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Abstract
MicroRNA319  (miR319)  has  been  implicated  in  leaf  development  in  a  number  of  plant  species.  Here  we  study  the  roles  of  miR319a  and  its

regulated  network  in  leaf  development  in  poplars.  Over-expression  of  miR319a  in Populus  alba × Populus  glandulosa caused  dwarf  statures,

narrow leaf blades and serrated leaf margins. The vascular bundles and bundle sheaths in transgenic leaves had more layers of cells than those in

the  leaves  of  control  plants,  indicating  enhanced  lignification  in  these  cells.  Among  the  93  putative  targets  of  miR319a  predicted  with  the

psRNATarget tool, only three genes, TCP (TEOSINTE BRANCHED1, CYCLOIDEA, and PROLIFERATING CELL NUCLEAR ANTIGEN BINDING FACTOR), were

differentially  expressed  in  the  leaves  of MIR319a-over-expression  transgenic  lines.  With  the  RNA-seq  data  sets  from  multiple MIR319a over-

expression transgenic lines, we built a three-layered gene regulatory network mediated by miR319a using Top-down graphic Gaussian model

(GGM) algorithm that is capable of capturing causal relationships from transcriptomic data. The results support that miR319a primarily regulates

the lignin biosynthesis, leaf development and differentiation as well as photosynthesis via miR319-MEE35/TCP4, miR319-TCP2 and miR319-TCP2-1
regulatory modules.

Citation:  Cheng Y, Wang L, Abbas M, Huang X, Wang Q, et al. 2021. MicroRNA319-mediated gene regulatory network impacts leaf development and
morphogenesis in poplar. Forestry Research 1: 4 https://doi.org/10.48130/FR-2021-0004

  
INTRODUCTION

MicroRNAs  (miRNAs)  are  small  (18-25  nucleotides)  endo-
genous  RNAs  that  regulate  many  biological  processes  like
growth,  nutrient  homeostasis,  hormone  signalling,  stress
response  and  metabolism  by  post-transcriptional  silencing
and  chromatin  regulation[1–4].  For  example,  modulation  of
many  cellular  processes  and  regulation  ensues  when  some
transcriptional  products,  especially  mRNAs  and  transcrip-
tomic  profiles,  are  targeted  by  miRNAs  for  degradation[5].
When  some  miRNAs  and  their  target  transcription  factors
(TFs)[6–9] form  various  regulatory  modules,  for  instance,  TF-
miRNA-mRNA and miRNA-TF-mRNA, they can exert powerful,
delicate  inhibitory/stimulatory  regulation  on  evolutionarily
conserved  functions,  such  as  organogenesis  and  senescence
among a broad range of species[2].

Based  on  the  miRBase  Registry  22.116.0 (http://www.
mirbase.org), there are currently 587 curated mature miRNAs
that  play  important  regulatory  roles  in  the  growth  and

development  of Populus  trichocarpa[10].  Some  conserved
developmental  processes  in  plants,  that  are  known  to  be
governed  by  miRNAs,  include:  leaf  morphogenesis,  flower
development,  transition  from  vegetative  growth  to
reproductive  growth,  and  senescence  stage[11–13].  Up-
regulation of  miR393 in Malus  domestica undermined fungal
pathogenicity[14].  miR156  and  miR167  are  dominantly
expressed  in  leaves  and  floral  buds  to  regulate  fruiting  in
Malus  domestica[14].  Identification  and in  silico analysis  of
miRNAs  in Camellia  sinensis[15] revealed  the  roles  of  miR164
and  miR169  in  leaf  primordia  and  root  development
respectively.  Transcriptomic  analysis  unravelled  that  miR950
and  miR1309  are  dominantly  expressed  in  young  needles  of
Pinus  contora to  regulate  chloroplast-specific  genes[16].
miR1310 and miR1314 are gymnosperm-specific and differen-
tially expressed under methyl jasmonate application in Taxus
chinensis;  miR1310 reduces oxidative damage while miR1314
regulates cellulose synthase genes[17].

miR319 belongs to one of the most ancient and conserved
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miRNA  families[18–20] and  is  conserved  in  both  angiosperms
and  gymnosperms[21].  In Arabidopsis  thaliana,  the  miR319
family is composed of seven genes (MIR319a-g)[22]. It has been
shown  that  miR319-targeted  transcription  factors, TEOSINTE
BRANCHED / CYCLOIDEA / PROLIFERATING CELL FACTORS (TCP)
genes[12,13,23] play important roles in plant development such
as regulating cell proliferation in leaf morphogenesis[11,13,24,25].
Overexpression  of  miR319  in A.  thaliana[6],  tomato[24] and
rice[26] resulted  in  continuous  leaf  marginal  growth,  altered
leaf  curvature  and  delayed  flowering,  while  over-expression
of  the  switchgrass Pvi-MIR319a precursor  gene  in  rice,  gave
rise  to  broader  leaves  and  delayed  flowering  than  of  that  in
the  control[27].  Overexpression  of  rice  Osa-miR319a  in
creeping  bentgrass  also  caused  significantly  greater  leaf
expansion  (blade  width  and  vein  number)  and  thicker
leaves[23]. In switchgrass, over-expression of rice Osa-miR319a
also  showed  significantly  wider  leaves  and  narrower  leaf
blades[25].  A  moderate  pause  in  leaf  serrations  was  observed
in A. thaliana with a single mutation in miR319a and miR319b
in Arabidopsis[9,28].  In  rice,  over-expression  of  Osa-miR319b
represses  the  expression  of OsPCF6 and OsTCP21 and  results
in  enhanced  tolerance  to  cold  stress  partially  through
modifying  active  oxygen  scavenging[29].  In  poplar,  over-ex-
pression of miR319 suppresses TCP4, which, in turn, activates
VND7[30],  a  high  hierarchical  regulator  regulating  secondary
wall  formation[31].  In  addition,  miR319  controls  TCP4  that
activates  LIPOXYGENASE2  functioning  in  conversion  of  α-
linolenic  acid  (18:3)  into  (13S)-hydroperoxyoctadecatrienoic
acid,  the  first  dedicated  step  in  the  biosynthesis  of  oxylipin
jasmonic  acids[12].  In  brief,  the  roles  of  miR319 and its  target
genes  form  different  regulatory  modules  that  are  primarily
involved  in  the  regulation  of  leaf  development,  secondary
wall  formation,  and  secondarily  in  stress  responses  and
hormone biosynthesis[23,26].

In this study, we investigated the roles of miR319 in poplar
leaf development by over-expression of miR319a in P. alba ×
P.  glandulosa.  We  identified  93  potential  target  genes  and
then employed the top-down GGM algorithm[32,33], to build a
three-layered gene regulatory network mediated by miR319a.
The  network  showed  that  miR319a  directly  regulated  three

TCP genes,  which  in  turn  controlled  the  genes  involved  in
hormone synthesis/transport, photosynthesis and growth. 

RESULTS
 

MIR319a overexpression affected leaf development
in poplar

To  study  the  functions  of  miR319a  in  poplar,  we  obtained
plasmid p35S-Osa-miR319a/p35S-hyg[23,34] that  harbours  a
CaMV  35S  promoter-driven Osa-MIR319a gene  from Oryza
sativa,  and  transformed P.  alba × P.  glandulosa via
Agrobacterium to obtain MIR319a over-expression transgenic
lines.  A total  of  17 transgenic  lines, MIR319ox-1 to MIR319ox-
17,  were  obtained  and  grown  in  a  plant  growth  room,  but
three  of  them, MIR319ox-4, -10,  and -12,  failed  to  survive.  All
transgenic  lines  manifested  different  phenotypes  on  leaf
shapes  as  compared  to  the  wild-type  (Fig.  1a).  Most
obviously,  the  top  leaves  of MIR319a transgenic  plants  were
longer and slightly whiter in color than those of the wild-type.
The  mature  leaves  were  thicker  and  curlier.  More  obviously,
the  leaves  showed  irregular  jagged  leaf  edges,  which  were
absent in the leaves of non-transgenic poplar.

In  contrast,  the  wild  type  plants  did  not  change
dramatically  in  leaf  color,  shape  and  margins  as  the  plants
aged  (Fig.  1a). MiR319a over-expression  transgenic  plants
showed  largely  similar  leaf  phenotypes  as  those  in A.
thaliana[11],  tomato[24],  and  rice[26],  suggesting  a  conserved
function of miR319a in controlling leaf development. We used
qRT-PCR[35] to  verify  the expression of  miR319a in  the leaves
of  14  transgenic  lines.  The  expression  levels  of  miR319a  in
transgenic  leaves  were  significantly  higher  than  those  in  WT
(Fig.  1b).  Among  all  14  transgenic  lines, MIR319ox-7,  which
had  the  highest  expression  level  of  miR319a  (Fig.  1b),
manifested  the  most  severe  phenotype  alteration.  The
degrees  of  leaf  curling  and  jaggedness  appeared  to  be
aggravated  as  the  expression  level  of  miR319a  increased
(Fig. 1b and Supplemental Fig. 1).

To  investigate  the  effects  of  miR319a  over-expression  on
leaf  anatomical  structures,  we  prepared  microscopic  cross-
sections of  the main veins  of  transgenic  leaves  from second,
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Fig. 1    Phenotypic characterizations of MIR319a over-expression transgenic polar lines.  (a) Leaves from MIR319a over-expression transgenic
lines  and  WT.  The  2nd,  4th,  6th,  8th,  and  10th  represent  the  second,  fourth,  sixth,  eighth  and  tenth  leaves  counted  from  the  apical  bud  of
MIR319a over-expression transgenic poplar plants, respectively. (b) The expression levels of miR319a in WT and 14 transgenic lines measured
by qRT-PCR with three technical replicates.
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sixth  and tenth nodes  in  the line MIR319ox-7,  which had the
highest  expression  level.  Phloroglucinol  hydrochloride  was
then  used  to  stain  the  main  veins  of  leaves  in  these  cross-
sections  to  manifest  lignin.  We  observed  a  significantly
increased number of stained cells in the vascular bundle and
more layers of cells in vascular bundle sheaths in the leaves of
the MIR319a over-expression  transgenic  line  (Fig.  2),
suggesting  that  over-expression  of  miR319a  enhanced
lignification  of  the  cells  in  vascular  bundles  and  vascular
bundle sheaths of leaves. 

Analysis of RNA-seq data to identify differentially
expressed genes (DEGs)

To  study  the  effect  of  miR319a  overexpression  on  gene
expression in leaves, we performed high-throughput RNA-seq
for  the  leaves  from  14 MIR319a over-expression  transgenic
lines  and  three  WT  plants.  We  used  the  five  transgenic  lines
(MIR319ox-1, -2, -7, -8 and -13)  with  the  highest  miR319a
expression  levels  as  the  treatment  group  and  WT  as  the
control  group. 1342 DEGs  were  identified  (Supplemental
Table  1),  of  which  543  were  up-regulated  and  799  were
down-regulated. 

Genome-wide identification of putative targets of
miR319a in poplar

We  deployed  a  psRNATarget[36] tool  to  identify  the  target
genes  of  miR319a  in  the P.  trichocarpa genome  using  a
threshold expectation value equal  to and less than 5.  A total
of  93  putative  target  genes  were  identified  (Supplemental
Table  2).  Among  these  93  putative  target  genes,  a  few TCP
genes  including  Potri.012G109000,  Potri.004G065800,
Potri.011G083100,  Potri.011G096600,  and  Potri.013G119400,
which  had  small  expectation  values,  emerged  at  the  top  of
the list.  Only  three of  93 target  genes were among the 1342
DEGs  identified  from MIR319a over-expression  lines.  These
three  genes  were MEE35/TCP4 (Potri.001G375800), TCP2
(Potri.004G065800)  and TCP2-1 (Potri.011G083100),  showing
that the number of  potential  target genes whose expression
levels  were  significantly  modulated  by  miR319a  in  leaves.
Owing to similarity in sequences, Potri.001G375800 may have
similar  functions  with Arabidopsis MEE35/TCP4 in  that  it

participates  in  the  heterochronic  regulation  of  leaf
differentiation (Supplemental Table 2). Auxin, gibberellic acid
and abscisic acid have been thought to participate in miR319-
TCPs-mediated  control  of  leaf  growth[37,38].  In  our  putative
target  genes,  some  function  in  the  roles  of  phytohormone
biosynthesis  or  signaling  pathways.  For  example, ASA1
(Potri.017G101100) encodes the alpha subunit of anthranilate
synthase, which catalyzes the rate-limiting step of tryptophan
(Trp)  synthesis.  Trp  is  a  precursor  for  the  auxin  biosynthesis
pathway[39]; Potri.001G036000 and Potri.001G224500,  both
encode a MYB65 protein, are the ortholog of HvGAMYB that is
inducible by GA during germination in barley[40,41].

To  study  evolutionary  relationships  of  the  miR319a-
regulated  TCPs  in  comparison  with  those  in Arabidopsis and
rice,  we  constructed  an  unrooted  phylogenetic  tree  using
MEGA 7.0 with all TCP protein sequences from P. trichocarpa,
and  some  from A.  thaliana and  rice.  A  total  of  42  TCPs  were
clustered  in  the  first  clade  along  with  AtTCP3,  AtTCP4,
AtTCP10  and  OsaPCF1,  whereas  22  clustered  in  the  second
clade  along  with  AtTCP2,  and  29  grouped  in  the  third  clade
along with AtTCP24 and OsTCP8 (Fig.  3).  For the three direct
target  genes  of  miR319a,  MEE35/TCP4  presented  in  the  first
clade,  while  TCP2  and  TCP2-1  appeared  in  the  second  clade
together  with  AtTCP2  that  is  a  direct  target  of  miR319a  in
Arabidopsis[42].

Phylogenetic  tree  constructed with  the  protein  sequences
of 93 putative target genes of miR319a in Populus trichocarpa,
5  from Arabidopsis and  2  from  rice.  A  neighbor-joining  (NJ)
method in MEGA7.0 were used to generate the tree. The tree
consists of three distinct clades. The proteins whose genes were
differentially  expressed  genes  (DEGs)  are  highlighted  in  red. 

Determination of miR319a direct target gene
expression

The three direct target genes (MEE35/TCP4, TCP2 and TCP2-
1)  of  miR319a,  which  were  identified  by  intersecting  the
target  genes  identified  by  psRNATarget  and  the  DEGs  in
MIR319a transgenic lines, were examined by qRT-PCR for their
expression  levels. MIR319ox-1, MIR319ox-7 and MIR319ox-13,
the  three MIR319a over-expression  transgenic  lines  with  the
highest  expression  levels  of  miR319a,  were  chosen  to
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Fig.  2    The  vascular  bundle  and  bundle  sheath  cells  on  microscopic  leaf  cross  sections  stained  with  phloroglucinol  HCl  in MIR319a over-
expression transgenic lines and WT. The leaves were from the second, sixth and tenth stem nodes, respectively. The photos were taken at 10X,
40X and 100X. Bars in a−f: 200 μm, g−l: 50 μm, m−r: 20 μm. x, p and bs represent xylem, phloem and bundle sheath, respectively.
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examine the expression levels of MEE35/TCP4, TCP2 and TCP2-
1 genes. The results showed that MEE35/TCP4, TCP2 and TCP2-
1 were significantly down-regulated compared to those in the
WT plants (Fig. 4).  For example, the transcript abundances of
TCP2, TCP2-1 and MEE35/TCP4 in MIR319ox-1 were  down-
regulated  by  54.0%,  71.0%,  and  87.6%,  respectively.  In
MIR319ox-7, the percentages of the expression levels of TCP2,
TCP2-1 and MEE35/TCP4 reduced  88.2%,  49.2%,  and  49.9%,
respectively.  These  results  show  that  over-expression  of
miR319a significantly down-regulated MEE35/TCP4, TCP2 and
TCP2-1 in transgenic P. alba × P. glandulosa leaves. 

Gene ontology (GO) and domain enrichment analysis
To  study  which  pathway  and  biological  processes  are

affected by miR319a over-expression, the gene ontology (GO)
enrichment  and  protein  domain  enrichment  were  analyzed
with  Pop’s  pipe[43] using  the 1342 DEGs  as  an  input.  Gene

ontologies that include 222 biological processes (GO-type P),
33  cellular  components  (GO-type  C)  and  55  molecular
functions  (GO-type F)  were  significantly  over-represented by
these  DEGs  (Supplemental  Table  3).  We  further  underscored
nine  significantly  enriched  biological  processes:  chlorophyll
biosynthetic and metabolic process, photosynthesis, leaf and
phyllome  development,  meristem  development  and
maintenance,  regulation  of  meristem  development,  xylem
histogenesis  and  development,  lignin  metabolic  process,
tryptophan  catabolic  process,  and  gibberellin  biosynthetic
process  (Table  1 and Supplemental  Table  4).  The  analysis
indicated that the photosynthesis and some linked biological
processes,  phyllome  development,  and  lignin  catabolic
processes  were  generally  down-regulated,  whereas  leaf
development,  meristem  development  and  maintenance,
phloem  and  xylem  histogenesis  and  development,  lignin

 
Fig.  3    Phylogenetic  tree  constructed  with  the  protein  sequences  of  93  putative  target  genes  of  miR319a  in Populus  trichocarpa,  5  from
Arabidopsis and 2 from rice. A neighbor-joining (NJ) method in MEGA7.0 was used to generate the tree. The tree consists of 3 distinct clades.
The proteins whose genes were differentially expressed genes (DEGs) are highlighted in red.
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metabolic  process,  and  hormone  synthesis  and  metabolism
were  largely  augmented  in  the MIR319a over-expression
transgenic  leaves,  which  are  consistent  with  the  results  of
previous studies on miR319[37,38,44,45].

With  the  Pop’s  pipe  tool,  we  also  performed  protein
domain  enrichment  analysis  using  the  same  set  of  DEGs  as
the  input  used  for  GO  enrichment  analysis.  The  significantly
enriched  protein  domains  are  listed  in Table  2.  The  proteins
with  the  IPR003754  domain  were  presumably  involved  in
chlorophyll  biosynthesis  given  that  tetrapyrroles[46] and
uroporphyrinogen III[47] are large macrocyclic compounds for
the biosynthesis of chlorophyll. The cellulose synthase (CesA)
domain  (IPR005150)  was  also  significantly  enriched  in  the
DEGs;  the  changes  of  protein  with  this  domain  could  be
indirectly  associated  with  the  increased  lignin  content  in
some  vascular  bundles  and  vascular  bundle  sheaths  as  the
biosynthesis  pathways  of  lignin  and  cellulose  are
interconnected[48,49].  LIPOXYGENASE2  domain  was  also
enriched  in  DEGs  and  was  indicated  to  be  involved  in  the
biosynthesis of the oxylipin jasmonic acid[12]. 

Construction of miR319a regulatory gene network
As  aforementioned,  only  three  TCP  genes, MEE35/TCP4,

TCP2 and TCP2-1, in 93 DEGs whose transcripts were targeted
by  miR319a,  were  differentially  expressed  in  the MIR319a
over-expression  poplar  transgenic  lines,  indicating  that

miR319a  targets  very  small  numbers  of TCP genes  for  direct
regulation in the leaves of over-expression transgenics. All the
counterparts  of  the  three  genes  in A.  thaliana had  recently
proven  to  be  the  true  target  genes  of  At-miR319a[45].  In
comparison  to  those  in  WT,  all  three  genes  were  inversely
down-regulated  in MIR319a over-expression  transgenics,
supporting  that  these  were  direct  targets  of  miR319a.  We
then  used  a  top-down  GGM  algorithm[32,33] to  construct  the
gene  regulatory  network  mediated  by  miR319a.  The  three
genes, MEE35/TCP4, TCP2 and TCP2-1, which had near-perfect
complementarity  in  sequence with  miR319a,  were  the direct
target  genes  of  miR319a  (Fig.  5).  The  remaining  DEGs  in
MIR319a over-expression  transgenics  were  used  as  an  input
for inferring the third layer using a top-down GGM algorithm.
We  obtained  many  genes  that  function  in  leaf/phyllome
development,  and  photosynthesis.  For  example,  CUC2  is
reported  to  mediate  PIN1  convergence  points  and  auxin
maxima along the leaf margin[50] , NPY1 is highly expressed in
leaf  primordia  and  the  double  mutant  line  of npy1 and pid
change the phyllotaxis of leaf formation[51]. In addition, TAR2,
EXPA15,  and WIP6 are  involved  in  phloem  or  xylem
histogenesis.  As  reported, TAR2,  which  encodes  a  trytophan
aminotransferase,  is  an  auxin  biosynthetic  gene  required  for
HD-ZIP  III-mediated  xylem  pattern[52] and  the  WIP6  gene  is
implicated  in  regulating  vein  patterning[53]. LAC14 is
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Fig. 4    Expression levels of MEE35/TCP4, TCP2 and TCP2-1 determined by qRT-PCR in MIR319a over-expression transgenic leaves and WT.

Table 1.    Gene ontology enrichment analysis of differentially expressed genes (DEGs) in MIR319a over-expression transgenics.

GO_Term GO ID p-value Average FC*

Chlorophyll biosynthetic process GO:0015995 0.000195 −1.6598
chlorophyll metabolic process GO:0015994 0.000548 −1.1459
Photosynthetic electron transport in photosystem I GO:0009773 5.77E-08 −1.3109
Photosynthetic electron transport in photosystem II GO:0009772 0.000129 −1.4662
Electron transport chain GO:0022900 9.89E-08 1.2090
Leaf development GO:0048366 0.006600 1.1968
Phyllome development GO:0048827 0.001743 −1.4103
Meristem development GO:0048507 0.000969 1.6703
Meristem maintenance GO:0010073 0.002897 1.4769
Regulation of meristem development GO:0048509 0.001992 1.419
Phloem or xylem histogenesis GO:0010087 0.000156 1.1578
Xylem development GO:0010089 0.012376 2.0586
Lignin catabolic process GO:0046274 0.015023 −3.0332
Lignin metabolic process GO:0009808 0.000747 2.1952
Auxin metabolic process GO:0009850 0.000685 1.6071
Tryptophan catabolic process GO:0006569 0.009640 3.3018
Gibberellin metabolic process GO:0009685 0.003229 4.7556
Gibberellin biosynthetic process GO:0009686 0.015585 1.5146

*FC represents an average expression fold change of all DEGs that are involved in a biological process represented by a gene ontology.
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considered  to  be  involved  in  polymerization  of  phenyl
propanoid  units  and  over-expression  promoted  lignification
in poplars and reduced the proportion of syringyl/guaiacyl[54].
LHCB1.4, LHCB4.2, LHCB4, PSBH, PETB, PSBK, PORA,  and RbcX1
are  involved  in  photosynthesis. GA2OX1 is  involved  in  the
inactivation  pathway  of  gibberellin[55].  In  our  prediction
(Fig.  5),  some  bottom-layered  genes,  which  were  commonly
regulated by two or three TCP genes in the middle layer, may
be further characterized in future studies. Therefore, miR319a
appears to control lignin biosynthesis,  leaf development and
differentiation,  as  well  as  photosynthesis,  via miR319-
MEE35/TCP4, miR319-TCP2 and miR319-TCP2-1 regulatory
modules. 

DISCUSSION

We  characterized  the  potential  functions  of  miR319a  in
woody  species  poplar  via  a  transgenic  approach.  The  results
showed that  over-expression of  miR319a had a great  impact
on leaf  development and morphogenesis.  The leaf  curvature
of MIR319a over-expression  transgenics  become  wider  and
more  jagged,  which  resemble  the  phenotypic  changes
observed  in  other  miR319  transgenic  lines  of  other  species,
including Pvi-miR319a in rice[26], and Sly-miR319 in tomato[24]

(Fig.  1a).  The  termination  of  cell  division  at  leaf  edges
between two lateral  veins  of MIR319a over-expression trans-
genics,  resulted  in  visual  jagged  serration[56–58],  indicating
that fewer hormones were generated and/or the diffusion of
hormones to the areas between two lateral leaf veins became
impeded. Such a phenomenon was also observed in A. thalia-
na[11],  tomato[24],  and  rice[26] upon  miR319a  over-expression.

We  also  observed  dwarf  phenotypes  of MIR319a over-
expression  transgenic  plants,  indicating  that  overall  growth
and development are arrested when miR319a is ubiquitously
expressed  under  the  control  of  Cauliflower  mosaic  virus
(CaMV)  35S  promoter.  Our  study  indicates  that  miR319a
caused  these  phenotypic  changes  in  leaves  by  directly
regulating  three TCP genes, MEE35/TCP4, TCP2 and TCP2-1,
which  have  near-complementarity  with  miR319a  in
sequences and were down-regulated significantly in response
to  miR319a  over-expression  (Supplemental  Fig.  2).  The
previous studies in other species have revealed that TCPs can
repress  marginal  meristem  activity,  thus  promoting  a  switch
from cell  proliferation to cell  differentiation[59].  In A.  thaliana,
miR319-TCP4-ARR16  module  controls de  novo shoot
regeneration  by  affecting  cytokinin  responses[60],  and
over-expression  of  each Bra-MIR319 family  member  in A.
thaliana inhibits cell division[28].

Table 2.    Protein domains that were enriched in DEGs in MIR319a over-expression transgenics.

Domain Description No. of DEGs EnrichScore Average FC*

IPR008543 Chloroplast Ycf2 2 0.000295 −3.8012
IPR001344 Chlorophyll A-B binding protein 17 2.27E-16 1.0013
IPR002628 Photosystem II manganese-stabilizing protein PsbO 1 0.005071 1.0415
IPR003375 Photosystem I reaction centre subunit IV/PsaE 2 2.64E-06 1.0408
IPR003685 Photosystem I protein PsaD 2 1.05E-05 1.0476
IPR009806 Photosystem II protein PsbW, class 2 2 2.59E-05 −1.028
IPR001056 Photosystem II phosphoprotein PsbH 3 1.23E-06 −2.2731
IPR003754 Tetrapyrrole biosynthesis, uroporphyrinogen III synthase 1 0.0001913 −1.0524
IPR005150 Cellulose synthase 9 1.38E-06 1.5418
IPR001246 Lipoxygenase, plant 3 0.000962 1.1511

*FC represents average expression fold changes of all DEGs whose protein sequences have a specific protein domain.
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Fig. 5    Three-layered hierarchical gene regulatory network under the control of miR319a in the leaves of P. alba × P. glandulosa.  The green
circle  represents  the  leaf  development  gene,  blue  circles  represent  phloem  or  xylem  histogenesis  genes,  the  purple  circle  represents  the
phyllome  development  gene,  gray  circles  represent  xylem  development  genes,  the  red  circle  represents  the  lignin  biosynthesis  gene,  and
yellow circles represent photosynthesis genes. The gene IDs are provided in Supplemental Table 5.
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We  constructed  a  three-layered  gene  regulatory  network
which  suggests  that  three  TCP  target  genes  may  regulate
genes  involved  in  hormone  metabolism-/transport-,  photos-
ynthesis-,  and  development-related  processes  in  leaves,
meristem  and  xylem.  These  results  are  largely  in  agreement
with  previous  studies.  For  example,  miR319a  regulates
PvPCF5 whose  over-expression  affected  leaf  morphogenesis
and  cell  proliferation  in  switchgrass[27].  In  addition,  indeter-
minate  cell  proliferation  in  leaf  margins  in A.  thaliana  tcp
mutants has been linked with prolonged activity of WOX, PRS
and CYCB genes[45].  Recent  studies  also  showed  that  the
miR319a-TCP  module  regulates  miR396,  a  regulator  of
Growth-Regulating  Factors  (GRFs)[61].  The  TCPs  have  also
been  shown  to  control  auxin  biosynthesis  genes[62],  GA
response[63] and  jasmonate  biosynthesis[12].  Also,  the tcp
mutants  show  altered  expression  patterns  for  many
photosynthesis-related  genes  in  the  different  leaf  domains,
resulting  in  delayed  differentiation,  especially  in  the  leaf
margin  area[45].  Among  the  93  putative  target  genes  with
sequences complementary to miR319 in the poplar genome,
two genes, MYB65 and ASA1,  have been implicated as  being
involved in hormone signalling. ASA1 is involved in auxin biosyn-
thesis  and  transport[64] and MYB65 is  inducible  by  GA[40].
Phylogenetic  analysis  was  performed  to  find  evolutionary
distances  among  three TCP genes MEE35/TCP4, TCP2 and
TCP2-1. Based on the phylogenetic tree obtained, we propose
that MEE35/TCP4 may have conserved functions with AtTCP3,
AtTCP4, AtTCP10 and OsaPCF1, and TCP2 and TCP2-1 may have
the similar functions with AtTCP2.

In  addition  to  its  primary  function  in  regulating  leaf
development  and  morphogenesis,  miR319a  had  profound
effects  on  many  other  biological  processes.  Gene  ontology
analysis  of  DEGs  showed  that  up-regulation  of  miR319a
affected  the  genes  involved  in  chlorophyll  synthesis,
photosynthesis,  leaf  and  phyllode  development,  meristem
development  and  maintenance,  regulation  of  meristem
development,  xylem  histogenesis  and  development,  lignin
metabolism  processes  and  hormone  biosynthesis  (Table  1).
Protein  domain  enrichment  analyses  of  DEGs  revealed  that
protein  families  related  to  chlorophyll  synthesis,
photosynthesis and lipoxygenase biosynthesis were enriched
(Table  2).  As  mentioned  earlier,  TCP4  activates  the
lipoxygenase 2 domain protein (LOX2)  that catalyses the first
step  in  the  biosynthesis  of  oxylipin  jasmonic  acids[12].
Multicopper  oxidoreductase  laccase  proteins  have  been
shown  to  play  a  role  in  the  polymerization  of  monolignols
during lignin biosynthesis[65].  TCP4 can activate VND7,  which
is  an  upstream master  regulator  of  secondary  cell  wall
biosynthesis[66].  Over-expression  of  miR319a  led  to  down-
regulation  of  its  target  TCPs,  which  inhibit  the  function  of
VND7 in secondary cell wall formation.

In MIR319a over-expression transgenic plants, we observed
that  more  layers  of  cells  in  vascular  bundles  and  vascular
bundle  sheaths  were  stained  by  phloroglucinol  HCl,
suggesting that more cells are lignified. However, the cells in
vascular  bundles  of  transgenics  were  stained dark  red,  while
these  in  vascular  bundle  sheath  cells  were  light  red.  These
results indicate that lignin composition is likely to not be the
same between vascular bundles and vascular bundle sheaths,
and this needs additional research. 

CONCLUSIONS

Over-expression  of  miR319a  in P.  alba  ×  P.  glandulosa
caused  dwarf  stature,  narrow  leaf  blades,  serrated  leaf
margins,  and  a  high  degree  of  lignification  in  some  specific
cells  of  the  vascular  system.  The  target  gene  analysis  of
miR319a,  RNA-seq  analysis  of  miR319  over-expression  lines,
and  the  construction  of  miR319a-mediated  three-layered
gene  regulatory  network  together  suggest  that  miR319-
MEE35/TCP4,  miR319-TCP2  and  miR319-TCP2-1  were  the
three  major  regulatory  modules  controlling  photosynthesis,
hormone  synthesis/metabolism/transport,  and  leaf  deve-
lopment  and  differentiation  related  processes  in P.  alba × P.
glandulosa, indicating the conserved functions of this ancient
miRNA. 

MATERIALS AND METHODS
 

Plant material and growth conditions
We  obtained  poplar  plants  (P.  alba × P.  glandulosa)  from

the  tissue  culture  lab  of  the  Chinese  Academy  of  Forestry,
Beijing,  China.  They  were  vegetatively  propagated  in
Murashige  and  Skoog  (MS)  medium  (pH  5.8)  supplemented
with 0.1mg/ml IBA and 1mg/ml NAA.  The growth conditions
included  16  h  light/8  h  dark  cycle  (light  intensity  ~300  μE
m−2 s−1)  at  25−28  °C. MiR319a over-expression  transgenics
and  WT  plants  were  grown  in  MiRacle-Gro®  and  Metro-Mix
200 soil mixture[67]. 

Generation of miR319a overexpression transgenic
poplar

The plasmid p35S-Osa-miR319a/p35S-hyg for MIR319a over-
expression  was  kindly  provided  by  Prof.  Dayong  Li  (Beijing
Academy  of  Agriculture  and  Forestry  Sciences).  The  plasmid
was  transformed  into  a Agrobacterium  tumefaciens strain
GV3101  by  electroporation  method,  and  the Agrobacterium-
mediated  transformation  of P.  alba × P.  glandulosa was
conducted as described previously[68]. 

Identification of miR319a targets from P. trichocarpa
The  target  genes  were  identified  from P.  trichocarpa

transcripts  using  psRNATarget  tool  (http://plantgrn.noble.
org/psRNATarget/)  that  can  identify  target  DNA  sequences
based  on  complementary  and  energy  levels  of  RNA:  DNA
duplexes  as  well  as  target  site  accessibility.  The  transcripts
and annotation stored in this tool are the version 3.1 release. 

Phylogenetic analysis of miR319a target genes and
TCP genes in poplar

All TCP protein sequences were retrieved from the UniProt
database  (https://www.uniprot.org).  BLASTP  of  the  TCP
protein sequences against P.  trichocarpa (https://phytozome.
jgi.doe.gov)  and A.  thaliana (https://www.arabidopsis.org)
protein  sequences  was  undertaken  to  identify  the  homo-
logous TCP proteins of poplar and A. thaliana. Multiple align-
ment of 93 poplar proteins (including three TCP proteins), five
A. thaliana and two rice TCP proteins were constructed using
Clustal  X[69].  Using  alignment  file  as  an  input,  we  then
constructed  an  unrooted  phylogenetic  tree  using  MEGA7.0
with the following parameters: Neighbor-Joining method (NJ)
with  500  bootstrap  replicates,  Minimal  Evolution  (ME)  and
Maximum Parsimony (MP), and expectation value ≥ 3. 
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Anatomic analysis of leaf structures of miR319a over-
expressed transgenics

We  employed  the  phloroglucinol  hydrochloric  acid  (HCl)
staining method to stain lignin[70,71]. The leaf cross-sections of
MIR319a over-expression  transgenic  plants  and  WT  plants
were excised carefully and preserved in a solution of ethanol
(46%, v/v) and glacial acetic acid (46%, v/v). The sections were
dipped  in  1%  (v/v)  phloroglucinol  HCl  for  3  minutes,
subsequently  dipped  in  92%  ethanol,  and  then  transferred
into 25% HCl until they were stained. When some parts of the
cross-sections  turned  red,  the  cross  sections  were  shifted
onto glass slides and mounted in a drop of fixative (glycerol,
25%  lactic  acid,  25%  HCl,  and  phloroglucinol  ethanol  in  the
ratio  of  50:40:7:3).  The  sections  were  observed  under  an
optical microscope (Olympus, bx51). 

qRT-PCR analysis of miR319a expression in transgenic
plants

We selected an average tree from each of  the 14 MIR319a
over-expression  transgenic  lines  and  three  WT  plants,
collected  young  leaves  and  then  immediately  placed  them
into  liquid  nitrogen.  Total  RNAs  were  extracted  using  the
standard CTAB method[72] and gDNA was removed by DNase
(Promega,  M6101).  Two  μg  of  total  RNAs  were  reverse
transcribed  to  cDNA  using  the  miRNA  cDNA  synthesis  kit,
with  Poly  (A)  polymerase  Tailing  (Abm®).  The  qRT-PCR  of
mature  miR319a  was  conducted  as  previously  described[73],
with the primers TTGGACTGAAGGGTGCTCCC and ACGTCTGC
CTGGGTGTCACGC. 

Quantification of gene expression levels in the leaves
of MIR319a over-expression transgenic poplars using
RNA-seq

Total  RNAs  were  extracted  using  the  standard  CTAB
method[74] from  the  leaves  of  14  transgenic  lines  and  three
WT plants for  high throughput RNA library construction.  The
libraries  were  sequenced  on  an  Illumina  Hiseq 4000
sequencer using paired-end sequencing with the sequencing
length  equal  to  150bp  (Novogene,  Beijing).  RNA-seq  reads
were  aligned  with P.  trichocarpa genome  using  HiSAT2  and
subsequently  FPKM  values  of  each  annotated  gene  was
quantified using Cufflinks[75].  RNA-seq data were analyzed by
comparing  the  gene  expression  between  14  transgenic  and
WT lines. 

Identification of DEGs and the enriched gene
ontologies and protein domains in DEGs

The  GO  and  protein  enrichment  analyses  were  conducted
using  the  Pop’s  pipes  tool  (http://sys.bio.mtu.edu/)[76] that
harbors  three  pipelines:  DEG  pipeline,  gene  ontology  (GO)
enrichment  pipeline  and  protein  domain  enrichment
pipeline.  The  DEG  pipeline  uses  the  edgeR  package[77] from
Bioconductor with the significant cut-off threshold set to FDR
corrected p-value  ≤ 0.05.  Both  GO  and  protein  domain
pipelines  use  hypergeometric  distribution  to  calculate  the
FDR p-value of each GO-term or domain. 

Construction of multilayered gene regulatory
networks mediated by miR319a

We  used  a  psRNATarget  tool  to  identify  the  direct  target
genes  of  miR319a  in  the  DEGs  acquired  from  miR319a  over-

expression  transgenic  lines  in  comparison  with  a  control.
Three  genes, MEE35/TCP4 (Potri.001G375800), TCP2 (Potri.
004G065800) and TCP2-1 (Potri.011G083100),  were identified
to directly target genes of miR319a. We then employed Top-
down  GGM  algorithm  to  identify  the  target  genes  of  these
three TCP genes  (namely  miR319a’s  indirect  target  genes)[33]

using Top-down GGM algorithm with the RNA-seq data of the
rest of DEGs as input data. 
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