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Abstract: The Mediterranean region is an important area for air pollution as it is the crossroads
between three continents; therefore, the concentrations of atmospheric aerosol particles are influenced
by emissions from Africa, Asia, and Europe. Here we concentrate on an eleven-month time series
of the ambient concentration of organic carbon (OC) and elemental carbon (EC) between May 2018–
March 2019 in Amman, Jordan. Such a dataset is unique in Jordan. The results show that the OC
and EC annual mean concentrations in PM2.5 samples were 5.9 ± 2.8 µg m–3 and 1.7 ± 1.1 µg m–3,
respectively. It was found that the majority of OC and EC concentrations were within the fine
particle fraction (PM2.5). During sand and dust storm (SDS) episodes OC and EC concentrations were
higher than the annual means; the mean values during these periods were about 9.6 ± 3.5 µg m–3

and 2.5 ± 1.2 µg m–3 in the PM2.5 samples. Based on this, the SDS episodes were identified to be
responsible for an increased carbonaceous aerosol content as well as PM2.5 and PM10 content, which
may have direct implications on human health. This study encourages us to perform more extensive
measurements during a longer time period and to include an advanced chemical and physical
characterization for urban aerosols in the urban atmosphere of Amman, which can be representative
of other urban areas in the region.

Keywords: urban air quality; PM10; PM2.5; OC; EC

1. Introduction

Carbonaceous aerosols found in particulate matter (PM) are mainly in the form of
elemental carbon (EC) and organic carbon (OC) [1–8]. These species of aerosols are of
worldwide interest due to their vague origins and complicated source apportionment
process [9–11]. On the one hand, incomplete combustion processes and wildfires are
the major sources of EC [12,13]. On the other hand, OC sources potentially originate
from processes that involve chemical reactions of hydrocarbons [14]. There is a contrast
between the effects of OC and EC on the climate; EC is involved in the global warming
effect due to its strong light-absorption property [15,16], whereas OC is responsible for
cooling the atmosphere mainly because it reflects solar radiation [17]; however, some recent
publications have reported that some OC (a newly emerged phrase: brown carbon) can
significantly absorb light in the region of 300–400 nm and could hinder and oppose the
general cooling action [18–21]. In terms of health effects, it has been suggested that increased
mortality rates and respiratory diseases are related to OC and EC content exposure [22–32].
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In urban areas, OC and EC originate from many sources, both local and regional.
They can be transported over long distances, reaching thousands of kilometers away from
their source [33–42]. For instance, OC comprises thousands of individual molecules that
can be directly emitted as primary emissions or can be formed in the atmosphere from
semi-volatile and gaseous precursors over the course of minutes to days. EC is directly
emitted from combustion processes, such as mobile sources or biomass burning.

The Mediterranean basin, including the Eastern Mediterranean region, is consid-
ered a climate change hotspot due to warming tendencies and decreased precipitation
processes [43]. The Eastern Mediterranean region, especially Jordan, is impacted by anthro-
pogenic emissions as well as natural sources (e.g., sand and dust storm episodes (SDS)),
which are found to affect PM concentrations in the region [44]. Since there is a lack of infor-
mation on OC and EC concentrations and ratios in the region, there is a need to monitor and
explore their aerosol concentrations, sources, and compositions in this region. Chemical
analysis of ambient PM enables the identification of aerosol sources and addressing the
relative contributions of different processes. In this study, we aim at characterizing PM10
and PM2.5 with respect to OC and EC during May 2018–March 2019 in Amman, which is
a typical city in the region. This study is important to the Middle East and North Africa
region (MENA), especially Jordan, where the measurements took place, as it provides
background information for urban aerosol chemical composition. This can be utilized to
explore aerosol impacts on climate and health in follow-up analyses.

2. Materials and Methods
2.1. Aerosol Measurement

The measurement campaign took place during May 2018–March 2019 on the rooftop
(about 20 m above the ground) of the Department of Physics at the campus of the University
of Jordan (32◦0129’ N, 35◦8738’ E) (Figure S1). This was classified as an urban background
in the northern part of Amman, Jordan. The surroundings are a mixture of residential areas
and road networks [44].

The aerosol measurement instrumentation included two high-volume samplers (model
CAV-A/mb, MCV, S.A., Barcelona, Spain) for PM10 and PM2.5. The cascade head (model
PM1025-CAV, MCV, S.A., Barcelona, Spain) was equipped with a filter (Pallflex, PAL-
LXQ250ETDS0150, TISSUQUARTZ 2500 QAT-UP, Merek, New Jersy, USA), which has a
diameter of 15 cm. The flow rate was 30 m3 h–1 and the sampler automatically recorded
the overall mean temperature and pressure during the sampling session.

The PM10 and PM2.5 sampling was performed for 24 h every 6 days. We obtained 51
and 48 valid samples for PM10 and PM2.5, respectively. We also collected several blank
samples, which were needed as an accuracy control of the sampling [45].

2.2. Gravimetric and OC/EC Chemical Analysis

Before performing the chemical analyses (including organic carbon (OC) and elemental
carbon (EC)), the PM10 and PM2.5 mass concentrations were determined by gravimetric
analysis, which was performed according to the EN1234-1. Accordingly, the particulate
matter concentration can be calculated from the filter’s weights (difference between post-
weight (mpost) and pre-weight (mpre)) divided by the sampling flow rate (Q (30 m3 h–1)) and
sampling period (∆t = 24 h).

A quarter of each sampled filter was taken to the OC and EC analysis according
to the EUSAAR2 protocol employing a Sunset Laboratory Dual-Optical Carbonaceous
Analyzer [46–48]. The uncertainty in our analysis was approximately 0.2, 0.1, 0.3 µg m−3,
respectively, for OC, EC, and TC.

2.3. Ambient Conditions and Air Mass Trajectories Measurement

In addition to the aerosol measurement, the ambient conditions (T, P, RH, wind speed,
and direction) were monitored with 5 min resolution (Table S1, Figures S2, S3, and S5–S8)
by using a weather station (WH-1080, Clas Ohlson: Art. no. 36-3242). We also calculated
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the air mass back-trajectories (Hybrid Single-Particle Lagrangian Integrated Trajectory
(HYSPLIT) [49,50]. The trajectories were calculated for the previous four days on an hourly
basis at arrival heights 100, 500, and 1500 m above ground level.

3. Results and Discussion
3.1. An Overview of PM Concentrations

Throughout the measurement period, the 24 h PM10 was within the range 20–190 µg m–3

(average 64 ± 39 µg m–3) and the PM2.5 was 15–190 µg m–3 (average 47 ± 32 µg m–3)—see
Table S2 in the Supplementary Material. On average, approximately 80% of the PM10 was
within the PM2.5 fraction. According to the Jordanian standards of ambient air quality
(JS-1140/2006: annual mean PM10 and PM2.5 must not exceed 70 µg m–3 and 15 µg m–3

and 24 h mean must not exceed 120 µg m–3 and 65 µg m–3, respectively), the observed
overall mean PM10 was below its annual limit value but the PM2.5 was three times higher
than its limit value. Compared to the World Health Organization (WHO) old air quality
guidelines [51] (i.e., before 2021) for PM10 (annual and 24 h must not exceed 20 µg m–3

and 50 µg m–3, respectively) and PM2.5 (annual and 24 h must not exceed 10 µg m–3 and
25 µg m–3, respectively), the observed annual concentrations here exceeded the annual
guideline. By all means, the reported values here exceeded the new WHO air quality guide-
lines [52] (i.e., after 2021), which was updated to be tighter than the old guidelines for PM10
(annual and 24 h must not exceed 15 µg m–3 and 45 µg m–3, respectively) and PM2.5 (annual
and 24 h must not exceed 5 µg m–3 and 15 µg m–3, respectively). In general, the reported
PM10 concentrations in Jordan were higher than the concentrations reported by the WHO
(2018) in urban, suburban, and residential sites in countries around the Mediterranean Sea
in 2016, especially Turkey (52 ± 18 µg m–3), Italy (25 ± 6 µg m–3), Greece (52 ± 18 µg m–3),
Cyprus (37 ± 6 µg m–3), and Malta (38 ± 8 µg m–3). These concentrations were lower
than concentrations observed in the following regions: Kuwait (130 ± 35 µg m–3), Palestine
(90 µg m–3), Egypt (249–284 µg m–3), and the United Arab Emirates (122–153 µg m–3).

3.2. Organic and Elemental Carbon Concentrations

The TC and OC concentrations followed a rather similar temporal variation as that for the
PM concentrations (Figures 1 and 2). The OC concentrations observed in the PM2.5 samples
were in the range 1.2–17.1 µg m–3 (annual mean 5.9 ± 2.8 µg m–3), the EC concentrations
were 0.45–6.1 µg m–3 (annual mean of 1.7 ± 1.1 µg m–3), and the TC concentrations were
1.7–23.2 µg m–3 (annual mean 7.6 ± 3.5 µg m–3). As for the PM10, they were 2.2–17.5 µg m–3

(annual mean of 6.5 ± 3.0 µg m–3), 0.5–5.5 µg m–3 (annual mean of 1.9 ± 1.1 µg m–3),
and 2.7–22.4 µg m–3 (annual mean 8.4 ± 3.8 µg m–3), respectively, for the OC, EC, and TC
concentrations. On average, the PM2.5 contained about 14%, 4%, and 18% OC, EC, and TC
(Figure 3). As for the PM10, it was about 12%, 4%, 15%, respectively. As expected for an
urban background, the TC was dominated by OC for both the PM2.5 and PM10 (Figure 4); this
indicates a dominating fraction of organic emissions from anthropogenic activities rather than
natural emissions, as also reported elsewhere [53–60].

According to PM2.5 observations elsewhere in the region (mostly outside of Jordan;
see Table 1), the OC and EC concentrations reported herein are comparable. A greater
interest might be the extremely high OC concentrations in Beijing (29.1 µg m–3) and
Tehran (15.35 ± 6.05 µg m–3) with corresponding PM2.5 concentrations of 115 µg m–3 and
41.2 µg m–3, respectively [61,62]. As for PM10 observations elsewhere (Table 2), the OC
concentrations reported here are generally lower than those reported in other regions in
the world.

The PM10 records in Table 2 show a clear contrast with the OC concentrations. A rela-
tively high OC10 concentration record was observed in Lahore, with a value of 63 µg m–3,
while a very low concentration was observed in Spain, with a value of 4 µg m–3. For both
PM2.5 and PM10 the OC to EC ratio was generally higher in the summertime than that
in the wintertime (Figure 5). The OC/EC ratio in the PM2.5 was approximately 5.6 ± 1.5
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during May–August and was approximately 2.8 ± 0.9 during November–March. As for
the PM10, the ratio was approximately 4.9 ± 1.2 and 3.1 ± 1.4, respectively.

During the measurement period, the ratio PM2.5/PM10 was close to one on some days.
This was basically due to the domination of fine aerosols, i.e., the absence of sand and dust
storm (SDS) episodes. On these occasions, the OC2.5 was 4.0–17.1 µg m–3 and the OC10 was
2.4–15.9 µg m–3. The corresponding EC2.5 was 0.7–6.1 µg m–3 and EC10 was 0.9–5.5 µg m–3.
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Table 1. OC and EC concentrations in PM2.5 reported in Asia, North America, Middle East, and Europe.

Location Year Background PM2.5 OC2.5 OC2.5/PM2.5 EC2.5 EC2.5/PM2.5 OC/EC References

Amman, Jordan 2018–2019 Urban and
residence 47 ± 32 5.9 ± 2.8 12.6% 1.65 ± 1.06 3.5% 3.6 This study

Beijing, China 2000 Urban and
residence 127 29.1 22.9% 10.1 7.95% 2.88 He et al. [61]

Chegongzhuang,
China 2000 Urban and

residence 115 21.5 18.7% 8.7 7.6% 2.47 He et al. [61]

Seoul, South Korea 1997 Urban - 2.97 - 0.32 - - Kim et al. [62]
Nagoya, Japan 2003–2019 Residence - 3.3 - 0.7 - - Yamagami et al. [63]

Seattle, USA 1996–1999 Urban 8.9 ± 7.5 2.2
(modeled) 24.7% 0.852

(modeled) 9.6% - Maykut et al., [64]

Riyadh, Saudi
Arabia 2012 Urban - 4.7 ± 4.4 - 2.1 ± 2.5 - - Bian et al. [65]

Athens, Greece 2003 Urban - 6.8 - 2.2 - - Grivas et al. [66]
Tehran, Iran 2013–2014 Urban 41.19 15.35 ± 6.05 37.3% 2.25 ± 0.65 5.5% 6.82 ± 2.30 Arfaeinia et al. [67]
Kuwait 2004–2005 Residence 30.8 ± 16.6 3.4 ± 1.4 11.0% 1.9 ± 0.9 6.2% 1.8 Brown et al. [68]

Amman, Jordan 2007 Residence and
commerce 40 ± 9 6.7 ± 0.5 16.8% 2.6 ± 0.8 6.5% 2.8 ± 0.7 von Schneidemesser et al. [3]

Eilat, Israel 2007 Residence 21 ± 4 3.3 ± 0.6 15.7% 0.82 ± 0.1 4.0% 4.1 ± 0.9 von Schneidemesser et al. [3]
East Jerusalem,
Palestine 2007 Residence and

commerce 27 ± 10 5.6 ± 1.4 20.7% 2.2 ± 0.5 8.1% 2.6 ± 0.7 von Schneidemesser et al. [3]

Beirut, Lebanon 2011 Urban 21.9 5.6 25.6% 1.8 8.22% - Waked et al. [69]
Warsaw, Poland 2016 Urban 18.8 ± 11.9 5.56 29.6% 1.47 7.8% 3.7 Juda-Rezler et al. [70]

Barcelona, Spain 2004 Urban 16.4–17.7 3–4
(summer) 17–25% 1–2

(summer) 6–12.5% - Viana et al. [71]

Apulia region, Italy 2015 Costal rural 11 ± 6 3.5 ± 2.8 31.8% 0.35 ± 0.18 3.2% - Siciliano et al. [72]
Italy 2012–2013 Veneto Province - 5.5 - 1.3 - 4.54 Khan et al. [73]
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Table 2. OC and EC concentrations in PM10 reported in Asia, North America, Middle East, and Europe.

Location Year Background PM10 OC10 OC10/PM10 EC10 EC10/PM10 OC/EC References

Amman, Jordan 2018–2019 Urban and
residence 64 ± 39 6.5 ± 3.04 10.2% 1.9 ± 1.07 3.0% 3.4 This study

Taiyuan, China 2001–2002 Urban 146.36 25.89
(summer) 17.7% 6.82

(summer) 4.7% - Tian et al. [74]

Seoul, South Korea 1994 Urban - 11.1 - 8.39 - - Kim et al. [66]
Indo-Gangetic Plain,

India 2015–2016 Residence 283 ± 61 74.2 ± 14
(Night) 26.2% - - - Arif et al. [75]

Indo-Gangetic Plain,
India 2015–2016 Residence 167 ± 45 44.3 ± 8.9

(Day) 26.5% - - - Arif et al. [75]

Mira Loma, USA 2001 Urban plume - 15.91 ± 6.81 - 1.56 ± 0.56 - - Salmon et al. [76]

Lahore, Pakistan 2010 Urban 406.2 63 15.5% 21 5.2% 3.9 ± 1.6 Alam et al. [77]
Thessaloniki, Greece 2012 Urban 51.1 ± 14 11.3 ± 5.0 22.1% 6.56 ± 2.14 12.8% 1.96 ± 1.16 Samara et al. [78]

Barcelona, Spain 2004 Urban 29.5 ± 8.5 4
(summer) 13.6% 1

(summer) 3.4% - Viana et al. [71]

Budapest, Hungary 2002 Near-city 54 11 20.4% 3.6 6.7% - Salma et al. [79]
Apulia region, Italy 2015 Coastal rural 23 ± 14 5 ± 4 21.7% 0.41 ± 0.19 1.8% 11.3 Siciliano et al. [72]

Prague, Czech Republic - Suburb and 33 ± 23 5.5 16.7% 0.74 2.2% 8 ± 3.4 Vodička et al. [57]
Downtown 37 ± 22 4.8 13.0% 0.8 2.2% 5.8 ± 3.3 Vodička et al. [57]
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3.3. Changes during Sand and Dust Storms (SDS)

As per our previous analysis [44], the SDS episodes were classified into three categories
based on their origin: S (Sahara), SL (Saharan and Levant), SA (Sahara and Arabia), and
SLA (Sahara, Levant, and Arabia); kindly see more information in the Supplementary
Materials. During SDS episodes, the mean OC2.5 and EC2.5 were 9.6 ± 3.5 µg m–3 and
2.5 ± 1.2 µg m–3, respectively (Figure 6). During non-dust episodes, the OC2.5 and EC2.5
were 5.4 ± 1.8 µg m–3 and 1.7 ± 0.9 µg m–3, respectively (Figure 7). As for PM10, the
OC10 and EC10 were 8.0 ± 3.5 µg m–3 and 2.4 ± 1.3 µg m–3 during dust episodes and
5.2 ± 2.0 µg m–3 and 2.4 ± 1.3 µg m–3 during non-dust episodes, respectively.
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Figure 6. OC and EC versus the corresponding PM concentrations on days (13 in total) with sand
and dust storm (SDS) episodes: (a) the OC content (here called OC2.5) versus its corresponding
PM2.5, (b) the EC versus (here called EC2.5) within its corresponding PM2.5, (c) the OC content (here
called OC10) versus its corresponding PM10, and (d) the EC versus (here called EC10) within its
corresponding PM10.

It was apparent that the concentrations of OC were greatly influenced by the type of
aerosols (i.e., coarse dust particles) but the EC was not affected as much. The OC2.5/PM2.5
during the SDS episodes carried the highest correlation coefficient of 0.89, which was
expected since OC mostly exists in accumulation mode (0.1–1µm) particles in PM2.5 [80]; it
also confirmed the dominance of OC2.5 in the total carbon content. By comparing both the
ECx/PMx in the corresponding PM2.5 and PM10, we observed that, during SDS episodes,
the EC and PM in the fine particle size range were more correlated (r = 0.556, Figure 6b),
whereas they were much less correlated (r = 0.32, Figure 6d) in the coarse particle size range.
On the other hand, the r values for EC and PM on both particle size ranges were very close
on non-SDS days (Figure 7b,d). This result suggests that, during SDS episodes, aerosols
have a high potential of transporting OC, which dramatically increased the concentration
of OC to the measurement site from other urban centers in the region. As previously
mentioned, the regular atmospheric EC concentrations remain at around 2–3 µg m–3.
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4. Conclusions

General monitoring requirements for air quality and assessment include ambient
air PM2.5 and PM10, in addition to some gaseous pollutants; however, there is a lack of
monitoring of OC and EC concentrations in many parts of the world. Unfortunately, there
has been a lack of information regarding OC, EC, and TC in the Eastern Mediterranean
region. In this study, we characterized the PM10 and PM2.5 with respect to OC/EC during
an eleven-month time series (May 2018–March 2019) in the urban atmosphere of Amman,
Jordan, which is a typical Eastern Mediterranean city.

The OC found in the PM2.5 fraction (i.e., OC2.5) was within the range of 1.2–17.1 µg m–3.
The corresponding EC2.5 was within the range of 0.6–6.1 µg m–3. As for the PM10 fraction,
the OC10 and EC10 were within the range of 2.2–17.5 µg m–3 and 0.5–5.5 µg m–3, respectively.
In percentages, about 14% and 3.9% of the PM2.5 were OC and EC, respectively. In the
PM10, 11.6% and 3.5% were OC and EC, respectively. These results indicate the domination
of anthropogenic activities’ emissions over natural sources’ emissions.

Sand and dust storm (SDS) episodes were observed during the measurement campaign.
During SDS episodes, the mean OC2.5 was approximately 9.6 ± 3.5 µg m–3, which is much
higher than the annual mean (i.e., 5.9 ± 2.8 µg m–3). Similarly, the EC2.5 approached a mean
concentration of 2.5 ± 1.2 µg m–3 during the SDS episodes, while it had an annual mean
of 1.7 ± 1.1 µg m–3. This is evidence of the SDS episodes’ role in introducing particulate
phase pollutants other than the coarse mode dust particles to the measurement site, or
more generally, to the whole region.

This study indicated that a large fraction of carbonaceous aerosol mass most likely
originates from anthropogenic activities rather than natural sources. Future studies with
detailed source apportionment tools [81,82] are needed to verify this result. Accurate
classification of the origins of this type of aerosols can be useful in regulating the in-
volved activities.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/atmos13020197/s1, Figure S1:Maps showing (a) the Mediterranean Sea region with Jordan
highlighted in red, (b) Jordan with highlights on the geographical locations of main cities, (c) road
network and the campus of the University of Jordan (red shaded area) inside Amman, and (d) details
of the campus of the University of Jordan with the sampling location (red shaded area) at the middle
of the campus, Figure S2:Time series of weather conditions during 1 May 2018—19 March 2019
presented as hourly, daily, and monthly means for (a) ambient temperature, (b) relative humidity,
(c) absolute pressure, and (d) wind speed. (e) The rainfall was presented as hourly cumulative
precipitation, Figure S3: Back trajectories (96 h) crossing maps at arrival heights (a) 100 m and
(b) 1500 m. The arrival location was the campus of the University of Jordan, Amman, Jordan. These
maps were generated from the hourly trajectories during 1 May 2018—31 March 2019, Figure S4:
Time series of PM10 and PM2.5 concentrations with markups for sand and dust episodes (SDS) and
clean air periods (i.e. PM10 concentrations <70 µg/m3), Figure S5: Back trajectories (96 h) crossing
maps during S-type SDS-episodes (indicated on Figure S4) at arrival heights (a) 100 m, (b) 500 m,
and (c) 1500 m. The arrival location was the campus of the University of Jordan, Amman, Jordan.
These maps were generated from the hourly back trajectories during the sampling dates (+ following
day), Figure S6: Back trajectories (96 h) crossing maps during SL-type SDS-episodes (indicated on
Figure S4) at arrival heights (a) 100 m, (b) 500 m, and (c) 1500 m. The arrival location was the campus
of the University of Jordan, Amman, Jordan. These maps were generated from the hourly back
trajectories during the sampling dates (+ following day), Figure S7: Back trajectories (96 h) crossing
maps during SLA-type SDS-episodes (indicated on Figure S4) at arrival heights (a) 100 m, (b) 500 m,
and (c) 1500 m. The arrival location was the campus of the University of Jordan, Amman, Jordan.
These maps were generated from the hourly back trajectories during the sampling dates (+ following
day), Figure S8: Back trajectories (96 h) crossing maps during low PM10 concentrations (indicated on
Figure S4) at arrival heights (a) 100 m, (b) 500 m, and (c) 1500 m. The arrival location was the campus
of the University of Jordan, Amman, Jordan. These maps were generated from the hourly back
trajectories during the sampling dates (+ following day), Table S1: Particulate matter concentrations
and overall average temperature and pressure according to the sampling schedule. The aerosol
sampler reported the 24-h mean temperature (T) and pressure (P) during sampling sessions, Table S2:
PM2.5 and PM10 concentrations (µg m–3) and corresponding OC and EC concentrations (µg m–3),
Table S3: Sand and Dust Storm (SDS) episodes according to type and observation during the sampling
period. The type of SDS is denoted as: Saharan (S); Saharan and Levant (SL); Saharan, Arabian,
and Levant (SAL); Saharan, Arabian, Levant, and Ahvaz (SALA). The source region was verified
according to the back trajectories analysis for crossing maps on the sampling day (+ following day).
The date here indicates the start of the sampling day.
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