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ABSTRACT In this paper, a machine learning (ML) approach is proposed to detect and classify jamming
attacks against orthogonal frequency division multiplexing (OFDM) receivers with applications to unmanned
aerial vehicles (UAVs). Using software-defined radio (SDR), four types of jamming attacks; namely, barrage,
protocol-aware, single-tone, and successive-pulse are launched and investigated. Each type is qualitatively
evaluated considering jamming range, launch complexity, and attack severity. Then, a systematic testing
procedure is established by placing an SDR in the vicinity of a UAV (i.e., drone) to extract radiometric
features before and after a jamming attack is launched. Numeric features that include signal-to-noise ratio
(SNR), energy threshold, and key OFDM parameters are used to develop a feature-based classification
model via conventional ML algorithms. Furthermore, spectrogram images collected following the same
testing procedure are exploited to build a spectrogram-based classification model via state-of-the-art deep
learning algorithms (i.e., convolutional neural networks). The performance of both types of algorithms
is analyzed quantitatively with metrics including detection and false alarm rates. Results show that the
spectrogram-based model classifies jamming with an accuracy of 99.79% and a false-alarm of 0.03%,
in comparison to 92.20% and 1.35%, respectively, with the feature-based counterpart.

INDEX TERMS Cybersecurity, convolutional neural networks (CNNs), deep learning, jamming, machine
learning (ML), orthogonal frequency division multiplexing (OFDM), software-defined radio (SDR), spec-

trogram, unmanned aerial vehicles (UAVs).

I. INTRODUCTION

Recently, unmanned aerial vehicles (UAVs) have been widely
adopted in various civil, military, and scientific applications
such as climate monitoring, disaster management, merchan-
dise delivery, search and rescue operations, space exploration,
and wildlife tracking [1]-[4]. According to [5], the UAV
market will be witnessing a growth from USD 27.4B in
2021 to USD 58.4B by 2026. This projected growth is mainly
attributed to the increasing demand for automation and the
rapid advances in enabling technologies.

The associate editor coordinating the review of this manuscript and

approving it for publication was Moussa Ayyash
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Several efforts have been dedicated to promote the con-
trol and navigation of UAVs [6]-[10]. However, few have
addressed the associated cybersecurity challenges despite
their potential in compromising UAVs performance, which in
some cases, may result in catastrophic consequences [11]. For
example, it was shown that an attacker can engineer a drone
to sniff wireless signals from other nearby drones, disconnect
them from their legitimate networks, and form an army of
zombie drones [12]. Another example is the GPS jamming
attack that plummeted 46 drones during a Hong Kong show
and caused a damage of at least USD 127,500 [13]. Hence,
further research on the cybersecurity of UAVs that addresses
the detection and mitigation of their associated cyberattacks
is of a grave significance. Here, jamming detection is of a
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particular interest and is tackled with two approaches that
enable attack detection and classification. Jamming mitiga-
tion, on the other hand, is outside the scope of this effort.
Nonetheless, several methods were reported in literature,
where the use of artificial intelligence (i.e., enforced learning)
and path planning were proposed [14]-[18].

Il. RELATED WORK

Cyberattacks on UAVs include data interception, data
manipulation, and denial-of-service (i.e., jamming). Data
interception/manipulation attacks are often mitigated with
broadcast authentication [19]-[23] and secure location ver-
ification [24], [25]. The former applies cryptographic and
non-cryptographic schemes; whereas the latter verifies the
locations of UAVs with distance bounding, group verifica-
tion, Kalman filtering, multilateration, and traffic modeling.
Although these methods have shown promise in improv-
ing UAVs security, the added hardware and/or software to
the existing protocols as well as time-stamping adjustments
were major constraints that setback their ready acceptance
in foreseeable future. Also, these methods are inefficient for
detecting jamming, where the UAV-controller communica-
tion is interrupted with interference to impose security threats
and cease information exchange [26]-[28]. With the readily
available software-defined radio (SDR), attackers can easily
launch this interference to disturb a UAV trajectory, poten-
tially leading to collisions. Hence, developing affordable jam-
ming detection techniques that also comply with the existing
standards are of utmost importance. These techniques must
facilitate high detection rate and low false-alarm rate. Further-
more, they should enable jamming classification to allow for
selecting the optimum countermeasure routine that ensures
operational security through informed decisions.

In our previous work, the impacts of four jamming types
on UAV security were analyzed qualitatively (i.e., range,
complexity, severity) and quantitatively with conventional
machine learning (ML) algorithms [29]. These algorithms
were exploited for jamming detection/classification based
on extracted signal features. In this work, deep learning
models, i.e., four configurations of convolutional neural net-
works (CNNGs), are adopted based on spectrogram images.
The spectrogram-based approach improved the classifica-
tion accuracy from 92.2% (i.e., feature-based approach) to
99.79% and reduced the false-alarm rate from 1.35% to
0.03% as will be presented in greater detail in Sections [V and
V. Finally, this work contributes an additional dataset (i.e.,
spectrogram images) for training and testing ML classifiers.
This dataset and the spectrogram-based approach proposed
herein, were not provided nor explored in [29]. Also, this
work differs from other existing techniques in the following
aspects:

1) In contrast to imposing modifications to the existing
protocols [19]-[25], [30], readily available radiometric
features and spectrogram images are used to develop
ML models for detecting and classifying jamming.
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2) In comparison to the simulation-based attack scenar-
ios [31]-[39], this work utilizes SDR for launching
jamming attacks that facilitate detection and classifica-
tion with realistic environments and training datasets.

3) Here, jamming detection/classification via deep learn-
ing models is introduced. These models are trained and
tested with spectrograms that characterize the jamming
spectrum. This approach outperforms its feature-based
counterpart in classification accuracy.

4) The datasets that are collected and used to develop the
feature- and spectrogram-based classification models
(i.e., features, images) are made publicly available.

It is worth mentioning that ML was proposed for satel-
lite communications, vehicle Ad Hoc networks (VANETS),
5G networks, Internet of Things (IoT), and UAVs with
applications including jamming detection [40]-[44], object
detection, trajectory optimization, swarm communication,
situational awareness, and malicious attack mitigation
[45]-[47].

The remaining of this is paper is summarized as fol-
lows: Section III describes the jamming types entailed in
this work, the experimental setup, and attack scenarios.
Section IV presents the feature-based conventional ML mod-
els for detecting/classifying jamming. Section V elaborates
on the spectrogram-based deep learning models via CNNs.
Finally, conclusions and future work are given in Section VI.

Ill. JAMMING ATTACKS AND EXPERIMENTAL SETUP

The attack scenario and experimental setup for four jamming
types are presented herein. Holy Stone HS720E is used for
testing. This drone has a communication range and trans-
mission power of 1000 meters and 16 dBm, respectively.
It also uses IEEE 802.11 orthogonal frequency division multi-
plexing (OFDM) at 2.4 GHz [48]. B210 SDR from National
Instruments and GNURadio are exploited to launch attacks
within 40 MHz bandwidth to accommodate all subcarriers.

A. TYPES OF JAMMING ATTACKS
1) Barrage: In this type, noise from normal distribution is
launched at the communication band to increase interference
level at the receiver (i.e., UAV). Therefore, barrage is often
used when the transmission frequency is unknown to the
jammer. Barrage jamming is simple to launch; however, its
efficiency reduces as the transmission bandwidth increases.
2) Single-Tone: Here, a high-power interference is
launched to interfere with the center frequency that the target
uses for data exchange. This interference signal is generally
denoted as J () = Ajcos(2mfot + 0;), where A; is the jamming
amplitude, fj is the center frequency, and 6; is a phase shift.
3) Successive-Pulse: In this type, pulse-sequence is
launched to interfere with the target’s operation band, and is
given as:

N;
J(t) =A,-23(z —nT) (1)

n=1

VOLUME 10, 2022
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FIGURE 1. Experimental setup to obtain effective jamming range.

TABLE 1. Measured Range of a Successful Jamming Attempt.

Type Barrage Single-tone  Success.-pulse  P-aware
Range (m) 80 145 350 155
TABLE 2. Qualitative Analysis for the four Jamming Types.
Complexity
. 1 2 3 4
=2 1 Success.-pulse
S
e 2 P-aware
R 3 Single-tone
4 Barrage

where N; is the jamming tones. The period T is set such that
312.5 KHz frequency spacing is realized between generated
pulses (i.e., subcarrier spacing in IEEE 802.11 OFDM).

4) Protocol-Aware: This type transmits low interference
via shot-noise pulses to corrupt the ongoing transmissions
while minimizing detection probability. In other words, the
jammer simulates the transmitter of the targeted protocol
without affecting other standards occupying the same band-
width [49].

B. EXPERIMENTAL SETUP

Two experimental environments are established to evaluate
the qualitative and quantitative impacts of the jamming types.
The qualitative evaluation analyzes severity, launch com-
plexity, and effective jamming range. The quantitative eval-
uation entails radiometric extractions (i.e., signal features,
spectrogram images) through data collection under different
jamming scenarios. Data is used for training and validating
ML algorithms for jamming detection and classification.

1) Qualitative Evaluation: The separation between the
jammer (i.e., B210 SDR) and drone is fixed to 0.5 meter.
To measure the effective jamming range, the separation
between the jammer-drone pair and the transmitter is
increased gradually for each jamming type in an unobstructed
outdoor setup, as shown in Figure 1. Here, effective jamming
is defined as a complete loss of signal and is reported in
Table 1 for each type. Results indicate that barrage has the
most jamming range among all types due to spreading inter-
ference over all OFDM subcarriers in comparison to interfer-
ing with the center (or selected) frequencies as in single-tone
and successive-pulse jamming or transmitting shot-noise as in
protocol-aware jamming. Table 2 depicts the qualitative find-
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FIGURE 2. Extraction of signal features and spectrogram images under
no-jamming/jamming scenarios at different jammer locations: (a) testing
setup and (b) testing location from Google maps. The A, *, and x
represent the trnasmitter, jammer, and drone, respectively.

ings for launch complexity and severity in a scale of 1 to 4,
where 4 is the highest score. Barrage has the least launch com-
plexity as it does not require extensive knowledge about the
communication bandwidth. Nonetheless, it has the highest
severity. Single-tone jamming is relatively simple to launch.
Nevertheless, this type is inefficient in scenarios where mul-
tiple frequencies or subcarriers are used. Successive-pulse
jamming with N; = 64 pulses has a moderate launch com-
plexity as interference pulses need careful positioning with
respect to the center and subcarrier frequencies. The output
power, P;, of the jammer is distributed on pulses in a way
that the interference pulse power is P;/N;. Therefore, it has
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TABLE 3. Distribution of Samples in the Training and Testing Datasets.

Training set distribution (70%) Testing set distribution (30%)

No. of records  Avg. & Dev.  No. of records Avg. & Dev.
Clean 7026 16.5440.43 3045 16.53+0.44
Barrage 2374 3.3141.95 1018 3.284+1.98
Single-tone 2348 4.55+3.07 1030 4.70+£3.10
Success.-pulse 2368 1.364+0.71 999 1.35+0.78
P-aware 2379 2.17+1.57 978 2294148
TABLE 4. List of Features Used in each Case.
Features
Case OFDM Estimator Energy Detector SNR Probe
Subcarrier Spacing .
Symbol Time Avg Received Power Ave Slg_n al Power
1 . Avg Noise Power
Subcarrier Length  Threshold SNR
CP Length
Subcarrier Spacing Avg Signal Power

- Avg Received Power .
2 Subcarrier Length Threshold Avg Noise Power

CP Length SNR
Subcarrier Spacing

3 Subcarrier Length
CP Length

Avg Received Power Avg Signal Power
Threshold SNR

the least severity. Protocol-aware jamming has the highest
launch complexity as it requires a thorough knowledge of the
communication protocol. It also has a moderate severity since
limited-power interference is launched at the transmission
bandwidth to maintain low detection probability.

2) Quantitative Evaluation: Radiometric data (i.e., signal
features, spectrogram images) are collected for ML train-
ing/classification. The goal here is to develop models that not
only detect jamming, but also identify its type. To collect such
data, the transmitter-drone separation is set to 350 meters,
which is the minimum separation where all jamming types
are effective. Then, without jamming presence, features and
images are obtained at the drone with B210 SDR and GNU-
Radio modules. The same procedure is repeated in the pres-
ence of each of the jamming types, where a second SDR is
utilized as jammer at eight locations J;, i = 1, 2, ... 8, around
the drone, one at a time. This procedure is performed for radii
r =0.5, 1, and 1.5 meters as shown in Figure 2.

IV. FEATURE-BASED CLASSIFICATION

As discussed in section III, B210 SDRs and GNURadio are
used to launch different jamming attacks and extract radio-
metric data. Figures 3(a) and 3(b) show simplified GNU-
Radio flow graphs for launching the attacks and extracting
features, respectively. Nine features are extracted to train ML
algorithms for detecting and classifying jamming attacks.
Of these features, four are specific to OFDM (i.e., subcarrier
length, cyclic prefix (CP) length, subcarrier spacing, and
symbol time). The subcarrier length represents the number of
subcarriers being used. The CP length is utilized to control
symbol overlapping, and the subcarrier spacing is the fre-
quency separation between subcarriers, which is the recip-
rocal of symbol time [50]. The @ OFDM Estimator block
shown in Figure 3(b) is used to extract these features [51].
The @ Energy Detector block is used to extract the average
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received power and threshold [51]. The threshold is a binary
indicator that returns 1 once the average received power
exceeds a certain level and returns O otherwise. Finally, three
more features; namely, signal-to-noise ratio (SNR), average
signal power, and average noise power are extracted from
the @ SNR Estimator Probe block. It is paramount to point
out that the average received power in (@ conveys noise
energy; whereas the average signal power in Q) presents the
estimated signal power excluding noise power. At the end
of the experiment featured in Figure 2, a total of 23,565
signal samples are collected. Of these samples, 10,071 are
obtained under no jamming; whereas 3,392, 3,367, 3,378, and
3,357 are obtained in the presence of barrage, single-tone,
successive-pulse, and protocol-aware jamming, respectively.
The complete dataset with all the 23,565 samples is provided
in [52]. To develop the ML classifiers, this dataset is divided
into training and testing sets as detailed in Table 3, which
suggest a balanced distribution among the jamming types,
leading to high detection and classification accuracy. During
the processing of features, it is found that the (symbol time,
subcarrier length) and (threshold, average noise power) pairs
are highly correlated. Thus, different ML models are explored
by reducing the dimension of the features dataset. In Case 2,
symbol time is eliminated; whereas symbol time and average
noise power are eliminated in Case 3. The list of features
in each case is given in Table 4. The models are built with
six conventional algorithms: Decision Tree (DT), K-Nearest
Neighbors (KNN), Logistic Regression (LR), Multi-layer
Perceptron (MLP), Naive Bayes (NB), and Random Forest
(RF). The metrics for model evaluation are demonstrated in
(2) and include the detection rate (DR), precision, recall,
F-score (FS), and false-alarm rate (FAR).

Correctly Predicted Samples
DR = - (2.2)
Samples in the Dataset

True Positive Samples

Precision = — —
True Positive + False Positive Samples

2.b)

True Positive Samples

Recall = — -
True Positive + False Negative Samples

(2.0)
2 x Precision x Recall
F — score = — (2.d)
Precision + Recall

False Positive Samples

FAR =

False Positive + True Negative Samples
(2.e)

DR denotes the percent of correctly detected samples over
total dataset samples. Precision is defined as the number
of positive samples predicted as positive (i.e. true positive)
divided by the sum of true positive and negative samples
predicted as positive (i.e. false positive). Recall is the number
of true positive samples divided by the sum of true pos-
itive and positive samples predicted as negative (i.e. false
negative). F-score is computed from precision and recall to
represent their harmonic mean. Lastly, FAR is the number of

VOLUME 10, 2022
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FIGURE 3. Simplified GNURadio flow graph for (a) launching the jamming attacks and (b) extracting the radiometric features.

false positive samples divided by the sum of false positive
and true negative samples predicted by the model. Two-
and five-class ML models are created for each of the cases
summarized in Table 5. The two-class models predict whether
a jamming attack is launched or not; whereas the five-class
models detect the jamming attack and identify its type (i.e.,
barrage, single-tone, successive-pulse, and P-aware). During
model development, 10-fold cross-validation is used in the
training/validation stages. Once a model is trained, evalua-
tion is performed on the test set; and the DR, F-score, and
FAR are computed. Grid search is used to find the optimal
hyper-parameters for each algorithm. The performance of
the developed classifiers for the two- and five-class models
are given in Table 5. All classifiers are executed on a 64-bit
Windows 8 machine with Inte]®Core™7-6900K CPU @
3.20 GHz processor and 128 GB memory. The two-class
model classifiers achieved almost 100% DR and validation
accuracy (VA) in classifying records into ‘‘no-jamming”
or “presence of jamming”. Moreover, seven features (i.e.,
Case 3) are found sufficient for developing an efficient and
trustworthy two-class model. On the other hand, the RF
model has the highest VA of 91.80%, 92.20%, and 86.23%
for Cases 1, 2, and 3, respectively, among the five-class
models. Also, RF achieved the highest DR and F-score in
almost all cases with a DR of 92.11%, 92.20%, and 85.95%
as well as an F-score of 0.92, 0.92, and 0.86 for Cases 1,
2, and 3, respectively. Finally, RF results in the highest
training and testing times of 5.4s and 0.410s, respectively,
in comparison to the other algorithms for its associated large
number of decision trees. Eliminating the symbol time from
the dataset (i.e., Case 2) has a marginal effect in improving
classification. However, eliminating both symbol time and

VOLUME 10, 2022

average noise power (i.e., Case 3) degrades the performance
significantly. Figures 4(a)-(c) show the confusion matrices
of the five-class RF model for each case. None of the clean
records are misclassified as jamming records. Rather, mis-
classification occurs only among the jamming types; par-
ticularly, barrage and protocol-aware, which is attributed to
the similarity in their spectral properties (i.e., interference
in these types targets the entire transmission bandwidth, but
at different intensity levels). The weighed FAR values are
obtained from Figure 4 to be 1.35% for Case 1, 1.33% for
Case 2, and 2.38% for Case 3. Finally, there is no false-alarm
in the two-class models regardless of the number of features
used in training/validation.

The validity of the feature-based models for detecting and
classifying jamming attacks is further analyzed considering
samples with different SNR levels. To this end, the extracted
SNRs for all scenarios are plotted in Figure 5. Five sub-
datasets, summarized in Table 6, are created to represent all
jamming types. Sub-datasets 1, 2, 3, 4, and 5 have sam-
ples with SNR intervals of {0-1}, {1-2}, {2-3}, {3-4}, and
{4-5} dB, respectively, and are established from the testing
set. The samples with SNR values when there is no jam-
ming are excluded to emphasize classification accuracy only
among the four jamming types. The six classifiers developed
earlier are tested with these five sub-datasets, and testing
entailed the three cases with nine, eight, and seven features.
The resulting DRs are illustrated in Figure 6 with the follow-
ing observations in mind: 1) The overall accuracy dropped
due to removing the clean samples from the sub-datasets,
i.e., “Clean” samples are not within any of the SNR inter-
vals. 2) No misclassification as “‘no jamming”’ occurred in
almost all classifiers. 3) The least accuracy is obtained with
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TABLE 5. Metrics for the Two- and Five-class Jamming Detection Models (VA: Validation Accuracy, DR: Detection Rate, FS: F-score, CTR (in seconds): CPU

Training Time, CTE (in seconds): CPU Testing Time.

Performance metrics for five-class models

Case 1: Nine Features Case 2: Eight Features Case 3: Seven Features Time (Case 2)
ML Classifier VA (%) DR (%) FS VA (%) DR (%) FS VA (%) DR (%) FS CTR(sec) CTE(sec)
LR 82.45 (£ 0.65) 82.90 0.82 82.75 (£ 0.67) 82.73 0.82 79.42 (4 0.76) 78.95 0.79 0.860 0.002
KNN 84.47 (£ 0.74) 84.23 0.84 84.87 (£ 0.74) 83.50 0.84 83.70 (£ 0.72) 83.40 0.83 0.131 0.130
NB 79.30 (& 0.80) 78.74 0.79 79.40 (£ 0.80) 78.33 0.78 77.50 (& 0.79) 77.80 0.77 0.002 3.550
DT 91.60 (& 0.70) 92.52 0.93 91.90 (£ 0.64) 91.75 0.92 84.96 (£ 0.75) 84.75 0.85 0.058 ~0
RF 91.80 (£ 0.06) 92.11 0.92 92.20 (£ 0.60) 92.20 0.92 86.23 (£ 0.79) 85.95 0.86 5.404 0.411
MLP 78.02 (£ 1.70) 79.60 0.79 77.50 (£ 2.13) 76.25 0.75 77.46 (£ 1.80) 75.60 0.72 1.807 0.005
Performance metrics for two-class models
LR 100.00 (£ 0.00) 100.00 1.00  100.00 (4 0.00) 100.00 1.00  100.00 (£ 0.00) 100.00 1.00 0.022 0.003
KNN 99.92 (4 0.07) 99.89 1.00 99.93 (£ 0.06) 99.94 1.00 99.93 (4 0.06) 99.96 1.00 0.135 0.135
NB 99.80 (4 0.09) 99.79 1.00 99.77 (£ 0.12) 99.85 1.00 99.77 (£ 0.11) 99.86 1.00 0.006 ~0
DT 100.00 (£ 0.02) 99.98 1.00 100.00 (£ 0.02) 99.98 1.00 99.98 (4 0.03) 100.00 1.00 0.009 ~0
RF 100.00 (£ 0.00) 100.00 1.00  100.00 (£ 0.00) 100.00 1.00  100.00 (£ 0.00) 100.00 1.00 2.344 0.203
MLP 99.72 (£ 0.60) 99.98 1.00 99.23 (4 2.50) 99.98 1.00 99.70 (£ 0.50) 99.89 1.00 1.112 0.001
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FIGURE 4. Confusion matrices of the five-class RF model for (a) nine
features, (b) eight features, and (c) seven features.

sub-datasets 3 (i.e., SNRs € {2-3} dB) and 4 (i.e., SNRs
€ {3-4} dB), which is attributed to the high number of
protocol-aware samples in comparison to the samples from
the other jamming types. It is noteworthy to point out here that
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FIGURE 5. The measured SNRs for the clean (i.e., no jamming) and
jamming scenarios for the four jamming types.

TABLE 6. Distribution of Samples in each of the Five Sub-datasets. All
Sub-datasets are Obtained from the Original Testing Set.

Sub-dataset  Barrage Single-tone Success.-pulse P-aware Total Samples

1: SNRs € {0-1} 62 45 299 111 517
2: SNRs € {1-2} 78 53 608 129 868
3:SNRs € {2-3} 143 69 119 265 596
4:SNRs € {3-4} 172 100 18 386 676
5:SNRs € {4-5} 336 153 7 24 520

protocol-aware jamming has the highest misclassification as
depicted in the confusion matrices presented in Figure 4. As a
result, this SNR-based investigation shows that imbalances in
the dataset (e.g., imbalance in the number of samples for each
jamming type) significantly affect the classification quality
and accuracy. Therefore, the datasets utilized for training
and testing the feature-based ML classifiers in this work
(i.e., Table 3) are balanced and have adequate number of
jamming and clean samples to facilitate high detection and
classification accuracy.

V. SPECTROGRAM-BASED CLASSIFICATION

To improve the five-class classification accuracy, deep learn-
ing models trained with spectrogram images obtained from
no-jamming/jamming scenarios are developed. These models
have multiple processing layers that use backpropagation
to model the parameters of complex datasets (e.g., image,
speech), thereby facilitating precise classification [53]. Here,
CNNs are used for their leading advantage in processing
images by not only efficiently extracting image properties
(e.g., size, color, pattern), but also pooling a large number
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FIGURE 6. The resulting accuracy of the feature-based classifiers as a function of the five SNR intervals. (a) Case 1 with nine features, (b) Case 2 with

eight features, and (c) Case 3 with seven features.
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FIGURE 7. Spectrograms under (a) no jamming, (b) barrage,
(c) single-tone, (d) successive-pulse, and (e) P-aware jamming.

of pixels to reduce calculations. The configuration of CNNs
consists of input layer, convolution layer, pooling layer, fully-
connected layer, and output layer. The input layer feeds
images to the hidden layers. The convolution layer con-
tains convolution kernels for extracting features, and their
size gradually decreases, or remains constant, as more con-
volution layers are added. The pooling layer retains the
highest-scoring features and discards others with low scores.
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FIGURE 8. The configurations of the four CNN-based classifiers.

It also reduces model parameters; thus, reduces computations
at later layers. The fully-connected layer is similar to a regular
neural network (i.e.,neurons in one layer are connected to
those in the next layer). The output layer returns the prob-
ability of each class. Weights are adjusted in the network via
backpropagation.

Spectrogram images are collected with SDR and QT GUI
Waterfall Sink block. Python scripts are developed to capture
screenshots during testing. Here, 762 images are collected
under no jamming and 204 images are collected for each of
the jamming types. The standard image size is scaled down
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TABLE 8. Performance Metrics of the CNN Models (VA: Validation Accuracy, DR: Detection Rate, FS: F-score, GTR: GPU Training Time, GTE: GPU Testing
Time, CTR: CPU Training Time, CTE: CPU Testing Time).

Performance metrics for five-class models

ML Classifier VA (%) DR (%) FS GTR(sec) GTE (sec) CTR (sec) CTE (sec)
AlexNet 100.00 99.36 0.99 174 0.82 6765 4.90
VGG-16 94.03 94.50 0.94 1479 5.81 70932 63.30

ResNet-50 99.82 98.10 0.98 1118 2.72 58359 31.84
EfficientNet-B0 98.55 99.79 1.00 1530 2.53 39476 31.22
Performance metrics for two-class models

ML Classifier VA (%) DR (%) FS GTR(sec) GTE (sec) CTR (sec) CTE (sec)
AlexNet 100.00 99.15 0.99 171 0.76 6048 4.86
VGG-16 99.91 99.36 0.99 1478 5.77 52837 63.43

ResNet-50 100.00 99.36 0.99 1114 2.47 52334 32.00
EfficientNet-B0 99.91 100.00 1.00 1489 2.28 39351 31.55
1 — 1 [
— AlexNet [
3 - — VGG16
0.8 ‘ ResNet-50 0.8
-------- EfficientNet-B0 1
, 06/ 306
- i 3
0.4 < 0471
i" —— AlexNet
: - —-VGG16
0.2 02t ResNet-50
vy | — e - EfficientNet-BO
0 "

20 30 40 50 60 70 80 90 100
Epoch

(@)

O I 1 L 1 L L 1 L 1

0 10 20 30 40 50 60 70 80 90 100
Epoch
(b)

—— AlexNet

- —VGG16
ResNet-50

-------- EfficientNet-BO

Loss

Accuracy

? SN
Al o SN N
Clr N AT p e AN ¥

0.8 1
K
k
0.6 i
0.4+
—— AlexNet
- - VGG16
0.2 ResNet-50

-------- EfficientNet-B0O

0 1 D
0 10 20 30 40 50 60 70 80 90 100
Epoch

()

0 1 1 1 1 1 L 1 L 1

0 10 20 30 40 50 60 70 80 90 100
Epoch
(d)

FIGURE 9. Two-class models (a) loss and (b) accuracy. Five-class models (c) loss and (d) accuracy.

from 1688 x 990 x 3 to 422 x 248 x 3 to reduce training
time. These images are separated into 70% training and 30%
testing. Figure 7 shows sample images in different scenarios.
The complete image dataset is made available on [52].
Spectrogram-based classification is realized with four
CNN configurations: AlexNet, VGG-16, ResNet-50, and
EfficientNet-BO0. Figure 8 shows their structures and Table 7
details their parameters. AlexNet uses ReLu activation func-
tion and dropout method [54]. ReLu increases training speed

16866

and the dropout is added in the first two fully-connected
layers to minimize overfitting. It starts with a convolution
layer of 11 x 11 kernel size and 96 filters, which reduces
to 5 x 5 and 256 filters. It also consists of three convolution
layers with 3 x 3 kernel size and three pooling layers. These
layers are followed by three fully-connected layers and an
output layer. The VGG configuration adds more convolution
layers to facilitate accuracy via deep neural networks [55].
However, an excessive addition of such layers potentially
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TABLE 7. Parameters of the Images and Deep Learning Algorithms.

Stochastic Gradient Descent Solver with 100 Epochs is Considered.

Case Parameter Value
. image size 1688 x 990 x 3

Raw image . -

image type JPg
P . image size 422 X 248 X 3

re-processing : -

image type JPg

Learning rate  0.001

Kernel size 11 x 11,5 x 5,3 x 3
AlexNet Kernel stride 4,2, 1

Batch size 64

Learning rate ~ 0.0001

Kernel size 3 X 3
VGG-16 Kernel stride 2,1

Batch size 32

Learning rate  0.0001

Kernel size Tx7,3x3,1x1
ResNet-50 Kernel stride 2, I

Batch size 32

Learning rate ~ 0.001

EfficientNet-B0

Kernel size

5X5,3x3,1x1

Kernel stride

2,1

Batch size
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FIGURE 10. ROC curve of the two-class CNN models.

leads to gradient dispersion that results in training divergence.
Here, VGG-16 is used for image training with five groups
of two or three convolution layers of 3 x 3 kernel size
together with five pooling layers, three fully-connected lay-
ers, and an output layer. The ResNet configuration addresses
the vanishing gradient problem by exploiting batch nor-
malization and by skipping connections among convolution
layers [56]. It also comes in different structures includ-
ing ResNet-18/34/50/101/152. Here, ResNet-50 is adopted,
which consists of a 7 x 7 convolution layer and groups of
1 x 1,3 x 3, and 1 x | convolution layers. It also has
two pooling, one fully-connected, and output layers. Lastly,
EfficientNet improves accuracy through model scaling and
branches into BO-7 [57]. In this work, EfficientNet-B0 is used
for its compact architecture, which is characterized by a 3 x 3
convolution layer followed by moving reverse bottleneck
convolution (MBConv) layers with either 3 x 3 or 5 x 5
kernels. It also conveys 1 x 1 convolution, pooling, fully-
connected, and output layers.

The training/testing of the four CNN models is
performed in two systems. The first uses a 64-bit Win-
dows 8, Intel® Corei7-6900K CPU @ 3.20 GHz proces-
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FIGURE 11. Confusion matrices of the five-class CNN models: (a) AlexNet,
(b) VGG-16, (c) ResNet-50, and (d) EfficientNet-BO.

sor and 128 GB RAM. The second uses Google Colab
with 16 GB RAM and Tesla P100 GPU. All Python codes
use Tensorflow with Keras interface. Table 8 shows the DR,
VA, F-score, and the training/testing times for the CNN
classifiers. EfficientNet-B0 has the highest DR of 100% and
99.79% for the two- and five-class models, respectively;
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TABLE 9. Comparison between the Proposed Approach and other State-of-the-art Approaches.

Ref. Dataset Type  Dataset Source ML Type DR (%) Application J: ing Type
[31] Features Simulations K-means - VANET Constar}t, Smart
(Detection)
[32] Features Simulations RE, SVM, MLP 9750  5GNetworks DT
(Detection)
[40] Spectrograms  Simulations CNN & SVM 93.10 Satellites ~ Darage, Pilot-tone, Intermittent
(Detection)
Barrage, Reference Signal
[41] Spectrograms Measurements CNN & RNN 86.10 OFDM (Detection and Classification)
[42] Features Measurements DT, AdaBoost, SVM 97.00 OFDM Constant, Reactive
(Detection)
Simulations DT, RE, SVM 99.06 Intermittent
[43] Features Measurements DT, RE, SVM, KNN go70 — LOTNetworks e ction)
[44] Features Borrowed MLP, MLP&SVM 9451  5G Networks  Comstant, Random, Deceptive, Reactive
(Detection and classification)
This Work Features Measurements LR, KNN, NB, DT, RF, MLP 92.20 UAVs Barrage, Single-tone, Success.-pulse, P-aware
Spectrograms Measurements CNN 99.79 (Detection and classification)

whereas, AlexNet results in the lowest training/testing times,
highest VA, and fastest convergence rate as shown in Fig-
ure 9(a)-(d). It is also found that the training and testing
times for the CNN models are significantly higher than
those obtained by the conventional ML algorithms, which
is attributed to the CNNs deep and complex architectures.
However, since detection times (i.e., GTE, CTE) result from
classifying 472 images, the average processing times of the
five-class EfficientNet-BO model to classify an image are
0.005s with GPU and 0.066s with CPU, enabling real-time
jamming detection and classification. Figure 10 shows the
receiver operating characteristic (ROC) of the two-class
models and indicates that EfficientNet-BO outperforms other
classifiers in jamming detection. Lastly, the weighted FARs
are computed from the confusion matrices, shown in Fig-
ure 11, to be 0.6% for AlexNet, 1.55% for VGG-16, 1.86% for
ResNet-50, and 0.03% for EfficientNet-BO0. It is noteworthy
to mention that complexity and severity of a given jam-
ming type have no contribution to its classification accuracy.
For example, barrage jamming is the simplest to launch,
whereas protocol-aware has the most launch complexity. Yet,
their feature- and spectrogram-based misclassifications are
nearly 2.5% and 0%, respectively. Similarly, barrage has
the highest severity among the four jamming types, whereas
successive-pulse has the lowest severity. Nonetheless, their
feature- and spectrogram-based misclassifications are < 1%
and 0%, respectively, as demonstrated in the confusion
matrices in Figures 4 and 11. Table 9 shows a comparison
between the proposed method and those reported in literature
in detecting and/or classifying jamming attacks with appli-
cations to satellite communications, OFDM, VANETS, and
5G/IoT networks. This work entailed four jamming attacks
with the highest detection/classification accuracy. Moreover,
six conventional and four deep learning models are trained
and tested with realistic datasets of extracted signal features
and images obtained after rigorous measurement routines.

VI. CONCLUSION
An ML method is proposed to detect/classify four types
of jamming attacks on OFDM receivers with application to
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UAVs. Each attack is built with B210 SDR and launched
against a drone to qualitatively analyze its impacts consider-
ing severity, complexity, and jamming range. Then, an SDR
is used in proximity to the drone to record key OFDM
parameters, threshold, signal power, noise power, and SNR
for the feature-based approach as well as spectrogram images
for the spectrogram-based approach. The former approach
is explored with six algorithms and the latter is realized
with four CNN algorithms to achieve higher jamming detec-
tion/classification accuracy. All models are validated with
metrics including detection and false alarm rates, and showed
that jamming is detected with 92.2% and 99.79% confidence
following the feature- and spectrogram-based classifiers,
respectively. This method requires the integration of a data
extraction module with the UAV receiver to obtain real-time
signal features and/or images to facilitate the detection and
classification routines. This integration potentially imposes
the need for interface circuits adjoined with a careful analysis
of power aspects and hardware imperfection. Future work
will entail exploring more jamming types (e.g., deceptive,
reactive), incorporating maximum-likelihood classification
with advanced SNR probing, and investigating UAV-specific
anti-jamming solutions (e.g., trajectory optimization).
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