disconnection of
the power equipment without any faults. Therefore, the event‐
based SPS does not initiate the corrective control action. At the
same time, the response‐based SPS can take that action
regardless of the fault occurrence. In light of this, the event‐
based SPS is out of the scope of this study.

3.4.1 | Response‐based SPS model for frequency
stability

The response‐based SPS for frequency stability generally
contains the frequency drop using underfrequency relays with
or without the timer or rate‐of‐change‐of‐frequency (ROCOF)
relays. Because most IEEE standard models were assumed to
be the grid in the 1960s, the underfrequency relay without the
timer is modelled as the response‐based SPS for frequency
stability. This is the simplest and most widely used SPS around
the world, and the relay setting values may be determined ac-
cording to the following conditions:

� The frequency nadir is no lower than the lower limit of the
operating frequency of synchronous generators.

� The total load shedding amount is nearly the same as the
assumed largest single generator tripping amount.

F I GURE 6 Event‐based SPS and response‐
based SPS
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� The post‐fault frequency should not exceed the steady‐state
frequency.

The relay settings of underfrequency relay models are set,
referring to a publicly available source [30] (see Figure 7).

It is noted that underfrequency relays are locked in the
model when the voltage is below 0.4 (p.u.).

3.4.2 | Response‐based SPS model for rotor‐
angle stability

The response‐based SPS for transient stability generally dis-
connects the out‐of‐step (OOS) synchronous generators or
(tie‐) lines to prevent cascaded failure. The role of this SPS is
different depending on the disconnected equipment. If the
OOS occurs at the local level (i.e. when regional synchronous
generators are out of synchronism), the response‐based SPS
for transient stability removes some operating units from the
main grid to stabilise the entire system. If the OOS occurs at
the grid‐wide level, the bulk power system is split into two or
more sub‐grids by disconnecting tie lines. OOS relays are
designed using the impedance or the voltage angle difference
[31]. Although OOS relays are not always placed in all trans-
mission lines in many countries, it is desired to implement
OOS relays to all lines, especially to cope with disruptive

switching attacks. It is known that the relay characteristics are
not easily determined for the impedance‐type OOS relay. On
the other hand, the relay setting values are easily determined
for the voltage angle difference type OOS relay because the
definition of the OOS condition is 180° of a voltage angle
difference. For its simplicity, the voltage angle difference is
employed not only for lines but also for generators (See
Figure 8). It is noted that voltage angle difference type OOS is
applied here as the line protection in some countries, while
impedance‐type OOS is often used as the generator protection
in many countries. Because the time‐domain simulation tool
can calculate the internal induced voltage, the angle difference
between the terminal voltage and the internal induced voltage
is used to detect the OOS generators.

3.4.3 | Response‐based SPS model for voltage
stability

There is no event‐based SPS for voltage stability, and the
response‐based SPS for voltage stability is known as the under‐
voltage load shedding system, while the self‐disconnection of
loads during sub‐second voltage sags is not paid much attention.
The load self‐disconnection characteristics are equivalent to that
of the under‐voltage load shedding system at a system level
expressed asEquation (4) [32]. The starting and saturated voltage
levels are set as 0.8 p.u. and 0.6 p.u., individually. The amount of
self‐disconnected loads is assumed to linearly increase with the
upper limit of 25% of the initial load. It is noted that this relay is
not applied to reactive power compensators.

Pdrop ¼

0 Vmin > 0:8ð Þ

−1:6Vmin þ 0:8 0:8 ≥ Vmin ≥ 0:4ð Þ

0:25 0:4 > Vminð Þ

8
<

:
ð4Þ

where Pdrop denotes the amount of the load self‐disconnection,
and Vmin denotes the lowest voltage at the load bus.F I GURE 7 Underfrequency relay logic

F I GURE 8 Out‐of‐step relay characteristics for
lines and generators

8 - YAMASHITA ET AL.



3.4.4 | Response‐based SPS model for overload

Disruptive switching actions electrically de‐energise not only
lines and transformers, but also loads connecting to a substation.
Therefore, overloaded power equipment is unlikely to occur. If a
generator is overloaded in terms of active power, the frequency
drops due to the deficiency of generations. If a generator is
overloaded in terms of reactive power, the implemented over‐
excitation limiter (OEL) of the generator resolves this issue,
which results in the further decline of the grid voltage and further
load reduction. In the light of this, the frequency relay and the
automatic voltage regulator models with OEL are implemented
to all generators instead of response‐based SPS for overload. In
addition, the overvoltage relay model is implemented because
IEEE models include synchronous condensers that can cause
overvoltage during cascaded events.

3.4.5 | Example dynamic study with and without
SPS

Table 4 shows brownout and blackout rates with and without
SPS in the IEEE 14‐bus system. The dynamic simulation model
without SPS excludes the response‐based SPS models for fre-
quency stability and rotor angle stability. As shown in Table 4, the
mismatch of the blackout rate with and without SPS is at most
3%, and it decreases as k of R‐select‐k increases. It is noted that
the cascaded/sequential tripping of lines, generators, and other
power grid components following hypothesised contingencies is
considered in this simulation using the SPS models.

4 | R‐SELECT‐k CONTINGENCY CASE
REDUCTION IN IEEE 14‐BUS SYSTEM
AND 30‐BUS SYSTEM

The proposed R‐select‐k contingency case reduction is applied
to the IEEE 14‐ and 30‐bus system models. The performance
of the proposed case reduction schemes is reviewed and dis-
cussed using an F1‐score and relevant indicators, such as pre-
cision and recall.

F1score¼ 2 ⋅
Precision ⋅ Recall
Precisionþ Recall

ð5Þ

Precision¼
True positive

True positiveþ False positive
ð6Þ

Recall¼
True positive

True positiveþ False negative
ð7Þ

Due to a binary problem, that is, blackout/brownout
problem, four relations are defined to apply the F1 score shown
below:

� True positive: predicted blackout and was blackout
� True negative: predicted brownout and was brownout
� False positive: predicted blackout and was brownout
� False negative: predicted brownout and was blackout

The ‘precision’ in Equation (6) presents the blackout
accuracy, specialising in predicted blackouts cases. The ‘recall’
in Equation (7) illustrates the blackout accuracy, specialising
in blackout cases. Therefore, the ‘precision’ addresses how
credible the result is when it says blackout, while the ‘recall’
articulates how credible the result is when the contingency
scenario results in the blackout. As shown in Equation (5),
the F1 score deals with both properties in a balanced manner.
In other words, the high F1 score is attained only when the
‘precision’ and ‘recall’ are both high. Therefore, the F1 score
can evaluate the blackout/brownout accuracy in terms of two
different perspectives in a holistic manner. The case reduc-
tion performance is examined mainly with the F1 score in
Subsection 4.3.

The transition of the studied cases for R‐select‐k con-
tingencies is presented in Figures 9 and 10. Due to the
exponentially increasing computation burden, the studied
range of k of R‐select‐k contingency for the IEEE 14‐ and
30‐bus system models are up to seven and five, respectively.
In the IEEE 14‐bus system, seven IEDs that cause the
blackout are extracted as critical IEDs in the R‐select‐1
contingency. No combination that excludes the above seven
critical IEDs leads to the blackout in the R‐select‐1 through
R‐select‐3 contingencies.

TABLE 4 Brownout/blackout case and
rate with and without SPS in the IEEE 14‐bus
system R‐k

Brownout (stable) Blackout (unstable) Fraction of blackout [%]

With SPS Without SPS With SPS Without SPS With SPS Without SPS

R‐1 23 22 7 8 23.3 26.7

R‐2 258 242 177 194 40.7 44.6

R‐3 1835 1732 2225 2328 54.8 57.3

R‐4 9233 8830 18,172 18,575 66.3 67.8

R‐5 35,082 32,579 107,424 109,927 75.4 77.1

R‐6 104,763 102,414 489,012 491,361 82.4 82.8

R‐7 249,111 245,830 1,786,689 1,789,970 87.8 87.9
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4.1 | Countermeasure 1

Right parts of Figures 9 and 10 show the process of coun-
termeasure 1. R‐select‐2 contingencies are thoroughly ana-
lysed, and five 2‐IED‐outage combinations that include seven
critical IEDs (Hereafter, we call it five exclusive IED sets) are
extracted as brownout cases. In this study, those five exclusive
IED sets are exhaustively exploited. For the R‐select‐3 con-
tingency, if all 3‐IED‐outage combinations that include seven
critical IEDs are assumed to result in the blackout, only 1771
case studies are required, skipping 2289 cases shown in
Figure 9, which is treated as the benchmark case reduction

method in this paper. The number of study cases of the
benchmark case, ncase,k, for the R‐select‐k contingency is as
follows:

ncase;k ¼

CjR
∼
j

k ð1 ≤ k ≤ 2Þ

CjR
∼
j

k −
Xk

p¼1
CNCriticalRy
p ⋅ Cj

~Rj−NCriticalRy

k−p

ð3 ≤ kÞ

8
>>>>>>><

>>>>>>>:

ð8Þ

F I GURE 9 R − 1 through R − 7 simulation result in the IEEE 14‐bus system

F I GURE 1 0 R − 1 through R − 5 simulation result in the IEEE 30‐bus system
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where NCriticalRy denotes the number of critical IEDs. The
variable, j~Rj, is 30 and 70 in the IEEE 14‐ and 30‐bus systems,
individually.

However, sixty‐four 3‐IED combinations become wrong
because five exclusive IED sets are the brownout case. In other
words, sixty‐four 3‐IED‐outages that include seven critical
IEDs are wrongly treated as the blackout case. Countermea-
sure 1 enables to correct all wrong results, increasing 133 more
study cases (see Figure 9).

For the R‐select‐4 contingency, 384 3‐IED‐outages that
include seven critical IEDs are wrongly treated as the blackout
case. The number of 4‐IED combinations that include five
exclusive IED sets is 1695. Because those combinations
include 69 IED sets that result in blackout for the R‐select‐3
contingency, 4‐IED combinations that include the 69 IED sets
may be skipped. Thus, the number of additionally examined
study cases is reduced from 1675 to 460. The 460 simulation
cases as the countermeasure 1 demonstrate 375 brownout
cases. Although 9 brownout cases are missing (i.e. the false
negative still remains), a large number of contingency cases are
omitted with tiny brownout errors shown below.

In the same manner, countermeasure 1 decreases the
blackout error for larger k of R‐select‐k contingencies. How-
ever, the fraction of corrected cases decreases as k of R‐select‐
k increases because countermeasure 1 uses only the above five
2‐IED‐outage combinations to fix the brownout rate accuracy.
As shown in Figure 9, only 6186 out of 11,509 cases are
corrected for the R‐7 contingency.

4.2 | Countermeasure 2

Left parts of Figures 9 and 10 illustrate the process of
countermeasure 2. The benchmark case reduction method
examines all attack‐through IED combinations that exclude
seven critical IEDs acquired from the R‐select‐1 contingency.
Once a blackout case is found in the above IED attack
combinations for R‐select‐k contingency, IED combinations

of such cases are treated as the additional critical IED sets. In
the case of the IEEE 14‐bus system, six 4‐IED‐outage
combinations are identified for the R‐select‐4 contingency,
and those six IED combinations are used for larger k of R‐
select‐k contingencies.

For the R‐select‐5 contingency, ninety‐nine 5‐IED‐outage
combinations include the above six 4‐IED‐outage combina-
tions, treated as the blackout case. Although 99 cases are
skipped, the identified number of blackout cases is 91 out of
145. Thus, the false negative increases as k of R‐select‐k in-
creases. Three thousand and fifty out of 7555 cases are iden-
tified as blackout cases (i.e. 4505 cases are mistakenly identified
as the brownout) for the R‐select‐7 contingency in exchange
for the 3844 case reduction.

Besides, eight 5‐IED‐outage combinations are wrongly
treated as the blackout case for the R‐select‐5 contingency
when the countermeasure 2 is exploited. Therefore, the
countermeasure 2 also increases false positive cases other than
false negative cases, although the number of simulation cases
decreases.

4.3 | Case reduction performance

Case reduction rates and the F1 score for the IEEE 14‐ and
30‐bus systems are summarised in Tables 5 and 6. The
‘precision’ and ‘recall’ are also shown in those tables to
demonstrate how much those two indicators contribute to
the F1 score. The performance of both countermeasures is
shown against the benchmark case reduction method that
uses only critical IEDs obtained from the R‐select‐1 con-
tingency. Tables 5 and 6 indicate the following findings for
the countermeasure 1:

� The F1 score improvement against the benchmark's F1 score
decreases as the k of R‐select‐k increases (Tables 7 and 8).

� The F1 score improvement against the benchmark's F1 score
augments as the grid size increases (Tables 7 and 8).

TABLE 5 Case reduction performance in the IEEE 14‐bus system (part 1)

R‐k
Total number of
simulation cases

Number of simulation cases/case reduction rate [%]

Blackout rate [%]
Benchmark case reduction
with R‐1 critical IEDs

Countermeasure 1 improving
brownout accuracy

Countermeasure 2
reducing blackout cases

R‐1 30 30/0.0 30/0.0 30/0.0 23.3

R‐2 435 253/41.8 435/0.0 253/41.8 40.7

R‐3 4060 1771/56.4 1894/53.3 1771/56.4 54.8

R‐4 27,405 8855/67.7 9316/66.0 8856/67.7 66.3

R‐5 142,506 33,649/76.4 35,105/75.4 33,550/76.5 75.4

R‐6 593,775 100,947/83.0 104,492/82.4 100,171/83.1 82.4

R‐7 2,035,800 245,157/88.0 251.383/87.7 241,313/88.1 87.8

Abbreviation: IEDs, intelligent electronic devices.
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� The additional performed IED combination rate with
respect to benchmark IED combinations decreases as the k
of R‐select‐k increases.

� The additional performed IED combination rate with
respect to benchmark IED combinations increases as the
grid size increases.

Tables 5 and 6 derive the following findings for counter-
measure 2:

� The IED combination reduction rate with respect to
benchmark IED combinations decreases as the k of R‐
select‐k increases.

� The IED combination reduction rate with respect to
benchmark IED combinations increases as the grid size
increases.

� The F1 score curtailment against the benchmark's F1 score
decreases as the k of R‐select‐k increases.

� The F1 score curtailment against the benchmark's F1 score
augments as the grid size increases.

In the case of R‐select‐5 in the IEEE 30‐bus system,
countermeasure 1 improves the F1 score from 0.914 to 0.970,
increasing the studied IED combinations from 58.1% to 63.0%,
while countermeasure 2 reduces the studied IED combinations
from 58.1% to 52.6%, deteriorating the F1 score from 0.914 to
0.877. Thus, both countermeasures have pros and cons. The
countermeasure 1 may be leveraged when the blackout/
brownout evaluation accuracy is more important than the case
reduction. However, due to the tremendous volume of con-
tingency cases for the larger grid, the countermeasure 2 can be
exploited, especially for the bulk power system.

TABLE 6 Case reduction performance in the IEEE 30‐bus system (part 1)

R‐k
Total number of
simulation cases

Number of simulation cases/case reduction rate [%]

Blackout
rate [%]

Benchmark case reduction
with R‐1 critical IEDs

Countermeasure 1 improving
brownout accuracy

Countermeasure 2 reducing
blackout cases

R‐1 70 70/0.0 70/0.0 70/0.0 10.0

R‐2 2415 1953/19.1 2415/0.0 1953/17.3 19.1

R‐3 54,740 39,161/28.5 43,060/21.3 37,398/30.1 31.7

R‐4 916,895 590,820/35.6 636,472/30.6 560,846/39.5 38.8

R‐5 12,103,014 7,029,018/41.9 7,628,021/37.0 6,360,592/47.4 39.0

Abbreviation: IEDs, intelligent electronic devices.

TABLE 7 Case reduction performance
in the IEEE 14‐bus system (part 2)

R‐k

Precision/Recall/F1 score

Benchmark
Countermeasure
1 against brownout

Countermeasure
2 against blackout

R‐1 1.00/1.00/1.00 1.00/1.00/1.00 1.00/1.00/1.00

R‐2 0.973/1.00/0.986 1.00/1.00/1.00 0.973/1.00/0.986

R‐3 0.972/1.00/0.986 1.00/1.00/1.00 0.972/1.00/0.986

R‐4 0.979/1.00/0.990 1.00/1.00/1.00 0.979/1.00/0.990

R‐5 0.986/1.00/0.993 0.998/1.00/0.999 0.985/0.999/0.992

R‐6 0.989/1.00/0.995 0.997/1.00/0.998 0.989/0.999/0.994

R‐7 0.994/1.00/0.997 0.997/1.00/0.999 0.993/0.997/0.995

TABLE 8 Case reduction performance
in the IEEE 30‐bus system (part 2)

R‐k

Precision/Recall/F1 score

Benchmark
Countermeasure 1
against brownout

Countermeasure 2
against blackout

R‐1 1.00/1.00/1.00 1.00/1.00/1.00 1.00/1.00/1.00

R‐2 0.857/1.00/0.923 1.00/1.00/1.00 0.857/1.00/0.923

R‐3 0.852/1.00/0.920 0.981/1.00/0.990 0.833/0.997/0.908

R‐4 0.837/1.00/0.911 0.956/1.00/0.978 0.796/0.978/0.878

R‐5 0.841/1.00/0.914 0.941/1.00/0.970 0.799/0.973/0.877
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On the other hand, combining countermeasure 1 and
countermeasure 2 can be an option to ensure the balance
between accuracy and case reduction. Because both counter-
measures are entirely independent, combined ones can reduce
simulation cases, alleviating the deterioration of blackout/
brownout accuracy. For R‐select‐5 contingency in the IEEE
30‐bus system, the examined IED combinations are sup-
pressed by 0.6% (from 58.1% to 57.5%), improving the
blackout/brownout evaluation accuracy in terms of the F1
score by 0.016 (from 0.914 to 0.930).

5 | CONCLUDING REMARKS

This research study verifies the computational outcomes of
disruptive switching attacks through protective IEDs using
time‐domain simulations. It is observed that the time‐
domain simulation provides more details of cyber‐physical
characterisation for IEDs in Ethernet‐based substations
based on an initial event, that is, hypothetical switching
scenarios via one or more compromised IEDs. The results
also demonstrate promising outcomes and can be further
explored for online applications to identify critical pro-
tective IEDs. Although this research study has accom-
plished an extensive milestone in a contingency of
hypothetical attack upon digital relays, dynamic studies can
be carried out in the practically sized systems that may
require a new parallelised computation paradigm to
manage due to the computation burden over millions of
simulations.

Future work includes establishing an effective compari-
son of S‐select‐k contingencies as well as R‐select‐k con-
tingencies, considering a sequence of events using larger
system models with renewable energy sources on cloud‐
edge‐end orchestrated computing. The uncertainty caused
by such distributed resources will also require myriad new
load profiles, that is, power system conditions and config-
urations, to be additionally examined. Furthermore, cascaded
line outages along with sequential hardware‐in‐the‐loop
corrective actions by operators are needed to explore in
future study scenarios.
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