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Abstract: Remote sensing technology has been used widely in mapping forest and wetland commu-
nities, primarily with moderate spatial resolution imagery and traditional classification techniques.
The success of these mapping efforts varies widely. The natural communities of the Laurentian Mixed
Forest are an important component of Upper Great Lakes ecosystems. Mapping and monitoring
these communities using high spatial resolution imagery benefits resource management, conservation
and restoration efforts. This study developed a robust classification approach to delineate natural
habitat communities utilizing multispectral high-resolution (60 cm) National Agriculture Imagery
Program (NAIP) imagery data. For accurate training set delineation, NAIP imagery, soils data and
spectral enhancement techniques such as principal component analysis (PCA) and independent
component analysis (ICA) were integrated. The study evaluated the importance of biogeophysical
parameters such as topography, soil characteristics and gray level co-occurrence matrix (GLCM)
textures, together with the normalized difference vegetation index (NDVI) and NAIP water index
(WINAIP) spectral indices, using the joint mutual information maximization (JMIM) feature selection
method and various machine learning algorithms (MLAs) to accurately map the natural habitat
communities. Individual habitat community classification user’s accuracies (UA) ranged from 60 to
100%. An overall accuracy (OA) of 79.45% (kappa coefficient (k): 0.75) with random forest (RF) and
an OA of 75.85% (k: 0.70) with support vector machine (SVM) were achieved. The analysis showed
that the use of the biogeophysical ancillary data layers was critical to improve interclass separation
and classification accuracy. Utilizing widely available free high-resolution NAIP imagery coupled
with an integrated classification approach using MLAs, fine-scale natural habitat communities were
successfully delineated in a spatially and spectrally complex Laurentian Mixed Forest environment.

Keywords: remote sensing; northern mixed temperate forest; natural habitat communities; laurentian
mixed forest; upper midwest; michigan; image classification; vegetation classification; machine
learning; feature selection; RF; SVM; NAIP; DEM; GLCM texture; PCA; ICA

1. Introduction

An ecosystem is defined as “a community of organisms and their physical environ-
ment interacting as an ecological unit” [1]. Land cover grouped into types and systems by
resource managers led Arthur Tansley [2] to coin the term “ecosystem”. Ecosystems with
spatially related features are considered higher-order, larger-scale ecosystems, referred to as
“macroecosystems” [3]. When ecosystems are viewed as macroscale patterns, they can be
divided into ecoregions [4]. The term “ecoregion” was first proposed by Orie Loucks [5], a
Canadian forest researcher. Ecoregions play an important role in resource conservation and
management by enabling consideration of the natural process and patterns of communities
which provide ecosystem sustainability in a particular region [6]. Many different factors
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(vegetation, soils, spatial and temporal scales, landform and bedrock geology) are utilized
to classify these systems, and numerous ecological classification schemes exist. Spatial and
temporal dimensions of ecosystem integrity can be addressed using scale (level of detail)
and a hierarchical structure approach [7]. Various geographic ordering schemes were devel-
oped by Bailey [3,6] to identify and delineate ecoregion boundaries. Additionally, having
a hierarchical classification scheme allows ecosystems to be presented at different spatial
scales [8,9]. A holistic ecological framework was introduced by Rowe and Barnes [9,10],
using a landscape ecosystem or geo-ecosystem approach that incorporates factors such
as climate, landforms, soil characteristics, hydrology and biota. An example of a widely
used hierarchical classification scheme for wetlands and deep-water habitats for the United
States was developed by Cowardin [11]. It divides ecological taxa into hierarchal systems
or subsystems to provide mapping uniformity across the United States.

Selecting or developing an appropriate ecological classification scheme is critical for
the classification to be useful for the end user. There are numerous existing classification
schemes [8,10–12], and selection of an inappropriate scheme can limit the end product’s ac-
curacy and utility. To classify a landscape, whether in situ or using remotely sensed data, it
is important to have a classification scheme which reduces or eliminates confusion between
various landscape features requiring separation [13]. Traditionally, many resource man-
agement agencies (federal, state and private) use field-sampled regional vegetation classes
focusing on the dominant vegetation species while ignoring associated plants, animals and
other organisms which are repeatedly found under similar environmental conditions [14],
focusing on describing native ecosystem types minimally impacted by anthropogenic activ-
ities [12]. For this study, the hierarchical classification framework of Cohen et al. [12] was
utilized. “Natural Communities of Michigan: Classification and Description”, published
by the Michigan Natural Features Inventory (MNFI), provides detailed information on
separating Michigan’s complex landscape into understandable and describable groups
called natural habitat communities. The foundation of this classification is based on the
work completed by Chapman [15] and first published by Kost et al. [16]. It is important to
understand the difference between a plant community, such as the ones used in the national
land cover classification [17], and a natural habitat community [12]. The latter differs from
other hierarchical classification schemes in that Cohen et al. [12] regard such a community
as “an assemblage of interacting plants, animals, and other organisms that repeatedly
occur under similar environmental conditions across the landscape and are predominantly
structured by natural processes rather than modern anthropogenic disturbances”.

Along with the classification scheme, it is important to choose appropriate field col-
lection methods and data sources. Commonly used field methods for data collection
(e.g., collecting location points via global navigation satellite systems (GNSS) and vege-
tation sampling) are labor intensive, costly and time consuming. Sampling is confined
to small areas due to limited access and safety concerns [18]. With technical advances
in geospatial technology, an alternative and/or complementary approach to traditional
field data collection techniques is available. Remotely sensed imagery provides a practical,
economical approach to monitor and measure biogeophysical factors. Hence, it is efficient
for large-area monitoring [19–21]. Satellite imagery from multispectral and hyperspectral
sensors (Landsat, Sentinel, SPOT, MODIS, and HyMap) as well as LiDAR and RADAR data
have been extensively used for land cover mapping at various scales [17,22–29] Fine-scale
mapping is critical to locate and map endangered habitats, particularly with escalating
global climate change impacts. Hence, high spatial resolution imagery, such as that of
the National Agriculture Imagery Program (NAIP), is important. The NAIP program is
managed by the Aerial Photography Field Office (APFO) of the United States Department
of Agriculture (USDA). It has 8-bit radiometric and 60 cm spatial resolutions, with four
spectral bands (near infrared (NIR), red, green and blue). NAIP data are nominally cloud-
free and widely available at no cost [30]. They have been used for wetland mapping, land
cover classification, forest-cover-type mapping, forest health monitoring and other resource
management projects [31–33].
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Additionally, selection of an appropriate classification algorithm is dependent on
the image spatial resolution, chosen classification scheme and landscape complexity. In
the last two decades, the remote sensing community has steadily increased its use of
machine learning (ML) classification techniques [23,34–38], as the limitations of traditional
parametric classification techniques such as maximum likelihood are realized. Machine
learning algorithms (MLAs) use a nonparametric approach to model and classify data, and
do not require normally distributed data [39]. Numerous land use/cover classification
studies have shown the advantages of using MLAs such as random forest (RF) and support
vector machine (SVM) [23,40–43]. MLAs were utilized in the classification of the 2001
National Land Cover Database (NLCD) [17]. They have also been used with NAIP imagery
for accurate land cover classification [30,44].

Factors such as training set quality, selection of the optimum number of ancillary
datasets and training parameters affect the performance of MLAs [39,45]. Poor-quality
training data impact the accuracy of MLAs. The use of image transformations such as
principal component analysis (PCA) and independent components analysis (ICA) reduces
or eliminates redundant spectral information. Ancillary data such as landform, soil char-
acteristics, hydrography and expert knowledge of the study area are important to create
high-quality training sets. The use of valid ancillary datasets also plays a crucial role in
the classification of vegetation communities. It is important to understand which ancillary
datasets are impacting classification accuracies. Feature selection methods identify the best
ancillary data before executing MLAs and reduce the complexity of the method (e.g., the
“Hughes phenomenon” [46]) and overall computational time [39]. Researchers have shown
the usefulness of feature selection methods and multiple ancillary datasets to improve land
cover classification [30,44,47,48].

Northern forests of the Upper Midwest are part of the Laurentian Mixed Forest (LNF)
which is an extremely complex landscape in terms of geomorphology and vegetation, due
to extensive regional glaciation [49,50]. This has led to unique and complex landforms that
dictate the topography, soil characteristics, hydrography and vegetation communities [49].
The LMF occurs between the boreal forest and the broadleaf deciduous forest transition
zones [51]. Although there are a number of completed studies using grouped species
classifications in this region [14,52–54], to the best of our knowledge no study has been
performed using a natural-habitat-community-level classification scheme [12] with MLAs.

Hence, the goal of this study was to develop a robust methodological classification
approach to identify and accurately classify spectrally similar natural habitat communities
of the complex Laurentian Mixed Forest region using the MNFI natural habitat communities
classification scheme [12]. To achieve this, we proposed an integrated approach of spectral
enhancement techniques coupled with elevation, soils and field data to obtain accurate
training data. Classification accuracies were compared between two commonly used MLAs,
RF and SVM, using various ancillary data derived from feature selection methods, along
with the high spatial resolution NAIP dataset.

2. Study Area, Data and Methods
2.1. Study Area

The study site (Figure 1), is the Sturgeon River watershed (HU5 Id 20207).
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Figure 1. Geographical location of Sturgeon River watershed and image of research area presented 
by RGB composition using bands 1, 2 and 3 from the NAIP imagery. 
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adjacent to the head of Big Bay de Noc. The study area encompasses approximately 3151 
ha (77,861 ac) and contains a wide variety of natural habitat communities. Dominant veg-
etation is composed of upland and lowland deciduous, conifer and mixed forest types as 
well as palustrine wetlands [55]. The influence of the Great Lakes and various landforms 
creates distinct climatic zones across the area with summer temperatures ranging from 22 
°C (71 °F) near the Great Lakes shoreline to a warmer 27 to 29 °C (81 to 85 °F) inland. 
Winter temperatures range from an average high of −2 °C (28 °F) to an average low of −11 
°C (13 °F). Winters are long and snowy, with average snowfall of 142 cm (56 inches) along 
the Lakes Michigan and Huron shorelines, to 554 cm (218 inches) near Lake Superior. The 
study area is part of a glacial lake plain and is a nearly level lake plain that was covered 
with water from the glacial Lake Algonquin. The soils on the landform are derived from 
predominantly sandy lacustrine deposits [49,56]. Soil drainage classes range from poorly 
to excessively drained, and soil pH ranges from neutral to extremely acidic. The area con-
tains numerous wetlands with a complex hydrography. 
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Figure 1. Geographical location of Sturgeon River watershed and image of research area presented
by RGB composition using bands 1, 2 and 3 from the NAIP imagery.

(45◦50′27′′N, 86◦40′30′′W) located in the western half of the Hiawatha National Forest,
adjacent to the head of Big Bay de Noc. The study area encompasses approximately
3151 ha (77,861 ac) and contains a wide variety of natural habitat communities. Dominant
vegetation is composed of upland and lowland deciduous, conifer and mixed forest types
as well as palustrine wetlands [55]. The influence of the Great Lakes and various landforms
creates distinct climatic zones across the area with summer temperatures ranging from
22 ◦C (71 ◦F) near the Great Lakes shoreline to a warmer 27 to 29 ◦C (81 to 85 ◦F) inland.
Winter temperatures range from an average high of −2 ◦C (28 ◦F) to an average low of
−11 ◦C (13 ◦F). Winters are long and snowy, with average snowfall of 142 cm (56 inches)
along the Lakes Michigan and Huron shorelines, to 554 cm (218 inches) near Lake Superior.
The study area is part of a glacial lake plain and is a nearly level lake plain that was covered
with water from the glacial Lake Algonquin. The soils on the landform are derived from
predominantly sandy lacustrine deposits [49,56]. Soil drainage classes range from poorly to
excessively drained, and soil pH ranges from neutral to extremely acidic. The area contains
numerous wetlands with a complex hydrography.

2.2. Imagery

The National Agriculture Imagery Program (NAIP) collects data during the active
growing season, also known as “leaf-on” imagery, which is needed for habitat classification.
The four-band (red, green, blue and near-infrared) aerial imagery was acquired at approxi-
mately 16,000 feet above ground level (AGL) with a Leica ADS100 airborne digital sensor
(Leica Geosystems). The image has a spatial resolution of 60 cm with 8-bit radiometric reso-
lution. The spectral range of the 4 bands ranges between 435 and 882 nm (Table 1). The data
were preprocessed by the contractor to reduce radiometric and geometric distortions. NAIP
imagery tiles dated 25 July 2018 and 11 August 2018 were downloaded from the United
States Geological Service (USGS) EarthExplorer website (https://earthexplorer.usgs.gov/,
accessed on 14 July 2021). A LiDAR-derived 1 m digital elevation model (DEM) was

https://earthexplorer.usgs.gov/
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obtained from the Natural Resources Conservation Service (NRCS). All datasets were
registered to the Universal Transverse Mercator (UTM), Zone 16 North, North American
Datum of 1983 (NAD83). The spatial resolution for all the datasets is 60 cm. Where resam-
pling was required, the data were reprojected using a two-dimensional affine coordinate
transformation using nearest-neighbor resampling, with a fundamental vertical accuracy
of ±24.5 cm, meeting all FGDC (Federal Geographic Data Committee) standards.

Table 1. Spectral characteristics of the NAIP data (Leica Geosystems, 2020).

Spectral Band
Names Wavelength (nm) Spatial Resolution

(cm)

Blue (B) 435–495 nm
Green (G) 525–585 nm 60

Red (R) 619–651 nm
Near-Infrared (NIR) 808–882 nm

ERDAS IMAGINE® 2020 (https://www.hexagongeospatial.com/products/power-
portfolio/erdas-imagine, accessed on 14 July 2021) and ArcGIS Pro 2.7 (https://www.esri.
com/en-us/store/arcgis-pro, accessed on 14 July 2021) were used for image transformation.
IMAGINE’s Spatial Model Editor toolbox was used to generate the normalized vegetation
index (NDVI) and a modified water index (WINAIP), as well as the gray level co-occurrence
matrix (GLCM) textures, aspect and slope (%). ArcGIS Pro tools were used to generate
random points (Create Random Points) and to extract multi raster values (Extract Multi
Values to Points). The “caret” package [57] of the R programming language [58] was used
for MLA implementation.

2.3. Methods
2.3.1. Utility of Image Transformations

Multiple workflows have been developed by the remote sensing community for delin-
eating and mapping vegetation. They are dependent on environmental factors (e.g., soil
characteristics (drainage, slope, pH), hydrography, landform and climatic conditions) [59],
as well as field collected data, expert image interpretation (manual and computer assisted)
and an appropriate classification scheme [11,12,47,48,60–62]. The delineation and classifica-
tion workflow used in this study is presented in Figure 2. Inter-class spectral variability
is important to differentiate natural communities. However, locally high variance occurs
not only due to changes in vegetation but also due to site conditions and the high spatial
resolution of the imagery [63]. When selecting training sets, it is important to understand
how these factors influence training set statistics and to generate adequate training data
to encompass the variation. Having polygon training sets with well-delineated feature
boundaries is critical to generate valid training set point matrices for the machine learning
algorithms (MLAs) [39].

To fully utilize spectral reflectance information, and reduce redundant information
between bands, an integrated approach to spectral transformation techniques (principal
components analysis (PCA) and independent components analysis (ICA)) were utilized.
PCA is a widely employed transformation using a linear transformation, and it generates
uncorrelated components [64,65]. PCA-derived components have been used to map wet-
lands vegetation, assess change detection and evaluate vegetation anomalies and identify
geological features [66–70]. PCA uses second-order statistics and assumes the data are
normally distributed and correlated. PCA has been utilized since the launch of the Land-
sat 2 Multispectral Scanner which consisted of 4 bands [71]. ICA considers higher-order
statistics, and each transformed component is considered to be non-Gaussian [72]. ICA
has been shown to identify details in an image even when the feature occupies a small
area [73]. However, it has not been extensively used in vegetation and land use/cover
classification [70,74–76]. Both PCA and ICA were used to draw accurate training classes for
the MLA. The components of the PCA transformation were not used in the classification

https://www.hexagongeospatial.com/products/power-portfolio/erdas-imagine
https://www.hexagongeospatial.com/products/power-portfolio/erdas-imagine
https://www.esri.com/en-us/store/arcgis-pro
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process, as components 3 and 4 contained information critical to delineating the emergent
marsh natural habitat communities.
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Figure 2. Workflow diagram explaining the methods adapted for vegetation classification using
spectral enhancement techniques, indices and machine learning algorithms.

2.3.2. Vegetation and Moisture Indices

Spectral indices have been used extensively to evaluate, monitor and map vegetation
both qualitatively and quantitatively [77]. Two spectral indices, the normalized vegetation
index (NDVI) and a modified water index (WINAIP), were derived from the NAIP bands.
NDVI indicates the biomass abundance and vigor, as well as differentiating vegetation from
non-vegetated areas [78,79]. NDVI was generated using NAIP bands 4 (NIR) and 1 (red).
The WorldView water index (WV-WI) was proposed by Wolf [80] and uses WorldView
satellite band combinations of coastal blue (425 nm) and the second near-infrared channel
(NIR2) (950 nm). Previous water indices for satellite imagery were based on NDWI [81]
which used NIR and short-wave infrared (SWIR) channels. Based on Wolf’s index, a custom
water index was developed for this study by replacing the coastal blue band (425 nm) band
with NAIP blue (435 nm) and the NIR2 (950 nm) band with NAIP NIR (882 nm). The
modified index is referred to as the WINAIP.

2.3.3. Texture

Plant communities often share similar spectral reflectance characteristics, which leads
to confusion and misclassification. In such scenarios, texture differences may be useful,
even critical, for correct classification. A gray level co-occurrence matrix (GLCM), originally
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referred to as a “gray-tone spatial dependence matrix” by Haralick et al. [82], uses second-
order metrics to analyze relationships between pairs of pixels and computes both angular
relationships and directionality to measure the spectral and physical distance between two
neighboring pixels [83]. GLCM texture analysis has been used in numerous studies to
classify various features including urban areas, forests, agriculture and wetlands [61,82–84].

The GLCM texture was calculated from the first and second NAIP PCA components.
These components explained 94% (component 1) to 96.74% (components 1 and 2) of the
variability in the image. Three different GLCM measures of texture (contrast, entropy and
standard deviation) were calculated with PCAs 1 and 2. GLCM was performed in ERDAS
IMAGINE (Hexagon Geospatial, 2020), with a grayscale level of 32 and 3 × 3, 5 × 5 and
7 × 7 processing windows. Two different Euclidean geometry XY offsets (2, 2 and 2, −2)
were used. The derived means from the texture measures were used in the classification.

2.3.4. Topographical Characteristics

At fine scales, natural habitat communities are controlled by soils, local topogra-
phy, lake effect climate zones and, in some instances, past disturbances such as fire and
windthrow. Extensive glaciation in the Upper Midwest has created a wide variety of surfi-
cial geologic features. These features are made up of interacting landform patterns, which
have been described [56,85] as combinations of “relief-topography (surface shape) and
geological parent material”. Rowe [10,56,86] stated that “repetitive patterns in vegetation
can be traced directly to repetitive patterns of topography associated with specific types of
surficial material of landforms”. Drawing on this body of research, a 1 m DEM generated
from LiDAR imagery collected in 2015 helped identify important topographic features
with high positional accuracy. The DEM was downloaded from the National Resources
Conservation Service. Hillshade (multi-directional oblique weighted—MDOW), aspect
and slope (%) were generated from the DEM. Aspect and slope were evaluated as input
ancillary data into the MLAs and hillshade aided in manual training set delineation.

2.3.5. Selection of Input Ancillary Data Layers

When imagery alone cannot adequately classify the data, the incorporation of ancillary
data is important. Once ancillary data layers are selected, understanding their contribution
towards classification is important [87], with the goal of optimizing and creating an accurate
classification. Variable or ancillary data selection has been used in many applications
including data mining and machine learning, network anomaly detection, natural language
processing, bioinformatics and image processing [87]. There are many different feature
selection methods available [88].

In this study, joint mutual information maximization (JMIM) [89], a filter-based vari-
able selection method, was implemented in R using the “praznik” package [90]. This
method uses “mutual information” and “maximum of the minimum” criteria to calculate
the contribution of each input variable. This method evaluates each variable’s importance.
The JMIM method was performed prior to running the MLA classification. Variables with
higher JMIM values were used as ancillary data inputs. Along with the JMIM method,
the “varImp” function was used [89] from the “caret” package [57,91], which evaluates the
implemented MLA and identifies the best ancillary data layers for improving the classifica-
tion [88,91]. The varImp method is implemented after the RF classification is performed.
The scores produced for each variable helped select various variable combinations for the
MLAs classifications.

Based on joint mutual information maximization (JMIM) and “varImp” scores, the
following variables were used as inputs in the machine learning algorithms (MLAs):

• Four bands of NAIP imagery;
• Elevation from DEM;
• Contrast texture (C1*7) calculated from PC1 (7 × 7) moving window, C2*7 calculated

from PC2 (7 × 7) moving window;
• Normalized vegetation index (NDVI);
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• Modified water index (WINAIP) derived from NAIP imagery.

Feature selection methods have been primarily used in geology applications to reduce
the complexity of the dataset where there are large numbers of bands (i.e., hyperspectral
data) [70]. In this study, both feature selection methods were implemented. However, as
this is an uncommon approach for natural resource applications [92–94], various combi-
nations of the ancillary data were also manually selected and evaluated, and listed in the
results section.

2.3.6. Collection of Training Samples

An adequate number of training samples is crucial to achieve optimum classification
results. As a “rule of thumb” in ML, the number of training samples should be 10 times
(preferably 100 times) the total number of variables [39,95]. How the training samples are
selected also plays a crucial role and requires expert knowledge of the spectral and spatial
variation within and between the natural communities [13]. Additionally, the choice of
classification algorithm, the number of input variables and the spatial extent of each natural
habitat community influences the number of training samples required [39,96]. Researchers
have noted that large and accurate training datasets are preferable, regardless of the MLA
used [39,97,98]. Training samples were generated within manually delineated training set
polygons (Figure 3) using stratified random sampling in ArcMap 10.7.1, with a minimum
of 5 m distance between points. Different spectral enhancement techniques (PCA, ICA),
soils, elevation data and ground truth data were utilized to delineate the training polygons.
Table 2 presents the natural communities within the study area and the number of training
and test points collected for each. The points were assigned natural habitat community
class names and IDs. Using the X and Y locations of the training sample points, pixel values
for the NAIP imagery and the ancillary data layers were extracted for use in the MLAs.
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Table 2. Vegetation communities, areas and the number of randomly generated training and testing
points for input into the MLAs.

Vegetation Community Type
(Code)

Area
(Hectares)

Training
Data

Testing Data
(Accuracy Assessment)

Open Land (OL) 10.6 466 155
Emergent Marsh (EM) 64.7 3205 1068

Rich Conifer Swamp (RCS) 202.5 4057 1352
Poor Conifer Swamp (PCS) 142.9 2272 757

Northern Shrub Thicket (NST) 54.9 2620 873
Mesic Northern Forest (MNF) 108.3 3814 1271

Inland Lake (IL) 8.3 386 128
Open Water (OW) 5.3 292 97

Impervious Surfaces (IS) 5.5 301 100
Total 603 17,413 5801

2.3.7. Utilization of MLAs for Natural Communities Classification

The training samples derived from the input ancillary data layers were used to train
both random forest (RF) and support vector machine (SVM). Parameter optimization,
validation and accuracy assessment were performed for both algorithms. The “caret”
package [57] available in the “R” programming language was used to implement the MLAs.
RF and SVM classifiers are discussed briefly below.

2.3.8. Random Forest

RF is an ensemble classifier method developed by Brieman [99], which uses a set of
nonparametric classification and regression tree (CART) rules to make predictions [100]. De-
cision trees (DTs) are generated using the values of a random vector sampled independently
from the input vector and distributed equally among all the trees in the forest [35,38,101,102].
The algorithm then uses the majority of votes from the tree’s assemblages and assigns
that value to each of the unknown vectors [39,47]. Random forest works with a “bag-
ging” (or bootstrap aggregating) approach, which generates training datasets by randomly
drawing replacements for the original training set for each selected feature/feature combi-
nation [38,99,103]. RF uses two thirds of the data to train the trees and the remaining one
third of the data to provide an independent estimate of overall accuracy (OA) [34,39]. The
classifier is computationally efficient but can be prone to overfitting [104,105]. The forest
can grow to a user-defined largest number of trees (Ntree) by optimizing the number of
RF-created trees exhibiting high variance and low bias [34,99]. The mtry parameter controls
the number of variables randomly selected at each split in the tree-building process and
has a sensitive influence on RF’s performance. It can be adjusted if needed, as part of the
tuning process [106,107]. RF’s advantages include its ability to work with spatially large,
complex datasets with correlated variables, to rank variable importance and to improve
classification accuracies [39,99]. We used the default parameters provided with the “rf”
method in the caret package and used “center” and “scale” to standardize the ancillary
data [57,108]. RF tends to work robustly without optimization parameters [39].

2.3.9. Support Vector Machine

SVM is a supervised machine learning algorithm developed by Vapnik [109], based
on statistical learning theory. The classifier is inherently binary and tries to identify a
boundary or a hyperplane which separates two classes that are closest in the feature space.
The hyperplanes associated with the class are parallel to the optimal separating hyperplane
and the samples located on these hyperplanes are called support vectors [109,110].

However, in the real world, data distributions are often non-linear and noisy, and may
not be easily separated, which promotes overfitting. Projecting the input data to a higher
dimension feature space helps overcome this issue, assuming that a linear boundary exists
in the higher dimensional feature space [39,111]. If a linear higher dimensional feature
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space does not exist, a kernel function can be used, and for this study a radial basis function
(RBF) kernel was used [112]. We used the default “svmRadial” method from the caret
package [57]. SVM contains two important model parameters: “cost” (C) and “sigma” (σ).
Higher C values can lead to a more complex decision boundary and less generalization [39],
whereas a higher σ affects the overall shape of the separating hyperplane and may influence
overall accuracy. The “caret” package estimates approximate values for the cost and σ

parameters directly [57,108,113]. RBF parameters are determined by a grid search algorithm
using an m-fold cross-validation (m-FCV) approach. The grid search method tests different
pairs of parameters, and the one with higher cross-validation accuracy is selected [114].
Centering and scaling were performed to standardize the ancillary data [57,108].

The cross-validation procedure prevents overfitting issues with the data [110,115]. To
select and evaluate optimum parameters, a 10-fold cross-validation procedure was used
for both RF and SVM. This is the recommended number of folds for comparing machine
learning algorithm performances [116].

2.3.10. Accuracy Assessment and Classification Differences

Thematic accuracy assessment is an important component in evaluating the “correct-
ness” of a classification. Products with low accuracy have limited or no utility to the end
user, as they are composed of misinformation. Stratified random sampling was selected
for the accuracy assessment points. This sampling approach ensures unbiased sample
selection and adequate sampling for each habitat, since a minimum number of samples is
specified for each class [117,118]. Using the methodologies developed by Congalton and
Green [13], error matrixes, overall accuracies, kappa and Z-scores with 95% confidence
limits were calculated.

Differences in the output classifications occur, as the MLA algorithms do not process
the data the same way. Processing differences do create different end products. Differences
between the two MLA outputs were assessed using ArcGIS Pro 2.7.

2.3.11. Classification Post-Processing

Classified data, including the natural habitat community classifications resulting from
the MLAs, manifested a “salt and pepper” appearance due to the spectral variability
encountered by the classifier [66,119]. A single pixel, due to its small area, doesn’t provide
useful information to a resource manager and may have little or no relation to the actual
mapping of a natural habitat community [13,120,121]. It is common practice to remove noise
using a majority filter and a specified window size [66] to create homogenous polygons
suitable for accuracy assessment. To make the natural habitat community classes easily
identifiable, and the final map more useful to the end user, we applied a 7 × 7 moving
window majority filter.

3. Results

Natural habitat community classification was evaluated using RF and SVM with
various input ancillary datasets including NAIP spectral bands, topographical layers,
textural measures and spectral indices, to classify the natural communities (Table 3). The
training and testing datasets were split 75% and 25%. The appropriateness of the input
datasets was evaluated based on the overall accuracy (OA) and kappa (k) of the test
samples (5801 pixels). OA indicates the ratio between the total number of pixels and the
total number of accurately classified pixels, and the k (kappa) is a measure of the agreement
between the accurately classified data and the reference data [13]. Along with OA and
k, the UA and PA for each community class were also evaluated. User’s accuracy (UA)
and producer’s accuracy (PA) show the accuracy of each community class, as described by
Congalton [13]. UA and PA show the commission and omission errors of individual classes,
respectively. Z-scores with a 95% CI were also evaluated. Along with these, a difference
map was generated to evaluate the classifier differences.
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Table 3. Overall accuracy (OA) and kappa coefficient (k) for the input variable combinations. Input
4 (bolded) has the highest OA and k and was used for the final natural communities classification.
Abbreviations: Asp—aspect, Slp—slope, Tex—GLCM texture (contrast, entropy, standard deviation
7 × 7), Tex1—contrast (7 × 7), Tex2—contrast (3 × 3), Tex3—contrast (5 × 5).

Input
Data Variable Combinations OA (%)

(RF)
k

(RF)
OA (%)
(SVM)

k
(SVM)

1 NAIP bands 56.02 0.46 59.01 0.49

2 NAIP bands + DEM 73.09 0.67 71.21 0.65

3 NAIP + DEM + Asp+ Slp + Tex +
NDVI + WINAIP + Tex2 + Tex3 79.96 0.75 75.35 0.70

4
NAIP + DEM + Tex1 + NDVI +
WINAIP (JMIM based optimal

input variables)
79.45 0.75 75.85 0.70

3.1. Ancillary Data and Feature Selection Methods

A total of 19 ancillary datasets (Figure 4) were evaluated in this study. The contrast
texture image provided the most detailed information compared to entropy and SD. Hence,
two more images were generated using 3 × 3 and 5 × 5 moving windows to evaluate
impact of window size on the natural habitat community MLA classifications. JMIM
and varImp scores were calculated for all of these input ancillary datasets from highest
to lowest scores. Classifications using RF and SVM were generated using all possible
combinations of the above-mentioned ancillary data layers (Table 3) to verify the robustness
of the feature selection methods. Ancillary data layers which had lower scores in the feature
selection method (Figure 4) showed similarly poor performance in the MLA classifications
(Tables 3 and 4).

3.2. Classifications Results

The lowest accuracy occurred when only the National Agriculture Imagery Program
(NAIP) bands were used for classification and supports the need for ancillary data incorpo-
ration. Using only the four multispectral NAIP bands (Input 1) led to a low OA (56.02%,
k = 0.46) with RF and with SVM (OA = 59.01%, k = 0.49) (Table 3). The addition of slope,
aspect, normalized difference vegetation index (NDVI), NAIP water index (WINAIP) and
texture improved the OA. The highest classification accuracies included those using all the
input ancillary data (Input 3) and those using a combination of derived indices and textures.
Tables 3 and 4 shows the overall accuracy (OA), kappa (k) and confidence intervals (CI)
and other supporting statistics the natural habitat community classifications derived from
various input variable combinations. RF has OAs and associated k values ranging from
56.02 % (k = 0.46) for Input 1 to 79.96% (k = 0.75) for Input 3. SVM values were between
an OA of 59.01% (k = 0.49) for Input 1 and 75.85% (k = 0.70) for Input 4. Using Cohen’s
categorization of kappa value ranges, the classifications from Inputs 2, 3 and 4 (Table 4)
show substantial agreement.

Incorporating the DEM with the NAIP bands provided a significant improvement in
OA (12 to 17% increase) regardless of the MLA. Using slope and aspect with the NAIP
bands did not significantly improve the OA. Similarly, vegetation and water indices did not
differ significantly compared to those using only the four NAIP bands. When all variables
(Table 3), including the four NAIP bands, three topographic layers, ten texture layers and
two indices were used, the OA improved to almost 80% for RF and 74% for SVM (Table 3).
Figure 5 shows the graphical representation of OA and k for NAIP bands, all ancillary
dataset and the final classification approach. Input 4 ancillary data layers were used for the
final classification (Figures 6 and 7), giving 79.45% OA for RF and 75.85% for SVM. Between
Input 3, which used nineteen ancillary data layers, and Input 4, which used only nine
ancillary data layers, no significant statistical differences were observed (Tables 3 and 4).
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Figure 4. Ancillary data importance scores using (a) JMIM and (b) RF-based varImp calculations. R—
red, G—green, B—blue, NIR—near-infrared, DEM—digital elevation model, Slope—slope, Aspect—
aspect, C1—contrast texture (PC1, 7 × 7 moving window), C2—contrast texture (PC2, 7 × 7 moving
window), Ent1*7—entropy texture (PC1, 7 × 7 moving window), Ent2*7—entropy texture (PC2, 7 × 7
moving window), SD1*7—standard deviation texture (PC1, 7× 7 moving window), SD2*7—standard
deviation texture (PC2, 7 × 7 moving window), NDVI—normalized difference vegetation index,
WINAIP—modified water index–NAIP, C1*3—contrast texture (PC1, 3 × 3 moving window), C2*3—
contrast texture (PC2, 3 × 3 moving window), C1*5—contrast texture (PC1, 5 × 5 moving window),
C2*5—contrast texture (PC2, 5 × 5 moving window). Note: varImp score for Ent 2 = 0 (no bar).

Z-scores with a 95% confidence limit were calculated for all k values and are shown in
Table 4. The scores for each classification, regardless of input variable combination, show
the classification to be meaningful and significantly better than a random classification.
Pairwise Z-scores are also presented in Table 4. The scores indicate that all of the classifica-
tion results for RF and SVM with the same input variables were not statistically different,
as all have an absolute value < 1.96.

Figures 6 and 7 present the final classification results from Input 4 data (Table 3) for
RF and SVM. There are five natural habitat community classes (Figures 6 and 7), with
four non-habitat community classes (Open Land, Impervious, Inland Lake and Open
Water) which are not considered natural habitats under the current classification scheme
but reflect human influences on the landscape, such as agricultural/open land and roads,
and must be included. Input 3 led to a slightly higher OA, but this was not statistically
significant (Z-score) compared to Input 4, which had fewer variables. Fewer variables
shorten the computing time, which is an important consideration for classification of large
areas. However, the kappa and Z-score are only two measures of classification quality;
they only consider the overall classification and not the accuracies of the individual natural
habitat community classes.
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Table 4. Kappa values, associated Z-scores and 95% confidence intervals for the input variable
combinations. The pairwise Z-score indicates whether the classifications from RF and SVM with the
same input variables are statistically different. Abbreviations: Asp—aspect, Slp—slope, Tex—GLCM
texture (contrast, entropy, standard deviation 7 × 7), Tex1—contrast (7 × 7), Tex2—contrast (3 × 3),
Tex3—contrast (5 × 5).

Input
Number

Variable
Combinations

k
(RF)

Z-Score
(RF)

k
(SVM)

Z-Score
(SVM)

Z-Score
(Pairwise)

95% CI
(RF)

95% CI
(SVM)

1 NAIP bands 0.46 2.37 0.49 2.72 −0.34 ±1.28 ±1.27

2 NAIP bands +
DEM 0.67 5.02 0.65 5.09 0.196 ±1.15 ±1.17

3

NAIP + DEM +
Asp + Slp +

Tex + NDVI +
WINAIP +
Tex2+ Tex3

0.75 6.29 0.70 6.13 0.467 ±1.02 ±1.11

4
NAIP + DEM

+ Tex1 + NDVI
+ WINAIP

0.75 6.29 0.70 6.13 0.467 ±1.04 ±1.10Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 26 
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Figure 7. SVM-classified study area map based on the MNFI classification system.

Table 5 presents the error matrix, including user’s accuracies (UA) and producer’s
accuracies (PA) for the final RF and SVM natural habitat communities classification. A total
of 5,801 randomly selected ground truth points were used for the accuracy assessment
(Table 5). Each natural habitat community class had at least the minimum number points
to create a 95% confidence interval and was based on the percentage area of each class with
respect to the total area.
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Table 5. Error matrixes and accuracy statistics derived from the final (Input 4) random forest
and support vector machine classifications. RF—random forest, SVM—support vector machine,
OL—Open Land, EM—Emergent Marsh, RCS—Rich Conifer Swamp, PCS—Poor Conifer Swamp,
NST—Northern Shrub Thicket, MNF—Mesic Northern Forest, IL—Inland Lake, OW—Open Water,
IS-Impervious, UA—user’s accuracy, PA—producer’s accuracy, OA—overall accuracy, k—kappa.

RF OL EM RCS PCS NST MNF IL OW IS Total UA
(%)

PA
(%)

OL 146 0 0 0 0 1 0 0 1 148 98.64 94.19
EM 0 940 20 8 61 10 0 0 0 1039 90.47 88.01
RCS 0 42 1053 275 128 53 0 0 1 1552 67.85 77.88
PCS 0 10 176 418 23 17 0 1 1 646 64.70 55.22
NST 0 59 81 37 592 47 0 0 0 816 72.55 67.81
MNF 9 14 22 19 69 1142 0 0 3 1278 89.36 89.85

IL 0 1 0 0 0 0 128 0 0 129 99.22 100.00
OW 0 2 0 0 0 0 0 96 0 98 97.96 98.97
IS 0 0 0 0 0 1 0 0 94 95 98.95 94.00

Total 155 1068 1352 757 873 1271 128 97 100 5801 OA = 79.45%,
k = 0.75

SVM OL EM RCS PCS NST MNF IL OW IS Total UA
(%)

PA
(%)

OL 145 0 0 0 0 1 0 0 0 146 99.31 93.55
EM 0 898 21 6 66 7 0 0 1 999 89.88 84.08
RCS 0 71 1101 371 196 93 0 0 0 1832 60.09 81.43
PCS 0 3 139 314 11 11 0 1 1 480 65.41 41.48
NST 0 81 72 35 526 43 0 0 0 757 69.48 60.25
MNF 10 12 19 31 74 1116 0 0 8 1270 87.87 87.80

IL 0 0 0 0 0 0 128 14 0 142 90.14 100.00
OW 0 3 0 0 0 0 0 82 0 85 96.47 84.53
IS 0 0 0 0 0 0 0 0 90 90 100.00 90.00

Total 155 1068 1352 757 873 1271 128 97 100 5801 OA = 75.85%,
k = 0.70

The PAs and UAs calculations show the accuracies of the natural habitat communities
can be split into two groups: those with accuracies above 85% and those with accuracies
between 60 and 75% (Table 5). Open Land (OL), Emergent Marsh (EM), Mesic Northern
Forest (MNF), Inland Lake (IL), Open Water (OW) and Impervious Surface (IS) have
PAs between 84 and 100%. Rich Conifer Swamp (RCS), Poor Conifer Swamp (PCS) and
Northern Shrub Thicket (NST) have PAs between 41 and 81%. These lower PA accuracies
can be explained by the presence of speckled alder (Alnus incana), red osier dogwood
(Cornus sericea), white pine (Pinus strobus) and red maple (Acer rubrum) across all three
communities [12]. Sphagnum mosses (Sphagnum spp.), bunchberry (Cornus canadensis),
balsam fir (Abies balsamea), paper birch (Betula papyrifera), black spruce (Picea mariana),
huckleberry (Gaylussacia baccata) and sensitive fern (Onoclea sensibilis) are found in both
Rich and Poor Conifer Swamp communities [12]. The presence of these species in both
communities contributes to the lower UA and PA (Table 5). Also contributing to the
Northern Shrub Thicket’s lower UA and PA was misclassification between it and Emergent
Marsh. This is due to large areas of spatial intermixing of the two communities. Similar
observations were made from the classifier difference map (Figure 8), where majority of
confusion with the SVM classification was observed in RCS, PCS and NST natural habitat
communities. Areas in red show where differences in the natural habitat communities
occur between the MLAs. Otherwise, the classification results were in agreement.
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4. Discussion
4.1. Feature Selection and Imprtance of Ancillary Datasets

Ancillary datasets such as NAIP (National Agriculture Imagery Program) multispec-
tral bands, DEM, aspect, slope, spectral indices and PC1- and PC2-based texture layers were
selected by implementing the feature selection method. The utility of these input datasets
was determined and compared for the automated MLAs. The ancillary data were selected
not only based on the variables’ importance but also on the OA and k values as well. Both of
the feature selection methods (i.e., JMIM and varImp) proved to be important for observing
differences in ancillary data contributions to the MLA accuracies (Figure 4a,b).

The JMIM (Figure 4a) scores are independent of the classification algorithm and are
generated prior to running the MLAs. The ranking serves as a guide to the potential
contribution of the variables and assists in initial variable selection. This is important when
there are numerous inputs to choose from. By contrast, the varImp (Figure 4b) ranks the
importance of input variables only for random forest and is generated after the classification
is performed. This ranking allows confirmation of the input variable’s importance and
validates the original selection of the input variables. The order of variable listing is not
expected to be the same when calculated at different points in the workflow. However, the
first nine listed variable rankings are closely similar for both feature selection approaches.
The approach also confirms the lower contribution of the useful information of certain
variables such as slope and aspect.

Regarding spectral indices, both NDVI and WINAIP were helpful in improving the
accuracies. NDVI was critical for calculating the green biomass present in the area, and it as-
sisted in discriminating Mesic Northern Forest from Northern Shrub Thicket. For WINAIP,
even though the NAIP bandwidths did not match as the WV-WI bandwidths, initial re-
sults showed that the modified index contributed to differentiating standing waterbodies,
emergent marsh and shadows efficiently. Of the three calculated GLCM texture measures,
contrast provided the most useful information for classification. Emergent Marsh, Northern
Shrub Thicket and Water had smooth textures and hence low mean contrast values, whereas
Mesic Northern Forest, and Rich and Poor Conifer Swamps had high mean contrast values,
due to a rough texture. Average mean contrast values in the study area ranged from 0 to
285. To determine the best texture window size and evaluate finer-scale changes in texture,
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three different moving window sizes were evaluated (3 × 3, 5 × 5 and 7 × 7) using con-
trast. The largest window size (7 × 7) performed well for entropy and standard deviation
(Figure 4a,b) providing unique information. However, contrast texture outperformed both
entropy and standard deviation in differentiating natural habitat communities. Only the
first two PCA components were used to generate GLCM texture. PCs 1 and 2 explained
96.74% of the variability in the original NAIP data. The feature selection methods (JMIM
and varImp) may not necessarily improve accuracy, but they helped to reduce the model
complexity by allowing a selection of variables which contributed the greatest amount of
information to the classification.

4.2. MLAs Classifier Performance

Overall, random forest (RF) outperformed support vector machine (SVM), including
giving the classification with the highest overall accuracy (OA) and kappa value (k). In
comparison to the SVM model, the RF model was more robust at handling a higher
number of ancillary datasets (Table 3). Our observation showed that the DEM can be
considered as important ancillary data in classifying and increasing the model accuracy
for the community types. The smallest changes in elevation reflect a variation in soil types
and drainage patterns which can influence the natural habitat community of the area [47].
The model which was used for the final classification (Input 4), showed a 6.36% increase
in OA for RF and 4.64% for SVM, compared to Input 2 where we only used two ancillary
data layers. Therefore, users who wish to increase the model OA in similar environmental
conditions should consider using elevation as ancillary data, along with texture and spectral
indices. Of the three GLCM textures, contrast proved to be the most useful, followed by
entropy and standard deviation (Figure 4).

Both RF and SVM showed major confusion between RCS, PCS and NST classes. RCS
and PCS have a variety of tree species of similar types, which can cause confusion in the
classification. NST is another community class which shares similar vegetation types with
RCS and PCS, and also showed lower UA and PA (Figure 9a,b). Due to the close spectral
similarities between these classes, they have a lower UA and PA overall compared to other
classes (Figure 9a,b). Classes with higher spectral dissimilarity showed maximum accuracy
(i.e., OL, EM, MNF and IL) and vice versa. Considering the overall UA and PA for the
community classes, we see that in general, RF (Figure 9a) performed better than SVM
(Figure 9b). For example, all five natural habitat community classes (EM, RCS, PCS, NST
and MNF) showed better or similar UA and PA values compared to SVM (Figure 9a,b).

The final classified maps from the RF (Figure 6) and SVM (Figure 7) algorithms show
that RF delineated the natural community boundaries better than SVM. Figure 8 shows
the classification difference map between RF and SVM. Areas of disagreement are shown
in red. Most of the confusion occurs between Rich Conifer Swamp, Poor Conifer Swamp
and Northern Shrub Thicket, and there are errors of both commission and omission in the
accuracy assessment matrix (Table 5). These areas occur along the glacial lake shoreline
(west side of study area), in the riparian area of the Sturgeon River (center of study area)
and on moraines (southeast corner of study area). Areas such as Open Land, Open Water,
Impervious Surface and Emergent Marsh show agreement across the landscape for both
MLAs. Higher confusion was observed in the SVM accuracy assessment matrix, resulting
in lower PA and UA compared to RF. It is important also to visually assess the final
classifications, not just the matrices, to fully understand the MLA performance.
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4.3. Overall Performance of MLAs for Natural Habitat Communities Classification

The classification results are similar to the outcomes of previous studies where RF
outperformed the SVM model. The SVM model tends to work better with a smaller number
of classes, whereas RF can work with a larger number of classes [39]. In the past, Rodriguz-
Galiano et al. [22,23] successfully used RF to map and classify 14 classes using Landsat
TM and ancillary datasets, with a high OA. Berhane et al. [47] discriminated 22 wetland
classes and achieved the highest OA using RF with WorldView-2 multispectral data, along
with various ancillary data. Higher accuracies with RF classifications compared to SVM
classifications were also observed by Adam et al. [122] for land-use/cover classification.
Hayes et al. [44] used the RF classifier to successfully classify nine landcover classes using
NAIP bands and additional ancillary data such as spectral indices, elevation data, texture,
etc. Land cover classification is common in the remote sensing community, but this is the
first time the natural communities of Michigan classification system [12] has been used to
classify a complex Laurentian Mixed Forest system at the natural habitat community level.

4.4. Importance of Reference Vegetation Map

The color infrared (CIR) combination (R:4, G:3, B:2) of high-resolution multispectral
data and high spectral contrast from the feature extraction techniques (PCA, ICA) helped
differentiate the natural habitat community types. Ancillary data such as the soils map
(soil moisture, pH, drainage), as well as prior fieldwork and knowledge of the study site
contributed important information. Figure 3 shows the reference natural habitat commu-
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nity map, where nine different classes were delineated, including five community types
(Table 2). The component combination (R:4, G:3, B:2) from PCA and ICA (Figure 10)
transformation showed outline boundaries between forest, marsh, swamps, thickets, open
land and water groups. Figure 10 shows how the differences in texture from the five
natural habitat communities were enhanced and visualized using the PCA and ICA compo-
nents, compared to the original NAIP imagery. This distinction between different natural
habitat communities permits more accurate boundary delineation for better training data,
compared with traditional maps, which are drawn at larger scale and have lower spatial
resolution (i.e., NWI and NLCD maps). Both RF and SVM models require good training
data in order to perform well [39].

Remote Sens. 2022, 14, x FOR PEER REVIEW 20 of 26 
 

 

 
Figure 10. Enhanced natural habitat communities shown using PCA and ICA component combinations (R:3, G:2, B:1) 
compared to the original NAIP spectral band combinations. 

4.5. Impact of Number of Training Samples and Quality of Sample Data on MLAs 
The reference vegetation map was used to generate random training points for the 

nine classes within delineated polygons. Data from field validation, expert knowledge 
and a limited, very high spatial resolution UAS dataset [55] for the area provided a reliable 
and accurate reference map. The training points (total number = 23,214) were divided into 
groups of 75% and 25%, respectively, for the training and testing datasets (Table 2). Po-
tentially, an increase in the number of training and testing points could achieve higher 
classification accuracies. For example, this study used a minimum distance of 5 m between 
the randomly generated points for each community class. If the distance was decreased to 
3 m, it would allow a greater number of points for training and testing. Researchers have 
shown in the past that training sample size can play a crucial role in the classification 
accuracies for supervised machine learning algorithms [39,96]. The required number of 
training data points also depends on the classification algorithm, number of ancillary da-
tasets and the size and complexity of the study area [96]. 

4.6. Validation of Classified Community Vegetation Map Using Field Data and Expert 
Observation 

The study area is in a remote rural location where land use and cover changes are 
minimal. Parts of the study area are protected from exploitation and development. There 
is limited access, which constrains field verification due to a lack of roads and a complex 
network of land ownership where most private lands cannot be traversed, and many of 
the natural communities also prohibit ground truthing for safety reasons. Where possible, 
ground surveys were conducted during the summers of 2018, 2019 and 2020. However, 
field work in 2020 and 2021 was severely curtailed due to the COVID-19 pandemic. Ad-
ditional reference data were collected by observations made by an expert interpreter of 
the NAIP imagery outside of the reference area polygons, as well as using United States 
Forest Service (USFS) stand compartment maps [53]. This was the first time the Laurentian 

Figure 10. Enhanced natural habitat communities shown using PCA and ICA component combina-
tions (R:3, G:2, B:1) compared to the original NAIP spectral band combinations.

4.5. Impact of Number of Training Samples and Quality of Sample Data on MLAs

The reference vegetation map was used to generate random training points for the
nine classes within delineated polygons. Data from field validation, expert knowledge and
a limited, very high spatial resolution UAS dataset [55] for the area provided a reliable
and accurate reference map. The training points (total number = 23,214) were divided
into groups of 75% and 25%, respectively, for the training and testing datasets (Table 2).
Potentially, an increase in the number of training and testing points could achieve higher
classification accuracies. For example, this study used a minimum distance of 5 m between
the randomly generated points for each community class. If the distance was decreased
to 3 m, it would allow a greater number of points for training and testing. Researchers
have shown in the past that training sample size can play a crucial role in the classification
accuracies for supervised machine learning algorithms [39,96]. The required number of
training data points also depends on the classification algorithm, number of ancillary
datasets and the size and complexity of the study area [96].

4.6. Validation of Classified Community Vegetation Map Using Field Data and Expert Observation

The study area is in a remote rural location where land use and cover changes are
minimal. Parts of the study area are protected from exploitation and development. There
is limited access, which constrains field verification due to a lack of roads and a complex
network of land ownership where most private lands cannot be traversed, and many of
the natural communities also prohibit ground truthing for safety reasons. Where possible,
ground surveys were conducted during the summers of 2018, 2019 and 2020. However, field
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work in 2020 and 2021 was severely curtailed due to the COVID-19 pandemic. Additional
reference data were collected by observations made by an expert interpreter of the NAIP
imagery outside of the reference area polygons, as well as using United States Forest Service
(USFS) stand compartment maps [53]. This was the first time the Laurentian Mixed Forest
of the Hiawatha National Forest (HNF) has been classified using the natural communities
classification system [12]; as a result it was not possible to directly compare it to any
previously available maps.

4.7. Future Work

Future research will involve assessing the robustness of this classification approach
using other study sites with different natural communities, varying landforms and soil
conditions. Consideration will be given to mapping spatially larger areas such as an entire
watershed, as well as looking at smaller areas with limited natural communities such
as fens. In Michigan, there are five different fen communities [12], and they can exist
adjacent to each other. Being able to accurately map natural communities at different
scales is important, in order to understand, describe, document and restore natural habitat
community diversity.

Consideration must also be given to what classes should be incorporated into the clas-
sification for areas influenced by modern anthropogenic distributions such as agriculture,
mining and development. Non-natural habitat community classes were added as needed
in this study. This is not a robust approach. These classes should be well defined, mutually
exclusive and hierarchical in structure.

5. Conclusions

Community classification for Laurentian Mixed Forest is challenging, due to the com-
plexity of the landscape. In this paper, for the first time, a natural habitat community level
classification using an integrated approach of spectral transformation and enhancement
techniques, field data, ancillary datasets and MLAs was implemented. Feature selection
methods such as JMIM and varImp were used to evaluate the utility of a wide variety of
ancillary data including elevation, various measures of texture, and vegetation and soil
moisture indices and to guide the selection of the best-performing ancillary data. High-
spatial resolution data and machine learning algorithms contributed to a successful and
accurate classification.

Five complex natural habitat communities and four non-natural habitat communities
were successfully classified. Due to the spectral limitation of the four NAIP bands, the
classification showed confusion between similar natural habitat communities (e.g., Rich
Conifer Swamp vs. Poor Conifer Swamp vs. Northern Shrub Thicket), with accuracies
ranging from 72.55% down to 64.70% (Table 5). Discrimination between Mesic Northern
Forest, Emergent Marsh, Impervious, Open Land and Water (Open Water and Inland Lake)
had higher accuracies (100% to 89.36%) (Table 5).

RF and SVM both showed promising performance for classifying a complex Laurentian
Mixed Forest community. RF outperformed SVM in the final classification results but SVM
performed well when there were fewer ancillary datasets. The choice of MLA may vary
for users, depending on the site, type of communities being mapped, number of ancillary
datasets and quality of the training data. In R, parameter optimization is allowed and can
help provide better performance, but the use of optimization parameters may increase the
processing times of the classifiers. In this study, we used the default parameters of the
classifiers, as they were accurate enough and achieved the desired results. We also believe
that using more spectral bands might improve the classification and could help overcome
the complexity of the vegetation classes.
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