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Abstract: Heating, ventilation, and air-conditioning (HVAC) systems are omnipresent in modern
buildings and are responsible for a considerable share of consumed energy and the electricity
bill in buildings. On the other hand, solar energy is abundant and could be used to support the
building HVAC system through cogeneration of electricity and heat. Micro-scale concentrated solar
power (MicroCSP) is a propitious solution for such applications that can be integrated into the
building HVAC system to optimally provide both electricity and heat, on-demand via application of
optimal control techniques. The use of thermal energy storage (TES) in MicroCSP adds dispatching
capabilities to the MicroCSP energy production that will assist in optimal energy management in
buildings. This work presents a review of the existing contributions on the combination of MicroCSP
and HVAC systems in buildings and how it compares to other thermal-assisted HVAC applications.
Different topologies and architectures for the integration of MicroCSP and building HVAC systems
are proposed, and the components of standard MicroCSP systems with their control-oriented models
are explained. Furthermore, this paper details the different control strategies to optimally manage
the energy flow, both electrical and thermal, from the solar field to the building HVAC system to
minimize energy consumption and/or operational cost.

Keywords: microCSP; solar energy conversion; thermal-assisted HVAC; building predictive control;
energy management

1. Introduction

One of the major challenges that the world is facing today is climate change. The
repercussions of climate change are expected to be devastating in the future compared to
what several countries are experiencing currently. Indeed, heat waves, with very high and
unprecedented temperatures, struck several countries breaking records and reaching up to
41 ◦C in South Korea in 2018 [1] and 48 ◦C in Portugal in 2003 [2]. On the other hand, the
lowest temperature ever recorded on earth (−93.2 ◦C) was reported in Antarctica in 2010 [3].
These extreme weather conditions cause high energy consumption in buildings due to
the increased demand for both cooling and heating in order to ensure the temperature
comfort of the users. Furthermore, the International Energy Agency (IEA) reported that
building direct emissions contributed to 28% of the global fossil fuel-based greenhouse gas
(GHG) emissions in 2019 [4]. This leads to a vicious cycle and a snowball effect that, if not
addressed quickly and appropriately, could have drastic consequences on our planet in the
near future.

About 45% of the world’s primary energy resources are consumed by buildings [5].
Heating, ventilation, and air-conditioning (HVAC) systems are among the most energy-
consuming loads in a building and are responsible for 40% of its energy consumption [5].
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Thus, HVAC systems are good candidates for energy efficiency programs and will benefit
greatly from integration with solar energy.

Solar energy is the principal and most abundant source of clean energy on the
planet [6]. Indeed, the total annual energy consumption of the entire world can be met by
solar collectors with 20% efficiency, covering a thousandth of the terrestrial sphere [7]. Solar
energy is an environment-friendly alternative for fossil fuel-based electricity generation
and heat production that is becoming more cost-competitive. Furthermore, the omnipres-
ence of solar irradiation can be leveraged for distributed generation, hence avoiding the
expensive alternative of grid extension. Solar energy can reduce the transmission energy
losses and avoid fossil fuel-fired electricity generation, particularly in remote areas in
Africa [8] which has a very low electricity coverage rate while possessing a large potential
of solar irradiation [9].

This paper builds upon our prior works [10–22] in the area of modeling and control
of solar-assisted HVAC systems in buildings, particularly the integration of micro-scale
concentrated solar power (MicroCSP) into building HVAC systems. The main objective of
this review paper is to give an overview of the MicroCSP technology and how it can be
optimally controlled to get the full benefit from its integration into building HVAC systems.
More specifically, this paper presents the different components of a typical MicroCSP
system, and then it discusses various integration architectures of MicroCSP into building
HVAC systems. Moreover, the required modeling of the MicroCSP components is detailed
and the benefit of optimal model-based control of MicroCSP and building HVAC in tandem
is explained. Finally, this work provides a unique benchmark of optimal control strategies
for MicroCSP integrated into the building HVAC system since it aggregates comparable
results from extensive studies performed on the same testbed using the same experimental
measurements.

2. Solar-Assisted HVAC Systems

To understand the benefits of MicroCSP integration into HVAC systems, one should
review the existing thermal-assisted HVAC systems, especially the solar-based systems.
The three main technologies utilized to harvest solar power are: (i) the photovoltaic (PV)
cell technology commonly employed to generate electrical power; (ii) the solar thermal
power technology which is mainly used for heat generation; and (iii) the concentrated
solar power (CSP) technology that generates both electrical and thermal energy. Figure 1
categorizes the solar-assisted HVAC systems into three main categories, based on the solar
energy technology utilized in the system.

Table 1 lists some examples of the solar-assisted HVAC systems reported in the
literature. It can be noticed that water and air are the most used heat transfer fluid
(HTF) in thermal-assisted HVAC systems since they can absorb the heat in the primary
energy system while keeping the temperatures in the allowed operating range for the
HVAC systems.
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Figure 1. Types of solar-assisted HVAC systems for buildings [14,15,23–49].
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Table 1. Non-MicroCSP identified Thermal-assisted HVAC systems.

Thermal Assisted HVAC Plants Country COP */EER * Primary Energy System TES * HTF * Ref.

Cardiff Univ. STACS System UK 0.7 Evacuated tubes Cold Water Single-Tank Water [44]
CIESOL building Spain 0.6 Flat-plate Hot Water Two-Tank Water [48]
Eng. School of Seville Solar Plant Spain 1.34 Linear Fresnel Reflectors None Water [50]
Fraunhofer Institute (UMSICHT) Plant Germany 0.37–0.8 Evacuated tubes Hot Water Single-Tank Water [42]
Sannio Univ. Test Facility Italy 3 MicroCHP None None [51,52]
SERT Test Building Thailand 0.5 Evacuated tubes Hot Water Single-Tank Water [43]
Shanghai Jiao Tong Univ. Exptl. Setup China 0.34–0.44 Compound Parabolic Collectors Hot Water Single-Tank Water [53]
SOLERA Project Germany 0.6 Linear Fresnel Reflectors None None [54]
Team UOW Solar Decathlon House China/Australia 2.1 Air-based photovoltaic thermal Phase Change Materiel Air [55,56]
Univ. Carlos III de Madrid Solar Facility Spain 0.33 Flat-plate Hot Water Single-Tank Water [47]
Univ. of New Mexico ME Building USA 3.8 Flat-plate and Evacuated tubes Hot Water Single-Tank Water [45,46]
Univ. of Saint Pierre Pilot Plant France 1.5–2.5 Flat-plate Hot Water Single-Tank Water [49]
Univ. of Tech. Sydney Exptl. System Australia 3.2–5.4 Evacuated tubes Hot Water Single-Tank Water [40,41]

* COP, EER, TES, and HTF stand for coefficient of performance, energy efficiency ratio, thermal energy storage, and heat transfer fluid, respectively.
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2.1. Solar Thermal-Assisted HVAC Systems for Buildings

The combination of a solar-thermal system with HVAC systems in buildings to lower
energy consumption and cost is quite common in the literature. One of the main tech-
nologies used are evacuated tubes and flat plates used by the authors of [45,46] for a
solar-thermal-assisted HVAC system in a university campus building that generates ther-
mal energy. This thermal energy is first stored in a hot water tank and then dispatched either
to the heating coil or the absorption chiller that supplies the cold water tank. Look-ahead
scheduling based on day-ahead temperature and solar irradiation predictions allowed
the authors to save 30% of the annual energy cost. Cioccolanti et al. [57] investigated the
utilization of a small-scale trigeneration system using evacuated flat-plate collectors to
generate electricity, cooling, and heating for a building. They demonstrated that the optimal
sizing of the storage system can increase the overall efficiency by 6.5%. Nguyen et al. [58]
presented hybrid solar-assisted HVAC and water heating, as shown in Figure 2, where a
rolling stochastic optimization technique was used for the smart scheduling of energy to
significantly reduce the energy cost of the building by 50% compared to the conventional
HVAC and water heating system.

2.2. Solar Photovoltaic (PV)-Assisted HVAC Systems

Solar energy can be harnessed by the well-known photovoltaic (PV) systems that
use photovoltaic cells to convert solar radiation into electrical energy. PV-thermal, on
the other hand, is a hybrid solar-based system that can cogenerate both electricity and
low-grade heat. Compared to the conventional PV technology, PV-thermal has higher
overall efficiency since its heat extraction mechanism has a two-fold advantage: (i) it cools
off the photovoltaic cells which increases the efficiency and life cycle of the PV cells; and (ii)
the extracted low-grade heat can be exploited by HVAC systems and/or used for providing
hot water.

Ramos et al. [23] coupled PV-thermal panels with absorption chillers and heat pumps
(HP) in different topologies. For each topology, the authors ran simulations for ten different
sites in Europe showing that the proposed integrated system can fulfill the entire cooling
load and up to 60% of the heating load. Gu et al. [25] performed an economic analysis
of a building integrating PV-thermal panels in Sweden for electrical and thermal energy
cogeneration. By carrying out a sensitivity analysis on eleven factors based on the Monte
Carlo method, they concluded that PV-thermal panels are more lucrative for areas that
have higher solar irradiance and higher heating rates. In [24], the authors investigated
the trigeneration of heating, cooling, and electricity by a PV-thermal solar field in tandem
with absorption chillers. Based on experimental data collected from a university campus
testbed, they conducted an economic evaluation that compares the proposed system with
two other solar-thermal assisted systems, one composed of evacuated tube collectors
and the other consisting of PV panels. They demonstrated that the payback time of the
proposed trigeneration system is 2.3 times faster than the system based on evacuated tube
collectors and 2.7 times faster than the PV-based system, while significantly reducing the
GHG emissions.
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Figure 2. Solar-assisted HVAC system with flat-plate collector feeding a hot water tank storage connected to the HVAC
system for heating application. (Adapted from [59] with permission of IEEE).

2.3. Concentrated Solar Power (CSP)-Assisted HVAC Systems

The CSP technology has been widely used in large-scale power generation plants
since the 1973 energy crises [60] by converting high-temperature heat into electrical energy
through efficient conventional turbines. Nevertheless, CSP was originally utilized for
small-scale thermal-mechanical water pumping systems up to 100 kW [61] before being
adopted for large power plants. As shown in Figure 1, the CSP systems can be classified
into four main types, depending on the collectors technology: the solar tower collectors,
the parabolic trough collectors, the linear Fresnel collectors, and the dish Stirling.

Micro-scale cogenerated heat and power (MicroCHP) is a conventional decentral-
ized cogeneration system widely used for the production of electricity and domestic
heating [51,52,62,63]. Their co-cogeneration capabilities and full dispatchability make Mi-
croCHP systems promising for integration into building HVAC systems. However, their
primary source of energy is either biomass-fired boilers or fossil fuel-fired internal com-
bustion engines, which contribute to GHG emissions. The trend of green distributed
generation made researchers consider a solar-based alternative by downsizing the CSP
technology into micro-scale concentrated solar power (MicroCSP) systems with a rated
power up to 1 MW [64]. MicroCSP has the same cogeneration capabilities as MicroCHP;
however, it uses solar as a primary source of energy instead of fuel and biomass.

In terms of thermodynamics, the MicroCSP power cycle is comparable to the con-
ventional CSP plant. Indeed, similar to MicroCHP systems, the power engines used in
MicroCSP systems are, in most cases, based on the ORC that imitates the conventional
Ranking cycle, but, instead of using water as a working fluid, it utilizes an organic fluid
to convert low-grade thermal energy into electrical energy [65]. Even though the thermal
efficiency of the ORC engine is intrinsically low, the building can harvest the low-grade
waste heat of the ORC engine to fulfill the required thermal energy, hence improving the
overall efficiency [66]. Moreover, the combination of ORC engines with solar collectors is a
good candidate for renewable energy integration into buildings as they are becoming more
competitive with PV panels in terms of energy pricing [67].
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MicroCSP systems can provide both electrical power and heating source that can be
utilized in building HVAC systems. Our previous work [20] shows that, by integrating
MicroCSP into the HVAC system, buildings can save 8% more energy than what they could
have saved by using PV.

In 2011, the Department of Energy (DOE) of the United States started the SunShot
Initiative with the objective of increasing the competitiveness of solar power by decreas-
ing the investment in utility-scale solar-based power plants by 75% making it around
$1000/kW [68]. The initiative has also set a goal for 2030 to reduce the levelized cost of
electricity (LCOE) of solar energy in residential applications by 90%. Due to the potential
of CSP technology in residential applications, the LCOE for CSP technology energy is
expected to be less than $0.05/kWh in 2030 compared to $0.21/kWh in 2010 [68]. Fur-
thermore, the DOE allocated, in 2018, a $72 million budget envelope to develop the CSP
systems of the future [69].

Table 2 lists some of the MicroCSP systems that have been deployed either for research
and demonstration purposes or for commercial usage. One can notice that solar fields for
MicroCSP systems are mostly based on parabolic trough collectors (PTC). This is due to the
fact that PTC is a mature technology that has been in use for years [61]. Besides, PTC-based
solar fields are very easy to scale by simply connecting new arrays to the existing ones.

This paper explores the benefits and potentials of optimal integration of MicroCSP
technology into the building HVAC system, in different topologies, and with different
electricity price schemes. It also provides insights into the factors that differentiate Mi-
croCSP from other thermal-assisted HVAC applications. Furthermore, it emphasizes the
importance of optimal control of the MicroCSP and building HVAC system. Indeed, our
previous study [20] concluded that designing optimal control frameworks that account for
the dynamics of the MicroCSP and the building HVAC system can significantly reduce the
energy consumption up to 70% compared to a conventional rule-based control scheme.

Table 2. Identified MicroCSP systems.

Country Solar Field HTF Net Power TES Ref.

Australia PTC Thermal oil 300 kW None [26]
Australia PTC Pressurized water 175 kW None [26]
Belgium PTC Thermal oil 2.8 kW Single-tank thermocline (pebble-bed) [27]
China Solar Tower Water/Steam 1 MW Two stages: saturated steam/oil [39]
Egypt PTC Steam 75 kW None [28]
India Parabolic Dish Helium 9 kW None [34]
India PTC Therminol VP-1 1 MW None [29]
Italy LFR Diathermic oil 1 MW None [36]
Italy PTC Molten salt 350 kW 2-tank direct (Molten salt) [30]
Italy Parabolic Dish Water and propylenic glycol 11.5 kW Single-tank direct (Hot water) [35]
Lesotho PTC Monoethylene glycol 1 kW None [31]
Lesotho PTC Monoethylene glycol 3 kW Single-tank thermocline (Packed-bed) [32]
Morocco LFR Delco term solar E15 1 MW Single-tank thermocline (Packed-bed) [37]
Switzerland LFR HCFC123 and HFC134a 10–25 kW None [38]
USA PTC Propylene Glycol 3 kW Single-tank thermocline (Packed-bed) [33]

3. MicroCSP and Building HVAC Architectures
3.1. MicroCSP Components

The three main components of a MicroCSP system are: (1) a solar field with a concen-
trated solar power technology; (2) a thermal energy storage (TES) system; and (3) a power
engine. Figure 3 presents the schematic of a sample MicroCSP system with a PTC-based
solar field, a two-tank TES system, and an ORC engine. These components are explained
in the following.
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Figure 3. Schematic of a typical MicroCSP system with a PTC, a two-tank TES, and an ORC engine.

3.1.1. Solar Field

Different technologies can be used in a solar field to harvest solar energy; however, in
MicroCSP systems, the solar field is composed of solar concentrator technologies, namely
PTC, parabolic dish concentrators, linear Fresnel reflectors, and solar towers. Figure 4
presents the main types of solar concentrators in solar fields. All four types of solar
concentrators utilize mirror reflectors to concentrate the sunbeam into either a linear tube
that carries the HTF in the case of parabolic trough collectors (PTC) and linear Fresnel
reflectors (LFR) or a focal point that holds the HTF in the case of solar towers and parabolic
dish concentrators, as shown in Table 3.

Solar towers can generate high-temperature HTF with a temperature ranging from
300 to 2000 ◦C [70] and are usually combined with conventional Rankine cycle engines to
produce electricity efficiently. Depending on the solar field area, both parabolic troughs
and linear Fresnel reflectors can be coupled to the conventional Rankine cycle with high-
temperature HTF or to ORC engines with low-temperature HTF. The parabolic dish concen-
trators technology, on the other hand, is often in tandem with Stirling engines exploiting
low-temperature HTF to produce electricity. The solar concentrators efficiency depends
essentially on the mirrors reflectivity and the receiver absorptance.

Table 3. Solar Concentrators Characteristics [64].

Concentrator Area Focal Area Tracking System Concentration Ratio

Parabolic trough Linear Biaxial tracking 15–45
Parabolic dish Punctual Biaxial tracking Up to 1000
Linear Fresnel reflector Linear Monoaxial tracking 10–40
Central receiver Ponctual/Planar Biaxial tracking (Heliostat) 1000–10,000
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Figure 4. Main types of solar concentrators in solar fields. (Reprinted from [71] with permission of
Elsevier).

3.1.2. Thermal Energy Storage (TES)

TES systems have great benefits in solar electricity generation systems as they can:
(i) shift energy production to meet peak demand; (ii) counteract the inherent diurnal
fluctuation of solar radiation; and (iii) extend the power production to nighttime.

Compared to other storage technologies such as batteries or flywheels, TES systems
offer advantages when coupled with solar thermal applications. The main advantage is
related to the form of the energy stored in the TES. This is because storing heat directly,
before conversion in the power engine, avoids conversion losses related to the use of
other forms of energy. Furthermore, storing heat in the TES systems reduces system
complexity, which results in an extended life cycle and relatively low capital expenses for
the MicroCSP system.

The thermal energy can be stored as thermo-chemical heat in reversible endothermic
chemical reactions [72], latent heat in phase change materials (PCM) [73], or sensible
heat [74]. Sensible heat systems can store energy for days, even months if well insulated,
and have an efficiency that ranges from 50% to 90% [75]. PCM storage periods range from
a few hours to several months, depending on the material chosen, and have an efficiency
between 75% and 90% [75]. Chemical reaction-based storage systems have shorter storage
periods from hours to days; however, their efficiency starts from 75% and can reach 100%
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in some cases [75]. For low-temperature CSP applications such as MicroCSP, sensible heat
is the most effective option as PCM requires high temperatures and special piping to deal
with pressure variations. Furthermore, MicroCSP systems do not require seasonal/annual
thermal storage; instead, it relies on diurnal TES systems to store the thermal energy for
short periods, allowing load shifting for optimal operations [76].

3.1.3. Thermal Power Engines

The solar thermal energy collected by the solar concentrators in the solar field is either
stored in the TES or directly sent to the thermal power engine to be converted into electrical
energy and low-grade heat. Thermal power engines are governed by thermodynamic
cycles. One of the well-known and most used thermodynamics cycles in heat to electricity
conversion is the conventional Rankine cycle using water as working fluid in most use
cases [77]. Since the wet steam can be harmful to the turbine blades, power engines based
on conventional Rankine cycle are not suitable for MicroCSP systems as they require
high-temperature inputs [78].

An alternative to conventional Rankine cycles is the ORC, which is widely used in
solar applications due to its capacity to exploit low-temperature heat and convert it into
electrical energy by using an organic fluid with lower vaporization temperature instead
of water. However, the reported efficiencies of ORC engines are very low and do not
exceed 15% [79]. However, buildings can yet benefit from the cogenerated low-grade heat
of the ORC engine to reduce their energy consumption and operational cost of the HVAC
systems [20].

On the other hand, Stirling engines are known to have better efficiencies than ORC
engines [80] and can accommodate different heat sources including solar dishes with
efficiencies up to 64% [81]. The solar-powered Stirling engine is governed by the theoretical
Stirling cycle, as shown in Figure 5. The solar to electrical efficiency can reach up to 32%,
which the highest among CSP technologies [82]. On the other hand, the per kWh price
of the solar-powered Stirling engine is more expensive than the other CSP technologies,
which has prevented the wide adoption of this technology.

Figure 5. System diagram of solar dish Stirling engine showing its components and the Stirling
thermodynamic cycle (left); and energy conversion process showing the flow of energy and its
conversion in through the system (right). (Reprinted from [83] with permission of Elsevier).

3.2. MicroCSP Integration to Building HVAC: Architectures and Energy Flows

The MicroCSP system collects the solar thermal energy at the solar field level. This
collected energy is then stored in the TES before being dispatched into the thermal power
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engine to be converted into electrical and thermal energies that are used to assist the HVAC
system to supply heating or cooling to the building. The architecture of the MicroCSP
integration into the building HVAC system depends on the use case and heating/cooling
demand of the building. In the following, four main categories for integrating MicroCSP
and HVAC systems are explained.

3.2.1. Heating Cogeneration

The MicroCSP system is inherently capable of producing both electricity and heat.
This capability can be leveraged for heating applications in buildings by integrating the
MicroCSP system into the building HVAC system. Indeed, as we can see in Architecture
(a) in Figure 6, the energy produced in the solar field is stored in the TES before being
dispatched to the ORC engine following a specific control strategy. The ORC engine
converts the high-temperature heat into electrical energy and cogenerated low-grade
thermal energy. The electrical energy can supply heat pumps (HPs) of the HVAC system to
provide heating to the building. As per the low-grade cogenerated energy, depending on
the set points of the ORC engine, it is either injected directly to heat the building or utilized
to preheat the supply air to the HPs.

3.2.2. Cooling Cogeneration

The combined MicroCSP and building HVAC system can also supply cooling to the
building, as shown in Architecture (b) in Figure 6. In this application, the power produced
by the ORC is supplied to the cooling system, while the low-grade heat is used by the
absorption chiller [84] to provide cooling to the building.

This architecture tries to exploit the MicroCSP heat cogeneration to increase its overall
efficiency. However, to avoid dependency of the cooling loads on the MicroCSP system
and solar irradiation, an electricity-driven cooling system is also used and can be supplied
by the electricity grid.

3.2.3. Combined Heat and Cooling Cogeneration

In some cases, buildings require both heating and cooling simultaneously. For instance,
office buildings with on-premises computer servers and data centers would need cooling
for the computing systems and heating for the office rooms in winter. In such a case, the
MicroCSP system can be integrated into the building HVAC, as shown in Architecture
(c) in Figure 6, so that the electricity produced by the ORC is supplied to the HVAC
cooling system, while the heat is directly supplied to the building. However, the sizing
of the MicroCSP and TES in this application is critical as the heating loads of the building
will be entirely dependent on the MicroCSP production and consequently relying on
solar irradiation.

3.2.4. Trigeneration

Architecture (d) is proposed as an alternative that improves Architecture (c) and
provides both heating and cooling without being completely dependent on MicroCSP
production. Indeed, as can be seen in Figure 6d, an electricity-driven heating system is
added to the system so that the system can be supplied through the electricity grid in case
the MicroCSP is not generating sufficient heat.

The four architectures presented in this section are the main system configurations
that are employed to leverage the integration of a MicroCSP system into the building
HVAC system depending on its applications or needs (heating, cooling, or both). Each
architecture is composed of several components that interact with each other and these
components need to be controlled so that they can operate optimally. Hence, modeling
these components is essential to understand their dynamics, predict the system response,
and design appropriate model-based control strategies.
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Figure 6. Architectures for MicroCSP system integration into building HVAC systems: (a) heating cogeneration architecture,
(b) cooling cogeneration architecture, (c) combined heat and cooling cogeneration architecture, and (d) trigeneration
architecture.
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4. Modeling of MicroCSP Integrated into HVAC Systems

The optimal control and integration of a MicroCSP system into the HVAC system of a
building require modeling of every component of the overall system. Indeed, as shown in
Figure 7, the models of the different component should exchange information in such a
way that the overall model can reflect the behavior of the actual system in the most reliable
manner. Such complex systems that combine thermal, thermo-mechanical, and electrical
systems are challenging to model, particularly if one tries to develop high-fidelity models.
This review focuses on the optimal control of the MicroCSP integrated into the building
HVAC systems and does not focus on the issues of controlling the individual components.
Thus, internal models of each MicroCSP components are not discussed, and only low-
order control-oriented models that describe the energy flow and conversion through the
systems are discussed. In this section, required governing equations to simulate MicroCSP
for integration into HVAC systems are explained. The selected components are based
on a common MicroCSP architecture. The models of the selected MicroCSP and HVAC
components are experimentally validated in our previous works [10,12,13,15,85,86].

Solar 
Field

Organic
Rankine

Cycle

TES Building 
HVAC

; ;;

Figure 7. Overview of MicroCSP components models along with system variables.

4.1. Solar Collectors

The solar field in MicroCSP applications is composed of short PTC (Figure 8) with less
than 100 m of length, hence a one-dimensional collectors model is used [87]. For each time
step t, starting with an inlet temperature Tht f (t, 0), HTF heat capacity Cht f (t, 0) and mass
flow rate ṁ are determined:

1. Finding the solar power absorbed by 1-m section of the absorber:

Q̇gain = DNI · Aaper · τgl · αabs · ρcl · ηe f f · K (1)

where DNI is the direct normal irradiation (W/m2); Aaper is the aperture area and is
determined by Aaper = a · L (m2) with L = 1 m; τgl is the transmittance of the glass
envelope; αabs is the absorptance of the absorber; ρcl is reflectance of the clean mirror; ηe f f
is the effective optical efficiency; and K is the incident angle modifier (K = 1 for normal
incidence).

2. Finding the heat loss in 1-m section using the following correlation:

Q̇loss = a0 + a1 · (Tht f − Tamb) + a2 · T2
ht f + a3 · T3

ht f + a4 · DNI · K · T2
ht f +

√
Vw ·

(
a5 + a6 · (Tht f − Tamb)

)
(2)

where Vw is the wind speed (m/s) and ak are the correlation coefficients given in refer-
ence [88].
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Figure 8. Schematic of a PTC.

3. Calculating the power absorbed by the fluid over 1-m section:

Q̇abs = Q̇gain − Q̇loss (3)

4. Finding the outlet temperature of the 1-m section:

Tht f
SOL,out = Tht f

SOL,in +
Q̇abs

ṁht f · Cht f
(4)

where Cht f and ṁht f are, respectively, the heat capacity and the mass flow rate of the
HTF.

5. Finally, Steps 1–4 are repeated for each section to simulate the HTF temperature for
the total length of the collectors.
The inlet temperature of each 1-m section is the outlet temperature to the next collector
section, while the inlet temperature of the first section is the outlet to the TES tank
and the outlet temperature of the last section is the inlet temperature to the TES tank.

4.2. Thermal Energy Storage

Optimal control of MicroCSP operations involves controlling the energy flows within
the TES system. The optimal controller must include the state of charge (SOC) of the
TES in its constraints and maintain it within the allowed range. Since the TES systems
in MicroCSP are not intended for long-term storage, the temperature of the HTF inside
the TES tanks/reservoirs is assumed to remain constant over time. Hence, the SOC is
estimated based on the mass/volume of the HTF, depending on the TES technology.

4.2.1. Single-Tank System

The simplest TES system used in MicroCSP applications is the single-tank system.
The entire volume of the HTF is stored in the single reservoir where a thermocline forms a
separating layer between the hot HTF at the top of the reservoir and the cold HTF at the
bottom. The temperatures in both cold and hot HTF are assumed to remain constant over
time; hence, the energy balance of the TES is given by [89]:

ETES
k+1 = ETES

k +

(
ηch · Q̇SOL,k −

Q̇TES,k

ηdi

)
· ∆t (5)
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where ETES
k is the energy in the TES at instant k; ηch and ηdi are charging and discharging ef-

ficiencies of the TES, respectively; Q̇SOL is the thermal power from the PTC solar array; and
Q̇TES is the thermal power from the TES. Assuming that the TES reservoirs are well insu-
lated, the charging and discharging efficiency of the TES can be set to 1 (i.e., ηch = ηdi = 1 ).
Hence, the SOC of the TES is estimated at each time step k as follows

SOCTES
k+1 = SOCTES

k +
∑k+1

k (Q̇SOLk − Q̇TESk ) · ∆t
CTES

(6)

where CTES is the heat capacity of the TES.
The presented single-tank model assumes that the HTF is separated by a thermocline

into two volumes of HTF with constant temperature in each volume. However, a more
detailed modeling approach can be used by considering the stratified thermocline single-
tank TES system, as shown in Figure 9. It is a vertical cylinder divided horizontally into
N equal layers called nodes. For each node, the energy balance equations are derived to
capture the thermal energy coming from the solar field (QSOL), energy loss (Qloss), and the
dispatched energy to the ORC (QTES). A system of N differential equations is obtained [90].

Figure 9. Schematic of stratified themocline TES. (Reprinted from [90] with permission of Elsevier).

4.2.2. Two-Tank System

The two-tank TES system is one of the well-known technologies used in MicroCSP ap-
plications. As the name suggests, the two-tank TES system is composed of two fully-mixed
reservoirs that usually have a cylindrical shape and which can store the entire quantity of
HTF. During charging mode, the low-temperature HTF leaves the “cold tank” into the solar
fields to absorb the solar heat before accumulating at the “hot tank”. During discharging,
the HTF is dispatched from the “hot tank” into the power engine. After transmitting its
thermal energy to the working fluid (WF) of the ORC through the evaporator, the low-
temperature HTF is pumped back to the “cold tank”. In terms of modeling, the equations
applied to the single-tank TES system are valid for the two-tank TES system. Indeed, from a
thermodynamic point of view, both systems are identical, since we have neglected the heat
transfer between hot and cold fluid in the single-tank TES system. The only difference is
that the boundaries between hot HTF and cold HTF are physical in the case of the two-tank
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TES system. Thus, the estimation of the SOC of two-tank TES at each time step k is the same
as Equation (6); however, CTES, in this case, is the TES heat capacity of both reservoirs.

4.3. Thermal Power Engines

Dynamic modeling of Organic Ranking Cycles (ORC) engines for solar applications
is well reported in the literature [88,91–96]. However, most of the dynamic ORC models
are complex and computationally intensive, which makes them undesired for real-time
optimal control applications. A control-oriented model of the ORC engine is detailed in
this section.

Figure 10 presents the schematic of the ORC engine. The first process of the ORC cycle
is evaporation. In this process, the heat absorbed by the evaporator is consisting of the
heat supplied by the HTF dispatched from the TES to the WF through the heat exchanger,
which is given by the following equation:

Q̇TES = (UA)HE · ∆TLMTD (7)

where U is the heat transfer coefficient of the plate heat exchanger derived from [97,98]
and A is the plate area.

Turbine Pump Motor

3

Evaporator

Condenser

4

2 1

Figure 10. Schematic of the organic Rankine cycle (ORC) system. The circled numbers show the four
states of the ORC system. (Adapted from [20] with permission of Elsevier).

To determine the temperature differences and the heat transfer between the HTF and
the WF at the heat exchanger, Mitterhofer and Orosz [33] proposed to use the logarithmic
mean of the temperature differences (LMTD) between: (i) the HTF entering and the WF
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leaving the heat exchanger; and (ii) the HTF exiting the heat exchanger and the WF
entering it.

∆TLMTD =
(Tht f

TES,out − Tw f
2 )− (Tht f

TES,in − Tw f
1 )

ln
(Tht f

TES,out − Tw f
2 )

(Tht f
TES,in − Tw f

1 )

(8)

However, the LMTD method assumes that the temperatures of the HTF and the WF
are constant and that the mass flow rate does not vary. This assumption is not valid for the
control strategies that dispatch the HTF from the TES to have variable energy output from
the power engine. Hence, the thermal power supplied to the ORC by the TES (Q̇TES) can
be estimated by [20]

Q̇TES = ṁht f
TES · cp,ht f · (T

ht f
TES,out − Tht f

TES,in) (9)

The equations that govern the power flow in an ORC engine are

PGross = ηgen · ṁw f
ORC · (h2 − h3) (10a)

PMotor =
ṁw f

ORC · (h1 − h4)

ηMotor
(10b)

PORC = PGross − PMotor (10c)

Q̇COG = ṁw f
ORC · (h3 − h4) (10d)

Q̇TES = ṁht f
TES · cp,ht f · (T

ht f
TES,out − Tht f

TES,in) (10e)

where Pgross and PORC are, respectively, the gross and net electrical power generated by the
turbine generator of the ORC; Ppump is the power consumed by the ORC pump; Q̇COG is
the thermal power produced by the ORC; h1, h2, h3, and h4 are the enthalpies of the WF
at the inputs and outputs of the turbine and the pump, respectively; ηpump and ηgen are
the pump efficiency and turbine generator efficiency, respectively; ṁtes and ṁw f are the
mass flow rates of the TES fluid and WF of the ORC, respectively; and Tev,in and Tev,out are,
respectively, the temperatures at the input and output of the ORC evaporator. Further, it
can be shown that:

PORC = f (ṁht f
TES) (11a)

Q̇COG = g(ṁht f
TES) (11b)

It should be noted that the control-oriented model of the ORC needs to be calibrated
using experimental or manufacturer data.

4.4. HVAC System Modeling

There are different HVAC systems that can be used in buildings. Heat pumps (HP)
are considered as one of the cleanest energy-efficient HVAC systems to supply heat to
buildings. Here, an HP model is explained that is linked to a MicroCSP system below. The
energy conversion in a HP is described by [10]:

PH
i,t =

ṁsu
i,t · cp,air · (T su

i,t − THP
i,t )

COP(Thot
t )

(12)

where Pi,t is the electrical power consumed by the HP; ṁsu
i is the the mass flow rate of

supply air; T su is the temperature of the supply air; THP
i,t is the HP inlet air temperature;

Thot
t is the heat source temperature of the HP; and COP is the coefficient of performance of

the HP which is a function of the heat source temperature.
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The power consumed by the HVAC fan (PF
t ) is proportional to the cubic power of the

mass flow rate of the HTF:

PF
t = γF ·

(
ṁsu

i,t

)3
(13)

where γF is the fan coefficient.

4.5. Building Thermal Model

The building thermal model is a central component in the design of the optimal HVAC
control strategies since it simulates the thermal dynamics that affect the temperature of the
rooms and HVAC load. The most common approach for having a control-oriented thermal
model of the building is the nodal approach based on the thermal/electrical analogy
where electrical elements such as current sources, resistors, and capacitors are utilized to,
respectively, represent heat generation, heat transfer among building thermal zones, and
heat storage in the room air and walls [10,11,13].

Using the thermal/electrical analogy, the building can be simulated as an electrical
circuit where the nodes represent the rooms and walls of the building, connected through
electrical elements. Figure 11 illustrates a sample room and its analogous electrical circuit.
i = 1, . . . , q are the identifier numbers assigned to each room. The heat transfer of the walls
between nodes i and j is given by [13]:

Cw
i,j ·

dTw
i,j

dt
= ∑

k∈N w
i,j

Tr
k − Tw

i,j

R
wi,j
k

+ rw
i,j · γi,j · Aw

i,j ·Qrad
i,j (14)

where Tw
i,j is the wall temperature; Cw

i,j is the wall heat capacity; Tr
k is the temperature of

the rooms neighboring to the wall; R
wi,j
k is the thermal resistance between the wall and the

adjacent node k; Aw
i,j and γi,j are, respectively, the area and the radiation heat absorptivity

of wall; rw identifies whether the wall is peripheral (rw=1) or internal (rw=0); Qrad
i,j is the

radiative heat flux density on the wall; andN w
i,j represents the set of the wall adjacent nodes.

The ith room temperature (Tr
i ) is determined by the following equation [10]:

Cr
i ·

dTr
i

dt
= ∑

k∈N r
i

[Tk − Tr
i

Ri,k
+ πi,k · τw

k · A
win
i,k ·Q

rad
i

]
+ ṁr

i · cpavg · (Ts
i − Tr

i ) + Q̇int
i (15)

where Cr
i represents the heat capacity of the room air; Tk is the temperature of adjacent

node k; Ts
i , ṁr

i , and cpavg are the temperature, the mass flow rate, and the average specific
heat capacity of the supply air to the room, respectively; πi,j identifies whether there is a
window between the room i and node k (πi,j = 1) or not (πi,j = 0); Awin

i,j is the window’s

area; τw
i,j is the transmissivity of window’s glass; Qrad

i is the radiative heat flux density on

the window room i; and Q̇int
i is the room’s intrinsic heat generation. N r

i represents the set
of the adjacent nodes to the room.

The disturbance to thermal model of the building is approximated as a linear function
of Tr

k (t), Q̇rad
i (t) and Q̇int

i (t) [11]:

w(t) = a · Tr
k (t) + b · Q̇rad

i (t) + c · Q̇int
i (t) (16)

Using Equations (14)–(16), the state-space equation of the thermal model of the build-
ing is:

ẋ(t) = f (x(t), u(t), w(t), t) (17a)

y(t) = C · x(t) (17b)
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where x(t) ∈ Rn is the state vector composed of the temperatures of the building’s rooms
and walls; y(t) ∈ Rm is the output vector including the building rooms temperatures; and
u(t) is the input vector composed of the temperature and mass flow rate of the supply air.
C is the output matrix with the proper dimensions to select room temperatures from the
state vector.

Figure 11. Schematic of a sample building room using the thermal/electrical analogy. (Adapted
from [11] with permission of Elsevier).

5. Optimal Model Predictive Control

The dynamic models in Section 4 are implemented into optimal control frameworks
to optimize combined MicroCSP and HVAC systems. In this section, the design of optimal
model predictive controllers (MPCs) for the combined MicroCSP and building HVAC
system is discussed. The designed MPCs are classified into three branches based on their
control objectives, as shown in Figure 12. The first branch minimizes the building energy
consumption. The second branch and the third branch minimize the electrical energy
cost of the building considering the dynamic pricing and the electrical power grid status,
respectively. Each branch in Figure 12 further lists the MPC frameworks designed and
evaluated by our prior studies in [16–22]. This Section is organized into two parts. First, the
structure and formulation of each of the designed MPC (Figure 12) is discussed. Next, the
results of the MPCs in Figure 12 are discussed and compared with a common rule-based
controller (RBC).
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Building to Grid
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Figure 12. Classification of MPC frameworks for MicroCSP integrated into building HVAC systems.

5.1. Control Structure

In this section, the structure of the designed MPCs for a common heating application
(Architecture (a) in Figure 6) of the combined MicroCSP and building HVAC system is
discussed for a same building testbed. Lakeshore Center building at Michigan Technolog-
ical University is the testbed utilized in all our prior studies in [16–22]; thus, it is briefly
explained here. This is an office building with three floors. Each individual office room is
considered as a thermal zone. The thermal zone is heated in three stages (Figure 13):

• In the air handling unit (AHU), air from the outside is preheated by exchanging energy
with return air from the thermal zone in the energy recovery ventilator (ERV).

• In the MicroCSP, solar energy is converted to low-grade thermal energy (Q̇COG) and
electricity (PORC). The preheated air in the AHU is further heated by the low-grade
thermal energy from the ORC.

• The Heat pump (HP) further heats the air from the AHU to the thermal zone by using
electricity from the ORC and/or from the power grid.

5.1.1. Building Energy Management

The energy of the building can be optimized by using the first and/or second law of
thermodynamics. The first law of thermodynamics encapsulates the energy usage and the
energy conversion efficiency of the system. The second law of thermodynamics encap-
sulates the quality of different forms of energy (solar energy, thermal energy, electricity,
etc.) in a given environment. The second law of thermodynamics further differentiates
the total input energy into the available energy, known as exergy, and unavailable energy.
In tune with that, the structure of the designed MPCs based on the first and second laws
of thermodynamics are discussed in this section. The MPCs designed by applying the
first and second laws of thermodynamics are termed as the energy-based MPC (EMPC)
and exergy-based MPC (XMPC), respectively. In addition to MPCs, the structure of the
designed adaptive neuro-fuzzy inference system (ANFIS) controller trained by EMPC data
is discussed. The ANFIS controller is designed as a compromise between optimality and
computational effort of the controller.
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Figure 13. MicroCSP and HVAC testbed in this work. (Adapted from [17] with permission of
Elsevier).

5.1.1.1. Energy-Based Model Predictive Controller (EMPC)

Figure 14 shows the structure of an EMPC [18,20] designed for the combined MicroCSP
and building HVAC system. The designed EMPC maintains the temperature (Tr) of each
room of the building within the ASHRAE specified upper and lower comfort temperature
bounds (T̄r

t and Tr
t ), respectively, by minimizing the electrical energy usage of the building.

Equation (18) shows the electrical energy usage (Eb) of the building HVAC system.
PH and PF are calculated using Equations (12) and (13), respectively.

Eb =

t f

∑
t=0

[(PH [t] + PF[t]) · ∆t] (18)

The electrical energy consumption of the combined MicroCSP and building HVAC
system (ESys) is calculated as shown in Equation (19).

ESys = Eb −
t f

∑
t=0

(PORC[t] · ∆t) (19)

At any given time (t), the HVAC fan power consumption (PF) is assumed to be constant
for the testbed studied, whereas the HVAC power consumption (PH) is proportional to
T su (Equation (12)), and the electrical power from the ORC (PORC) is a function of ṁtes
according to Equation (11).
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Figure 14. Structure of the energy-based MPC to control MicroCSP and HVAC systems. (Reprinted
from [20] with permission of Elsevier).

The designed EMPC minimizes the electrical energy usage of the building by op-
timizing the HP supply temperature (T su), and the mass flow rate of TES fluid (ṁtes)
at the current time (t) and future time (t + k) by utilizing the ambient temperature and
solar irradiation predictions, and the ASHRAE specified temperature bound. The ambient
temperature and solar irradiation forecast data can be obtained from commercial organi-
zations like Solcast [99]. Furthermore, the designed EMPC is bound by constraints and
manufacturer specified limits. In the designed EMPC, soft constraints are used by adding
slack variables (ε̄ and ε) and multiplying the slack variables by a weight factor (ρwt) to
be minimized while ensuring optimal solution at all times. The objective function of the
designed EMPC is detailed in Equation (20) subject to the constraints in Equation (21).

min
ṁtes ,T su ,ε̄,ε

{ESys + ρwt · (|ε̄|+ |ε|)} (20)

Subject to the following constraints:

Tt+k+1|t = ATt+k|t + BT su
t+k|t + Edt+k|t (21a)

Tz
t+k|t = CTt+k|t (21b)

PORC,t+k|t = f (ṁtest+k|t) (21c)

Q̇COG,t+k|t = g(ṁtest+k|t) (21d)

SOCTES
t+k+1|t = SOCTES

t+k|t +
∑

t+k+1|t
t+k|t (Q̇SOLt+k|t − Q̇TESt+k|t).∆t

CTES
(21e)

SOCTES
1 = SOCTES

tmax (21f)

SOCTES ≤ SOCTES
t+k+1|t ≤ SOCTES (21g)

0 ≤ ṁtest+k|t ≤ ṁmax (21h)

THP
t+k|t ≤ T

su
t+k|t ≤ T̄t+k|t (21i)

Tr
t+k|t − εt+k|t ≤ Tr

t+k|t ≤ T̄r
t+k|t + ε̄t+k|t (21j)

εt+k|t, ε̄t+k|t ≥ 0 (21k)
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The thermal dynamics of the building rooms are captured by the equality constraints
in the state-space Equations (21a) and (21b); the ORC model is included in Equations (21c)
and (21d); SOC of the TES is estimated in Equation (21e); Equation (21f) presents the
charge sustaining constraints of the TES; Equation (21g) bounds the SOC of the TES
within the lower and upper bounds set to 5% and 95%, respectively; Equation (21h)
is the maximum HTF mass flow rate (ṁmax) dictated by the ORC manufacturer [100];
Equation (21i) shows the constraints on the supply air temperature that also represents
the constraint on the control input; Equation (21j) defines the temperature bounds of the
thermal zone temperature and includes the slack variables that relaxes this constraint to
add flexibility and guarantee the existence of a solution of the optimization; and, finally,
Equation (21k) enforces that the slack variables are always positive.

Offline EMPC-Trained Adaptive Neuro-Fuzzy Inference System (ANFIS) Controller

The designed EMPC is computationally expensive and is not easily implementable
in low-cost HVAC controllers currently available in the market. To mitigate this problem,
we proposed in [19] an adaptive neuro-fuzzy inference system (ANFIS) controller. The
designed ANFIS controller is computationally inexpensive and easily implementable since
it is rule-based and capable of approximating nonlinear functions.

The designed ANFIS controller consists of two cascaded ANFIS models acting one af-
ter the other. Each ANFIS model consists of a five-layer artificial neural network (Figure 15)
that is trained offline using data from the EMPC (Figure 14) for a broad operating range
of the building. The first ANFIS model is fed by the temperature difference (∆T) between
the room temperature and the lower comfort temperature bound, and the SOC of the TES.
The output of the first ANFIS model is the thermal power dispatched from the TES (Q̇TES).
Then, the second ANFIS model takes the thermal power dispatched from the TES as an
input along with the difference between the room temperature and the lower comfort
temperature bound. Finally, the designed ANFIS controller commands the required supply
temperature (T su) by deciding the quantity of heat needed from the HP to ensure that the
room air temperature is within the comfort temperature bounds.
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Figure 15. Structure of the EMPC-trained ANFIS controller for the combined MicroCSP and HVAC system.
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5.1.1.2. Exergy-Based Model Predictive Controller (XMPC)

Exergy analysis provides much more insight than energy analysis for the control of
a system to maximize the efficiency in a particular environment [101]. Exergy analysis
can determine the loss of work potential (i.e., exergy destruction) during a process, which
is caused by the irreversibilities and entropy production in a system [102]. Hence, the
optimality of the designed exergy-based MPC (XMPC) [21,22] is determined by the exergy
saving of the combined HVAC and MicroCSP system in a building.

Figure 16 shows the structure of the designed XMPC for the combined MicroCSP and
HVAC system. The designed XMPC maintains the temperature (Tr) of each room in the
building within the specified upper and lower comfort temperature bounds (T̄r

t and Tr
t )

by maximizing the second law efficiency of the combined MicroCSP and building HVAC
system.
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Figure 16. Structure of the exergy-based MPC for the combined MicroCSP and building HVAC
system. (Reprinted from [21] with permission of Elsevier).

Equation (22) shows that reducing the exergy destruction (Ẋdest) or increasing the
exergy recovered (Ẋrec) for a given supplied exergy (Ẋsup) will increase the second law
efficiency (ηI I) of the system.

ηI I =
Ẋrec

Ẋsup
= 1− Ẋdest

Ẋsup
(22)

Equation (23) evaluates the exergy destruction in the building (Ẋb
dest) assuming that

all the building rooms are flowing control volumes. Minimizing the exergy destruction in
the building (Ẋb

dest) minimizes the energy usage of the building accounting for the ambient
conditions. Finally, Equation (24) shows that exergy recovered in the ORC (ẊORC

rec ) is a
function of the mass flow rate of TES fluid (ṁtes) and the operating pressure ratio (rp) of
the ORC.

Ẋb
dest[t] = ∑

i∈Nr
i

( ∑
j∈Nr

i

(1− Tamb[t]
Tr

i [t]
)(

Tr
j [t]− Tr

i [t]

Rw
i,j

)


+ ṁr

i [t] ·
[

cp,air · (T su
i [t]− Tr

i [t])− Tamb[t] · cv,air · ln(
T su

i [t]
Tr

i [t]
)

]

−
mroom

i · cv,air

tsample
·
[
(Tr

i [t]− Tr
i [t− 1])− Tamb[t] · ln

Tr
i [t]

Tr
i [t− 1]

])
(23)
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ẊORC
rec [t] = f (ṁtes[t], rp[t]) (24)

Equation (25) shows the objective function of the XMPC designed to maximize the
second law efficiency of the combined MicroCSP and building HVAC system.

min
T su ,rp ,ṁtes ,ε̄,ε

{Ẋb
dest − ẊORC

rec + ρwt · (|ε̄|+ |ε|)} (25)

The designed XMPC optimizes the HP supply temperature (T su), rp, and ṁtes at the
current time (t) and future time (t + k) knowing the ambient temperature, solar irradiation,
and temperature bound predictions. However, the designed XMPC actuates the TES, ORC,
and HP at the current time (t). The designed XMPC uses soft constraints (ε̄ and ε) to ensure
optimal solution at all times. The designed XMPC is subject to the exergy related equality
constraints in Equation (26) along with the constraints previously listed in Equation (21).

Ẋb
destt+k|t

= ∑
i∈Nr

i

{ ∑
j∈Nr

i

(1−
Tambt+k|t

Tr
it+k|t

)(
Tr

jt+k|t
− Tr

it+k|t

Rw
i,j

)

+ ṁr
it+k|t
· [cp,air · (T su

it+k|t
− Tr

it+k|t
)− Tambt+k|t · cv,air · ln(

T su
it+k|t

Tr
it+k|t

)]

−
mroom

i · cv,air

tsample
· [(Tr

it+k|t
− Tr

it+(k−1)|t
− Tambt+k|t · ln

Tr
it+k|t

Tr
it+(k−1)|t

]}

(26a)

ẊORC
rect+k|t

= f (ṁtest+k|t , rpt+k|t) (26b)

5.1.2. Energy Cost-Based Model Predictive Controller (CMPC)

The designed EMPC in Section 5.1.1.1 minimizes the energy usage of the combined
MicroCSP and building HVAC system. Furthermore, the designed EMPC also minimizes
the electrical energy cost when the price of electrical energy is fixed during a day. However,
EMPC needs to be re-designed to minimize the electrical energy cost of the combined
MicroCSP and building HVAC system when the price of electrical energy is dynamic and
changes during a day. To this end, in our prior works [17,20], we designed variants of
the energy cost-based MPCs (CMPCs) for the combined MicroCSP and building HVAC
systems. Figure 17 shows the structure of the designed CMPC. The designed CMPC
minimizes the electrical energy cost of the building HVAC and MicroCSP system while
maintaining the temperature of the thermal zone within the specified comfort temperature
bounds.

The electrical energy cost is calculated as the product of the locational marginal price
(Ωt) of electricity and the electrical energy consumed by the combined MicroCSP and
building HVAC system (ESys). Section 5.1.1.1 shows that the electrical energy consumption
of the combined MicroCSP and building HVAC system (ESys) is controlled by the HP
supply temperature (T su) and the mass flow rate of TES fluid (ṁtes). In tune with that, the
objective function of the designed CMPC is given in Equation (27), subject to the same
constraints previously listed in Equation (21).

min
ṁtes ,T su ,ε̄,ε

{ESys ·Ωt + ρwt · (|ε̄|+ |ε|)} (27)
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Figure 17. Structure of the MPC to minimize electrical energy cost. (Reprinted from [20] with
permission of Elsevier).

5.1.3. Building to Grid Demand Response Model Predictive Controller (DRMPC)

Building HVAC systems combined with MicroCSP have great potential to provide
ancillary services to support the power grid and participate in the demand response (DR)
programs by readjusting their consumption. Our prior work [16] discusses a building to
grid demand response MPC (DRMPC) that shows the effect of incentives on the participa-
tion of the building to the DR program and its allegiance to the requested DR load.

Figure 18 shows the structure of the designed DRMPC to maintain the room tempera-
ture within the comfort temperature bounds while minimizing the HVAC and MicroCSP
electrical energy cost by considering the DR incentive (Θ) from the grid operator. The
objective function of the designed DRMPC is provided in Equation (28):

min
T su ,ṁtes ,ε,ε̄

(
ESys · (Ωt −Θt) + ρwt · (|ε|+ |ε̄|)

)
(28)

The optimization problem is subject to the constraints listed in Equation (21) along
with the grid power limitation constraint in Equation (29):

PSyst+k|t ≤ PGridt+k
(29)

While the objective function ensures that the building will consume more energy when
the DR incentive is sent by the grid operator, the constraint of Equation (29) guarantees
that the building power consumption (PSys) is always less than or equal to the maximum
allowable building power consumption from the grid (PGrid).

In Equation (28), the electrical energy cost of the combined MicroCSP and building
HVAC system is modified from CMPC in Section 5.1.2 to take advantage of Θ from the
grid operator. Furthermore, Section 5.1.1.1 shows that ESys is controlled by T su, and ṁtes.
Finally, Equation (28) uses soft constraints (ε and ε̄) to ensure feasibility of the solution at
all times.
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Figure 18. Structure of the MPC based on building to grid demand response participation. (Adapted
from [20] with permission of Elsevier)

5.2. Control Results

The controllers in Section 5.1 are implemented for the testbed in Figure 13. Here, the
results from our previous studies [16,19–21] for the same testbed are discussed. To provide
a fair comparison among different control methods, the results are presented for a same
sunny winter day (Figure 19) considering 72 rooms (thermal zones), a prediction horizon
of 24 h, and a 30 min time step. Note that the optimizations were performed through
the Yalmip toolbox [103] in MATLAB® using an open-source solver IPOPT [104] and a
commercial solver Gurobi [105].

0 2 4 6 8 10 12 14 16 18 20 22 24
0

400

800

1200

-10

-5

0

5

Figure 19. Outdoor ambient temperature (Tamb) and solar direct normal irradiance (DNI) and
measured every half an hour for a sample day (18 March 2016) in Houghton, MI, USA. (Reprinted
from [21] with permission of Elsevier).

The baseline rule-based controller (RBC) has the following rules to determine supply
air temperature by the HP:

• The HP is switched off if the room air temperature is above the upper limit for the
desired air temperature of the room (T̄r

i,t).
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• The HP is switched on to its maximum capacity (T su
i,t = T̄i,t) if the room air temperature

is below the lower limit for desired air temperature of the room (Tr
i,t).

• If the room air temperature is between the upper and lower limits for the desired air
temperature of the room, then, to avoid chattering of HP, the HP is switched Off or
On depending on the HP status at the previous time step.

Figure 20 shows the control results of the combined MicroCSP and building HVAC
system when the baseline RBC, EMPC, ANFIS controller, XMPC, CMPC, and DRMPC are
applied. In Figure 20, each section consists of three subplots:

(i) Room air temperature profile, HP supply air temperature, and ASHRAE temperature
comfort bound based on room occupancy

(ii) Heat flow rate and electrical power from the ORC
(iii) Consumed electricity power, localized marginal pricing (LMP), and/or DR signal

from the grid

The performance of each controller in Figure 20 is discussed in the following.

RBC: The room air temperature in Figure 20a1 starts at 21 ◦C and ramps down until it
reaches below the lower temperature bound. Then, the HP is switched on to its
maximum capacity to increase the room air temperature. From 8:30 AM to 7:30 PM,
the heat rate from MicroCSP through the ORC maintains the room air temperature
within the bounds, while the HP is switched off. The electricity and heat rate from the
ORC are shown in Figure 20a2. Electricity from the ORC is used to aid the electrical
consumption of the HVAC fan in the room. At 7:30 PM, the solar energy production
ceases for the day and the heat rate from the TES is fully utilized by the ORC. Hence,
the room air temperature ramps down from 7:30 PM until it reaches below the lower
temperature bound at about 8:30 PM. When the room air temperature reaches below
the lower temperature bound, the HP switches on again to its maximum capacity.
Figure 20a3 shows the power consumed by the HP from the grid.

EMPC: This optimal controller predicts room air temperature and available solar thermal
energy via ORC; thus, it predicts when the room air temperature is about to violate
the lower temperature bound and supplies the minimum amount of energy required
for the HP to maintain the room air temperature at the lower temperature bound. In
addition, EMPC controls the TES to optimally store the heat from the PTC and supply
it to the ORC. From 8:30 AM to 6:30 PM and from 7:30 to 8:30 PM, the heat rate from
ORC maintains the room air temperature within the temperature bounds, while the
HP is switched off. The electrical power and heat flow rate from the ORC are shown
in Figure 20b2. Electricity from the ORC is used to aid the electrical consumption of
the HVAC fan in the room. After 8:30 PM, the room air temperature ramps down
until the end of the day. Compared to Figure 20a3, Figure 20b3 shows much less
electrical power consumed by the HP from the grid.

ANFIS: ANFIS controller is a rule-based controller trained by the optimal EMPC. There-
fore, the ANFIS controller tries to mimic optimal EMPC but does not have the
capability to predict like EMPC. In tune with that, Figure 20c1 shows that the room air
temperature is maintained near the lower temperature bound. From 7:00 AM to 8:30
PM, unlike EMPC, the room air temperature is not always at the lower temperature
bound but the room air temperature goes above and below the lower temperature
bound. In addition, by comparing Figure 20a1,c1, it can be seen that the magnitude of
the room air temperature violations is reduced when we move from RBC to ANFIS
controller. This is because RBC does not undergo training and mainly acts on current
measured room temperature and previous control actions but the ANFIS controller is
trained by the optimal EMPC. Figure 20c2 shows that the ORC is operational from
9:00 AM to 8:30 PM, and the heat rate from ORC maintains the room air temperature
within the temperature bounds, while the electricity from the ORC is used to aid the
electrical consumption of the HVAC fan in the room.
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Figure 20. Control results of the different control frameworks for a winter day shown in Figure 19. (Adapted from [16,19–21]).
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XMPC: Figure 20d1 shows the room air temperature when the optimal XMPC is applied
to the combined MicroCSP and building HVAC system. XMPC minimizes the exergy
destruction in the room and maximizes the exergy recovered in the ORC. Hence,
XMPC adds the minimum amount of heat to the room such that the exergy destruction
of the room is minimum. Additionally, XMPC operates the ORC at the optimal
pressure ratio (rp) so that the exergy recovered from the ORC is maximized. HP
supplies the heat to the room from 7:00 AM to 8:30 AM and from 7:00 PM to 8:30
PM, when there is no availability of any solar thermal energy. This is reflected in the
grid power consumption shown in Figure 20d3. However, Figure 20d2 shows that
from 8:30 AM to 7:00 PM the heat rate from ORC maintains the room air temperature
within the temperature bounds, while the electrical power from the ORC supplies
the HVAC fan in the room.

CMPC: Figure 20e1 depicts the profiles of the room air temperature and the supply air
temperature within the comfort temperature bounds. Based on the predictions of the
LMP of electricity from the power grid (Figure 20e3), the CMPC preheats the room
during the non-occupancy period, around 4:30 AM when electricity is cheaper, to
ensure that the room air temperature never violates the temperature bounds, and
the energy cost of heating the room is minimized. During the occupancy period, the
CMPC provides just the amount of heat, through the supply air, to keep the room air
temperature at the lower bound reducing the cost of energy. The CMPC controls the
TES to optimally store the heat from the PTC and supply it to the ORC when needed.
As shown in Figure 20e2, the cogenerated heat is supplied to the room from 8:30 AM
to 3:00 PM and from 3:30 to 8:30 PM to avoid running the HP with electricity since
the LMP is high during this period. The HP is only turned on when the LMP is cheap
around 3 PM as reflected by the power consumed from the grid in Figure 20e3.

DRMPC: DRMPC seeks to minimize its energy cost of the building and increase its profit
by contributing to the load following DR program. This means that the building
should consume extra energy to follow the DR load dictated by the grid operator.
Hence, an optimal incentive, Θ = 180$/MWh in this case, must be provided by the
grid operator to compensate for the extra energy cost [16]. Figure 20f1 shows that,
although the room air temperature is inside the comfort bounds, the DRMPC turns
on the HP at 4:30 AM when the LMP is low (Figure 20f3), to prevent temperature
violation. During the occupancy period, the DRMPC reduces the HVAC energy
consumption by supplying the necessary heat to keep the room air temperature at
the lower temperature bound from 7 AM until the DR signal is received at 10:30 AM
(Figure 20f3). From that time, the room air temperature starts increasing since the
building is providing DR by consuming electricity in the HP, as shown in Figure 20f3.
The electricity and heat cogeneration of the ORC are depicted in Figure 20f3.

The total energy consumption and energy cost of the building for the results in
Figure 20 are provided in Table 4 for comparing the six controllers. The following informa-
tion is obtained from the data in Table 4.

• By changing the controller from RBC to EMPC, the energy usage of the building is
reduced by 38%.

• By changing the controller from RBC to ANFIS controller (trained by EMPC data
for a broad building operating range), the energy usage of the building is reduced
by 34%. However, the energy usage is 4% higher than when optimal EMPC is used.
However, the trade-off achieved is a 90% reduction in computational cost, which
enables implementation in low-cost HVAC controllers.

• By changing the controller from RBC to XMPC, the energy usage of the building is
reduced by 45%. The energy usage of the building of XMPC reduces by 7%, compared
to EMPC. This is because EMPC optimally coordinates the HP and the MicroCSP
to reduce the quantity of energy used by the building, while XMPC maximizes the
availability of the energy to the building in specified ambient conditions.
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• By changing the controller from RBC to CMPC, the electrical energy cost of the
building is reduced by 70%. The reduction in the electrical energy cost of the building
when CMPC is used is higher than when EMPC, ANFIS controller, or XMPC is used.
This is because, EMPC, ANFIS controller, and XMPC do not consider LMP in their
objective functions.

• By changing the controller from RBC to DRMPC, the energy cost of the building is
reduced by optimally coordinating the HP and MicroCSP while considering the LMP
and DR incentive. Furthermore, Table 4 shows that, when DRMPC is applied, the
energy consumption of the building is maximum (increases by 124%, compared to
RBC) and the energy cost of the building is minimum (decreases by 99%, compared
to RBC). This is because the objective function of DRMPC is formulated so that the
energy usage of the building is maximized when the grid shows low LMP and/or
shows a high DR incentive.

Table 4. Comparison of the different control frameworks on energy consumption and the HVAC electrical energy cost for a
sample day (18 March 2016).

Control
Energy Consumption

[kWh/Day]
Energy Saving * [%]

Energy Cost
Consumption [$/Day]

Cost Saving * [%]

RBC [20] 208.7 - 21.5 -
EMPC [20] 130.3 37.7 13.6 36.7

ANFIS # [19] 138.5 33.6 17.3 19.5
XMPC [21] 114.1 45.3 12.4 42.3
CMPC [20] 134.3 35.6 6.4 70.2

DRMPC [16] 467.7 −124.1 0.2 99.1

* Percentages are calculated by comparing with the baseline RBC. # Computational time of the ANFIS controller
reduces by 90% in comparison with the EMPC.

The results in Table 4 do not account for the prediction uncertainties of the weather
conditions, the solar irradiation, and the LMP. Thus, they can be subject to interpretation.
Our previous works in [17–21] also quantify the range of energy and electrical energy
cost savings of the combined MicroCSP and building HVAC system by considering the
prediction uncertainties of the controller inputs and performing Monte-Carlo simulations
(MCS). The prediction uncertainties are generated by adding a white noise with a signal-
to-noise ratio of 5 dB to the controller inputs, namely the ambient temperature, the solar
irradiation, and the LMP, for the sample day (Figure 19).

Figure 21 shows sample MCS results performed using at least one hundred randomly
generated controller inputs. Figure 21a depicts the probability distribution of the en-
ergy savings of the combined MicroCSP and building HVAC system by applying EMPC,
compared to using RBC. Additionally, Figure 21b depicts the probability distribution of
electricity cost savings when CMPC is applied to the combined MicroCSP and building
HVAC system, compared to when RBC is applied. Figure 21 shows that the energy savings
is at least 37% and the cost savings is at least 70% for more than half of the instances. In
addition, Figure 21 shows that the building energy-saving and cost saving will always be
above 33% and 68%, respectively. Finally, Table 5 shows the range, mean, and standard
deviation of the building energy or cost savings when we change from the baseline RBC to
the designed optimal controllers.
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(a)Energy saving probability of EMPC, compared to RBC
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(b)Cost saving probability of CMPC, compared to RBC
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Figure 21. Monte-Carlo simulation results of the combined MicroCSP and building HVAC system
showing the probability of: (a) the energy savings when EMPC is applied; and (b) the electricity cost
savings when CMPC is applied. The reported numbers are by comparing to when RBC is applied.
(Reprinted from [20] with permission of Elsevier).

Table 5. Summary of the Monte-Carlo simulation results of the different control frameworks by
considering prediction uncertainties.

Control Type Range Mean Standard Deviation

Energy Saving [%] *
EMPC [20] 33.5–41.5 37.5 2.5
ANFIS [19] 26.5–37 33 3.4
XMPC [21] 44–46.5 45 0.7

Cost Saving [%] *
CMPC [20] 68.5–71.5 70 0.9

* Percentages are calculated by comparing with the baseline RBC.
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6. Summary and Recommendations for Future Directions
6.1. Summary

This paper presents an overview of optimal integration and control of micro-scale
concentrated solar power (MicroCSP) systems (i.e., rated power < 1 MW) into the building
heating, ventilation, and air-conditioning (HVAC) system. This integration requires well-
designed control strategies in order to fully exploit the additional degrees of freedom
offered by the MicroCSP. The rule-based controller (RBC) is the simplest and most used
control technique for HVAC systems in buildings. It is based on a pre-determined set
of rules that are implemented to control the behavior of a system. However, due to the
complexity of the building HVAC system in tandem with MicroCSP, the development of
optimal rules for the RBC to control this system is challenging. In fact, the RBC, in this case,
should be able to consider not only the temperatures of the building rooms but also the
state of charge (SOC) of the thermal energy storage (TES) system, the solar field production,
and the power engine efficiency, as well as the uncertainties related to each one of these
components.

This paper looks at various optimal control strategies applied to the combined Mi-
croCSP and building HVAC system. Figure 22 shows the summary of control results of
the designed optimal controllers compared to RBC. The building energy savings reduce
by 38% when an energy-based model predictive controller (EMPC) is applied to the com-
bined MicroCSP and building HVAC system instead of using the RBC. Furthermore, by
implementing EMPC trained adaptive fuzzy-neuro inference system (ANFIS) controller,
a compromise between building energy savings and the computational factor is utilized.
The building energy savings by the ANFIS controller reduces by 4% but the computational
factor decreases by 73%, compared to that in the EMPC.

EMPC ANFIS Controller
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Figure 22. Summary of optimal controllers performance, compared to the rule-based controller for
the sample day in Figure 19. Computational factor is calculated as the computational time of the
controller divided by the computational time of RBC.

The exergy-based model predictive controller (XMPC) reduces the building energy
savings by 45%, compared to when RBC is applied. Furthermore, XMPC shows the
maximum building energy savings; however, the highly nonlinear exergy functions make
XMPC the most computational expensive among the optimal controllers discussed.

The control frameworks of the energy cost-based model predictive controller (CMPC)
and the building to grid demand response model predictive controller (DRMPC) are
designed to reduce the building energy cost when the combined MicroCSP and building
HVAC system is connected to a power grid. The application of CMPC reduces the building
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energy cost by 70%, compared to that in the RBC. This cost-saving is increased to 99%
when DRMPC is used by taking advantage of grid incentives to accommodate DR requests
by the grid.

Monte-Carlo simulation (MCS) results show that moving from RBC to XMPC guaran-
tees the lowest variations in building energy savings among the five designed controllers.
In addition, MCS results show that the ANFIS controller, which is trained offline and
cannot optimally adapt to the uncertainties, shows the highest variations in the building
energy savings, compared to that in the RBC. Finally, MCS results also show that electrical
cost savings of the building HVAC system present a low variability when applying CMPC
instead of RBC.

6.2. Recommendations for Future Directions

After evaluating the presented literature in this review paper, the authors propose the
possible future research directions on the optimal integration of MicroCSP and building
HVAC system, as listed below:

• Exergy-Based MPC: The application of optimal exergy-based MPC (XMPC) to the
combined MicroCSP and building HVAC system has shown high potential for building
energy savings. XMPC is robust to the variations in the outdoor conditions (Table 5),
whereas the downside of XMPC is the computational cost (Figure 22) of solving the
non-linear exergy-based equations of the MicroCSP and the building HVAC system.
This computational limitation is addressed by substantial growth in future generations
of controllers and a reduction in the cost of computational resources. The capabilities
of the controllers currently available in the market [106,107] warrant the feasibility of
XMPC. Thus, XMPC could be designed for different MicroCSP and HVAC systems.
In particular, XMPCs can outperform energy-based MPCs where different energy
conversion systems (e.g., absorption chillers) are involved.

• Robust MPC: Similar to other renewable energy-based generation systems, MicroCSP
production is subject to stochastic behavior of solar energy and weather condition
which causes uncertainty in the predictions. This uncertainty combined with the low
accuracy of the control-oriented models affects the results of the MPC controllers.
To tackle this issue, robust techniques such as robust MPC [108,109] and stochastic
MPC [110,111] could be investigated for the optimal control of MicroCSP and building
HVAC system.

• Machine Learning-Based Control: In recent years, artificial intelligence (AI) has infil-
trated all areas, and. more precisely, machine learning (ML)-based control techniques
have been widely deployed due to the proliferation and availability of computational
power [112,113]. These techniques have been adopted for the control of complex en-
ergy systems especially with the presence of nonlinearities. Likewise, the combination
of MicroCSP and building HVAC systems results in a complex system that could bene-
fit from the synthesis of ML-based controllers. Moreover, the ML techniques combined
with MPC can overcome the prediction uncertainties [114–117]. Indeed, with available
training data, these ML-based MPC controllers can learn to accurately predict the
available MicroCSP production, on a cloudy versus a sunny day for instance, and
adjust the control output accordingly.

• Experimental Setup Integration and Controller Implementation: Many experimental
setups for MicroCSP systems have been presented in the literature where researchers
focused on the experimental validation of the models. However, experimental setups
investigating the integration of MicroCSP with the HVAC system of buildings as
well as optimal controllers implementation are lacking. Thus, more work needs to
be carried out in this direction in order to implement and validate different control
techniques.

• Integrated Optimal Design and Control: The design and sizing of the MicroCSP
components such as the thermal energy storage system (TES), the ORC turbine, and the
solar field as well as the selection of the heat transfer fluid (WF) and the working fluid
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(WF) have a considerable effect on the system performance. The optimal design of this
component is well covered in the literature [20,27,31,33,64,88,93,94,118]. However,
there is lack of combined optimal design and control studies to integrate the design
and optimal control of MicroCSP system and building HVAC since the combined
optimal sizing and control can provide the ultimate energy saving for MicroCSP and
HVAC systems.

• Power Grid Integration: The optimal control and integration of MicroCSP into the
HVAC system contribute to the reduction of the building energy and cost, depending
on the objective function. The flexibility that the MicroCSP brings to the building can
be extended to benefit the power grid as well. Indeed, the building to grid integration
presented in this review showed how the MicroCSP allowed the building to react to
the variable electricity pricing and the demand response incentives for load following.
This paves the way for more in-depth investigations of the potentials of MicroCSP to
other types of ancillary services such as frequency regulation, and voltage control.
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Abbreviations
AHU Air Handling Unit
ANFIS Adaptive Neuro-Fuzzy Inference System
CMPC Cost-Based Model Predictive Controller
COP Coefficient of Performance
CSP Concentrated Solar Power
DNI Direct Normal Irradiance
DOE Department of Energy
DR Demand Response
DRMPC Building to Grid Demand Response Model Predictive Controller
EMPC Energy-Based Model Predictive Controller
ERV Energy Recovery Ventilator
GHG Greenhouse Gas
HP Heat Pump
HTF Heat Transfer Fluid
HVAC Heating, Ventilation, and Air Conditioning
IEA International Energy Agency
LCOE Levelized Cost Of Electricity
LFR Linear Fresnel Reflector
LMTD Log Mean Temperature Difference
MicroCHP Micro-scale Cogenerated Heat and Power
MicroCSP Micro-scale Concentrated Solar Power



Energies 2021, 14, 730 36 of 41

MPC Model Predictive Controller
MCS Monte-Carlo Simulations
ORC Organic Rankine Cycle
PCM Phase Change Materials
PV Photovoltaic
PTC Parabolic Trough Collectors
RBC Rule-Based Controller
SOC State of Charge
TES Thermal Energy Storage
WF Working Fluid
XMPC Exergy-Based Model Predictive Controller
Symbols
Q̇ Thermal power (W)
A Area (m2)
η Efficiency (-)
τ Transmittance (-)
T Temperature (K)
P Power (W)
E Energy (J)
ρ Density (kg/m3)
ρcl Reflectance of the clean mirror (-)
C Capacity of TES (J)
ρwt Weight factor for optimizing soft constraints (-)
ṁ Mass flow rate (kg/s)
h Specific enthalpy (J/kg.K)
cp Constant pressure specific heat (J/kg.K)
cv Constant volume specific heat (J/kg.K)
λF Power coefficient of HVAC ventilation fan (W.s3/kg3)
Nzones Number of zones (-)
U Overall heat transfer co-efficient (W/m2.K)
rp Pressure ratio (-)
[k] Time index “k” (s)
Subscripts
aper Aperture
abs Absorber
gain Gained by the solar field
loss Losses in the solar field
SOL Solar field
gl Glass envelope
eff Effective optical
opt Optical
in Inlet
amb Ambient
out Outlet
COG Cogenerated
con Condenser in the ORC
b Building
Sys System
dest Destruction
rec Recovered
sup Supplied
t Time
t+k|t kth prediction evaluated at time t
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Superscripts
r Room
v Ventilation
w Wall
H Heating
b Building
su Supply to room
rad Radiation
int Intrinsic

References
1. Lee, Y.H.; Bae, S.; Hwang, S.S.; Kim, J.H.; Kim, K.N.; Lim, Y.H.; Kim, M.; Jung, S.; Kwon, H.J. Association between air conditioning

use and self-reported symptoms during the 2018 heat wave in Korea. J. Prev. Med. Public Health 2020, 53, 15. [CrossRef] [PubMed]
2. Trigo, R.M.; Pereira, J.M.; Pereira, M.G.; Mota, B.; Calado, T.J.; Dacamara, C.C.; Santo, F.E. Atmospheric conditions associated

with the exceptional fire season of 2003 in Portugal. Int. J. Climatol. A J. R. Meteorol. Soc. 2006, 26, 1741–1757. [CrossRef]
3. Godagnone, R.E.; Juan, C. Soils of the Argentine Antarctica. In The Soils of Argentina; Springer: Cham, Switzerland, 2019;

pp. 195–207.
4. IEA. Tracking Buildings 2020; Technical Report; IEA: Paris, France, 2020. Available online: https://www.iea.org/reports/tracking-

buildings-2020 (accessed on 16 April 2020).
5. Jazaeri, J.; Gordon, R.L.; Alpcan, T. Influence of building envelopes, climates, and occupancy patterns on residential HVAC

demand. J. Build. Eng. 2019, 22, 33–47. [CrossRef]
6. Luo, W.; Yang, Z.; Li, Z.; Zhang, J.; Liu, J.; Zhao, Z.; Wang, Z.; Yan, S.; Yu, T.; Zou, Z. Solar hydrogen generation from seawater

with a modified BiVO4 photoanode. Energy Environ. Sci. 2011, 4, 4046–4051. [CrossRef]
7. Steinfeld, A.; Palumbo, R. Solar thermochemical process technology. Encycl. Phys. Sci. Technol. 2001, 15, 237–256.
8. Szabo, S.; Bódis, K.; Huld, T.; Moner-Girona, M. Energy solutions in rural Africa: Mapping electrification costs of distributed

solar and diesel generation versus grid extension. Environ. Res. Lett. 2011, 6, 034002. [CrossRef]
9. IEA. Access to Electricity—SDG7: Data and Projections—Analysis; Technical Report; IEA: Paris, France, 2019. Available online:

https://www.iea.org/reports/sdg7-data-and-projections/access-to-electricity (accessed on 16 April 2020).
10. Maasoumy, M.; Razmara, M.; Shahbakhti, M.; Sangiovanni-Vincentelli, A. Selecting Building Predictive Control Based on Model

Uncertainty. In Proceedings of the American Control Conference (ACC), Portland, OR, USA, 4–6 June 2014.
11. Maasoumy, M.; Razmara, M.; Shahbakhti, M.; Vincentelli, A.S. Handling model uncertainty in model predictive control for

energy efficient buildings. J. Energy Build. 2014, 77, 377–392. [CrossRef]
12. Razmara, M.; Maasoumy, M.; Shahbakhti, M.; Robinett, R.D., III. Optimal exergy control of building HVAC system. J. Appl.

Energy 2015, 156, 555–565. [CrossRef]
13. Razmara, M.; Bharati, G.R.; Shahbakhti, M.; Paudyal, S.; Robinett, R.D. Bilevel optimization framework for smart building-to-grid

systems. IEEE Trans. Smart Grid 2018, 9, 582–593. [CrossRef]
14. Razmara, M.; Bharati, G.R.; Hanover, D.; Shahbakhti, M.; Paudyal, S.; Robinett, R.D. Enabling Demand Response programs via

Predictive Control of Building-to-Grid systems integrated with PV Panels and Energy Storage Systems. In Proceedings of the
2017 American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017; pp. 56–61.

15. Razmara, M.; Bharati, G.; Hanover, D.; Shahbakhti, M.; Paudyal, S.; Robinett, R., III. Building-to-grid predictive power flow
control for demand response and demand flexibility programs. Appl. Energy 2017, 203, 128–141. [CrossRef]

16. Toub, M.; Shahbakhti, M.; Robinett, R.D., III; Aniba, G. Model Predictive Control of Micro-CSP Integrated Into a Building HVAC
System for Load Following Demand Response Programs. In Proceedings of the Dynamic Systems and Control Conference, Park
City, UT, USA, 8–11 October 2019; Volume 2, p. V002T23A003. [CrossRef]

17. Reddy, C.R.; Toub, M.; Razmara, M.; Shahbakhti, M.; Robinett, R.D.; Aniba, G. Modeling and Optimal Control of Micro-CSP
and a Building HVAC System to Minimize Electricity Cost. In Proceedings of the ASME 2018 Dynamic Systems and Control
Conference, American Society of Mechanical Engineers, Atlanta, GA, USA, 30 September–3 October 2018; p. V002T28A004.

18. Toub, M.; Reddy, C.R.; Razmara, M.; Shahbakhti, M.; Robinett, R.D.; Aniba, G. Model Predictive Control for MicroCSP Integration
into a Building HVAC System. In Proceedings of the IEEE 14th International Conference on Control and Automation (ICCA),
Anchorage, AL, USA, 12–15 June 2018; pp. 890–895.

19. Toub, M.; Shahbakhti, M.; Robinett, R.D.; Aniba, G. MPC-trained ANFIS for Control of MicroCSP Integrated into a Building
HVAC System. In Proceedings of the 2019 American Control Conference (ACC), Philadelphia, PA, USA, 1–12 July 2019; pp.
241–246. [CrossRef]

20. Toub, M.; Reddy, C.R.; Razmara, M.; Shahbakhti, M.; Robinett, R.D.; Aniba, G. Model-based predictive control for optimal
MicroCSP operation integrated with building HVAC systems. Energy Convers. Manag. 2019, 199, 111924. [CrossRef]

21. Reddy, C.; Shahbakhti, M.; Robinett, R.; Razmara, M. Exergy-wise predictive control framework for optimal performance of
MicroCSP systems for HVAC applications in buildings. Energy Convers. Manag. 2020, 210, 112711. [CrossRef]

http://doi.org/10.3961/jpmph.19.171
http://www.ncbi.nlm.nih.gov/pubmed/32023670
http://dx.doi.org/10.1002/joc.1333
https://www.iea.org/reports/tracking-buildings-2020
https://www.iea.org/reports/tracking-buildings-2020
http://dx.doi.org/10.1016/j.jobe.2018.11.011
http://dx.doi.org/10.1039/c1ee01812d
http://dx.doi.org/10.1088/1748-9326/6/3/034002
http://dx.doi.org/10.1016/j.enbuild.2014.03.057
http://dx.doi.org/10.1016/j.apenergy.2015.07.051
http://dx.doi.org/10.1109/TSG.2016.2557334
http://dx.doi.org/10.1016/j.apenergy.2017.06.040
http://dx.doi.org/10.1115/DSCC2019-9106
http://dx.doi.org/10.23919/ACC.2019.8814736
http://dx.doi.org/10.1016/j.enconman.2019.111924
http://dx.doi.org/10.1016/j.enconman.2020.112711


Energies 2021, 14, 730 38 of 41

22. Reddy, C.R.; Razmara, M.; Shahbakhti, M.; Robinett, R.D. Optimal Exergy-wise Predictive Control for a Combined MicroCSP
and HVAC System in a Building. In Proceedings of the 2019 American Control Conference (ACC), Philadelphia, PA, USA,
1–12 July 2019; pp. 235–240.

23. Ramos, A.; Chatzopoulou, M.A.; Guarracino, I.; Freeman, J.; Markides, C.N. Hybrid photovoltaic-thermal solar systems for
combined heating, cooling and power provision in the urban environment. Energy Convers. Manag. 2017, 150, 838–850. [CrossRef]

24. Herrando, M.; Pantaleo, A.M.; Wang, K.; Markides, C.N. Solar combined cooling, heating and power systems based on hybrid
PVT, PV or solar-thermal collectors for building applications. Renew. Energy 2019, 143, 637–647. [CrossRef]

25. Gu, Y.; Zhang, X.; Myhren, J.A.; Han, M.; Chen, X.; Yuan, Y. Techno-economic analysis of a solar photovoltaic/thermal (PV/T)
concentrator for building application in Sweden using Monte Carlo method. Energy Convers. Manag. 2018, 165, 8–24. [CrossRef]

26. Osborne, J. Developing the Australian Solar Cooling Market: Status Update and Lessons from the Solar Thermal Industry.
In Proceedings of the Australian Solar Cooling 2013 Conference, North Ryde, Australia, 12 April 2013; p. 11.

27. Dickes, R.; Dumont, O.; Declaye, S.; Quoilin, S.; Bell, I. Experimental investigation of an ORC system for a micro-solar power
plant. In Proceedings of the International Compressor Engineering Conference at Purdue, Lafayette, IN, USA, 14–17 July 2014;
p. 10.

28. Ragheb, M. Solar Thermal Power and Energy Storage Historical Perspective. Nuclear Power Engineering. 2014; p. 52.
https://www.solarthermalworld.org/sites/default/files/story/2015-04-18/solar_thermal_power_and_energy_storage_
historical_perspective.pdf (accessed on 30 January 2021).

29. Nayak, J.; Kedare, S.; Banerjee, R.; Bandyopadhyay, S.; Desai, N.; Paul, S.; Kapila, A. A 1 MW national solar thermal research cum
demonstration facility at Gwalpahari, Haryana, India. Curr. Sci. 2015, 1445–1457. [CrossRef]

30. Maccari, A.; Bissi, D.; Casubolo, G.; Guerrini, F.; Lucatello, L.; Luna, G.; Rivaben, A.; Savoldi, E.; Tamano, S.; Zuanella,
M. Archimede Solar Energy Molten Salt Parabolic Trough Demo Plant: A Step Ahead towards the New Frontiers of CSP.
Energy Procedia 2015, 69, 1643–1651. [CrossRef]

31. Orosz, M. Small scale solar ORC system for distributed power in Lesotho. In Proceedings of the 29th ISES Biennial Solar World
Congress, Johannesburg, South Africa, 14 October 2009; pp. 1042–1048.

32. Quoilin, S.; Orosz, M.; Hemond, H.; Lemort, V. Performance and design optimization of a low-cost solar organic Rankine cycle
for remote power generation. Sol. Energy 2011, 85, 955–966. [CrossRef]

33. Mitterhofer, M.; Orosz, M. Dynamic Simulation and Optimization of an Experimental Micro-CSP Power Plant. In En-
ergy Sustainability; American Society of Mechanical Engineers, 2015; Volume 56840, p. V001T05A007. Available online:
https://www.researchgate.net/publication/281111698_Dynamic_Simulation_and_Optimization_of_an_Experimental_Micro-
CSP_Power_Plant (accessed on 30 January 2021). [CrossRef]

34. Mishra, S.; Jain, A.K.; Singh, T.; Gupta, R. Optimising Energy Dependency of VIT University. Int. J. Sci. Eng. Res. 2013, 4, 7.
35. Bianchini, A.; Guzzini, A.; Pellegrini, M.; Saccani, C. Performance assessment of a solar parabolic dish for domestic use based on

experimental measurements. Renew. Energy 2019, 133, 382–392. [CrossRef]
36. Alle, U.M.M.D.S. Concetrazione, S.T.A. In Proceedings of the 66 Congresso Nazionale ATI–Rende (Cosenza), Congresso Nazionale

ATI–Rende (Cosenza), Palermo, Italy, 5–9 September 2011; Volume 5, p. 9.
37. Grosu, Y.; Ortega-Fernández, I.; González-Fernández, L.; Nithiyanantham, U.; Baba, Y.F.; Al Mers, A.; Faik, A. Natural and by-

product materials for thermocline-based thermal energy storage system at CSP plant: Structural and thermophysical properties.
Appl. Therm. Eng. 2018, 136, 185–193. [CrossRef]

38. Kane, M. Small hybrid solar power system. Energy 2003, 28, 1427–1443. [CrossRef]
39. Xu, E.; Yu, Q.; Wang, Z.; Yang, C. Modeling and simulation of 1 MW DAHAN solar thermal power tower plant. Renew. Energy

2011, 36, 848–857. [CrossRef]
40. Ha, Q. Data acquisition, monitoring and control for hybrid solar air-conditioners. Gerontechnology 2012, 11. [CrossRef]
41. Vakiloroaya, V.; Ha, Q.; Skibniewski, M. Modeling and experimental validation of a solar-assisted direct expansion air conditioning

system. Energy Build. 2013, 66, 524–536. [CrossRef]
42. Ali, A.H.H.; Noeres, P.; Pollerberg, C. Performance assessment of an integrated free cooling and solar powered single-effect

lithium bromide-water absorption chiller. Sol. Energy 2008, 82, 1021–1030. [CrossRef]
43. Pongtornkulpanich, A.; Thepa, S.; Amornkitbamrung, M.; Butcher, C. Experience with fully operational solar-driven 10-ton

LiBr/H2O single-effect absorption cooling system in Thailand. Renew. Energy 2008, 33, 943–949. [CrossRef]
44. Agyenim, F.; Knight, I.; Rhodes, M. Design and experimental testing of the performance of an outdoor LiBr/H2O solar thermal

absorption cooling system with a cold store. Sol. Energy 2010, 84, 735–744. [CrossRef]
45. Ortiz, M.; Barsun, H.; He, H.; Vorobieff, P.; Mammoli, A. Modeling of a solar-assisted HVAC system with thermal storage.

Energy Build. 2010, 42, 500–509. [CrossRef]
46. Mammoli, A.; Vorobieff, P.; Barsun, H.; Burnett, R.; Fisher, D. Energetic, economic and environmental performance of a

solar-thermal-assisted HVAC system. Energy Build. 2010, 42, 1524–1535. [CrossRef]
47. Hidalgo, M.C.R.; Aumente, P.R.; Millán, M.I.; Neumann, A.L.; Mangual, R.S. Energy and carbon emission savings in Spanish

housing air-conditioning using solar driven absorption system. Appl. Therm. Eng. 2008, 28, 1734–1744. [CrossRef]
48. Rosiek, S.; Batlles, F.J. Integration of the solar thermal energy in the construction: Analysis of the solar-assisted air-conditioning

system installed in CIESOL building. Renew. Energy 2009, 34, 1423–1431. [CrossRef]

http://dx.doi.org/10.1016/j.enconman.2017.03.024
http://dx.doi.org/10.1016/j.renene.2019.05.004
http://dx.doi.org/10.1016/j.enconman.2018.03.043
https://www.solarthermalworld.org/sites/default/files/story/2015-04-18/solar_thermal_power_and_energy_storage_historical_perspective.pdf
https://www.solarthermalworld.org/sites/default/files/story/2015-04-18/solar_thermal_power_and_energy_storage_historical_perspective.pdf
http://dx.doi.org/10.18520/cs/v109/i8/1445-1457
http://dx.doi.org/10.1016/j.egypro.2015.03.122
http://dx.doi.org/10.1016/j.solener.2011.02.010
https://www.researchgate.net/publication/281111698_Dynamic_Simulation_and_Optimization_of_an_Experimental_Micro-CSP_Power_Plant
https://www.researchgate.net/publication/281111698_Dynamic_Simulation_and_Optimization_of_an_Experimental_Micro-CSP_Power_Plant
http://dx.doi.org/10.1115/ES2015-49333
http://dx.doi.org/10.1016/j.renene.2018.10.046
http://dx.doi.org/10.1016/j.applthermaleng.2018.02.087
http://dx.doi.org/10.1016/S0360-5442(03)00127-0
http://dx.doi.org/10.1016/j.renene.2010.08.010
http://dx.doi.org/10.4017/gt.2012.11.02.154.00
http://dx.doi.org/10.1016/j.enbuild.2013.07.073
http://dx.doi.org/10.1016/j.solener.2008.04.011
http://dx.doi.org/10.1016/j.renene.2007.09.022
http://dx.doi.org/10.1016/j.solener.2010.01.013
http://dx.doi.org/10.1016/j.enbuild.2009.10.019
http://dx.doi.org/10.1016/j.enbuild.2010.03.023
http://dx.doi.org/10.1016/j.applthermaleng.2007.11.013
http://dx.doi.org/10.1016/j.renene.2008.11.021


Energies 2021, 14, 730 39 of 41

49. Marc, O.; Lucas, F.; Sinama, F.; Monceyron, E. Experimental investigation of a solar cooling absorption system operating without
any backup system under tropical climate. Energy Build. 2010, 42, 774–782. [CrossRef]

50. Bermejo, P.; Pino, F.J.; Rosa, F. Solar absorption cooling plant in Seville. Sol. Energy 2010, 84, 1503–1512. [CrossRef]
51. Angrisani, G.; Roselli, C.; Sasso, M.; Vanoli, G.P.; Minichiello, F. Experimental analysis of small scale polygeneration system

based on a natural gas fired micro-CHP and a hybrid HVAC system equipped with a desiccant wheel. In Proceedings of the
22nd International Conference on Efficiency, Cost, Optimization Simulation and Environmental Impact of Energy Systems, Foz
do Iguaçu, Paraná, Brazil, 30 August–3 September 2009.

52. Angrisani, G.; Minichiello, F.; Roselli, C.; Sasso, M. Experimental investigation to optimise a desiccant HVAC system coupled to a
small size cogenerator. Appl. Therm. Eng. 2011, 31, 506–512. [CrossRef]

53. Lu, Z.S.; Wang, R.Z. Experimental performance investigation of small solar air-conditioning systems with different kinds of
collectors and chillers. Sol. Energy 2014, 110, 7–14. [CrossRef]

54. Weber, C.; Berger, M.; Mehling, F.; Heinrich, A.; Núñez, T. Solar cooling with water–ammonia absorption chillers and concentrating
solar collector – Operational experience. Int. J. Refrig. 2014, 39, 57–76. [CrossRef]

55. Fiorentini, M.; Cooper, P.; Ma, Z.; Robinson, D.A. Hybrid Model Predictive Control of a Residential HVAC System with PVT
Energy Generation and PCM Thermal Storage. Energy Procedia 2015, 83, 21–30. [CrossRef]

56. Fiorentini, M.; Wall, J.; Ma, Z.; Braslavsky, J.H.; Cooper, P. Hybrid model predictive control of a residential HVAC system with
on-site thermal energy generation and storage. Appl. Energy 2017, 187, 465–479. [CrossRef]

57. Cioccolanti, L.; Tascioni, R.; Bocci, E.; Villarini, M. Parametric analysis of a solar Organic Rankine Cycle trigeneration system for
residential applications. Energy Convers. Manag. 2018, 163, 407–419. [CrossRef]

58. Nguyen, H.T.; Nguyen, D.T.; Le, L.B. Energy management for households with solar assisted thermal load considering renewable
energy and price uncertainty. IEEE Trans. Smart Grid 2015, 6, 301–314. [CrossRef]

59. Nguyen, H.T. Decision Making for Smart Grids with Renewable Energy. Ph.D. Thesis, Université du Québec, Institut National
de la Recherche Scientifique, Quebec, QC, Canada, 2017.

60. Thomas, A.; Guven, H. Parabolic trough concentrators—Design, construction and evaluation. Energy Convers. Manag. 1993, 34,
401–416. [CrossRef]

61. Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes; Wiley: New York, NY, USA, 1991.
62. Rodríguez, L.R.; Lissén, J.M.S.; Ramos, J.S.; Jara, E.Á.R.; Domínguez, S.Á. Analysis of the Economic Feasibility and Reduction of a

Building’s Energy Consumption and Emissions When Integrating Hybrid Solar Thermal/PV/Micro-CHP Systems. Appl. Energy
2016, 165, 828–838. [CrossRef]

63. Qiu, G.; Shao, Y.; Li, J.; Liu, H.; Riffat, S.B. Experimental investigation of a biomass-fired ORC-based micro-CHP for domestic
applications. Fuel 2012, 96, 374–382. [CrossRef]

64. Mueller, A.; Orosz, M.; Narasimhan, A.K.; Kamal, R.; Hemond, H.F.; Goswami, Y. Evolution and feasibility of decentralized
concentrating solar thermal power systems for modern energy access in rural areas. MRS Energy Sustain. 2016, 3, E4. [CrossRef]

65. Giovannelli, A. State of the art on small-scale concentrated solar power plants. Energy Procedia 2015, 82, 607–614. [CrossRef]
66. Oyewunmi, O.A.; Kirmse, C.J.; Pantaleo, A.M.; Markides, C.N. Performance of working-fluid mixtures in ORC-CHP systems for

different heat-demand segments and heat-recovery temperature levels. Energy Convers. Manag. 2017, 148, 1508–1524. [CrossRef]
67. Ramos, A.; Chatzopoulou, M.A.; Freeman, J.; Markides, C.N. Optimisation of a high-efficiency solar-driven organic Rankine

cycle for applications in the built environment. Appl. Energy 2018, 228, 755–765. [CrossRef]
68. The SunShot Initiative|Department of Energy. Available online: https://www.energy.gov/eere/solar/sunshot-initiative

(accessed on 12 July 2018).
69. Department of Energy Announces $72 Million to Advance High-Temperature Concentrating Solar Power Systems. Available

online: https://www.energy.gov/eere/solar/generation-3-concentrating-solar-power-systems-gen3-csp (accessed on 12 July
2018).

70. Jin, H.; Hong, H. Hybridization of concentrating solar power (CSP) with fossil fuel power plants. In Concentrating Solar Power
Technology; Elsevier: Amsterdam, The Netherlands, 2012; pp. 395–420.

71. Fuqiang, W.; Ziming, C.; Jianyu, T.; Yuan, Y.; Yong, S.; Linhua, L. Progress in concentrated solar power technology with parabolic
trough collector system: A comprehensive review. Renew. Sustain. Energy Rev. 2017, 79, 1314–1328. [CrossRef]

72. Cabeza, L.; Martorell, I.; Miró, L.; Fernández, A.; Barreneche, C. Introduction to thermal energy storage (TES) systems. In
Advances in Thermal Energy Storage Systems; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–28.

73. Khudhair, A.M.; Farid, M.M. A review on energy conservation in building applications with thermal storage by latent heat using
phase change materials. Energy Convers. Manag. 2004, 45, 263–275. [CrossRef]

74. Dinker, A.; Agarwal, M.; Agarwal, G. Heat storage materials, geometry and applications: A review. J. Energy Inst. 2017, 90, 1–11.
[CrossRef]

75. Sarbu, I.; Sebarchievici, C. A comprehensive review of thermal energy storage. Sustainability 2018, 10, 191. [CrossRef]
76. Kousksou, T.; Bruel, P.; Jamil, A.; El Rhafiki, T.; Zeraouli, Y. Energy storage: Applications and challenges. Sol. Energy Mater. Sol.

Cells 2014, 120, 59–80. [CrossRef]
77. Badr, O.; Naik, S.; O’Callaghan, P.; Probert, S. Expansion machine for a low power-output steam Rankine-cycle engine.

Appl. Energy 1991, 39, 93–116. [CrossRef]

http://dx.doi.org/10.1016/j.enbuild.2009.12.006
http://dx.doi.org/10.1016/j.solener.2010.05.012
http://dx.doi.org/10.1016/j.applthermaleng.2010.10.006
http://dx.doi.org/10.1016/j.solener.2014.08.044
http://dx.doi.org/10.1016/j.ijrefrig.2013.08.022
http://dx.doi.org/10.1016/j.egypro.2015.12.192
http://dx.doi.org/10.1016/j.apenergy.2016.11.041
http://dx.doi.org/10.1016/j.enconman.2018.02.043
http://dx.doi.org/10.1109/TSG.2014.2350831
http://dx.doi.org/10.1016/0196-8904(93)90090-W
http://dx.doi.org/10.1016/j.apenergy.2015.12.080
http://dx.doi.org/10.1016/j.fuel.2012.01.028
http://dx.doi.org/10.1557/mre.2016.4
http://dx.doi.org/10.1016/j.egypro.2015.12.008
http://dx.doi.org/10.1016/j.enconman.2017.05.078
http://dx.doi.org/10.1016/j.apenergy.2018.06.059
https://www.energy.gov/eere/solar/sunshot-initiative
https://www.energy.gov/eere/solar/generation-3-concentrating-solar-power-systems-gen3-csp
http://dx.doi.org/10.1016/j.rser.2017.05.174
http://dx.doi.org/10.1016/S0196-8904(03)00131-6
http://dx.doi.org/10.1016/j.joei.2015.10.002
http://dx.doi.org/10.3390/su10010191
http://dx.doi.org/10.1016/j.solmat.2013.08.015
http://dx.doi.org/10.1016/0306-2619(91)90024-R


Energies 2021, 14, 730 40 of 41

78. Lior, N. Solar energy and the steam Rankine cycle for driving and assisting heat pumps in heating and cooling modes.
Energy Convers. 1977, 16, 111–123. [CrossRef]

79. Hung, T.; Wang, S.; Kuo, C.; Pei, B.; Tsai, K. A study of organic working fluids on system efficiency of an ORC using low-grade
energy sources. Energy 2010, 35, 1403–1411. [CrossRef]

80. Çınar, C.; Aksoy, F.; Solmaz, H.; Yılmaz, E.; Uyumaz, A. Manufacturing and testing of an alpha-type Stirling engine.
Appl. Therm. Eng. 2018, 130, 1373–1379. [CrossRef]

81. Ferreira, A.C.; Teixeira, S.; Teixeira, J.C.; Martins, L.B. Design optimization of a solar dish collector for its application with
stirling engines. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Houston,
TX, USA, 13–15 November 2015; American Society of Mechanical Engineers, 2015; Volume 57434, p. V06AT07A033. Avail-
able online: https://www.researchgate.net/publication/314947916_Design_Optimization_of_a_Solar_Dish_Collector_for_Its_
Application_With_Stirling_Engines (accessed on 30 January 2021).

82. Singh, U.R.; Kumar, A. Review on solar Stirling engine: Development and performance. Therm. Sci. Eng. Prog. 2018, 8, 244–256.
[CrossRef]

83. Lai, X.; Yu, M.; Long, R.; Liu, Z.; Liu, W. Dynamic performance analysis and optimization of dish solar Stirling engine based on a
modified theoretical model. Energy 2019, 183, 573–583. [CrossRef]

84. Luo, H.; Wang, R.; Dai, Y. The effects of operation parameter on the performance of a solar-powered adsorption chiller.
Appl. Energy 2010, 87, 3018–3022. [CrossRef]

85. Drouineau, J. Technical Communication with ENOGIA. Available online: http://enogia.com/wp/page/3/?et_blog (accessed on
28 August 2017).

86. Agenzia Nazionale per le Nuove tecnologie, l’Energia e lo Sviluppo economico sostenibile (ENEA). Performance Test Report
Summary According to EN 12975-2:2006. Technical Communication with SOLTIGUA. Available online: https://soclimpact.net/
agenzia-nazionale-per-le-nuove-tecnologie-lenergia-e-lo-sviluppo-economico-sostenibile/ (accessed on 22 March 2017).

87. Forristall, R. Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver;
Technical Report NREL/TP-550-34169; US Department of Energy: Washington, DC, USA, 2003, p. 15004820.

88. Ireland, M.K. Dynamic Modeling and Control Strategies for a Micro-CSP Plant with Thermal Storage Powered by the Organic
Rankine Cycle. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2014.

89. Rech, S.; Lazzaretto, A. Smart rules and thermal, electric and hydro storages for the optimum operation of a renewable energy
system. Energy 2018, 147, 742–756. [CrossRef]

90. Li, Z.F.; Sumathy, K. Performance study of a partitioned thermally stratified storage tank in a solar powered absorption air
conditioning system. Appl. Therm. Eng. 2002, 22. [CrossRef]

91. Ireland, M.K.; Orosz, M.S.; Brisson, J.G.; Desideri, A.; Quoilin, S. Dynamic Modeling and Control System Definition for a Micro-
CSP Plant Coupled With Thermal Storage Unit. In Oil and Gas Applications; Organic Rankine Cycle Power Systems, Supercritical CO2
Power Cycles, Wind Energy; American Society of Mechanical Engineers: Düsseldorf, Germany, 2014; Volume 3B, p. V03BT26A016.

92. Dickes, R.; Desideri, A.; Bell, I.; Quoilin, S.; Lemort, V. Dynamic modeling and control strategy analysis of a micro-scale
CSP plant coupled with a thermocline system for power generation. In Proceedings of the ISES EuroSun 2014 Conference,
Aix-les-Bains, France, 14–19 September 2014; p. 10.

93. Dumont, O.; Parthoens, A.; Dickes, R.; Lemort, V. Experimental investigation and optimal performance assessment of four
volumetric expanders (scroll, screw, piston and roots) tested in a small-scale organic Rankine cycle system. Energy 2018, 165,
1119–1127. [CrossRef]

94. Dumont, O.; Dickes, R.; Ishmael, M.; Lemort, V. Mapping of Performance of Pumped Thermal Energy Storage (Carnot battery) Using
Waste Heat Recovery; Active Energy Systems: Oak Ridge, TN, USA, 2019; p. 9.

95. Casati, E.; Desideri, A.; Casella, F.; Colonna, P. Preliminary assessment of a novel small CSP plant based on linear collectors, ORC
and direct thermal storage. Environ. Sci. 2012, 10. Available online: https://www.researchgate.net/publication/242023106_
Preliminary_Assessment_of_a_Novel_Small_CSP_Plant_Based_on_Linear_Collectors_ORC_and_Direct_Thermal_Storage (ac-
cessed on 30 January 2021).

96. Liu, H.; Shao, Y.; Li, J. A biomass-fired micro-scale CHP system with organic Rankine cycle (ORC) – Thermodynamic modelling
studies. Biomass Bioenergy 2011, 35, 3985–3994. [CrossRef]

97. Thonon, B.; Vidil, R.; Marvillet, C. Recent research and developments in plate heat exchangers. J. Enhanc. Heat Transf. 1995, 2.
[CrossRef]

98. Hsieh, Y.; Lin, T. Saturated flow boiling heat transfer and pressure drop of refrigerant R-410A in a vertical plate heat exchanger.
Int. J. Heat Mass Transf. 2002, 45, 1033–1044. [CrossRef]

99. Solcast. Solar Irradiance Data. Available online: https://solcast.com/ (accessed on 10 January 2021).
100. ENOGIA SAS. Datasheet: ENOGIA’s ENO-10LT ORC System Fact Sheet. Available online: http://www.enogia.com/images/

offer/datasheet-ENO10LT.pdf (accessed on 6 July 2017).
101. Zabihian, F. Educating Undergraduate Mechanical Engineering Students about Exergy Analysis. In Proceedings of the 122nd

ASEE Annual Conference and Exposition, Seattle, WA, USA 14–17 June 2015; p. 12856.
102. Razmara, M.; Bidarvatan, M.; Shahbakhti, M.; Robinett, R. Innovative Exergy-Based Combustion Phasing Control of IC

Engines. SAE Technical Paper 2016-01-0815. In Proceedings of the SAE 2016 World Congress and Exhibition, Detroit, MI, USA,
12–14 April 2016.

http://dx.doi.org/10.1016/0013-7480(77)90035-3
http://dx.doi.org/10.1016/j.energy.2009.11.025
http://dx.doi.org/10.1016/j.applthermaleng.2017.11.132
https://www.researchgate.net/publication/314947916_Design_Optimization_of_a_Solar_Dish_Collector_for_Its_Application_With_Stirling_Engines
https://www.researchgate.net/publication/314947916_Design_Optimization_of_a_Solar_Dish_Collector_for_Its_Application_With_Stirling_Engines
http://dx.doi.org/10.1016/j.tsep.2018.08.016
http://dx.doi.org/10.1016/j.energy.2019.06.131
http://dx.doi.org/10.1016/j.apenergy.2010.03.013
http://enogia.com/wp/page/3/?et_blog
https://soclimpact.net/agenzia-nazionale-per-le-nuove-tecnologie-lenergia-e-lo-sviluppo-economico-sostenibile/
https://soclimpact.net/agenzia-nazionale-per-le-nuove-tecnologie-lenergia-e-lo-sviluppo-economico-sostenibile/
http://dx.doi.org/10.1016/j.energy.2018.01.079
http://dx.doi.org/10.1016/S1359-4311(02)00048-0
http://dx.doi.org/10.1016/j.energy.2018.06.182
https://www.researchgate.net/publication/242023106_Preliminary_Assessment_of_a_Novel_Small_CSP_Plant_Based_on_Linear_Collectors_ORC_and_Direct_Thermal_Storage
https://www.researchgate.net/publication/242023106_Preliminary_Assessment_of_a_Novel_Small_CSP_Plant_Based_on_Linear_Collectors_ORC_and_Direct_Thermal_Storage
http://dx.doi.org/10.1016/j.biombioe.2011.06.025
http://dx.doi.org/10.1615/JEnhHeatTransf.v2.i1-2.160
http://dx.doi.org/10.1016/S0017-9310(01)00219-8
https://solcast.com/
http://www.enogia.com/images/offer/datasheet-ENO10LT.pdf
http://www.enogia.com/images/offer/datasheet-ENO10LT.pdf


Energies 2021, 14, 730 41 of 41

103. Lofberg, J. YALMIP: A toolbox for modeling and optimization in MATLAB. In Proceedings of the 2004 IEEE International
Symposium on Computer Aided Control Systems Design, New Orleans, LA, USA, 2–4 September 2004; pp. 284–289.

104. Wächter, A.; Biegler, L.T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear
programming. Math. Program. 2006, 106, 25–57. [CrossRef]

105. Optimization, G. Inc.,“Gurobi Optimizer Reference Manual,” 2015; Gurobi Inc.: Houston, TX, USA, 2014.
106. Aftab, M.; Chen, C.; Chau, C.K.; Rahwan, T. Automatic HVAC control with real-time occupancy recognition and simulation-

guided model predictive control in low-cost embedded system. Energy Build. 2017, 154, 141–156. [CrossRef]
107. Afram, A.; Janabi-Sharifi, F. Supervisory model predictive controller (MPC) for residential HVAC systems: Implementation and

experimentation on archetype sustainable house in Toronto. Energy Build. 2017, 154, 268–282. [CrossRef]
108. Ma, X.; Bao, H.; Zhang, N. A New Approach to Off-Line Robust Model Predictive Control for Polytopic Uncertain Models.

Designs 2018, 2, 31. [CrossRef]
109. Marín, L.G.; Sumner, M.; Mu noz-Carpintero, D.; Köbrich, D.; Pholboon, S.; Sáez, D.; Nú nez, A. Hierarchical energy management

system for microgrid operation based on robust model predictive control. Energies 2019, 12, 4453. [CrossRef]
110. González, E.; Sanchis, J.; García-Nieto, S.; Salcedo, J. A Comparative Study of Stochastic Model Predictive Controllers. Electronics

2020, 9, 2078. [CrossRef]
111. Baez-Gonzalez, P.; Garcia-Torres, F.; Ridao, M.A.; Bordons, C. A Stochastic MPC Based Energy Management System for

Simultaneous Participation in Continuous and Discrete Prosumer-to-Prosumer Energy Markets. Energies 2020, 13, 3751.
[CrossRef]

112. Wu, Z.; Tran, A.; Rincon, D.; Christofides, P.D. Machine learning-based predictive control of nonlinear processes. Part I: Theory.
AIChE J. 2019, 65, e16729. [CrossRef]

113. Wu, Z.; Tran, A.; Rincon, D.; Christofides, P.D. Machine-learning-based predictive control of nonlinear processes. Part II:
Computational implementation. AIChE J. 2019, 65, e16734. [CrossRef]

114. Wu, Z.; Rincon, D.; Christofides, P.D. Real-time adaptive machine-learning-based predictive control of nonlinear processes.
Ind. Eng. Chem. Res. 2019, 59, 2275–2290. [CrossRef]

115. Wang, G.; Jia, Q.S.; Qiao, J.; Bi, J.; Zhou, M. Deep Learning-Based Model Predictive Control for Continuous Stirred-Tank Reactor
System. IEEE Trans. Neural Netw. Learn. Syst. 2020. [CrossRef]

116. Yoo, J.; Molin, A.; Jafarian, M.; Esen, H.; Dimarogonas, D.V.; Johansson, K.H. Event-triggered model predictive control with
machine learning for compensation of model uncertainties. In Proceedings of the 2017 IEEE 56th Annual Conference on Decision
and Control (CDC), Melbourne, Australia, 12–15 December 2017; pp. 5463–5468.
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