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Abstract: The present study aims to measure the solid–liquid interface temperature of an evaporat-
ing droplet on a heated surface using a thermoresponsive polymer. Poly(N-isopropylacrylamide)
(pNIPAM) was used owing to its sensitive optical and mechanical properties to the temperature. We
also measured the refractive index variation of the pNIPAM solution by using the surface plasmon
resonance imaging (SPRi). In particular, the present study proposed a new method to measure the
solid–liquid interface temperature using the correlation among reflectance, refractive index, and
temperature. It was found that the reflectance of a pNIPAM solution decreased after the droplet
deposition. The solid–liquid interface temperature, estimated from the reflectance, showed a lower
value at the center of the droplet, and it gradually increased along the radial direction. The lowest
temperature at the contact line region is present because of the maximum evaporative cooling. More-
over, the solid–liquid interface temperature deviation increased with the surface temperature, which
means solid–liquid interface temperature should be considered at high temperature to predict the
evaporation flux of the droplet accurately.

Keywords: evaporation; surface plasmon resonance imaging (SPRi); thermoresponsive polymer;
interfacial region; Poly(N-isopropylacrylamide) (pNIPAM)

1. Introduction

Droplet evaporation is a ubiquitous phenomenon in nature, and it has the advantage
of transferring larger thermal energy than usual convective-cooling techniques. This phe-
nomenon is widely applied to numerous applications, including spray cooling, surface
coating, and heat pipe [1]. Many studies have been conducted to estimate the evaporation
flux of the droplet, assuming that vapor diffusion to the ambient air is the only transport
mechanism [2,3]. For quasi-steady condition, the evaporation flux has non-uniform distri-
bution along with the liquid–air interface of the sessile droplet [4,5]. Hu and Larson [6]
investigated the evaporating sessile droplet with experiments, analytic theory, and numeri-
cal method. They reported that the quasi-steady assumption was valid for the evaporation
of sessile droplets by comparing the numerical results and the experimental measurements.
The diffusion-limited evaporation model was considered for the droplet evaporation on the
heated substrate by applying vapor concentration with the function of temperature [7,8].
Sobac and Brutin [9] investigated the effect of surface temperature on evaporating droplets
with hydrophilic and hydrophobic cases. They assumed isothermal conditions for the
solid substrate, which located the droplet. The theoretical model successfully matched the
experimental results for hydrophilic and hydrophobic cases at low substrate temperatures.
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As the droplet evaporates, it causes temperature variations at the solid substrate and
along with the liquid–air interface of the droplet. The heat transfer occurs by the conduction
through the solid substrate, latent heat absorption at the liquid–air interface, internal flow
of the droplet, and convection of surrounding air [10]. The absorption of the latent heat
of the droplet cooled its interface temperature, called evaporative cooling, and retrained
evaporation [11]. The heat conduction from the solid substrate to the droplet is complicated
because the temperature profiles along the solid–liquid interface are changing as the droplet
evaporates. Further, the thermal conductivity of the substrate significantly affected the
evaporation of droplets [12]. Lopes et al. [13] investigated the effect of substrate thermal
properties on the evaporating droplet and showed that the higher thermal conductivity of
the substrate accelerated the evaporation. The thermal conductivity of the substrate was
more significant for the strong evaporative cooling [14]. Thus, the thermal fields should be
considered, which affected the evolution of the evaporating droplet.

Many studies measured the solid-liquid and liquid–air interface temperature of the
droplet [15–17]. To the best of our knowledge, most of the research was focused on the
liquid–air interface temperature of the droplet, not the solid–liquid interface temperature.
Fabien et al. [18] measured the liquid–air interface temperature of the droplet for the
heated substrate. They calculated the evaporation flux along with the droplet interface
for different substrate temperatures by using the diffusion-limited model and interface
temperature of the droplet from experiments, but the solid–liquid interface temperature
was constant at the entire region. The substrate temperature distribution has been measured
using thermochromic liquid crystals (TLC) [19] and Infrared (IR) thermography [17]. The
thermochromic liquid crystals had low-temperature sensitivity, and IR thermography was
significantly affected by the background (measurement conditions). IR thermography
should also be calibrated under different measurement conditions, especially ambient
conditions [20]. Temperature measurement errors calibrated under ambient temperatures
(5–25 ◦C) were about ±1 ◦C [21], which is inadequate to measure the interface temperature
of the droplet. Gibbons et al. [22] measured the temperature beneath the hydrophilic and
superhydrophobic droplet with the IR thermography. However, the captured thermal
image had relatively low spatial resolutions.

Most of the investigations focused on the evaporation characteristics of the droplet
without concerning the distribution of solid–liquid interface temperature. It is important
to measure the interface temperature, which has a significant role in the droplet evapo-
ration process. The sensitivity to measure the droplet interface temperature should also
be enhanced to analyze the droplet evaporation phenomenon accurately. This paper de-
velops a novel method to measure the interface temperature of a sessile droplet using
thermoresponsive polymer and a surface plasmon resonance imaging (SPRi) technique.
Poly(N-isopropylacrylamide) (pNIPAM) is a thermoresponsive polymer that shows phase
transitions at a low critical solution temperature (LCST) [23]. The phase transition is a
reversible process with coil structures below the LCST and globule structures above the
LCST [24]. Its physical properties and refractive index are also changed according to the
temperature [25]. Particularly, we focus on the refractive index variation of thermorespon-
sive polymer depending on the temperature. Refractive index changes can be sensitively
detected using the SPRi technique that is a promising method in sensing applications.

2. Experimental Approach
2.1. Experimental Setup

Surface plasmon resonance (SPR) is a physical process where the electrons in the
metal surface layer are excited by the incident light under a total internal reflection (TIR)
condition. It is a sensitive, nonintrusive, and real-time detection tool to visualize the
refractive index variation. It is known as a sensitive technique to detect the refractive index
on the order of 10−5 [26]. Kretschmann configuration has been widely used for SPRi. The
index-matching liquid layer is used to optically couple the prism with a gold film-coated
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glass substrate. Moreover, the reflectance can be predicted theoretically from the Fresnel
equation for the p-polarized light in a four-layer SPRi system [27].

R =

∣∣∣∣ r1 + r2 exp(−2ik2d2) + [r1r2 + exp(−2ik2d2)]r3 exp(−2ik3d3)

1 + r1r2 exp(−2ik2d2) + [r2 + r1 exp(−2ik2d2)]r3 exp(−2ik3d3)

∣∣∣∣2 (1)

where, ri indicates the reflection coefficient between the i-th and (i + 1)-th layer, ki represents
the waver vector, and di refers to the thickness of the i-th medium. Subscripts 1, 2, and 3
indicate prism, the gold film, and the test medium, respectively. The reflected light from the
metal surface has the lowest intensity at the SPR angle, which changes only by the refractive
index of the test medium with a fixed configuration of the prism, gold film thickness, and
wavelength. By conducting the angular modulation (AM) process, the refractive index can
be estimated based on the SPR angle.

Figure 1a shows the SPRi experimental setup. Light irradiated from the LED light
source (SugarCuBeTM Ultra LED Illuminators, Nathaniel Group, Inc.) is converted from a
diverging light beam to a parallel light through the collimation lens array. A bandpass filter
(632 ± 5 nm, Edmund Optics) and a polarizer (Edmund Optics) are installed to convert
the light into a single wavelength and p-polarized light. Mirror mounted on the rotation
stage controls the incidence angle of the light to the dove prism (BK7 glass). Gold film
(47 nm) is coated on a thin coverslip (0.5 mm) with a titanium adhesion layer (3 nm). A
CCD camera (XImea) and CMOS camera (JENOPTIK) are used to detect the reflected light
and visualize the droplet shape. Details of the calibration method for measuring reflectance
based on the intensity of SPR images are explained in the previous studies [28,29]. Figure
1b depicts a multi-layer film structure to measure the solid–liquid interface temperature
of the droplet. The pNIPAM solution (5.4 µL) is sealed by insulation tape attached to the
gold films to prevent vaporization of the pNIPAM solution. The de-ionized (DI) water
droplet (1 µL) is deposited on the gold film located on the pNIPAM solution. Experiments
are repeated three times for different surface temperature cases. The surface temperature is
controlled using a heating plate from 27 to 29 ◦C, and the relative humidity is 10 ± 3% at
room temperature.

To develop the temperature measurement method, we purchase pNIPAM with a
number-average molecular weight of 30,000 g mol−1 from Sigma-Aldrich. The pNIPAM
aqueous solution is prepared with the following processes. The pNIPAM and de-ionized
(DI) water are filled into a vial located on the microbalance (AND Co., LTD., Tokyo, Japan)
to measure the exact quantities. After shaking the pNIPAM aqueous solutions an hour, it is
kept in the fridge for a few days for the total dissolution [24]. At a concentration below
10 wt%, pNIPAM solution shows a small variation of refractive index depending on the
temperature. On the other hand, the refractive index variations of the pNIPAM solution are
too large above the 10 wt% that cannot be estimated with the current experimental setup.
Thus, the pNIPAM solution with 10 wt% is used through the temperature sensitivity test
with different concentrations.
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Figure 1. (a) Picture of the present surface plasmon resonance imaging (SPRi) experimental setup and (b) schematic of
temperature measurement using a poly(N-isopropylacrylamide) (pNIPAM) solution, left: for the evaluation of pNIPAM
solution, center: droplet temperature measurement, right: cross-sectional schematic of multi-layer.

2.2. Development of Temperature Measurement Method Using pNIPAM Solution

A temperature measurement method is developed based on the refractive index of a
pNIPAM solution measured by SPRi, particularly the angular modulation. The refractive
index of the pNIPAM solution is estimated by finding the SPR angle with a fixed condition
of the prism, gold film thickness, and wavelength. The temperature of the gold film, Ts,
is controlled using a heating plate, and the thermocouple is attached to the gold film to
measure the temperature. Figure 2 depicts reflectance curves of the pNIPAM solution
with different surface temperatures. The reflectance decreases with the increase of the
incidence angle, and it shows a minimum at the SPR angle. Interestingly, the SPR angles
for temperatures of 21.1 ± 0.2 ◦C and 24.3 ± 0.2 ◦C are the same, which means temperature
measurements are not meaningful due to no corresponding reflectance variations at given
incidence angles. Moreover, the reflectance curves shift to the right with an increase of
temperature, as in Figure 2a,b. The refractive indices corresponding to each temperature
are listed in Table 1. The refractive index increases with the temperature of the pNIPAM
solution showing the same tendency with Kuckling et al. [23]. The refractive index of
the pNIPAM solution drastically increases when the temperature is higher than 29.3 ◦C
near the LCST. However, it is impossible to predict the SPR angle near the LCST through
the reflectance curve in the present experimental setup. This is because the reflectance is
indistinguishable at a higher refractive index with a different incident angle. Thus, the
reflectance of the pNIPAM solution is measured with a temperature range of 24.3 ◦C to
29.3 ◦C.
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Figure 2. (a) Reflectance curve of pNIPAM solution considering the incidence angle of light and
temperature, (b) magnified reflectance curve near the SPR angle.

Table 1. Refractive index of pNIPAM solution (10 wt%).

Temperature (◦C) Refractive Index

21.1 ± 0.2 1.3549
24.3 ± 0.2 1.3549
26.1 ± 0.1 1.3557
27.5 ± 0.2 1.3573
28.2 ± 0.2 1.3580
28.8 ± 0.2 1.3595
29.3 ± 0.2 1.3610

A correlation between reflectance and refractive index at a specific incidence angle
is derived based on reflectance results obtained by converting intensities of experimental
images. Figure 3 shows the relation between the reflectance, refractive index, and tempera-
ture of the pNIPAM solution when the incidence angle of the light to the gold film is 75◦.
The curve fitted equations are obtained from experimental results as follows:

np = 0.02806R + 1.352 (2)

T = −2.39621× 105 + 3.52117× 105np − 1.29341× 105n2
p (3)

where np is the refractive index of a pNIPAM solution, R is reflectance, and T is the
temperature of a pNIPAM solution. From the experimental images using the SPRi system,
the calibrated reflectance of the pNIPAM solution is obtained, and subsequently, the
temperature distribution is calculated from Equations (2) and (3).
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Figure 3. (a) Refractive index variation of pNIPAM solution with the reflectance, (b) temperature
variation according to the refractive index of pNIPAM solution.

3. Results and Discussion

The temperature measurement method using the pNIPAM solution should be evalu-
ated by comparing it with the thermocouple data. The gold film temperature is adjusted
with 4 cases using a heating plate (case 1: 26 ◦C, case 2: 27 ◦C, case 3: 28 ◦C, and case 4:
29 ◦C). As shown in Figure 4, the gold film temperature is measured using the thermo-
couple and pNIPAM solution measurement method. T1,TC is the gold film temperature
measured by the thermocouple, and T1,p is the gold film temperature estimated by the
measurement method using pNIPAM solution. The pNIPAM solution temperature is aver-
aged over the area within the red dotted circle in Figure 4. The present method is validated
with the maximum difference of 0.14 ◦C for case 3, which lies within the measurement
uncertainty range of the thermocouple.
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Figure 4. Comparison of temperature between pNIPAM solution measurement, T1,p, and thermocou-
ple, T1,TC.

DI-water droplet (22 ◦C, 1 µL) is deposited on the second gold film above the pNIPAM
layer to examine the solid–liquid interface temperature (see Figure 1b). The incidence
angle of the light is fixed at 75◦. Figure 5 shows the side view of the droplet and the
corresponding SPR image at the surface temperature, Ts, of 29.0 ◦C. The contact diameter
of the droplets, Dw, is 1.79 ± 0.1 mm, and the contact angle is 77.3 ± 1.5◦. In the SPR image,
the dark color is the pNIPAM solution, and the bright color is ambient. The lower the
temperature, the lower the reflectance of the pNIPAM solution showing a relatively dark
color. The magnified region of the blue dotted area is depicted in Figure 5c. The SPR image
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has a dark color at the center of the droplet due to the decrease of the temperature, and it
gradually brightens toward the contact line region.
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Temperature distributions over a pNIPAM solution are estimated through the re-
flectance obtained by the corresponding SPR intensity. Figure 6a shows the reflectance of
the pNIPAM solution along with line AB (in Figure 5c) right after a droplet deposition. The
initial reflectance of the pNIPAM solution before the droplet deposition is about 0.1746,
0.2106, and 0.2680 for the surface temperature, Ts, of 27.0, 28.0, and 29.0 ◦C, respectively.
A DI-water is located at −895 µm to 895 µm with a diameter of 1790 µm; a minimum
reflectance is observed near the center (r = 0 µm) for all cases. Reflectance varies relatively
large for the surface temperature of 29.0 ◦C. However, other cases have a small change
of reflectance at the location of the droplet because the refractive index of the pNIPAM
solution drastically deviates with the increase of the temperature, as in Figure 3b. The
temperature of the pNIPAM solution, T1,p, is obtained by using Equations (2) and (3). A
measurable temperature range is 24.3 ◦C through 29.3 ◦C considering the thermo-sensitivity
of pNIPAM under the present experimental setup. The lowest temperature of pNIPAM
solution is observed at the center of the droplet for all cases—the temperature increases
toward the contact line of the droplet. As the surface temperature decreases, the variation of
the pNIPAM solution temperature decreases. Moreover, the pNIPAM solution temperature
is lower than the surface temperature at the outer region of the droplet due to the heat
transfer through the transverse direction of the multi-layer.

The solid–liquid interface temperature of the droplet is estimated by solving the
one-dimension heat conduction problem with the pNIPAM solution temperature as a
boundary condition. We assume that all energy required for evaporation at the interface
is conducted through the droplet from the heated substrate. The convection within the
droplet is neglected [18,30]. The conductive heat transfer along the multi-layer, including a
droplet and pNIPAM solution, is written as

qcond(r) =
T1,P(r)− T4(r)

3
∑

i = 1

δi(r)
λi

(4)

where δ is the layer thickness, and λ is the thermal conductivity. Subscripts 1, 2, 3, 4 denote
interface between each of the multi-layer films as in Figure 1b. The evaporative heat flux,
qev (W/m2), along the interface is defined as [31]

qev(r, Ts) = ∆Hvap J(r, Ts) (5)

Jtheo(r, Ts) =
D(csat(Ts)− c(Ta)ϕ)

RCR
f (θ) (6)

f (θ) =

[
1
2

sin θ +
√

2(cosh α + cos θc)
3/2 ×

∫ ∞

0

cosh θcτ

cosh πτ
tanh[(π − θc)τ]P−1/2+iτ(cosh α)τdτ

]
(7)
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where ∆Hvap is the latent heat of vaporization (2264.705 kJ/kg), Jtheo (kg/m2s) is the
theoretically estimated local evaporation flux of the droplet, D is diffusivity (26.1 mm2/s),
csat is a saturated vapor concentration depending on the temperature, ϕ is the relative
humidity (10%), RCR is the droplet contact radius (0.895 mm), r is the radial coordinate
described as r = RCR·sinh α/(cosh α + cos θ), θc is the contact angle of the droplet (77.27◦), τ
is the integral constant, α is the toroidal coordinate, and p−1/2 + iτ is the Legendre function
of the first kind. Figure 7 shows the evaporation flux of the droplet considering the surface
temperature by calculating Equation (6). The evaporation flux increases along with the
radial position. It shows the infinite value at the contact line region, which is physically
unrealistic because the droplet evaporates with finite evaporation flux. Kim et al. [28]
suggested a new model to calculate the evaporation rate of the droplet with the finite
evaporation flux at the contact line region. They visualized the evaporating thin film (ETF)
of the DI-water droplet at the contact line region and measured the width and thickness
of the ETF. The quantitatively measured width of the ETF was 8.414 µm. However, there
are no experimental results of the ETF depending on the surface temperature. The present
study uses the results of Kim et al. [28] taking a cutoff length of 8.414 µm to solve the
singularity problem and adapts the finite averaged evaporation flux at the contact line
region expressed as

Javg =

∫ 2π
0

∫ RCR
RCR−l J(r) · rdrdϕ

lπ(2RCR − l)
(8)

where Javg is the averaged evaporation flux, and l is the width of the ETF. This approach is
also adopted for the binary mixture droplet by Jeong et al. [32]. The theoretical results of
evaporation flux and averaged evaporation flux at the contact line region are used as the
boundary condition to calculate the solid–liquid interface temperature of the droplet.
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Figure 8 depicts the predicted temperature distribution of the solid–liquid interface. 
It has a lower value than the temperature of the pNIPAM solution due to the evaporative 
cooling and heat losses. The solid–liquid interface temperature shows a lower value at the 
center of the droplet and gradually increases along the radial direction. This is because 
the droplet thickness is maximum at the center of the droplet, which means the increase 
of thermal resistance, causing a decrease of temperature. On the other hand, the droplet 
thickness becomes thinner toward the contact line region with lower thermal resistance. 
Therefore, the temperature increases from the center of the droplet to the radial direction. 
However, the minimum temperature is observed at the contact line region of the droplet. 
As a matter of fact, the evaporation flux is the maximum at the contact line region, which 
means the evaporative cooling also maximum, causing a lowering of the temperature. 
Many studies calculated the evaporation flux using the energy balance (qcond = qev) with the 

Figure 7. Theoretical evaporation flux of the droplet according to the surface temperature.

The solid–liquid interface temperature, T4, of the droplet is calculated with energy
balance (qcond = qev) at the liquid–air interface.

T4(r, Ts) =

 T1,P(r, Ts)− ∆Hvap Jtheo(r, Ts)
3
∑

i = 1

δi(r,Ts)
ki

, 0 < r < RCR − l

T1,P(r, Ts)− ∆Hvap Javg(r, Ts)
3
∑

i = 1

δi(r,Ts)
ki

, RCR − l < r < RCR

(9)

Figure 8 depicts the predicted temperature distribution of the solid–liquid interface. It
has a lower value than the temperature of the pNIPAM solution due to the evaporative
cooling and heat losses. The solid–liquid interface temperature shows a lower value
at the center of the droplet and gradually increases along the radial direction. This is
because the droplet thickness is maximum at the center of the droplet, which means the
increase of thermal resistance, causing a decrease of temperature. On the other hand,
the droplet thickness becomes thinner toward the contact line region with lower thermal
resistance. Therefore, the temperature increases from the center of the droplet to the radial
direction. However, the minimum temperature is observed at the contact line region
of the droplet. As a matter of fact, the evaporation flux is the maximum at the contact
line region, which means the evaporative cooling also maximum, causing a lowering of
the temperature. Many studies calculated the evaporation flux using the energy balance
(qcond = qev) with the assumption of isothermal at a solid surface [18,30,33]. It is valid for
low surface temperatures. However, the deviation of the solid–liquid interface temperature
is increased with the surface temperature, as shown in Figure 8. The maximum deviations
of the solid–liquid interface temperature along the radial direction are 0.41 ◦C, 0.44 ◦C, and
0.47 ◦C for Ts = 27.0 ◦C, 28.0 ◦C, and 29.0 ◦C, respectively. Thus, the solid–liquid interface
temperature should be considered to calculate the evaporation flux for the higher surface
temperature accurately.
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4. Conclusions

The present study proposed a novel method to measure the temperature using the
pNIPAM solution and SPRi technique, and the solid–liquid interface temperature of the
droplet was predicted by calculating the heat conduction problem with the measured
temperature using pNIPAM solution. The refractive index of the pNIPAM solution was
measured through the angular modulation of the SPRi system, and the curve-fitted relations
between the reflectance and temperature were obtained. We successfully measured the
temperature distribution of the pNIPAM solution with a range of 24.3 ◦C < T < 29.3 ◦C
using the SPRi technique. The temperature measurement method using the pNIPAM
solution was evaluated by comparing the temperature results with the thermocouple data.
It showed a good agreement with a small difference within the uncertainty range of the
thermocouple. The present study also predicted the solid–liquid interface temperature of
the droplet deposited on the gold film. The reflectance of the pNIPAM solution decreased
after the deposition of the droplet, and it showed minimum values at the center of the
droplet. The temperature distribution was also obtained using the curve fitted relations
and reflectance. Based on the temperature of the pNIPAM solution, the one-dimensional
heat conduction problem was calculated to estimate the solid–liquid interface temperature.
The DI-water droplet had a lower temperature distribution at the center. It increased along
the radial direction due to the decrease of thermal resistance corresponding to the droplet
thickness. However, the temperature decreased near the contact line region owing to
the maximum evaporative cooling. The variation of solid–liquid interface temperature
increased with the surface temperature. Thus, the solid–liquid interface temperature should
be considered to accurately predict the evaporation flux of the droplet for the high surface
temperature.
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