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 60 

Abstract 61 

The vinegar fly Drosophila melanogaster is a pivotal model for invertebrate 62 

development, genetics, physiology, neuroscience, and disease. The whole family 63 

Drosophilidae, which contains over 4000 species, offers a plethora of cases for 64 

comparative and evolutionary studies. Despite a long history of phylogenetic 65 

inference, many relationships remain unresolved among the groups and genera in the 66 

Drosophilidae. To clarify these relationships, we first developed a set of new genomic 67 

markers and assembled a multilocus data set of 17 genes from 704 species of 68 

Drosophilidae. We then inferred well-supported group and species trees for this 69 

family. Additionally, we were able to determine the phylogenetic position of some 70 

previously unplaced species. These results establish a new framework for 71 

investigating the evolution of traits in fruit flies, as well as valuable resources for 72 

systematics. 73 

 74 

Introduction 75 

The vinegar fly Drosophila melanogaster is a well-established and versatile model 76 

system in biology (Hales et al. 2015). The story began at the start of the 20th century 77 

when the entomologist Charles Woodworth bred D. melanogaster in captivity, paving 78 

the way to seminal William Castle’s work at Harvard in 1901 (Sturtevant A. H. 1959). 79 

But it is undoubtedly with Thomas Hunt Morgan and his colleagues that D. 80 

melanogaster became a model organism in genetics (Morgan 1910). Nowadays, D. 81 

melanogaster research encompasses diverse fields, such as biomedicine (Ugur et al. 82 

2016), developmental biology (Hales et al. 2015), growth control (Wartlick et al. 83 

2011), gut microbiota (Trinder et al. 2017), innate immunity (Buchon et al. 2014), 84 

behaviour (Cobb 2007), and neuroscience (Bellen et al. 2010). 85 

 86 

By the mid-20th century, evolutionary biologists have widened Drosophila research 87 

by introducing many new species of Drosophilidae in comparative studies. For 88 

example, the mechanisms responsible for morphological differences of larval denticle 89 

trichomes (Sucena et al. 2003)(McGregor et al. 2007), adult pigmentation (Jeong et 90 

al. 2008)(Yassin, Delaney, et al. 2016), sex combs (Tanaka et al. 2009), and genital 91 

shape (Glassford et al. 2015)(Peluffo et al. 2015) have been thoroughly investigated 92 
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across Drosophilidae. Comparative studies brought new insights into the evolution of 93 

ecological traits, such as host specialization (Lang et al. 2012)(Yassin et al. 2016), 94 

niche diversification (Chung et al. 2014), species distribution (Kellermann et al. 95 

2009), pathogen virulence (Longdon et al. 2015), and behavior (Dai et al. 96 

2008)(Karageorgi et al. 2017). 97 

 98 

More than 150 genomes of Drosophila species are now sequenced (Adams et al. 99 

2000)(Clark et al. 2007)(Wiegmann and Richards 2018)(Kim et al. 2020), allowing 100 

the comparative investigation of gene families (Sackton et al. 2007)(Almeida et al. 101 

2014)(Finet et al. 2019) as well as global comparison of genome organization (Bosco 102 

et al. 2007)(Bhutkar et al. 2008). For all these studies, a clear understanding of the 103 

evolutionary relationships between species is necessary to interpret the results in an 104 

evolutionary context. A robust phylogeny is then crucial to confidently infer ancestral 105 

states, identify synapomorphic traits, and reconstruct the history of events during the 106 

evolution and diversification of Drosophilidae.  107 

 108 

Fossil-based estimates suggest that the family Drosophilidae originated at least 30-50 109 

Ma (Throckmorton 1975)(Grimaldi 1987)(Wiegmann et al. 2011). To date, the family 110 

comprises more than 4,392 species (DrosWLD-Species 2021) classified into two 111 

subfamilies, the Drosophilinae Rondani and the Steganinae Hendel. Each of these 112 

subfamilies contains several genera, which are traditionally subdivided into 113 

subgenera, and are further composed of species groups. Nevertheless, the 114 

monophyletic status of each of these taxonomic units is frequently controversial or 115 

unassessed. Part of this controversy is related to the frequent detection of paraphyletic 116 

taxa within Drosophilidae (Throckmorton 1975)(Katoh et al. 2000)(Robe et al. 117 

2005)(Robe et al. 2010)(Da Lage et al. 2007)(Van Der Linde et al. 2010)(Russo et al. 118 

2013)(Yassin 2013)(Katoh et al. 2017)(Gautério et al. 2020), although the absence of 119 

a consistent phylogenetic framework for the entire family makes it difficult to assess 120 

alternative scenarios. 121 

 122 

Despite the emergence of the Drosophila genus as a model system to investigate the 123 

molecular genetics of functional evolution, relationships within the family 124 

Drosophilidae remain poorly supported. The first modern phylogenetic trees of this 125 

family relied on morphological characters (Throckmorton 1962)(Throckmorton 126 
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1975)(Throckmorton 1982), followed by a considerable number of molecular 127 

phylogenies that mainly focused on individual species groups (reviewed in (Markow 128 

and O’Grady 2006)(O’Grady and DeSalle 2018)). For the last decade, only a few 129 

large-scale studies have attempted to resolve the relationships within Drosophilidae as 130 

a whole. For example, supermatrix approaches brought new insights, such as the 131 

identification of the earliest branches in the subfamily Drosophilinae (Van Der Linde 132 

et al. 2010)(Yassin et al. 2010), the paraphyly of the subgenus Drosophila 133 

(Sophophora) (Gao et al. 2011), the placement of Hawaiian clades (O’Grady et al. 134 

2011)(Lapoint et al. 2013)(Katoh et al. 2017), and the placement of Neotropical 135 

Drosophilidae (Lizandra J. Robe, Valente, et al. 2010). Most of the aforementioned 136 

studies have suffered from limited taxon or gene sampling. Recent studies improved 137 

the taxon sampling and the number of loci analysed (Morales-Hojas and Vieira 138 

2012)(Russo et al. 2013)(Izumitani et al. 2016). To date, the most taxonomically-139 

broad study is a revision of the Drosophilidae that includes 30 genera in Steganinae 140 

and 43 in Drosophilinae, but only considering  a limited number of genomic markers 141 

(Yassin 2013). 142 

 143 

To clarify the phylogenetic relationships in the Drosophilidae, we built a 144 

comprehensive dataset of 704 species that include representatives from most of the 145 

major genera, subgenera, and species groups in this family. We developed new 146 

genomic markers and compiled available ones from previously published 147 

phylogenetic studies. We then inferred well-supported trees at the group- and species-148 

level for this family. Additionally, we were able to determine the phylogenetic 149 

position of several species of uncertain affinities. Our results establish a new 150 

framework for investigating the systematics and diversification of fruit flies and 151 

provide a valuable genomic resource for the Drosophila community. 152 

 153 

Results and Discussion 154 

A multigene phylogeny of 704 drosophilid species 155 

We assembled a multilocus dataset of 17 genes (14,961 unambiguously aligned 156 

nucleotide positions) from 704 species of Drosophilidae. Our phylogeny recovers 157 

many of the clades or monophyletic groups previously described in the Drosophilidae 158 

(Figure 1). Whereas the branching of the species groups is mostly robust, some of the 159 
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deepest branches of the phylogenic tree remain poorly supported or unresolved, 160 

especially in Bayesian analyses (see online supplementary tree files). This observation 161 

prompted us to apply a composite taxon strategy that has been used to resolve 162 

challenging phylogenetic relationships (Finet et al. 2010)(Campbell and Lapointe 163 

2011)(Sigurdsen and Green 2011)(Charbonnier et al. 2015)(Mengual et al. 2017)(Fan 164 

et al. 2020). This approach limits branch lengths in selecting slow-evolving 165 

sequences, and decreases the percentage of missing data, allowing the use of 166 

parameter-rich models of evolution (Campbell and Lapointe 2009). We defined 63 167 

composite groups as the monophyletic groups identified in the 704-taxon analysis 168 

(Figure 1, Table S1), and added these to the sequences of 20 other ungrouped taxa to 169 

perform additional phylogenetic evaluations. The overall bootstrap values and 170 

posterior probabilities were higher for the composite tree (Figures 2A, S1, and online 171 

supplementary tree files).  172 

 173 

Incongruence among phylogenetic markers is a common source of error in 174 

phylogenomics (Jeffroy et al. 2006). In order to estimate the presence of incongruent 175 

signal in our dataset, we first investigated the qualitative effect of single marker 176 

removal on the topology of the composite tree (Figure S2). We found the overall 177 

topology is very robust to marker sampling, with only a few minor changes for each 178 

dataset. For instance, the melanogaster subgroup sometimes clusters with the 179 

eugracilis subgroup instead of branching off prior to the eugracilis subgroup (Figures 180 

2 and S2). The position of the genus Dettopsomyia and that of the angor and histrio 181 

groups is also very sensitive to single marker removal, which could explain the low 182 

support values obtained (Figures 2 and S2). To a lesser extent, the position of D. 183 

fluvialis can vary as well depending on the removed marker (Figures 2 and S2). We 184 

also quantitatively investigated the incongruence present in our dataset by calculating 185 

genealogical concordance. The gene concordance factor is defined as the percentage 186 

of individual gene trees containing that node for every node of the reference tree. 187 

Similarly, the fraction of nodes supported by each marker can be determined. The 188 

markers we developed in this study show concordance rates ranging from 46.2 to 189 

90.9% (Figure 3, Table 2). With an average concordance rate of 65%, these new 190 

markers appear as credible phylogenetic markers, without significantly improving the 191 

previous markers (average concordance rate of 64.8%). 192 

 193 
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Multiple substitutions at the same position is another classical bias in phylogenetic 194 

reconstruction, capable of obscuring the genuine phylogenetic signal (Jeffroy et al. 195 

2006). We quantified the mutational saturation for each phylogenetic marker. On 196 

average, the newly developed markers are moderately saturated (Figure 3, Table 2). 197 

These markers are indeed less saturated than the Amyrel, COI, and COII genes that 198 

have been commonly applied for phylogenetic inference in Drosophilidae (Baker and 199 

Desalle 1997)(O’Grady et al. 1998)(Remsen and O’Grady 2002)(Bonacum et al. 200 

2005)(Da Lage et al. 2007)(Robe et al. 2010)(Gao et al. 2011)(O’Grady et al. 201 

2011)(Russo et al. 2013)(Yassin 2013). 202 

 203 

In the following sections of the paper, we will highlight and discuss some of the most 204 

interesting results we obtained. Our analyses either confirm or challenge previous 205 

phylogenies, and shed light on several unassessed questions, contributing to an 206 

emerging picture of phylogenetic relationships in Drosophilidae. 207 

 208 

The Sophophora subgenus and closely related taxa 209 

We found that the obscura-melanogaster clade is the sister group of the lineages 210 

formed by the Neotropical saltans and willistoni groups, and the Lordiphosa genus 211 

(Bayesian posterior probability [PP] = 0.92, bootstrap percentage [BP] = 73) (Figures 212 

2A and S1). Thus, our study recovers the relationship between the groups of the 213 

Sophophora subgenus (Gao et al. 2011)(Russo et al. 2013)(Yassin 2013) and supports 214 

the paraphyletic status of Sophophora regarding Lordiphosa (Katoh et al. 2000). 215 

However, we noted substantial changes within the topology presented for the 216 

melanogaster species group. The original description of Drosophila oshimai noted a 217 

likeness to Drosophila unipectinata, thus classifying D. oshimai into the suzukii 218 

species subgroup (Choo and Nakamura 1973). The phylogenetic tree we obtained 219 

does not support this classification (Figure 2A). It rather defines D. oshimai as the 220 

representative of a new subgroup (PP = 1, BP = 96) that diverged immediately after 221 

the split of the montium group. The position of D. oshimai therefore challenges the 222 

monophyly of the suzukii subgroup. Interestingly, the paraphyly of the suzukii 223 

subgroup has also been suggested in previous studies (Lewis et al. 2005)(Russo et al. 224 

2013). Another interesting case is the positioning of the denticulata subgroup that has 225 

never been tested before. Our analysis convincingly places its representative species 226 

Drosophila denticulata as the fourth subgroup to branch off within the melanogaster 227 
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group (PP = 1, BP = 82). Last, the topology within the montium group drastically 228 

differs from the most recent published phylogeny (Conner et al. 2021). 229 

The genus Collessia comprises five described species that can be found in Australia, 230 

Japan, and Sri Lanka, but its phylogenetic status was so far quite ambiguous (Okada 231 

1967)(Bock 1982)(Okada 1988). In addition, Grimaldi (1990) proposed that 232 

Tambourella ornata should belong to the genus Collessia. These two genera are 233 

similar in the wing venation and pigmentation pattern (Okada 1984).  234 

Our phylogenetic analysis identifies Collessia as sister group to the species 235 

Hirtodrosophila duncani (PP = 1, BP = 100). Interestingly, this branching is also 236 

supported by morphological similarities shared between the genera Collessia and 237 

Hirtodrosophila. The species C. kirishimana and C. hiharai were indeed initially 238 

described as Hirtodrosophila species (Okada 1967) before being assigned to the 239 

genus Collessia (Okada 1984). The clade Collessia-H. duncani is sister to the 240 

Sophophora-Lordiphosa lineage in the ML inference (BP = 100) but to the 241 

Neotropical Sophophora-Lordiphosa clade in the Bayesian inference (PP = 0.92).  242 

 243 

The early lineage of Microdrosophila and Dorsilopha 244 

Within the tribe Drosophilini, all the remaining taxa (composite taxa + ungrouped 245 

species) other than those of the Sophophora-Lordiphosa and Collessia-H. duncani 246 

lineage form a large clade (PP = 1, BP = 100). Within this clade, the genus 247 

Microdrosophila, the subgenus Dorsilopha, and Drosophila ponera group into a 248 

lineage (PP = 0.97, BP = 82) that appears as an early offshoot (PP = 1.00, BP = 59). 249 

Drosophila ponera is an enigmatic species collected in La Réunion (David and 250 

Tsacas 1975), whose phylogenetic position has never or rarely been investigated. In 251 

spite of morphological similarities with the quinaria group, the authors suggested to 252 

keep D. ponera as ungrouped with respect to a divergent number of respiratory egg 253 

filaments (David and Tsacas 1975). To our knowledge, our study is the first attempt 254 

to phylogenetically position this species. We found that D. ponera groups with the 255 

Dorsilopha subgenus (PP = 0.99, BP = 75) within this early-diverging lineage.  256 

 257 

The Hawaiian drosophilid clade and the Siphlodora subgenus 258 

The endemic Hawaiian Drosophilidae contain approximately 1,000 species that split 259 

into the Hawaiian Drosophila (or Idiomyia genus according to Grimaldi (1990)) and 260 

the genus Scaptomyza (O’Grady et al. 2009). Generally considered as sister to the 261 
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Siphlodora subgenus (Robe et al. 2010)(Russo et al. 2013)(Yassin 2013), these 262 

lineages represent a remarkable framework to investigate evolutionary radiation and 263 

subsequent diversification of morphology (Stark and O’Grady 2010), pigmentation 264 

(Edwards et al. 2007), ecology (Magnacca et al. 2008), and behavior (Kaneshiro 265 

1999). Although the relationships within the Siphlodora clade are generally in 266 

agreement with previous studies (Tatarenkov et al. 2001)(Robe et al. 2010)(Russo et 267 

al. 2013)(Yassin 2013), its sister clade does not seem to be restricted to the Hawaiian 268 

Drosophilidae. In fact, according to our phylogenies, it also includes at least four 269 

other species of the genus Drosophila (Figures 2A, S1, and online supplementary tree 270 

files). We propose that this broader clade, rather than the Hawaiian clade sensu 271 

stricto, should be seen as a major lineage of Drosophilidae. 272 

This broader clade is strongly supported (PP = 1, BP = 100) and divided into two 273 

subclades, one comprises the genera Idiomyia and Scaptomyza (PP = 0.99, BP = 97) 274 

and the other includes D. annulipes, D. adamsi, D. maculinotata and D. nigrosparsa 275 

(PP = 0.99, BP = 75). The latter subclade, also suggested by Katoh et al. (2007) and 276 

Russo et al. (2013), is interesting with respect to the origin of Hawaiian drosophilids. 277 

Of the four component species, D. annulipes was originally described as a member of 278 

the subgenus Spinulophila, which was synonymized with Drosophila and currently 279 

corresponds to the immigrans group, although Wakahama et al. (1983) and Zhang and 280 

Toda (1992) cast doubt on its systematic position. As for D. adamsi, Da Lage et al. 281 

(2007) suggested it may be close to the Idiomyia-Scaptomyza clade, which is 282 

supported by our analyses. On the other hand, Prigent et al. (2013) based on 283 

morphological characters and Prigent et al. (2017) based on DNA barcoding have 284 

proposed that D. adamsi defines a new species group along with D. acanthomera and 285 

an undescribed species. Drosophila adamsi resembles D. annulipes in the body color 286 

pattern (Fig. 2F,E,H), suggesting their close relationship: Adams (1905) described, 287 

“mesonotum with five longitudinal, brown vittae, the central one broader than the 288 

others and divided longitudinally by a hair-like line, …; scutellum yellow, with two 289 

sublateral, brownish lines, …; pleurae with three longitudinal brownish lines”, for 290 

Drosophila quadrimaculata Adams, 1905, which is a homonym of Drosophila 291 

quadrimaculata Walker, 1856 and has been replaced with the new specific epithet 292 

“adamsi” by Wheeler (1959). Another species, D. nigrosparsa, belongs to the 293 

nigrosparsa species group, along with D. secunda, D. subarctica and D. vireni 294 
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(Bächli et al. 2004).  Moreover, Máca (1992) pointed out the close relatedness of D. 295 

maculinotata to the nigrosparsa group. 296 

 297 

The Drosophila subgenus and closely related taxa 298 

Although general relationships within the Drosophila subgenus closely resemble 299 

those recovered by previous studies (Hatadani et al. 2009)(Robe et al. 2010)(Robe et 300 

al. 2010)(Izumitani et al. 2016), there are some outstanding results related to other 301 

genera or poorly studied Drosophila species.  302 

Samoaia is a small genus of seven described species endemic to the Samoan 303 

Archipelago (Malloch 1934)(Wheeler and Kambysellis 1966), particularly studied for 304 

their body and wing pigmentation (Dufour et al. 2020). In our analysis, the genus 305 

Samoaia is found to group with the quadrilineata species subgroup of the immigrans 306 

group. This result is similar to conclusions formulated by some previous studies 307 

(Tatarenkov et al. 2001)(Robe et al. 2010)(Yassin et al. 2010)(Yassin 2013), but 308 

differs from other published phylogenies in which Samoaia is sister to most other 309 

lineages in the subgenus Drosophila (Russo et al. 2013). It is noteworthy that our 310 

sampling is the most substantial with four species of Samoaia. 311 

The two African species Drosophila pruinosa and Drosophila pachneissa, which 312 

were assigned to the loiciana species complex because of shared characters such as a 313 

glaucous-silvery frons and rod-shaped surstyles (Tsacas 2002), are placed together 314 

with the immigrans group (PP = 1, BP = 94). In previous large-scale analyses, D. 315 

pruinosa was suggested to group with Drosophila sternopleuralis into the sister clade 316 

of the immigrans group (Da Lage et al. 2007)(Russo et al. 2013). 317 

Among other controversial issues, the phylogenetic position of Drosophila aracea 318 

was previously found to markedly change according to the phylogenetic 319 

reconstruction methods (Da Lage et al. 2007). This anthophilic species lives in 320 

Central America (Heed and Wheeler 1957). Its name comes from the behavior of 321 

females that lay eggs on the spadix of plants in the family Araceae (Heed and 322 

Wheeler 1957)(Tsacas and Chassagnard 1992). Our analysis places D. aracea as the 323 

sister taxon of the bizonata-testacea clade with high confidence (PP = 1, BP = 85). 324 

No occurrence of flower-breeding behavior has been reported in the bizonata-testacea 325 

clade, reinforcing the idea that D. aracea might have recently evolved from a 326 

generalist ancestor (Tsacas and Chassagnard 1992).  327 

 328 
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The Zygothrica genus group 329 

The fungus-associated genera Hirtodrosophila, Mycodrosophila, Paraliodrosophila, 330 

Paramycodrosophila, and Zygothrica contain 448 identified species (TaxoDros 2020) 331 

and have been associated with the Zygothrica genus group (Grimaldi 1990). Although 332 

the Zygothrica genus group was recurrently recovered as paraphyletic (Da Lage et al. 333 

2007)(Van Der Linde et al. 2010)(Russo et al. 2013)(Yassin 2013), two recent studies 334 

suggest, on the contrary, its monophyly (Gautério et al. 2020)(Zhang et al. 2021). Our 335 

study does not support the monophyly of the Zygothrica genus group in virtue of the 336 

polyphyletic status of Hirtodrosophila and Zygothrica: some representatives (e.g., H. 337 

duncani) cluster with Collessia, while others (e.g., Hirtodrosophila IV and Zygothrica 338 

II) appear closely related to the genera Dichaetophora and Mulgravea. Furthermore, 339 

the placement of the Zygothrica genus group recovered in our study also differs from 340 

some previous estimates. In fact, the broadly defined Zygothrica genus group, which 341 

includes Dichaetophora and Mulgravea (PP = 0.95, BP = 64), appears as sister to the 342 

clade composed of the subgenus Drosophila and the Hypselothyrea/Liodrosophila + 343 

Sphaerogastrella + Zaprionus clade (PP = 1, BP = 56) (Figures 2A and S1). This 344 

placement is similar to the ones obtained in different studies (Van Der Linde et al. 345 

2010)(Russo et al. 2013), but contrasts with the close relationship of the Zygothrica 346 

genus group to the subgenus Siphlodora + Idiomyia/Scaptomyza proposed in two 347 

recent studies (Gautério et al. 2020)(Zhang et al. 2021). Given the moderate bootstrap 348 

value, the exact status of the Zygothrica genus group remains as an open question. 349 

Furthermore, within the superclade of the broadly defined Zygothrica genus group 350 

(Figures 1 and 2A), the genus Hirtodrosophila is paraphyletic and split into four 351 

independent lineages, reinforcing previous suggestions based on multilocus 352 

approaches (Van Der Linde et al. 2010)(Gautério et al. 2020)(Zhang et al. 2021). This 353 

also occurred with the genus Zygothrica, which split into two independent clades 354 

(Figure 2A). The leptorostra subgroup (Zygothrica II) clusters with the subgroup 355 

Hirtodrosophila IV (PP = 1, BP = 100), whereas the Zygothrica I subgroup clusters 356 

with the species Hirtodrosophila levigata (PP = 0.99, BP = 98). 357 

 358 

DrosoPhyla: a powerful tool for systematics 359 

Besides bringing an updated and improved phylogenetic framework to Drosophilidae, 360 

our approach also addresses several questions that were previously unassessed or 361 

controversial at the genus, subgenus, group, or species level. We are therefore 362 
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confident that it may become a powerful tool for future drosophilid systematics. 363 

According to diversity surveys (O’Grady and DeSalle 2018), 25% of drosophilid 364 

species remain to be discovered, potentially a thousand species to place in the tree of 365 

Drosophilidae. While whole-genome sequencing is becoming widespread, newly 366 

discovered species often come down to a few specimens pinned or stored in ethanol – 367 

non-optimal conditions for subsequent genome sequencing and whole-genome 368 

studies. Based on a few short genomic markers, our approach is compatible with 369 

taxonomic work, and gives good resolution. 370 

 371 

Acknowledgements 372 

We thank Jean-Luc Da Lage and John Jaenike for providing fly specimens. We thank 373 

Virginie Orgogozo and Noah Whiteman for giving early access to the genome of D. 374 

pachea and S. flava, respectively. We thank Masafumi Inoue, Stéphane Prigent, 375 

Yasuo Hoshino, and the Japan Drosophila Database for providing photos. We thank 376 

Amir Yassin for fruitful discussions and comments on the manuscript. We thank the 377 

Sean Carroll laboratory for discussions and financial support. 378 

 379 

Material and Methods 380 

Taxon sampling 381 

The species used in this study were sampled from different locations throughout the 382 

world (Table S1). The specimens were field-collected by the authors, purchased from 383 

the National Drosophila Species Stock Center (http://blogs.cornell.edu/drosophila/) 384 

and the Kyoto Stock Center (https://kyotofly.kit.jp/cgi-bin/stocks/index.cgi), or 385 

obtained from colleagues. Individual flies were preserved in 100% ethanol and 386 

identified based on morphological characters. 387 

 388 

Data collection 389 

Ten genomic markers were amplified by PCR using degenerate primers developed for 390 

the present study (Table 1). Genomic DNA was extracted from a single adult fly as 391 

follows: the fly was placed in a 0.5-mL tube and mashed in 50 L of squishing buffer 392 

(Tris-HCl pH=8.2 10 mM, EDTA 1 mM, NaCl 25 mM, proteinase K 200 g/mL) for 393 

20-30 seconds, the mix was incubated at 37C for 30 minutes, then the proteinase K 394 

was inactivated by heating at 95C for 1-2 minutes. A volume of 1 L was used as 395 
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template for PCR amplification. Nucleotide sequences were also retrieved from the 396 

NCBI database for the five nuclear markers 28S ribosomal RNA (28S), alcohol 397 

dehydrogenase (Adh), glycerol-3-phosphate dehydrogenase (Gpdh), superoxide 398 

dismutase (Sod), xanthine dehydrogenase (Xdh), and the two mitochondrial markers 399 

cytochrome oxidase subunit 1 (COI) and cytochrome oxidase subunit 2 (COII). The 400 

sequences reported in this paper have been deposited in GenBank under specific 401 

accession numbers: Amyrel (MW392482-MW392524), Ddc (MW403139-402 

MW403307), Dll (MW403308-MW403483), eb (MW415022-MW415267), en 403 

(MW418945-MW419079), eve (MW425034-MW425273), hh (MW385549-404 

MW385782), Notum (MW429853-MW430003), ptc (MW442160-MW442361), wg 405 

(MW392301-MW392481). 406 

 407 

Phylogenetic reconstruction 408 

Alignments for each individual gene were generated using MAFFT 7.45 (Katoh and 409 

Standley 2013), and unreliably aligned positions were excluded using trimAl with 410 

parameters -gt 0.5 and -st 0.001 (Capella-Gutiérrez et al. 2009). The possible 411 

contamination status was verified by inferring independent trees for each gene using 412 

RAxML 8.2.4 under the GTR+ model (Stamatakis 2014). Thus, any sequence 413 

leading to the suspicious placement of a taxonomically well-assigned species was 414 

removed from the dataset. Moreover, almost identical sequences leading to very short 415 

tree branches were carefully examined and excluded if involving non-closely related 416 

taxa. In-house Python scripts (available on GitHub XXX) were used to concatenate 417 

the aligned and filtered sequences, and the resulting dataset was used for phylogenetic 418 

reconstruction. Maximum-likelihood (ML) searches were performed using IQ-TREE 419 

2.0.6 (Minh, Schmidt, et al. 2020) under the GTR model, with the FreeRate model of 420 

rate heterogeneity across sites with four categories, and ML estimation of base 421 

frequencies from the data (GTR+R+FO). The edge-linked proportional partition 422 

model was used with one partition for each gene. Sequence alignments and tree files 423 

are available from 424 

(https://www.dropbox.com/sh/ts2pffqnnwd34c8/AAA9qLL7dCC3urxR1NcioJvLa?dl425 

=0). 426 

 427 

Composite taxa 428 
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This strategy started from clustering the species by unambiguous monophyletic 429 

genera, groups, or subgroups identified in the 704-taxon analysis. After this, the least 430 

diverging sequence or species recovered for each taxonomic unit for each marker was 431 

selected to ultimately yield a unique composite taxon by concatenation. The 432 

composite matrix was also used for conducting ML and Bayesian phylogenetic 433 

inference using IQ-TREE under a partitioned GTR+R+FO model, and PhyloBayes 434 

under a GTR+ model (Lartillot et al. 2009), respectively. Sequence alignments and 435 

tree files are available from XXX. 436 

 437 

Saturation and concordance analysis 438 

For each marker gene, the saturation was computed by performing a simple linear 439 

regression of the percent identity for each pair of taxa (observed distance) onto the 440 

ML patristic distance (inferred distance) (Philippe et al. 1994) estimated using the 441 

ETE 3 library (Huerta-Cepas et al. 2016). We also calculated per gene and per site 442 

concordance factors using IQ-TREE under the GTR+R+FO model as recently 443 

described (Minh, Hahn, et al. 2020). 444 

 445 
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 743 

Figure legends 744 

Figure 1. Phylogram of the 704-taxon analyses. IQ-TREE maximum-likelihood 745 

analysis was conducted under the GTR+R+FO model. Support values obtained after 746 

100 bootstrap replicates are shown for selected supra-group branches, and infra-group 747 

branches within the melanogaster group (all the support values are shown online). 748 

Black dots indicate support values of PP > 0.9 and BP > 90; grey dots 0.9  PP > 0.75 749 

and 90   BP > 75; black squares only BP > 90; grey squares only 90  BP > 75. 750 

Scale bar indicates the number of changes per site. Groups and subgroups are 751 

numbered or abbreviated as follows: (1) montium, (2) takahashii sgr, (3) suzukii sgr, 752 

(4) eugracilis sgr, (5) melanogaster sgr, (6) ficusphila sgr, (7) elegans sgr, (8) 753 

rhopaloa sgr, (9) ananassae, (10) Collessia, (11) mesophragmatica, (12) dreyfusi, 754 

(13), coffeata, (14) canalinea, (15) nannoptera, (16) annulimana, (17) flavopilosa, 755 

(18) flexa, (19) angor, (20) Dorsilopha, (21) ornatifrons, (22) histrio, (23) 756 

macroptera, (24) testacea, (25) bizonata, (26) funebris, (27) Samoaia, (28) 757 

quadrilineata sgr, (29) Liodrosophila, (30) Hypselothyrea, (31) Sphaerogastrella, 758 

(32) Zygothrica I, (33) Paramycodrosophila, (34) Hirtodrosophila III, (35) 759 

Hirtodrosophila II, (36) Hirtodrosophila I, (37) Dettopsomyia, (38) Mulgravea, (39) 760 

Hirtodrosophila IV, (40) Zygothrica II, Chy: Chymomyza; Colo: Colocasiomyia; 761 

Dichae: Dichaetophora; immigr: immigrans; Lord: Lordiphosa; Mic: 762 

Microdrosophila; Myco: Mycodrosophila; pol: polychaeta; salt: saltans; Scap: 763 

Scaptodrosophila; trip: tripunctata; will: willistoni. 764 

 765 
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Figure 2. (A) Phylogram of the 83-taxon analyses. The overall matrix represents 766 

14,961 nucleotides and 83 taxa, including 63 composite ones. Support values obtained 767 

after 100 bootstrap replicates and Bayesian posterior probabilities are shown for 768 

selected branches and mapped onto the ML topology (all the support values are 769 

shown in Figure S1). The dotted line indicates that the placement of Dettopsomyia 770 

varies between ML and Bayesian trees. Scale bar indicates the number of changes per 771 

site. (B-H) Photos of species of particular interest in this paper. (B) Drosophila 772 

oshimai female (top) and male (bottom) (Japan, courtesy of Japan Drosophila 773 

Database), (C-D) Collessia kirishimana (Japan, courtesy of Masafumi Inoue), (E-F) 774 

Drosophila annulipes (Japan, courtesy of Yasuo Hoshino), (G) Drosophila pruinosa 775 

(São Tomé, courtesy of Stéphane Prigent), (H) Drosophila adamsi (Cameroun, 776 

courtesy of Stéphane Prigent). 777 

 778 

Figure 3. Concordance versus mutational saturation of the phylogenetic markers. The 779 

y-axis indicates the percentage of concordant nodes, and the x-axis indicates the 780 

saturation level. In comparison with published markers (black dots), the markers 781 

developed in this study (orange dots) generally show moderate saturation levels and 782 

satisfying concordance. 783 

 784 

Figure S1. Phylogram of the 83-taxon analyses. (Left) IQ-TREE maximum-785 

likelihood analyses were conducted using the GTR+R+FO model. Support values 786 

obtained after 100 bootstrap replicates are shown for all branches. Scale bar indicates 787 

the number of changes per site. (Right) PhyloBayes Bayesian analyses were 788 

conducted using the GTR+ model. Bayesian posterior probabilities are shown for all 789 

branches. Scale bar indicates the number of changes per site. 790 

 791 

Figure S2. The impact of marker sampling on the tree topology. The composite tree 792 

was built on 17 different datasets that correspond to the whole dataset minus one 793 

marker sequentially removed. The changes in relation to the ML composite tree 794 

depicted in Figure 2 are shown in red. Scale bar indicates the number of changes per 795 

site. 796 

 797 
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Figure S3. Mutational saturation of the 17 phylogenetic markers. The x-axis indicates 798 

the distance inferred from the ML composite tree, whereas the y-axis indicates the 799 

observed distance between two taxa. The slope of the red line is an indicator of the 800 

saturation level, low values meaning high saturation. The black line corresponds to 801 

the absence of multiple substitutions. 802 

 803 

Table legends 804 

Table 1. List of PCR primers used in this study.  805 

Table 2. Dataset statistics. 806 

Table S1. Taxon sampling. 807 
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Genomic Locus Primer Primer Sequence (5'-3') Annealing size References
Amyrel zone2bis GTAAATNGGNNCCACGCGAAG

relrev+ GTTCCCCAGCTCTGCAGCC
reludir TGGATGCNGCCAAGCACATGGC
relavbis GCATTTGTACCGTTTGTGTCGTTATCG

Distal-less dll-F TGATACCAATACTGSGGCACATA
dll-R ATGATGAARGCMGCTCAGGG

Dopa decarboxylase ddc-F TTCCASGAGTACTCCATGTCCTCG
ddc-R GGCAGGATGTKATGAAGGACATTGAG

ebony eb-F CCCATSACCTCKGTGGAGCCGTA
eb-R CTGCATCGCATCTTYGAGGAGCA

engrailed en-F AATCAGCGCCCAGTCCACCAG
en-R GCCACATCTCGTTCTTGCCGC

even-skipped eve-F TGCCTVTCCAGTCCRGAYAACTC
eve-R TACGCCTCAGTCTTGTAGGG

hedgehog hh-F ACCTTGTABARGGCATTGGCATACCA
hh-R ATCGGWGATCGDGTGCTRAGCATG

Notum not-F TGGAACTAYATHCAYGADATGGGCGG
not-R GAGCAGYTCVAGRAADCGCATCTC

patched ptc-F1 ACCCAGCTGCGCATSAGRAAGG
ptc-F2 ACCCAGCTGCGCATSAGRAACG
ptc-R GCTGACGGCSGCSTATGCGG

wingless wg-F AGCACGTYCARGCRGAGATGCG
wg-R ACTGTTKGGCGAYGGCATRTTGGG

53°C

56°C

58°C

58°C

59°C

65°C

55°C

56°C

56°C

54°C

this study

this study

this study

this study

this study

Da Lage et al. 
(2007)

this study

this study

this study

this study

1,000 bp

1,000 bp

600 bp

400 bp

600 bp

900 bp

800 bp

1,500 bp

1,200 bp

600 bp

1,000 bp

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 24, 2021. ; https://doi.org/10.1101/2021.03.23.436709doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.23.436709
http://creativecommons.org/licenses/by-nc-nd/4.0/


Name # sequences # sites
Informative 

sites (%)
Inferred 
distance

Observed 
distance

saturation
# concording 

nodes
# missing 

nodes
Concordance 

(%)

28S 49/83 848 18.4 0.200 0.189 0.700 25/80 44 69.4
Adh 53/83 724 54.4 0.886 0.331 0.430 28/80 35 62.2
Amyrel 48/83 1475 53.5 2.458 0.545 0.290 18/80 44 50.0
COI 51/83 1438 33.8 1.119 0.666 0.191 35/80 40 87.5
COII 57/83 688 37.8 1.004 0.169 0.185 40/80 33 85.1
Gpdh 26/83 859 35.0 0.784 0.286 0.400 9/80 64 56.3
Sod 22/83 574 49.3 1.072 0.333 0.373 4/80 68 33.3
Xdh 19/83 2088 42.4 0.919 0.314 0.368 9/80 68 75.0

Ddc 52/83 1162 42.3 1.003 0.262 0.358 27/80 39 65.9
Dll 56/83 377 30.8 0.629 0.229 0.463 40/80 36 90.9
eb 67/83 891 46.7 1.247 0.318 0.380 32/80 21 54.2
en 51/83 1119 51.1 1.009 0.307 0.371 18/80 41 46.2
eve 66/83 806 48.6 1.083 0.303 0.367 40/80 22 69.0
hh 63/83 486 62.6 1.203 0.352 0.400 29/80 27 54.7
Notum 51/83 672 62.6 1.005 0.352 0.417 18/80 45 51.4
ptc 60/83 430 55.8 1.076 0.323 0.413 42/80 29 82.4
wg 57/83 324 51.5 1.223 0.321 0.352 33/80 33 70.2
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