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Abstract: By only storing a unique copy of duplicate data possessed by different data owners,
deduplication can significantly reduce storage cost, and hence is used broadly in public clouds. When
combining with confidentiality, deduplication will become problematic as encryption performed by
different data owners may differentiate identical data which may then become not deduplicable. The
Message-Locked Encryption (MLE) is thus utilized to derive the same encryption key for the identical
data, by which the encrypted data are still deduplicable after being encrypted by different data
owners. As keys may be leaked over time, re-encrypting outsourced data is of paramount importance
to ensure continuous confidentiality, which, however, has not been well addressed in the literature.
In this paper, we design SEDER, a SEcure client-side Deduplication system enabling Efficient Re-
encryption for cloud storage by (1) leveraging all-or-nothing transform (AONT), (2) designing a new
delegated re-encryption (DRE), and (3) proposing a new proof of ownership scheme for encrypted
cloud data (PoWC). Security analysis and experimental evaluation validate security and efficiency of
SEDER, respectively.

Keywords: public cloud; client-side deduplication; data ownership; confidentiality; re-encryption

1. Introduction

Cloud storage services are widely deployed nowadays. Popular services include Ama-
zon S3 [1], Apple iCloud [2], and Microsoft Azure [3]. By using cloud services, data owners
pay for storage they use, eliminating expensive costs of maintaining dedicated infrastructures.

As more and more users turn to public clouds for storage, the amount of data stored in
clouds grows rapidly. Conventionally, the clouds simply store what have been sent by the
data owners. This unfortunately will lead to a significant waste of storage space, as different
data owners may upload identical data. A remediation is to perform deduplication,
in which clouds only store a unique copy of duplicate data from different data owners
to reduce unnecessary waste of storage space. For example, research from Microsoft [4]
showed that deduplication can achieve 50% and 90–95% storage savings in the standard
file systems and backup systems, respectively. Almost all the existing popular file hosting
services like Dropbox [5] and Box [6] perform data deduplication.

There are two popular data deduplication mechanisms: server-side deduplication and
client-side deduplication. Their main differences are: in server-side deduplication, servers
perform deduplication on the outsourced data, transparently to the clients (data owners);
in client-side deduplication, the servers and the clients cooperate to perform deduplication.
Compared to the server-side deduplication, the client-side deduplication has a significant
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benefit that the clients do not need to upload those data that have been stored at servers,
significantly reducing bandwidth consumption. Therefore, the client-side deduplication is
used more broadly in public file hosting services [5,6].

As public cloud providers are usually untrusted [7], data owners hesitate to outsource
sensitive data to them due to various concerns. First, data owners fear ownership loss
of critical assets. This is because, once the attacker can obtain a data copy, it can simply
claim ownership of the data and it is hard to differentiate who originally owns the data.
Second, data owners worry about unauthorized access of their sensitive data. Since the
data are now hosted by the cloud providers, no guarantees can be provided to data owners
that their sensitive information is under strict control and will not be abused. A common
solution which can mitigate the aforementioned concerns is to encrypt data using a secret
key before outsourcing them. In this way, the provider only “owns” the meaningless
encrypted data rather than the original sensitive data. In addition, without having access
to the key, unauthorized users can only have access to the encrypted data.

Encryption, however, creates a severe obstacle for deduplication, as identical plain-
text may be encrypted into different ciphertext by different data owners who usually use
different keys. To resolve this issue, a cryptographic primitive called Message-Locked
Encryption (MLE) [8–12] was proposed, which derives encryption keys based on the plain-
text being encrypted. Using MLE, different data owners can generate identical encryption
keys for the same content, leading to deduplicable (One implied assumption for MLE is
that the same encryption algorithm will be used by different data owners.) ciphertexts. In
practice, encryption keys may be leaked [13,14] and those keys should not be used any
more, or data may be deleted by some users and ownership of those users on the data
should be revoked [15]. Under such circumstance, to ensure continuous confidentiality
of sensitive data, re-encrypting the data using a new key is necessary. Li et al. proposed
REED [15] to address the re-encryption problem for deduplication-based encrypted storage
systems, which is specifically designed for the server-side deduplication. On the contrary, our
design in this work specifically targets the client-side deduplication

Compared to the design for the server-side deduplication (e.g., REED [15]), ours faces
various new challenges especially for the encrypted data. In the server-side deduplication,
the client simply uploads the encrypted file to the server and does not get involved in
the deduplication process; in the client-side deduplication, however, upon uploading a
new file, the client needs to first check whether the file has been stored in the server and,
if the file has been stored, the server needs to verify whether the client actually owns the
file before adding it to the owner list of the file. This raises a few issues especially for the
encrypted data: (1) The server stores an encrypted version of the file, but the client stores
a plaintext version of the file. It is non-trivial for the client to efficiently check whether
there are identical files stored in both parties. (2) To allow the server to verify whether
the client owns the file, the conventional proof of ownership (PoW [16]) protocol requires
both the server and the client possessing the same file format (e.g., both are plaintext).
It clearly cannot be applied here since the server and the client do not possess the same
file format. In addition, since the outsourced data are encrypted and the server does not
have access to the encryption key, in both the server-side and the client-side deduplication,
the re-encryption process needs to involve the client or a trusted third party who manages
clients’ keys. However, the existing designs for the client-side deduplication [17,18] require
re-encrypting the entire file whenever the re-encryption happens. The more efficient design
for the server-side deduplication [15] simply requires the client to conduct the re-encryption
process, which may impose a significant burden on the client.

This paper addresses the aforementioned issues by proposing the first SEcure client-
side Deduplication system enabling Efficient Re-Encryption (SERER) for cloud storage.
The key insights are threefold: First, we design a novel technique which can allow efficiently
detecting duplicate files between two parties even if the file is in different file formats (i.e.,
a plaintext file format and an encrypted file format). Second, we adapt the traditional
PoW scheme, such that it can work correctly even when the server and the client possess
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different file formats, i.e., the new PoW design can allow the server, which possesses the
encrypted version of the file, to efficiently verify whether the client possesses the plaintext
of the file. Third, by leveraging all-or-nothing transform and delegated re-encryption, we
enable secure re-encryption without imposing a heavy load on the client side. Specifically,
by introducing all-or-nothing transform, we make it possible to re-encrypt a file by only re-
encrypting a small portion of it; in addition, by adapting proxy re-encryption, we delegate
the re-encryption to the cloud server, which possesses a large amount of computational
power. Compared to our conference version [19], major differences of this article are: (1) We
propose a new approach which can efficiently detect duplicate files between the client and
the server even if each stores the file in a different format, i.e., the client stores the plaintext
file while the server stores the encrypted file. On the contrary, in the conference version,
the client needs to first encrypt the entire plaintext file which incurs a large overhead. (2)
We simplify the design of delegated re-encryption, incurring less overhead compared to the
conference version. (3) We design PoWC, a new PoW scheme that can work correctly even
if the server and the client possess different file formats. On the contrary, the conference
version directly relies on the original PoW protocol and can only ensure that the prover (i.e.,
the client) possesses an encrypted version of the original file, rather than the actual original
file. (4) We provide a more thorough and formal security analysis. (5) We implement the
new designs and re-evaluate the performance of SEDER.
Contributions. We summarize our contributions as follows:

• We initiate research of the re-encryption problem for secure client-side deduplication
in public clouds. The resulted design, SEDER, is a SEcure client-side Deduplication
system allowing Efficient Re-encryption.

• We have designed a new delegated re-encryption (DRE) scheme and a novel proof
of ownership (PoW) scheme for ciphertext (PoWC). We also propose a new approach
that can securely and efficiently detect duplicate files between the client and the
server even though they store the files in a different format. The re-encryption for
secure client-side deduplication is enabled by smartly leveraging the aforementioned
schemes as well as all-or-nothing transform (AONT).

• We theoretically analyze security of SEDER. We also experimentally evaluate its
performance.

2. Backgroud
2.1. Deduplication and Proofs of Ownership (PoWs)

Deduplication is a widely used technique in the cloud environment [4], aiming at
removing cross-user duplicates. Note that the deduplication does not contradict with the
known durability technique, which replicates data redundantly [20–23] such that data can
be always recoverable upon being corrupted. This is because the redundant data created
for durability purposes usually belong to a single user, and the deduplication technique
removes redundant data cross users, which were unknown by users and have not been
used for durability purposes. Based on granularity of duplicates, deduplication can be
categorized as file-level [9] (i.e., duplicates in files) and block-level [24] (i.e., duplicates in
blocks/chunks) deduplication. Another categorization of deduplication is based on where
deduplication is performed. In a server-side deduplication, all files are uploaded to a cloud
server, and the cloud server performs deduplication transparently to clients. In a client-side
deduplication, the client first checks whether the file has been stored in the server by
uploading a checksum of the file. If the file already exists in the server side, there is no need
to upload the file (bandwidth saving), and the server simply adds the client as the owner
of this file. In this paper, we focus on client-side deduplication, which is used broadly in
practice (e.g., Dropbox [5], Box [6]). In addition, we use the file-level deduplication for
simplicity, but the idea could be applicable to the block-level deduplication.

One attack faced by the client-side deduplication is that an adversary that obtains the
file checksum can simply claim ownership of this file. Proofs of Ownership (PoWs) have
been explored to mitigate this attack. A typical PoW protocol based on Merkle-tree was
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proposed by Halevi et al. [16], in which the prover answers with the sibling-path for each
leaf node being challenged and the verifier checks: (1) whether every sibling-path is valid
or not based on the stored root; and (2) whether each leaf node being challenged is a correct
hash value of the corresponding file block.

2.2. Message-Locked Encryption (MLE)

MLE [8] is a scheme designed to derive encryption keys from messages being en-
crypted. In MLE, different data owners are able to generate the same key for identical
data. Existing MLE schemes include CE [9], DupLESS [10], Duan Scheme [11], and the LAP
scheme [12]. A secure MLE scheme ensures that only the data owners who possess the exact same
content can obtain the corresponding encryption key.

2.3. All-Or-Nothing Transform (AONT)

AONT [25] is an unkeyed, invertible, and randomized transformation. No one can
succeed in performing the inverse transformation without knowing the entire output of the
AONT. Specifically, given message m of l-blocks, m = m1|| . . . ||ml where || denotes block
concatenation, AONTtransforms m into message m′ of l′-blocks, m′ = m′1|| . . . ||m′l′ , where
l′ ≥ l. The transformation satisfies the following properties:

• Given m, m′ ← AONT(m) can be computed efficiently. That is, the complexity of
AONT(m) is polynomial to the length of m.

• Given m′, m← AONT−1(m′) can be computed efficiently.
• Without knowing the entire m′ (i.e., if one block is missing), the probability of recover-

ing m is negligibly small.

2.4. Discrete Logarithm Problem (DLP)

We have a finite cyclic group G of order q, and the corresponding generator is denoted
as g. For a given element y ∈ G, the discrete logarithm problem is to find an integer
0 ≤ x < q− 1 such that gx = y. The discrete logarithm problem is hard, i.e., there is no
known algorithm that can compute x in polynomial time [26].

3. Model and Assumptions

System model. We consider two entities, cloud server (CS) and data owner (O). The cloud
server offers storage services and wants to perform client-side deduplication to reduce
storage and bandwidth cost. The data owners outsource their file to the cloud server.
To maintain data confidentiality of their outsourced file, they will encrypt the file before
outsourcing them. Note that, when the data owner tries to upload a file that has been stored
in the cloud server, CS will append this data owner to the owner list of the corresponding
file without requiring uploading the entire file again.
Adversarial model. All the data owners are assumed to be fully trusted. In addition, it is
an authentic data owner that uploads the original file initially. However, the cloud server
CS is honest-but-curious [7,27]. CS will honestly store the encrypted files uploaded by
the data owner, perform data deduplication, and respond to requests from data owners.
Moreover, CS will not disclose data to anyone who fails to prove ownership of the data.
However, it is curious and attempts to infer sensitive information about the encrypted
file. We assume there is a malicious entity (ME) which attempts to recover sensitive data
in the file using key materials obtained, or to pass the ownership verification during the
client-side deduplication without really possessing the file.

The ME cannot be a special attacker, which is a revoked data owner who still keeps the
original file, but it can be an attacker, which is a revoked data owner who has completely
removed the original file.
Assumptions. We assume that MLE is secure (The MLE has been well investigated in
the literature. For instance, DupLESS [10], Duan Scheme [11], and LAP scheme [12] are
resistant to offline brute-force attack.). The PKI can function securely and each entity has
an asymmetric key pair, in which the private key is well protected. All the communication
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channels are protected by SSL/TLS, so that any eavesdroppers cannot infer information
about messages being exchanged. There is no collusion between CS and ME since neither
of them can obtain any advantages through collusion.

4. SEDER

In this section, we introduce SEDER, a SEcure client-side Deduplication system
enabling Efficient Re-encryption for cloud storage. We first design two new building
blocks (Section 4.1), a delegated re-encryption scheme (DRE) which allows delegating
re-encryption to an untrusted third party and, a new PoW scheme which can allow a
verifier (i.e., the cloud server) to check ownership of the original file by only having access
to the ciphertext of the file. Based on the newly designed building blocks, we present the
detailed design of SEDER (Sections 4.2 and 4.3).

4.1. Building Blocks
4.1.1. Delegated Re-Encryption

Proxy re-encryption (PRE) [28,29] allows a proxy to convert the ciphertext, which
can only be decrypted by the delegator, into another ciphertext that can be decrypted by
the delegatee, without leaking the plaintext to the proxy. Proxy re-encryption has several
promising features, such as uni-direction, transparency to the proxy, and non-interaction
between the delegator and the delegatee during the re-encryption process. However,
the traditional proxy re-encryption [30] does not suit our scenario well because: first, we
require that the re-encryption process can be repeated again and again, but traditional
proxy re-encryption cannot support this requirement well. Second, in the traditional proxy
re-encryption [30], the delegator and the delegatee do not share the secret key used for
encryption, which is not true in our scenario. Our new design, Delegated Re-Encryption
(DRE), works as follows:

• DRE.SetUp(1γ): G is a multiplicative cyclic group of prime order p (p is an γ-bit prime
number, which should be large enough). g is chosen from G at random and is known
to all the parties.

• DRE.KeyGen(Oi): Given data owner Oi, this algorithm generates a secret key ski = ki,
which is a number selected randomly from Zp.

• DRE.Enc(ski, m): Message m is encrypted into ci = mgki , where m is from Zp.
• DRE.ReKeyGen(ski, skj): Given the data owner Oi’s secret key ski, the data owner Oj

generates a re-encryption key based on its own secret key skj (which is a random
number k j, being generated by running DRE.KeyGen(Oj)) as well as ski: rki→j =

gkj−ki . This is specific for our design which is different from the traditional proxy
re-encryption. In our design, all the data owners will share the secret keys, and hence
data owner Oj knows Oi’s secret key ski. The purpose of the proxy here is to simply
help perform the re-encryption, once the secret key ski is leaked. This purpose is
slightly different from traditional proxy re-encryption, and we therefore use delegated
re-encryption for differentiation.

• DRE.ReEnc(rki→j, ci): Given the re-encryption key rki→j, the proxy can re-encrypt the
ciphertext ci to cj by computing: cj = cirki→j.

• DRE.Dec(skj, cj): Given the ciphertext cj, the data owner Oj decrypts it using skj = k j

by computing: m =
cj

gkj
. This is because:

cj

gkj
=

cirki→j

gkj
= mgki gkj−ki

gkj
= m.

4.1.2. A PoW Scheme for Ciphertexts (PoWC)

The traditional PoW scheme [16] requires the verifier (e.g., the cloud server) to have
access to the plaintext of the original file (Section 2.1). This requirement, however, can-
not be satisfied in our scenario, in which the cloud server can only have access to the
ciphertext of the outsourced file. We therefore need a new PoW protocol specifically for
Ciphertext (PoWC for short), which can allow the verifier to check whether the prover (i.e.,
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the client) really owns the original file by only having access to the corresponding cipher-
text. You et al. [31] proposed a PoWC design by leveraging Intel SGX, which, however,
requires the verifier to be equipped with the SGX security feature in the processor.

Our design of PoWC here aims to remove the assumption on the secure hardware.
Motivated by DEW [32], we ask the initial data owner, who first uploads the ciphertext
of the file, to compute and upload some auxiliary data which can be used later by the
cloud server to verify ownership of the original file. Note that, for security, the auxiliary
data should satisfy two properties: (1) They can be used by the cloud server to correctly
verify the PoW proof, which is computed over the original file by the client. (2) The cloud
server should not learn anything about the original file by utilizing the auxiliary data. For
performance, the auxiliary data should consume significantly less storage space compared
to the original data to avoid cancelling benefits of deduplication. Note that we are not able
to compute the auxiliary data simply following the DEW [32], since their auxiliary data are
specifically computed from the watermarked version of multimedia files. In our scenario,
we do not have “watermarks”.

To construct the auxiliary data, we start from the PoR (Proofs of Retrievability [33])
tags which support private verifiability, which can be constructed as [33]: σi = PRFκ(i) +

s
∑

j=1
αjmij, where i, j denote the index of each file block, and the index of each symbol

(each symbol is from Zq, where q is a large prime) in the block, respectively, and “PRF”
is a pseudo-random function with a secret key κ, and {αj|1 ≤ j ≤ s} is a set of s secret
coefficients in Zq. Note that κ and {αj|1 ≤ j ≤ s} need to be known by the verifier.

However, we observed that the privately verifiable PoR tags cannot be directly used
for our purpose because: In traditional PoR scenarios, the client is the verifier and the cloud
server is the prover; in our scenario, on the contrary, the cloud server is the verifier and the
client is the prover, i.e., the cloud server needs to know κ and {αj|1 ≤ j ≤ s} to perform
verification. This could be problematic since, by knowing κ and {αj|1 ≤ j ≤ s}, the honest
but curious cloud server (Section 3) may brute-force the original file content from the PoR
tags due to the limited content space of a file.

Therefore, we need to allow the cloud server to verify the PoW proof without being
able to brute-force the original file content. Our solution is: (1) We slightly change the

construction of the tag to σi = PRFκ(i) + y
s
∑

j=1
αjmij, where y is a secret random number

unknown to the cloud server. Specifically, y can be derived from a pseudo-random func-
tion with a secret key κy, and κy can be generated by applying MLE on the original file.
The server does not have the original file, and is not able to derive y. (2) We disclose
{αj|1 ≤ j ≤ s} to the cloud server, but keep κ secret from it. An issue remaining unsolved
is, without knowing κ, how can the cloud server verify the PoW proof? To address this
issue, we generate κ by applying MLE on the original file. The server does not have the
original file, and is not able to derive κ. When generating the PoW proof, the prover which
actually possesses the original file will be able to compute κ, and then compute assisting
information which assists the server to check the PoW proof. Note that {αj|1 ≤ j ≤ s}
should be kept secret from the prover, and the assisting information should be able to be
computed without knowing {αj|1 ≤ j ≤ s}. In addition, to prevent the cloud server from
learning the original file content from the PoW proof, the prover will mask each proof
using randomness. The detailed design of our PoWC is elaborated as follows:

• auxi← PoWC.Init( f ) : The data owner chooses a set of secret coefficients {αj|1 ≤ j ≤
s} from Zq. Given a file ( f ), the data owner pre-processes it and computes auxiliary
data auxi. By applying MLE over the file f ,
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the data owner generates two keys κ and κy. Using κy, the data owner derives a
random number y in Zq. The data owner splits the file into n blocks, each of which
contains s symbols in Zq, and derives a PoWC tag for each file block (for 1 ≤ i ≤ n):

σi = PRFκ(i) + y
s

∑
j=1

αjmij.

The auxi = {σ1, σ2, ..., σn, α1, α2, ..., αs} will be sent to the cloud server.
• Q← PoWC.challenge(): The verifier checks whether the prover really possesses a file

f . Checking each file block will be expensive, especially when the file is large in size.
Instead, the verifier can check a random subset of c blocks (The verifier will check all
the blocks if the file is small in size, e.g., having no more than 460 4 KB blocks.), which
can ensure with high probability that the prover will not be able to pass the verification
if it does not possess the entire file, when c is large enough [34]. The verifier picks a
random c-element subset I of the set [1, n] and, for each i ∈ I, a random element vi is
picked from Zq. The Q = {(i, vi)} will be sent to the prover. To prevent the prover
from knowing {αj|1 ≤ j ≤ s}, the cloud server sends {gαj |1 ≤ j ≤ s} to the prover.

• proof ← PoWC.Prove(Q, f ) : The prover applies MLE over the file f , generating κ and
κy. Using κy, the prover computes y. Based on the received Q, the prover computes a
PoWC proof as (for 1 ≤ j ≤ s):

µj = y ∑
(i,vi)∈Q

vimij + xj,

where xj ∈ Zq is a random number picked by the prover for masking the proof.
The prover also computes:

tail = g
∑

(i,vi)∈Q
vi PRFκ(i)

(
s

∏
j=1

gαjxj)−1.

Then, proof = ({µj|1 ≤ j ≤ s}, tail) is returned to the verifier.
• {0, 1} ← PoWC.Verify(auxi, Q, proof): The algorithm returns “1” if the equation

g
∑

(i,vi)∈Q
viσi

= tail · g
s
∑

j=1
αjµj

holds taking auxi, Q and proof as input. Otherwise, the algorithm returns “0”.

4.2. Design Rationale of SEDER

There are several key designs in SEDER, as listed in the following:
First, we rely on MLE to ensure a file encrypted by different data owners is always

deduplicable. MLE guarantees that different data owners who possess an identical file can
always generate an identical encryption key.

Second, we design novel techniques that can allow the client and the server to identify
duplicate content stored in them even though they hold the content in a different format,
i.e., the client stores plaintext of the content while the server stores ciphertext of the content.
An immediate solution is, during deduplication, the client encrypts the plaintext of the
file, computes a checksum over the encrypted file, and sends this checksum to the server
for comparison. This could be very expensive especially when the file is large in size.
An improvement could be that the initial data owner who uploads the file initially also
computes a checksum over the plaintext of the file, and stores this checksum in the server,
and, during deduplication, the client can simply send the checksum computed from the
plaintext of the data. This improvement, however, is insecure because, by knowing the
checksum of the original data, the server may brute-force the file content due to the limited
content space of a file. Fortunately, the encryption key derived through MLE can be used to
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protect the checksum value of plaintext as well. Our solution is that the initial data owner
encrypts the checksum (which is usually small in size) over the plaintext using the MLE key,
and the encrypted checksum will be sent to the server. This can prevent the server from
performing the brute-force attack since it cannot have access to the MLE key. In addition,
during the deduplication, the client can compute the checksum over the plaintext of the
data, encrypt it using the derived MLE key, and send the encrypted checksum to the server
for comparison.

Third, we use AONT and DRE together to support efficient re-encryption of the out-
sourced file. Specifically, given a file, we apply MLE, obtaining the MLE ciphertext. MLE
ensures that the same ciphertext will be generated from different users if the file content
is the same. Then, AONT is applied to MLE ciphertext, generating a set of data blocks.
Note that without fetching all the data blocks, the MLE ciphertext cannot be recovered
thanks to the interesting property of AONT. In this way, to re-encrypt a file, the data
owner only needs to re-encrypt one data block, rather than all the data blocks. In addition,
by leveraging DRE, we can delegate the re-encryption process to the untrusted cloud server,
without leaking the plaintext of the file. This is advantageous as we can eliminate the
burden on the client who is supposed to be kept lightweight.

Finally, to ensure only the valid data owners are able to decrypt the data being re-
encrypted, we perform the following: (1) We leverage PoWC to distinguish valid and
invalid data owners. A valid data owner should be able to prove his/her ownership as
he/she really possesses the file. When a data owner passes the verification, the cloud
server will add him/her to the owner list of the file and provide him/her the assisting
information needed for decrypting the file. (2) The data owner who re-encrypts the file will
compute new assisting information that is needed to decrypt the file. The new assisting
information will be re-propagated to the users in the owner list. The unauthorized users
(e.g., the hackers which obtain the secret key) do not have the original file and will not be
able to pass the PoWC to be added to the owner list.

4.3. Design Details of SEDER

Let λ, γ and β be the security parameters, πDRE be a delegated re-encryption
scheme that πDRE = (πDRE.SetUp, πDRE.KeyGen, πDRE.Enc, πDRE.ReKeyGen, πDRE.ReEnc,
πDRE.Dec). πsym is a symmetric encryption scheme such that πsym = (πsym.KeyGen,
πsym.Enc, πsym.Dec), and πasym is an asymmetric encryption scheme such that πasym =
(πasym.KeyGen, πasym.Enc, πasym.Dec). Let P denote the PoWC scheme such that P =
(P.Init, P.chal, P.Prove, P.Verify). Let H1 be a cryptographic hash function: H1 : {0, 1}∗ →
{0, 1}λ. In the following, we describe the design details of SEDER, which contains six
phases: SetUp, PreUpload, Upload, Update, Download and Delete.
SetUp: This is to bootstrap the system parameters, and to initialize cryptographic parame-
ters for data owners and cloud server. The system runs πDRE.SetUp(1γ) to initialize the
system parameters. In addition,

• Data owner (O): Each data owner Oi runs the key generation algorithm of asymmet-
ric encryption scheme to generate the public and private key pair by running the
algorithm: (πasym.pkOi

, πasym.skOi
)← πasym.KeyGen(1β).

• Cloud server (CS): It generates the public/private key pair by running the key genera-
tion algorithm of the asymmetric encryption scheme:
(πasym.pkCS, πasym.skCS)← πasym.KeyGen(1β).

PreUpload: The PreUpload phase is run by the data owner Oi before uploading a file f to CS.
Oi derives two keys k f and kc by applying MLE over f . Oi computes a checksum of f by:
checksum f = πsym.Enc(kc, H1( f )).
Upload: Data owner Oi sends an upload request (checksum f , upload) to the cloud server
CS, indicating that he/she wants to upload f . CS and Oi interact to perform the following
operations:
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Case 1—checksum f does not exist in CS: In this case, Oi will upload the entire file f to CS
following these steps:

• Oi runs P.Init( f ), generating auxi.
• Oi encrypts f by running ct← πsym.Enc(k f , f ).
• Oi generates a secret key by running: πDRE.ski ← πDRE.KeyGen(Oi).
• Oi splits ct into l blocks: ct = ct1||ct2||...|| ctl , and applies AONT transform on ct,

generating l′ blocks, such that ct′ ← AONT(ct) where ct′ = ct′1||ct′2||...||ct′l′ and l′ ≥ l.
• Oi randomly selects a data block ct′z from ct′1, . . . , ct′l′ and encrypts it by running:

c = πDRE.Enc(πDRE.ski, ct′z) . The final ciphertext is: ctUpload = ct′1|| . . . ||ct′z−1||c||
ct′z+1|| . . . ||ct′l′ .

• Oi encrypts πDRE.ski using symmetric encryption with k f :
ct∗sym = πsym.Enc(k f , πDRE.ski), and further encrypts ct∗sym using asymmetric encryp-
tion with CS’s public key: ctasym = πasym.Enc(pkCS, ct∗sym).

• Oi sends to the cloud server auxi, ctUpload, and ctasym.
• CS organizes the received information in the format < checksum f , ctUpload, auxi, ctasym,

owner list lctUpload >. By decrypting ctasym using πasym.skCS, CS obtains the assisting
information ct∗sym The owner list lctUpload is initialized as {Oi}.

Case 2—checksum f exists in CS: Since the file has been stored by CS, it is necessary to
perform PoWC to verify whether Oi really possesses this file:

• CS runs Q← P.chal(), and sends Q and {gαj |1 ≤ j ≤ s} to Oi. Note that {gαj |1 ≤ j ≤
s} is part of the auxi (Section 4.1.1).

• Oi computes a PoWC proof by running proof ← P.Prove(Q, f ), and sends proof back
to CS.

• CS verifies proof by running P.Verify(auxi, Q, proof). If the output is ‘1’, CS appends
Oi to the owner list (lctUpload ) and sends the assisting information of f , i.e., ct∗sym, to Oi.
Otherwise, CS rejects Oi. Note that ct∗sym will be encrypted using Oi’s public key pkOi
and securely distributed to Oi, and Oi can use private key skOi

for decryption.

Update: When Oj, a data owner in the owner list lctUpload , suspects k f or πDRE.ski (i.e., the old
secret key used for encrypting c′ in ctUpload) is leaked, only a small part of ciphertext rather
than the entire file will be re-encrypted by Oj as follows:

• Oj decrypts ct∗sym using k f , obtaining πDRE.ski, where i denotes the data owner which
encrypts the file before re-encryption.

• By using πDRE.ski and his/her own secret key πDRE.skj, Oj generates the re-encryption
key by running rki→j ← πDRE.ReKeyGen(πDRE.ski, πDRE.skj). Oj encrypts πDRE.skj

using k f : ct#sym = πsym.Enc(k f , πDRE.skj), and then encrypts ct#sym using CS’s public
key: ct′asym = πasym.Enc(pkCS, ct#sym). ct′asym and rki→j are sent to CS.

• CS runs c′ ← πDRE.ReEnc(rki→j, c) and replaces c with c′. In addition,CS replaces
ct∗sym with ct#asym, which is decrypted from ct′sym, and distributes ct#sym to valid owners
in lctUpload . Note that a revoked owner will not be able to obtain ct#sym, and is not able
to decrypt the re-encrypted data any more.

Download: Oi sends a download request (checksum f , download) to CS if he/she wants to
retrieve f . CS then checks whether Oi is in the owner list lctUpload or not. If Oi is in the owner
list, CS will respond with ctUpload, and Oi uses the file key and the assisting information
(e.g., ct∗sym, or ct#sym if the data have been re-encrypted) to decode ctUpload. Otherwise, CS
will reject this download request.

Delete: When CS receives a delete request (checksum f , delete) from a data owner Ok, if Ok is
in the owner list, CS will remove Ok from the owner list lctUpload of file f , i.e., Ok has been
revoked. If lctUpload turns empty, CS will delete ctUpload and checksum f , auxi. Otherwise,
the re-encryption process (i.e., Update) should be invoked so that the revoked data owner
is not able to decrypt the data any more.
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5. Analysis and Discussion
5.1. Security Analysis

Security of SEDER is captured in the following Lemmas and Theorems.

Lemma 1. The cloud server cannot learn the original file by having access to its ciphertext and the
encrypted assisting information.

Proof. (Sketch) The encrypted file after AONT transform , i.e., ctUpload, and the assisting
information, i.e., ct∗sym or ct#sym, are stored in the cloud storage. Without having access
to the file key k f derived through MLE, the cloud server cannot decrypt any assisting
information, and hence cannot have access to the secret key which is required to decrypt
block c (or c′). Due to AONT, without having obtained all the blocks, the cloud server
will not be able to decode ct′ to obtain the encrypted original file ct, let alone the original
file f .

Lemma 2. The cloud server cannot learn the original file from checksum f .

Proof. (Sketch) checksum f is obtained by encrypting the hash value of the file f using a file
key kc. Since the cloud server is not able to have access to kc (the MLE used to derive kc is
assumed to be secure, and without having access to the original file, the cloud server will
not be able to derive kc), it will not be able to decrypt the cipher to obtain the hash value
of f , considering the symmetric encryption is secure. Without the hash value of the file,
the cloud server is not able to perform the brute-force attack to infer the file.

Lemma 3. The cloud server cannot learn the original file when performing DRE.

Proof. (Sketch) During each run of proxy re-encryption, the cloud server (as a re-encryption
proxy here) can observe: (1) ci = mgki ; and (2) rki→j = gkj−ki . There are two potential
attack cases. Case 1: the cloud server tries to learn m using knowledge obtained from
one run of proxy re-encryption. The cloud server will not be able to have access to ki,
gki , k j, gkj , and it is clear that the cloud server cannot learn m from the knowledge of (1)
and (2) since there are three unknowns and two equations. The probability of guessing
m will be no larger than 1

2q for a q-bit m, which is negligibly small for a large enough
q. Case 2: the cloud server tries to learn m by accumulating knowledge from multiple
runs of proxy re-encryption. By accumulating knowledge from the first run of the proxy
re-encryption, the cloud server cannot learn m since there are three unknowns but only two
equations. For each following run, the data owner will pick a completely different random
key, and send a new re-encryption key to the cloud server. Therefore, the cloud server will
obtain an additional equation, along with a new unknown. In other words, the additional
knowledge accumulated from each following run of proxy re-encryption will not provide
the cloud server with any additional advantage of computing m.

Lemma 4. The cloud server cannot learn the original file through performing PoWC.

Proof. (Sketch) The cloud server can have access to: (1) auxi, which consists of PoWC tags
and {αj|1 ≤ j ≤ s}, provided by the data owner who initially uploads the file; (2) proof,
which includes {µj|1 ≤ j ≤ s} and tail, obtained during each PoWC execution.

(1) We first show that, by having access to auxi, the cloud server cannot obtain the
original file. By having access to the set of n PoWC tags and {αi|1 ≤ i ≤ s}, equivalently,
the cloud server can have access to n linear equations and (ns + n + 1) unknowns (i.e.,
m11, m12, ..., m1s, m21, m22, ..., m2s, ..., mn1, mn2,..., mns, PRFκ(1), PRFκ(2), ..., PRFκ(n), y).
The cloud server is not able to compute the (ns + n + 1) unknowns using the n linear
equations. The cloud server may try to guess the file content (due to the limited content
space of a file) in a brute-force manner and, to use each guessed file content to derive κ



Information 2021, 12, 142 11 of 22

and y using MLE. This will not be feasible since both κ and y are directly or indirectly
derived by MLE, which can resist against the offline brute-force attack. The only option
for the cloud server is to guess each file content, and to utilize the n linear equations to
compute the remaining PRFκ(1), PRFκ(2), ..., PRFκ(n), and y based on the guessed file
content. However, the number of unknowns (i.e., n + 1) is more than the number of linear
equations (i.e., n), which makes the n linear equations unsolvable.

(2) We then show that, by accumulating PoW proofs after each PoW execution,
the cloud server is still not able to learn the original file. A few key points are impor-
tant for our security: First, If the PoW check fails, the accumulated PoW proof should not
help the server, since the data owner is not supposed to possess the original file. Second,
the cloud server will strictly follow the PoW protocol during each PoW execution (i.e.,
honest). This includes generating a random challenge during each PoW execution. Third,
the prover will not collude with the verifier, and will mask each µj (where 1 ≤ j ≤ s) with
a newly generated random number. After each successful PoW execution, the cloud server
will accumulate a new PoW proof, which includes µ1, µ2, ..., µs as well as tail:

µ1 ← y ∑
(i,vi)∈Q

vimi1 + x1

µ2 ← y ∑
(i,vi)∈Q

vimi2 + x2

...
µs ← y ∑

(i,vi)∈Q
vimis + xs

tail ← g
∑

(i,vi)∈Q
vi PRFκ(i)

(
s

∏
j=1

gαjxj)−1

Since µj (1 ≤ j ≤ s) is masked by newly generated random number xj, the number of
new linear equations brought by µ1, µ2, ..., µs is equal to the number of new unknowns.
Therefore, the set of {µj|1 ≤ j ≤ s} alone does not bring any advantage to the cloud server
for computing mij. We further show that, by utilizing tail, the cloud server also gains
negligible advantage of computing mij. Because of hardness of DLP, to use tail, the cloud
server needs to guess xj (1 ≤ j ≤ s) and κ, and to verify correctness of each guessing using
tail. The probability for a successful guessing will be smaller than 1

qs , which is negligibly
small if q is large enough.

Lemma 5. A malicious entity which does not possess the entire file cannot pass the PoWC verification.

Proof. (Sketch) In the following, we first prove that the PoW verification process is correct.
We further show that, by checking a random subset of the entire file, the verifier can ensure
that the prover really possesses the entire file with a high probability (note that, if the
file size is small, the verifier will check all the file blocks, which can always ensure that
the prover really possesses the entire file). Lastly, we show that, if the PoW verification
can be passed successfully, the verifier can always ensure that the prover possesses the
challenged blocks.

We first show correctness of the PoWC verification process as follows:
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g
∑

(i,vi)∈Q
viσi

= g
∑

(i,vi)∈Q
vi(PRFκ(i)+y

s
∑

j=1
αjmij)

= g
∑

(i,vi)∈Q
vi PRFκ(i)+

s
∑

j=1
αj ·y ∑

(i,vi)∈Q
vimij

= g
∑

(i,vi)∈Q
vi PRFκ(i)+

s
∑

j=1
αj(µj−xj)

= g
∑

(i,vi)∈Q
vi PRFκ(i) s

∏
j=1

gαj(µj−xj)

= g
∑

(i,vi)∈Q
vi PRFκ(i) s

∏
j=1

gαjµj

gαjxj

= tail ·
s

∏
j=1

gαjµj

We then show that, by challenging a random subset of blocks among the entire file,
and if a malicious data owner does not possess the entire file, the cloud server can detect
it with a high probability. According to PDP [34], if the adversary only possesses w
proportion of an n-block file, when being challenged, a random subset of c blocks out

of n blocks, the probability that the verifier can detect the misbehavior is: P = 1− (wn
c )

(n
c)

,

and 1− wc ≤ P ≤ 1− (wn−c+1
n−c+1 )c. The lower bound of the P is 1− wc, which means, when

c is large enough, wc → 0, and P→ 1.
Finally, we show that, if the prover loses one of the challenged blocks, it will not

be able to pass the PoW check. During the PoW verification, all the PoW tags σi, where

1 ≤ i ≤ n are unknown to the prover, and hence g
∑

(i,vi)∈Q
viσi

is also unknown. If the prover
is missing one block being challenged, it needs to guess this block when computing the
PoW proof µ1, µ2, ..., µs.

The resulting PoW proof can successfully pass the PoW check with a probability no
more than 1

q . This probability is negligibly small for a large enough prime q. Therefore, we
can conclude that the prover is not able to pass the PoW check without actually possessing
all the blocks being challenged during each PoW execution.

Theorem 1. SEDER is secure under our adversarial model.

Proof. (Sketch) SEDER is secure since the following security goals can be achieved: (1) the
cloud server cannot learn anything about the original file f ; and (2) a malicious entity which
does not possess f cannot pass the PoWC check; and (3) a malicious entity cannot learn
anything about f . The first security goal can be captured by Lemmas 1–4, and the second
security goal can be ensured by Lemma 5. For the last security goal, since a malicious entity
(including a revoked data owner which has deleted the original file) cannot pass the PoWC
check, it can obtain neither the encrypted data nor the updated decryption key, and hence
is not able to learn the original file f .

5.2. Discussion

Zero-day attack. SEDER is vulnerable to the zero-day attack, in which the key is leaked
and the re-encryption has not been performed. During this period, the adversary can have
access to the original file using the obtained key materials. This seems to be unavoidable
and currently not a good solution for mitigating such a strong attack.
The nature of the storage being supported by SEDER. Currently, SEDER only supports
archival storage [20,34–36]. It can be extended to support dynamic storage (i.e., supporting
dynamic operations like insert, delete, and modify [27,37–39]) in the future.
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6. Experimental Evaluation
6.1. Experimental Setup

We have experimentally evaluated overhead of each major operation in SEDER. We
chose the security parameters as: γ = p = q = 128, β = 1024, and λ = 256. The length
of the file key k f and kc is 128 bits. The symmetric and asymmetric encryption were
instantiated by AES-128 and RSA-1024, respectively. The hash function was instantiated
using SHA-256. We instantiated the secure MLE following the idea of DupLESS [10].
OpenSSL-1.1.0e [40] was used for the major cryptographic operations. Throughout the
experiment, the client and the cloud server both ran on a local computer with Intel i5-6300
(2.5 GHz) CPU and 8 GB RAM. The computational overhead in PreUpload, Upload, Update,
and Download phases are evaluated for different file sizes, and the experimental results are
averaged over 10 runs. When evaluating the Upload phase, we varied a and b, where a is
the file block size (in bytes) and b is the symbol size (in bytes).

6.2. Experimental Results

In the following, we evaluate the performance of SEDER in different phases. To the
best of our knowledge, among existing PoW schemes on encrypted cloud data [17,18,31],
as shown in Table 1, PoWIS is the solely proposal that can achieve the same security
level with our PoWC. First, due to relying on the hash value of the original file to find out
whether the file has existed in the cloud server before uploading, the PoW process in [17,18]
are vulnerable to the brute-force attack. In addition, since the PoW design in [17] works
relying on the hash value of the file, it cannot provide concrete ownership guarantees (the
vulnerability has been identified in [16]). In this case, the PoWIS [31] and our PoWC are
the two more secure PoW schemes on encrypted cloud data than the counterparts [17,18]
for the client-side deduplication system. Therefore, for the Upload phase, we compare
our PoWC with the existing scheme PoWIS [31], which can also enable the PoW over the
outsourced encrypted data securely. For the Update phase, we compare the performance of
our re-encryption process (i.e., DRE) with that in REED [15], which consumes much less
bandwidth and computational resources compared to the existing re-encryption designs
in [17,18,41] by taking full advantage of AONT, but completely relies on the client for the
re-encryption process due to the nature of the server-side deduplication.

Table 1. Comparison with other deduplication schemes. (Hur [41] and REED [15] are server-side
deduplication schemes which do not include the PoW process).

Proposals Data
Confidentiality

Ownership
Validation Base

Resistance to
the Brute-Force
Attack

Key Update
(Complexity)

Halevi [16] × Merkle-tree of the
original file × N/A

Xiong [18] X
Encrypted file
blocks × O(n)

Ding [17] X
Hash value of the
file × O(n)

PoWIS [31] X
Merkle-tree of the
original file X N/A

Hur [41] X N/A N/A O(n)

REED [15] X N/A N/A O(1)

Our scheme X
Homomorphic
verifiable tags of
the original file

X O(1)
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PreUpload. The data owner obtains secure MLE keys in this phase. The secure MLE,
i.e., DupLESS, requires interactions between the data owner and an independent key server.
We therefore assessed the computational overhead in both the data owner and the key
server. As shown in Figure 1, the computational cost in the key server is constant. On the
contrary, the computational cost for the client (i.e., the data owner) is linear with the file
size. This is because the data owner needs to first compute a hash value of the original file,
and such a cost depends on the file size.

200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

 

 

Ti
m

e 
(s

ec
on

d)

File size (MB)

 Client
 KeySever

Figure 1. Computational cost for the PreUpload phase.

Upload. The computational cost for Case 1 and Case 2 of the Upload phase (Section 4.3) are
shown in Figures 2 and 3, respectively.
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(a) Generating {αj} in client side
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(b) Computing {gαj} in server side
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(c) Generating PoWC tag
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Figure 2. Computational cost for various components in Case 1 of Upload phase.

In Case 1, to enable PoWC, the initial data owner needs to select a set of secret
coefficients {αj|1 ≤ j ≤ s} and to compute PoWC tags. Then, the data owner encrypts the
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file and performs AONT on the encrypted file. From Figure 2, we can observe that: (1) The
computation for generating the secret coefficients and computing gαj is independent from
the file size. In addition, this computation is mainly determined by s, which is a

b . (2) The
computation for generating PoWC tags grows linearly with the file size. Additionally,
for the fixed file size, the computation for different testing cases is: (a = 2048, b = 10) >
(a = 2048, b = 20) ≈ (a = 4096, b = 20). This is because, the computation for generating
PoWC tags depends on the total number of symbols in a file, which O( |F|b ). (3) The
computation for AES encryption and AONT transform is determined by the file size and
approximately grow linearly with the file size.
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(a) Proof
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Figure 3. Computational cost for various components in Case 2 of Upload phase.

In Case 2, the prover (i.e., a potential data owner) computes the PoWC proof, and the
verifier (i.e., the cloud server) verifies correctness of the PoWC proof. From Figure 3, we can
observe that: (1) Both the proof generation and verification can be performed in constant
time thanks to the use of spot checking (i.e., only 460 randomly picked blocks instead of the
entire file are checked [34]. (2) For the fixed file size, the computation needed for different
testing cases are (a = 4096, b = 20) ≈ (a = 2048, b = 10) > (a = 2048, b = 20). This is
because both the proof generation and verification are mainly determined by the number
of symbols in a block, i.e., s, which is a

b .
Considering security, we compare the performance of our PoWC and PoWIS [31],

which both allow PoW to be performed on the encrypted data with sufficient ownership
guarantees and resistance to the brute-force attack. The comparison is shown in Table 2.
We can observe that PoWIS is much more efficient than PoWC in tag generation, proof
generation, and verification. This is mainly due to the support of secure hardware (i.e.,
Intel SGX) in PoWIS. On the contrary, PoWC is purely based on cryptography and does not
require secure hardware as well as the trust on the secure hardware manufacturer. Secure
hardware may not be equipped with the server, and hence PoWIS will have limited appli-
cations, but PoWC is a general solution which can be deployed on any general computing
device. In addition, using secure hardware like Intel SGX will introduce extra overhead for
performing platform attestation [42] to ensure the usage of secure hardware. This overhead
may be large, e.g., more than 1 s [31].
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Table 2. Performance comparison between PoWIS and PoWC in this work. PoWIS has a much better
performance by using dedicated secure hardware, but it relies on the assumption that the cloud
server has secure hardware equipped. The PoWC is purely based on cryptography, and does not rely
on the aforementioned assumption.

PoWIS [31] PoWC

Secure hardware required X ×
Generating PoW tag (file size in 16 MB) 0.33 s 1.3745 s
Generating PoW proofs (for 460 file blocks) 0.0242 s 0.4376 s
Verifying PoW proofs (for 460 file blocks) 0.014 s 0.2224 s

Update. A valid data owner will cooperate with the cloud server to re-encrypt the file if
the key is leaked. The results for this phase are shown in Figure 4a.
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Figure 4. Computational cost for Update and Download phase.

We can observe that the computation in both the data owner and the cloud server is
rather small (less than 0.1 ms), compared to actually re-encrypting the entire file (which is
10–200 s as estimated from Figure 4b). In addition, both are independent from the file size
because only a fixed part of the entire data needs to be re-encrypted.

Considering significant computational and bandwidth saving, we compare the per-
formance of DRE and REED [15], both of which support the re-encryption in a cloud
storage system by re-encrypting a small file block with fixed size rather than the entire file
in [17,18,41]. The results are shown in Table 3. We can observe that our DRE, although in-
troduces computational overhead to the server, has significantly less computation in the
client side. This is because: (1) In our DRE, the client only needs to re-encrypt the key,
rather than the data; on the contrary, the client needs to re-encrypt the data in REED.
(2) REED uses cipertext-policy attribute-based encryption (CP-ABE) in the re-encryption
process, which contains computationally expensive pairing operations for fine-grained
access control; on the contrary, our re-encryption process does not contain these expensive
pairing operations to support a coarse-grained access control in re-encryption. A more
fine-grained re-encryption scheme for SEDER could be our future work by taking fully
advantage of the nature of the client-side deduplication.

Table 3. Performance comparison between REED and our DRE. Note that the re-encrypted block is
64 bytes in size.

REED [15] Our DRE

Computational cost in the client (ms) 57.21 0.092
Computational cost in the server (ms) N/A 0.056
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Download. To retrieve the file, a data owner needs to decrypt the re-encrypted block
(the process is denoted as DecRe-encBlock in Figure 4b), to perform the reverse operation
of AONT, and to further decrypt the resulted data to obtain the original file (denoted as
AESDecryption in Figure 4b). From Figure 4b, we can observe that: (1) The computation
of decrypting the re-encrypted block is small (less than 6 ms) and remains constant. (2) The
computation for AESDecryption grows linearly with the file size.

7. Related Work

Message-Locked Encryption (MLE). MLE is a set of encryption algorithm that the encryp-
tion key is derived from the message being encrypted, which is formalized by Bellare et al.
in [8]. Douceur et al. [9] proposed convergent encryption (CE), the first MLE scheme,
in which the encryption key is the hash value of the file being encrypted, such that the same
file possessed by different users can be encrypted to be same ciphertexts by identical en-
cryption key. CE has been adopted in several online backup systems [43–49] for facilitating
the performance of deduplication over data encrypted by different data owners. However,
CE is vulnerable to the offline dictionary attack, since content space is usually predictable.
To mitigate this security issue, several MLE schemes were proposed. Bellare et al. proposed
DupLESS [10] by introducing an independent key server and limiting times for accessing
the key server. Duan [11] proposed another secure MLE scheme based on distributed
oblivious key generation. Liu et al. [12] proposed a MLE scheme without relying on any
independent server by requiring the valid data owner to participate in authentication and
use a same input Password-Authenticated-Key-Exchange (PAKE) to derive the final MLE
key. The online dictionary attack is mitigated for the first time by allowing the valid data
owner to limit times for performing key exchange with them.
Proxy Re-Encryption. Blaze et al. [28] proposed proxy re-encryption for the first
time, which requires a mutual trust between the delegator and its delegatees.
Ateniese et al. [30] released a trust requirement with the cost that the re-encrypted ci-
phertext cannot be re-encrypted repeatedly. Canetti and Hohenberger [50] pointed out that
the proxy re-encryption is vulnerable to the chosen-ciphertext attack (CCA) and the chosen-
plaintext attack (CPA), and proposed a CCA-secure proxy re-encryption scheme, which,
however, requires bidirectional trust among delegator and delegatees. Davidson et al. [51]
presented two proxy re-encryption schemes based on matrix transformation, one is se-
cure under standard CPA model requiring unidirectional trust between delegator and its
delegatees, and the other one is secure in a stricter CCA model when the delegator and
its delegatees can establish bidirectional trust. More recently, Ref. [52] identified a new
security level for proxy re-encryption and adjusted existing schemes to fit in this new
security definition. There are several works focusing on enhancing usability of existing
proxy re-encryption schemes. For example, the a proxy re-encryption scheme in [53] is
compatible with the hybrid encryption scenario at the cost of additional storage space for
the proxy to store encrypted random masks for each delegatee.
Deduplication and Proofs of Ownership (PoWs). Deduplication has been widely used in
cloud storage. For significant bandwidth and storage saving, the client-side deduplication
schemes [41,47,54–56] is investigated and used more than the server-side deduplication
schemes in practice. ClearBox [57] is a transparent deduplication scheme, in which storage
service providers can attest to users the number of owners of specific file transparently,
so that users can share the fee for storing the same file. Li et al. [58] proposed SecCloud+

to achieve data integrity and deduplication simultaneously. Tang et al. [59] performed
data deduplication on a backup system with ciphertext-policy attribute based encryption
(CP-ABE) enabled. For protecting privacy, the Message-Locked Encryption [8,9] was used
in server-side deduplication. To mitigate the offline dictionary attack faced by CE, which
is one of the most widely used MLE schemes, Bellare et al. proposed DupLESS [10] by
introducing a key server and limiting the number of requests for obtaining a MLE key
within a fixed time interval, which can mitigate the brute-force attack faced by the MLE.
Liu et al. [12] removed the additional independent key server at the cost of requiring at
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least one valid data owner to stay online when performing deduplication. Li et al. [47]
proposed a deduplication scheme taking advantage of the hybrid cloud environment,
in which the encryption keys are generated and managed by the private cloud server
owned by the users, while the public cloud server provides storage service and server-
side deduplication. Yao et al. [60] proposed a Hierarchical Privilege-Based Predicate
Encryption (HPBPE) scheme based on the hierarchical encryption, which introduces a
deduplication provider to check duplication based on user dynamic privileges of users
without revealing any information about privilege to the cloud server. To further enhance
the effectiveness of deduplication, some generalized deduplication schemes [61–63] are
proposed by detecting and removing “similar” data rater than “identical” data using
transformation functions, e.g., the Hamming code and the Revealing Encryption (RE),
in traditional deduplication schemes.

To enable a secure client-side deduplication, the proof of ownership protocol is nec-
essary since the cloud server needs to check whether the prover really possesses the file
that has existed in the cloud storage without requiring the prover to upload the entire
file again to manage ownership of the file correctly. The traditional Merkle tree based
PoW [16] assumes that the cloud server is fully trusted and has access to the original
file, which is not applicable to scenarios where the data owners have advanced security
requirements, e.g., protecting confidentiality and copyright against the untrusted cloud
server. To ensure data confidentiality, Puzio et al. proposed a client-side deduplication
scheme [64] to remove redundant data by introducing a trusted third party (which is
called “Metadata Magager”) to authenticate users that can perform deduplication checking
for, however, specific users rather than across multiple users. In 2018, Xiong et al. [65]
designed an authenticated deduplication by leveraging a role symmetric encryption (RSE)
algorithm to accomplish fine-grained access control for deduplication. Xiong et al. [18,65],
Ding et al. [17], and our previous work [19] proposed several client-side deduplication
schemes including proofs of ownership on the encrypted cloud data, which, however, are
problematic in security or performance due to using irrational commitment in ownership
validation, e.g., the encrypted file blocks in [18,65], the hash value of the original file in [17],
and the Merkle tree derived from the encrypted data. You et al. noticed this conflict
and proposed a deduplication-friendly watermarking [32], in which the untrusted cloud
server can validate ownership of the original file by having access to the watermarked file.
An implementation of PoW [31] for encrypted cloud data by leveraging trusted hardware
was proposed, which, however, requires the cloud server to support and enable specific
trusted features.

However, data owner revocation is not well considered in the above deduplica-
tion schemes, which is quite common in the cloud storage environment. In this case,
Kwon et al. [66] then designed a deduplication scheme specific for multimedia data based
on randomized convergent encryption and privilege-based encryption. Hur et al. [41]
proposed a novel server-side deduplication to support dynamic ownership management
by leveraging the group key distribution techniques and randomized convergent encryp-
tion. Xiong et al. proposed a client-side deduplication scheme [18] allowing changing
ownership dynamically based on their previous work [65]. Ding et al. proposed a client-
side deduplication scheme [17] that enables dynamic ownership based on homomorphic
encryption. However, the aforementioned schemes are expensive in computation and
communication since the entire encrypted file needs to be updated when the re-encryption
happens. REED [15,67] aimed at addressing the key revocation problem for the secure
server-side deduplication in cloud storage efficiently. In order to efficiently replace old
keys and re-encrypt the data, REED introduced two special AONT transforms derived from
CAONT (CANOT is a special case of AONT transforms in which the key used for AONT
transform is the hash value of the message being processed). Different from REED, our
SEDER resolves the re-encryption problem for the client-side deduplication and further
optimizes the performance of the re-encryption process by taking full advantage of the
nature of the client-side deduplication.
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Overall, our SEDER enables secure and efficient re-encryption for a cloud storage,
in which the data owner collaborates with the cloud server to re-encrypt a small file block
when the key needs to be updated, resulting in significant bandwidth and computational
saving. The client-side deduplication is enabled in SEDER as well, which ensures data
ownership and is resistant to the brute-force attack.

8. Conclusions

In this paper, we propose SEDER to enable an efficient and secure re-encryption
scheme for client-side deduplication in cloud storage. We achieve efficiency by only re-
encrypting a small proportion of the file and delegating the re-encryption process to the
cloud server. We achieve security by incorporating a secure duplicate detection approach
and a PoW scheme specifically for encrypted data. Security analysis and experimental
results show that our design is applicable to the cloud storage system, since it ensures
continuous data confidentiality with modest computational and communication overhead,
which, specifically, is for the test data set. The prover and the cloud server spend no more
than 0.85 s and 0.45 s, respectively, in performing the PoW, and the re-encryption process
requires at most 0.092 milliseconds and 0.014 milliseconds for the users and the cloud
server, respectively.
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