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Human gait is a complex activity that requires high coordination between the central

nervous system, the limb, and the musculoskeletal system. More research is needed to

understand the latter coordination’s complexity in designing better and more effective

rehabilitation strategies for gait disorders. Electroencephalogram (EEG) and functional

near-infrared spectroscopy (fNIRS) are among the most used technologies for monitoring

brain activities due to portability, non-invasiveness, and relatively low cost compared to

others. Fusing EEG and fNIRS is a well-known and established methodology proven to

enhance brain–computer interface (BCI) performance in terms of classification accuracy,

number of control commands, and response time. Although there has been significant

research exploring hybrid BCI (hBCI) involving both EEG and fNIRS for different types

of tasks and human activities, human gait remains still underinvestigated. In this article,

we aim to shed light on the recent development in the analysis of human gait using

a hybrid EEG-fNIRS-based BCI system. The current review has followed guidelines of

preferred reporting items for systematic reviews and meta-Analyses (PRISMA) during

the data collection and selection phase. In this review, we put a particular focus on the

commonly used signal processing and machine learning algorithms, as well as survey the

potential applications of gait analysis. We distill some of the critical findings of this survey

as follows. First, hardware specifications and experimental paradigms should be carefully

considered because of their direct impact on the quality of gait assessment. Second,

since both modalities, EEG and fNIRS, are sensitive to motion artifacts, instrumental, and

physiological noises, there is a quest for more robust and sophisticated signal processing

algorithms. Third, hybrid temporal and spatial features, obtained by virtue of fusing EEG

and fNIRS and associated with cortical activation, can help better identify the correlation

between brain activation and gait. In conclusion, hBCI (EEG + fNIRS) system is not yet

much explored for the lower limb due to its complexity compared to the higher limb.

Existing BCI systems for gait monitoring tend to only focus on one modality. We foresee

a vast potential in adopting hBCI in gait analysis. Imminent technical breakthroughs are

expected using hybrid EEG-fNIRS-based BCI for gait to control assistive devices and
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Monitor neuro-plasticity in neuro-rehabilitation. However, although those hybrid systems

perform well in a controlled experimental environment when it comes to adopting them

as a certified medical device in real-life clinical applications, there is still a long way to go.

Keywords: gait, hybrid BCI, electroencephalogram, lower extremity, fNIRS

1. INTRODUCTION

Human gait is one of the most important human activities
that require complex coordination between different brain
regions, the musculoskeletal system, and the limb. Sensory
inputs from the cerebral and sensory cortices activate the
premotor and supplementary motor areas (SMA) of the cerebral
cortex, where motor programs are created. It is believed that
the cerebellum (Cunningham et al., 2010) is regulating the
gait “error/correction” to coordinate proper movement by
responding to abnormalities in posture (Takakusaki, 2013).
BCI technologies perform differently during bipedal movements
depending on different factors such as age, weight, and height
(Samson et al., 2001; Mahlknecht et al., 2013; Elbaz et al., 2018).
Gait disorders dramatically affect the quality of life and increase
personal dependence on others (Pirker and Katzenschlager,
2017), which makes gait analysis an essential and timely
research topic.

In recent years, brain–computer interface (BCI) development
has played a vital role in investigating musculoskeletal gait and
brain dysfunction disorders. A typical BCI system consists of
five main components, as shown in Figure 1: signal acquisition,
pre-processing, feature extraction, classification, and the

FIGURE 1 | Hybrid BCI system block diagram for gait assessment.

application interface (Naseer and Hong, 2015). BCI system can
be used to restore the motor function by (1) feedback in real-time
while performing motor imagery (MI) tasks; (2) representation
of performed action in virtual reality; and (3) control of external
devices causing actual movement using functional electrical
stimulation (FES) (van Dokkum et al., 2015). BCI is also a
promising tool for post-stroke rehabilitation. Indeed, BCI can
be deployed to interface the neurofeedback for stroke patients
and enhance cortical activation (Nowak et al., 2009; Mihara
et al., 2012, 2013). Bamdad et al. (2015) review concluded that
cognitive damage arising from brain injuries and neurological
diseases could be reduced with the help of rehabilitation
strategies involving BCI. BCI’s performance depends on the
type of neuro-system defect, the level of disability, the level
of participation of the subject (Kübler and Birbaumer, 2008;
Shanahan et al., 2017) as well as the aforementioned factors
related age, weight, and height. For instance, when the degree
of neuro-system defect increases, the user’s ability to control
the BCI system decreases. Similarly, the BCI’s performance
increases as the level of active participation increases. Shanahan
et al. (2017) shows that the BCI system performs better in terms
of accuracy and control for older people than children due
to active participation and repetition of specific tasks leading
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to higher signal quality. It is worth mentioning that there are
other wearable and non-wearable technologies used for gait
and balance assessment (Shanahan et al., 2017; Singh et al.,
2019), which do not involve brain signals. Examples of those
wearable technologies include optical motion capture systems,
instrumented walkway, and force platforms. Non-wearable
technologies include pressure sensors and internal sensors
(Shanahan et al., 2017). Although these wearable and non-
wearable technologies help in understanding the information
about the musculoskeletal systems and biomechanics of humans,
they need to be used in conjunction with BCI technologies to
acquire the brain activity and form a holistic understanding
of the brain’s neuronal correlation with the musculoskeletal
system. Different brain signals such as functional magnetic
resonance imaging (fMRI), magnetoencephalography (MEG),
electroencephalogram (EEG), or functional near-infrared
spectroscopy (fNIRS) are used in various gait applications for
BCI applications. MEG and fMRI give excellent spatial and
temporal resolution to study the under neuronal activities and
cerebral blood flow changes for gait analysis. However, they are
not portable modalities, which make them inappropriate for
real-time experimentation of gait (Morshed and Khan, 2014).

When it comes to online BCI applications, non-invasive and
portable brain signal modalities are convenient technologies for
analyzing gait disorders. In this perspective, EEG and fNIRS
are gaining popularity in the research community due to their
non-invasive nature, easy use, and portability. EEG represents
one of the earliest technologies for brain signal acquisition
and has found various gait analysis applications. fNIRS is a
relatively recent technology compared to EEG that was effective
in capturing brain hemodynamics. It plays a vital role in various
applications triggering a hemodynamical response such as motor
rehabilitation (Khan R. A. et al., 2018). Pelicioni et al. (2019)
reviewed fNIRS studies with a particular focus on prefrontal
cortex (PFC) activation during walking and its effects on different
age groups, type of disease, and secondary tasks performed
during walking. Themajority of those reviewed studies document
an increase in PFC activation as a consequence of the increase
of the complexity of the walking task in young, older people
and patients with gait and balance disorder due to stroke,
Parkinson’s disease, cerebral palsy, head trauma, or other spinal
cord injuries. Along those lines, increased PFC activation was
documented in studies involving walks with dual tasks, where
the secondary task can be arithmetic, verbal fluency, or alphabet
reciting (Pelicioni et al., 2019). Different single brain signal
modalities have advanced the research in different applications
of BCI. However, the fusion of these brain signal modalities
can provide complementary information to understand the brain
signals better. It led to the emergence of a new sub-field within
BCI called hybrid BCI (hBCI). hBCI combines two brains
modalities or at least one brain modality with another non-brain
signal acquisition modality (Pfurtscheller et al., 2010; Hong and
Khan, 2017; Hong et al., 2018). Four factors are essential for
any hBCI system: (1) signals should be acquired directly from
brain activity; (2) among the brain signals, at least one signal
must be intentionally controlled; (3) a signal must be processed
in real-time to develop communication between the brain and

computer; and (4) feedback control must be provided to evaluates
the outcome.

Fused EEG-fNIRS showed its significance in the various
cognitive investigation such as Li et al. (2019) studied cognitive
deficits in Alzheimer’s patients, and concluded that fused EEG-
fNIRS could help better in understanding the spatiotemporal
dynamics of the brain activation. Integration of EEG-fNIRS
provides complementary properties of high temporal and
moderate spatial resolution Li et al. (2020c). The fusion of
different bio-signals in hBCI permits to enhance classification
accuracy (Cicalese et al., 2020), increase the number of control
commands and reduce the signal processing time (Hong and
Khan, 2017). When it comes to investigating gait problems
and developing real-time BCI-based control, hBCI is attracting
more and more attention. Conventionally, co-located modalities
monitoring the same brain regions help increase classification
accuracy by 10–20% comparative to individual modalities (Hong
and Khan, 2017; Cicalese et al., 2020). Conversely, placing the
modalities over different regions helps to enhance the number of
control commands (Hong and Khan, 2017). From our literature
survey focusing on hBCI for gait analysis, we conclude that
individual EEG and fNIRS-based BCI are commonly used
separately with the exception of one study that resorts to a
fused EEG-fNIRS for tetraplegia (Blokland et al., 2013). The
fusion of EEG and fNIRS is discussed in detail in section 3.1.3.
Table 1 shows the possible advantages of combining these brain
signal modalities (EEG and/or fNIRS) with other modalities for
different applications in general, meaning not necessarily gait
applications. Thus, the potential of hBCI is yet to be explored
for gait applications. The review will provide insight into hybrid
EEG-fNIRS BCI systems for investigating gait while focusing on
the development made in each component of the BCI system.

In addition, the review will elaborate on the potential of
EEG-fNIRS-based hBCI for gait analysis. The remainder of this
article is structured as follows: review methodology is provided
in section 2, hybrid EEG-fNIRS-based BCI is discussed in section
3, section 4 provides discussion around prospect, and finally,
section 5 presents conclusive remarks on hybrid EEG-fNIRS for
gait analysis.

2. REVIEW METHODOLOGY

Our review paper follows preferred reporting items for systematic
reviews andmeta-analyses (PRISMA) guidelines to examine EEG
and fNIRS-based BCI systems for gait (Moher et al., 2009).

2.1. Search Strategy
To ensure the relevance of the articles different keywords was
structured, as shown in Table 2. Moreover, articles from other
sources by manual search and reference articles from included
studies were also included.

2.2. Inclusion and Exclusion Criteria
A total of 552 articles were collected from PubMed, Engineering
village, Web of science, and IEEExplore databases. The PRISMA
flowchart shows the complete selection procedure in Figure 2.
EndNote and Mendeley were used in processing, screening, and
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TABLE 1 | Combination of the brain and non-brain signals modalities.

References Modalities

combination

Signal fusion Benefits

Li et al. (2016) and Hong and Khan

(2017)

EEG + EOG Electrophysiological +

Ocular Movements

1. To enhance accuracy and number of control commands.

2. To detect the motion artifacts due to ocular movements.

Bulea et al. (2014), Sburlea et al.

(2015), Gui et al. (2017), Hong and

Khan (2017), and Liu D. et al. (2017)

EEG + EMG Electrophysiological +

Electromyography

1. To increase the accuracy of the BCI system.

2. This combination could help to make comprehensive neural BCI and

minimize the delay between movement detection and execution.

3. It can help to enhance the active participation of patients in gait

rehabilitation.

4. EMG is usually used with EEG to detect the actual muscle movement

to ensure BCI’s smooth operation.

Fazli et al. (2012), Blokland et al.

(2013), Khan et al. (2014), Hong and

Khan (2017), and Cicalese et al.

(2020)

EEG + fNIRS Electrophysiological +

Hemodynamics

1. To enhance classification accuracy.

2. To increase the number of control commands.

Tobar et al. (2018) EEG + fMRI + EMG Electrophysiological +

Hemodynamics +

Electromyography

1. fMRI is used to locate the brain activation area, EEG is used to record

to cortical activity, while EMG is used to confirm motor task execution.

Zhang et al. (2010) and Liu et al.

(2018)

EEG + EOG + EMG Electrophysiological +

Ocular Movements +

Electromyography

1. The actual movement onset was extracted from surface EMG, and the

motor intention was detected from EEG. EOG is used to detect ocular

movement artifacts.

2. To increase the number of control commands.

Salazar-Varas et al. (2015), Hortal

et al. (2016), Gui et al. (2017), and

Elvira et al. (2019)

EEG + IMUs Electrophysiological 1. IMUs are used along with EEG to detect actual body movements.

TABLE 2 | Search string used for a literature survey.

Combination of keywords

AND fNIRS OR functional near-infrared spectroscopy

OR EEG OR Electroencephalography OR Bio-signal

OR Brain signal OR Neuro-imaging OR Optical brain imaging

AND Gait OR Walking OR Balance OR Sway OR

Bio-mechanics OR Bio-mechanics OR Posture

OR Postural control

AND Neurological disorders OR Neural disease OR Neural disorders

OR Stroke OR Neuro-rehabilitation

OR Cognition OR Motor-cognitive OR Gait disorders

AND Brain-Computer Interface OR BCI OR

Human-machine interface OR Brain-machine interface

filtrating of articles. Manual verification is also done to verify the
process. The exclusion criteria from the first phase of screening
title of articles were screened to select the articles for abstract
reading having following exclusion criteria: (1) manuscripts
which are not broadly in line with the topic, i.e., gait; (2) articles
such as book sections, review papers, lecture notes, and meeting
minutes were excluded; (3) brain signals used for other than
gait applications; and (4) articles with the question on their
authentication. In the next phase of the screening stage, paper
abstracts were read out to consider the articles for full-text
reading that satisfy the following criteria: (1) articles focusing on
gait, balance, or neurological disease; (2) manuscripts describing
the whole BCI system; (3) at least used one type of non-invasive
and portable brain signalmodality; (4) experimentationwith only
motor imaginary (MI) tasks are not included; (5) experiments
conducted on animals; and (6) articles related to upper limb

prosthesis and rehabilitation were excluded. In the eligibility
stage, manuscripts that have contribution or detailed discussion
in all three main components of BCI, i.e., signal acquisition,
signal processing, and application of control signals, are selected.
Furthermore, the following criteria for the inclusion of articles
in the review that are considered: (1) articles focusing on the
use of EEG or fNIRS or hBCI are included; (2) manuscripts
with details of experimental description are considered; (3)
description of signal filtration methods and machine learning
algorithm explained; and (4) details of application of control
signal or interface application.

2.3. Data Extraction
The following information is mainly extracted from the
manuscripts that passed the eligibility stage: (1) Author and year
of publication; (2) Aim of study; (3) Assessment methodology;
(4) Signal processing; and (5) Main findings. Furthermore, other
relevant information related to signal acquisition and processing
is presented in relevant sections.

3. HYBRID EEG-fNIRS-BASED BCI

Section 3 gives a brief overview of the existing signal
acquisition methods (section 3.1), pre-processing methods
(section 3.2), feature extraction and selection methods (section
3.3), classification algorithms (section 3.4), and existing gait
application in (section 3.5). The conclusion and finding of
selected articles in this review article are presented in Table 3.
Table 4 summarized the signal processing methods applied in
the selected studies. The Commonly used BCI components
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3.3.3. Common Spatial Pattern (CSP)

3.3.3.1. Background
CSP is a common feature extraction method applied to EEG
signals. CSP designs spatial filters for time series data in such
way that the variances in the data are optimal for discrimination
(Rao and Scherer, 2010). CSP aims to make the classification
more efficient by applying the spatial filter, which transforms the
input signal to output signal with optimal variance for better
classification (Ramoser et al., 2000). Spatial covariance matrix
Cvar is calculated from input raw single matrix xt of the N × T
dimension using Equation (8) (Nicolas-Alonso and Gomez-Gil,
2012)

Cvar =
xtx

′
t

Tr(xtx
′
t)

(8)

where Tr is the trace of xtx
′
t matrix, N is the number of samples

per channel, and T is the number of channels. For i = 1, 2, ..n
class problem, CSP calculates spatial covariances matrix for both
the class and compute composite spatial covariance matrix Cc by
adding spatial co-variance of both classesCc = C̄1+C̄2.Cc matrix
is real and symmetric; it is factorized to Cc = UcλcU

′
c, where

Uc is a matrix of eigenvectors, and λc is the diagonal matrix of
eigenvalues. Applying whitening transform in Equation (9).

P =
√

λ−1
c U

′
c (9)

All eigenvalues of PC̄cP
′
are equal to unity, where C̄1 and C̄2 are

transformed using S1 = PC̄1P
′
and S2 = PC̄2P

′
, respectively.

S represents the shared matrix for each class. For each class,
the eigenvectors having the largest eigenvalues for one class
correspond to the smallest eigenvalue of other class and vice
versa. Finally, the feature vector for input signal xt is computed
as Z = WE where W = (B′P)′, a spatial filter matrix built by
CSP procedure.

3.3.3.2. Application
The selection of time window significantly affects the CSP’s
performance, which is either selected experimentally or
manually. However, Jiang et al. (2020) proposed an optimized
way of feature selection from temporal pattern combinations,
which can solve the problem of time window selection. CSP
enhances the accuracy of synchronous BCI, where the signal
is only transmitted at predefined intervals. However, the CSP
does not provide the same results for asynchronous BCIs. It can
be explained due to the non-linear properties of EEG signals
(Mousavi et al., 2011). Salazar-Varas et al. (2015) used CSP to
extract features from EEG signals to detect unexpected obstacles
during walking. Several other improved versions of CSP were
proposed in the literature to enhance the performance such as
wavelet common spatial pattern (WCSP) (Mousavi et al., 2011),
common spatiospectral pattern (CSSP) (Lemm et al., 2005), and
common sparse spectral spatial pattern (CSSSP) (Dornhege et al.,
2006).

3.3.4. Wavelet Transform (WT)

3.3.4.1. Background
WT is a mathematical method for extracting information
from time-frequency domain signals. Wavelets are functions
of different frequencies and finite duration, allowing the
signal’s simultaneous study in both time and frequency domain
contrarily to other signal analysis methods such as the Fourier
transform (Samar et al., 1999). The Fourier transform only
provides an analysis of the signal activity in the frequency
domain. Using a modulated window and the signal at different
scales, the WT overcomes the drawback of Fourier transform by
decomposing the signal in both the time and frequency domain
at multiple scales. The essential concepts behind the wavelet
transform are scaling and shifting. The two significant transforms
in wavelet analysis are continuous wavelet transform (CWT) and
discrete wavelet transform (DWT). CWT is defined as the signal
convolution x(t) with wavelet function 9(s,τ )(t) (Samar et al.,
1999). It can be computed from Equation (10).

w(s, τ ) =
∫ +∞

−∞
x(t)9∗

(s,τ )(t)dt (10)

where w(s, τ ) is wavelet coefficient in which s is scale and τ is
the time of wavelet function 9∗

(s,τ )
(t), while ∗ indicates complex

conjugation. 9(s,τ )(t) in Equation (11) is wavelet function, which
is dilated and shifted form of mother wavelet 9(t). The mother
wave must satisfy the condition of Equation (12).

9(s,τ )(t) =
1
√
s
9(

t − τ

s
) (11)

∫ +∞

−∞
9(t)dt = 0 (12)

3.3.4.2. Application
CWT introduces a lot of complexity and redundancy because
it incorporates signal analysis with the highest number
of frequencies using multiple dilations and mother wavelet
transforms. DWT reduces this complexity and redundancy and
dilates and translates the mother wavelet into specific discrete
values only (Burke-Hubbard, 1998). The use of WT requires the
selection of the mother wavelet. Different mother wavelets can be
found in BCI, and the selection of any one of them depends upon
the type of data that needs to be removed from the signal. CWT
can be used to extract important brain hemodynamics features
efficiently at multiple frequencies subjected to the appropriate
selection of mother wavelet function (Abibullaev and An, 2012).
WT is also widely used to remove ocular artifacts and feature
extraction form EEG data (Krishnaveni et al., 2006; Kumar et al.,
2008; Khushaba et al., 2010; Hsu et al., 2012; Chen et al., 2015).

3.3.5. Genetic Algorithm (GA)

3.3.5.1. Background
GA is an optimization technique, which is widely used for
auto-selection of optimal features. The algorithm’s core is the
candidate solution population from the initial population and
then coded into a binary string known as a chromosome. The
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FIGURE 7 | Genetic algorithm process flowchart.

initial population is usually randomly generated in case previous
possible solutions are not available. The steps followed in GA are
explained in the flow chart shown in Figure 7. Every individual
chromosome is evaluated according to a fitness function. The
selection of mating chromosomes is made stochastically to keep
the diversity in the population. After the selection of mating
poles, cross-over is performed randomly to get new offspring.
The same process is repeated for every new generation until an
acceptable solution is reached.

3.3.5.2. Application
The hybridization of a genetic algorithm with SVM is applied for
optimal feature selection from fNIRS signals to produce the best
result (Noori et al., 2017). Li et al. (2020a) used both single and
double layer-GA-SVM model to classify four different types of
self- regulated gait intentions. The double-layer GA based SVM
model showed an accuracy of 13.8% higher than the single-layer
SA-SVMmodel.

3.3.6. Sliding Window Method
The sliding window is transformed using ASR with PCA to
identify high variance channels by statistical comparison with
minimal movement artifact EEG data recorded using EEG for
balance control (Bulea et al., 2015). Ghonchi et al. (2020) used
a sliding window method to exploit temporal information of the
EEG-fNIRS signals and add it to three-rank tensor (DNNs). The
sliding window size affects the performance of the classification
algorithm directly (Ghonchi et al., 2020).

3.3.7. Features in Hybrid Modalities
Two primary BCI modalities used in mobile BCI applications
are EEG and fNIRS (Hong et al., 2018). Power spectral density
method used in most of the EEG-fNIRS studies for classification
of features (Putze et al., 2014; Tomita et al., 2014). It uses
strength of signal as function of frequency. Few other studies
used the time-frequency phase, and the coefficients of a wavelet
transform as features for EEG, which were combined with fNIRS
for hybridization (Yin et al., 2015; Li et al., 2017). Band power and

logistic regression coefficients are used as features in hybrid EEG-
fNIRS study for tetraplegia patients (0–15 s and 3–18 s window
for EEG and fNIRS, respectively) (Blokland et al., 2013).

3.3.8. Other Common Features
In fNIRS studies HbO, HbR and HbT concentrations are
commonly used as features in most of the fNIRS-based BCI
studies (Blokland et al., 2013; Hedian et al., 2018; Li et al., 2020b).
Some other common time domain feature used are: signal mean
(SM), signal skewness (SK), kurtosis (Z), signal variance (Var),
and signal peak show in Equations (13b) to (13d) (Naseer et al.,
2016; Aghajani et al., 2017; Khan and Hong, 2017; Li et al., 2017,
2020a; Hong et al., 2018; Khan R. A. et al., 2018; Shin, 2020).

SM =
1

N

N
∑

i=1

Zi (13a)

SK(Z) = E
[
(

Z−µ
σ

)3]

(13b)

Kurtz(Z) = E
[
(

Z−µ
σ

)4]

(13c)

Var(Z) =
∑

(Z − µ)2

N
(13d)

where, N is total number of observations, Zi is 1CHbO(t) across
each observation, σ is standard deviation and E is expected value
of Z, respectively. Usually such features are scaled between 0
min(sf ) and 1max(sf ) using Equation (14).

sf ′ =
sf −min(sf )

max(sf )−min(sf )
(14)

where sf ′ and sf are scaled feature and original features. Other
common applied filters are CSP, power, slop and polynomial
(Salazar-Varas et al., 2015).

3.4. Classification Algorithms
Based on the feature extracted from the brain signals, classifiers
play a vital role in discriminating various tasks. The fusion of
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TABLE 7 | Summary of fused EEG-fNIRS studies for motor task.

References Main finding

Fazli et al. (2012) Concurrent measurements of EEG and fNIRS can significantly

improve the BCI systems classification accuracy and

performance for sensory-motor rhythm.

Buccino et al.

(2016)

Classification of four different hand movements is executed.

Different features were compared to diminish the fNIRS delay

in change detection using common spatial patterns and

genetic algorithms.

Ge et al. (2017) The study stepped forward toward real-time BCI application

by using a few EEG and fNIRS channels to improve the hybrid

BCI system’s classification accuracy for the imaginary motor

task by improving the signal acquisition (source analysis) and

signal processing (phase-space reconstruction).

Li et al. (2017) The classification accuracy for hybrid EEG-fNIRS is enhanced

by integrating their complementary properties and early

temporal features.

Khan M. J. et al.

(2018)

A novel classifier based on a modified vector phase diagram

is proposed for the finger-tapping task. The results suggest

an enhancement in classification accuracy with the proposed

method using a time of 1.5 s.

Chiarelli et al.

(2018)

DNNs show better classification accuracy for EEG-fNIRS

recording than LDA and SVM while performing left and

right-hand imagery tasks.

Kwon et al. (2020) The study proves the feasibility of achieving higher

classification with less EEG electrodes and fNIRS optodes

than the bulky individual EEG and fNIRS based BCI system.

EEG + fNIRS significantly increases the classification accuracy
and enhance the number of commands (Fazli et al., 2012; Kaiser
et al., 2014; Khan et al., 2014; Yin et al., 2015; Hong and Khan,
2017; Li et al., 2017; Liu Y. et al., 2017; Abtahi et al., 2020; Cicalese
et al., 2020). Table 7 is evidence of enhancement in classification
accuracy of using hybrid EEG-fNIRS signals forMI andME tasks.
Xie et al. (2014) reviewed the hybrid soft computing methods
used for the classification of bio-signals and concluded that
these methods help improve classification accuracy. Since no
particular article focusing or proposing a classification algorithm
for hybrid EEG-fNIRS with the application of gait was not found
during the article’s review, therefore, conventional and modern
classifiers used in the literature specifically for the classification
of gait activities (using EEG and fNIRS) are discussed in the
following sections. Usually, for hybrid EEG-fNIRS studies, these
conventional classifiers are commonly used.

3.4.1. Linear Discriminant Analysis (LDA)

3.4.1.1. Background
The original linear discriminator for two problems was
introduced by Ronald A. Fisher (1936) and is still an effective
approach for dimensionality reduction and pattern classification.
LDA reduces the feature dimensionality into a smaller subspace
with good class separability while preserving the original
information (Lotte et al., 2007). LDA assumes that the data
comes from a normal distribution and obtains hyper-plane,
which minimizes the inter-class while maximizing the distance
between two class’s means. LDA searches for vector v in feature
space such that when two classes are projected, they are well-
separated. An eigenvalue problem is solved to calculate a vector v

from objective function J(v), which is governed by between class
(Sb) and within-class scatter (Sw) matrices, as shown in Equations
(15a) to (15e).

J(v) =
vtSbv

vtSwv
(15a)

Sb = (m1 −m2)(m1 −m2)
T (15b)

Sw =
∑

Xn∈C1

(Xi −m1)(Xi −m2)
T +

∑

Xn∈C2

(Xi −m1)(Xi −m2)
T

(15c)

λv = S−1
w (m1 −m2) (15d)

v = S−1
w (m1 −m2) (15e)

where Xn denotes samples, m1, and m2 are means of respective
classes 1 (C1) and 2 (C2). The largest eigenvalue in eigenvector
obtained from Equation (15e) will be optimal v.

3.4.1.2. Application
Due to LDA’s simplicity and effectiveness, it is widely used in the
classification of EEG and fNIRS signals for gait disorders (Bulea
et al., 2014; Rea et al., 2014; Salazar-Varas et al., 2015; Naseer
et al., 2016; Gui et al., 2017; Khan R. A. et al., 2018; Costa-
Garciacutea et al., 2019; Elvira et al., 2019). Fazli et al. (2012)
used LDA to classify MI tasks and found that simultaneous EEG-
fNIRS measurement helped increase the classification accuracy
by 5%. In most EEG-fNIRS studies, a multiclass problem was
decomposed into a pairwise classification problem, and then
binary classification is performed using LDA (Kwon et al., 2020).
Other studies also showed LDA’s effectiveness for fused EEG-
fNIRS in various other applications (Khan and Hong, 2017; Liu
Y. et al., 2017; Cicalese et al., 2020).

3.4.2. Sparse Logistic Regression (SLR) and Sparse

Discriminant Analysis (SDA)

3.4.2.1. Background
SLR is the Bayesian extension of logistic regression. The
SLR combines the logistic regression with automatic relevance
determination to perform feature selection and model training
for classification simultaneously. SDA is a method of performing
LDAwith a sparseness criterion enforced, so that feature selection
and classification are performed simultaneously (Lopez-Larraz
et al., 2016). SDA is based on the optimal scoring interpretation
of the LDA.

3.4.2.2. Application
Tobar et al. (2018) used SLR to classify ankle flexion and
extension at two different force levels. It performs well in
the presence of irrelevant features compared to other popular
classification algorithms such as SVM. The method shows the
accuracy of 65.64% for the classification of nine class EEG
data.SDA can be extended to perform sparse discrimination via
mixtures of Gaussians if boundaries between classes are non-
linear or if subgroups are present within each class (Clemmensen
et al., 2011).
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3.4.3. Support Vector Machine (SVM)

3.4.3.1. Background
SVM is among the most commonly used classifiers in
investigating gait disorders and rehabilitation. SVM tries to find
an optimal hyperplane, which maximizes the distance between
the nearest training points known as support vectors. The
optimal value of r∗ in the 2D hyperplane equation shown
in Equation (16a), which maximizes the distance between the
hyperplane, can be obtained from the objective function shown
in Equations (16b), (16c) to (16e) are the constrain equations.

f (x) = r.x+ b (16a)

J(r, ξ ) =
1

2
‖ r ‖2 +C

z
∑

n=1

ξn (16b)

(xn.r + b) ≥ 1− ξn for yn = +1 (16c)

(xn.r + b) ≥ 1+ ξn for yn = −1 (16d)

ξn ≥ 0 ∀ n (16e)

where ‖ r ‖2= rTr, C is positive regularization parameter, ξn
training error measuring parameter, z misclassified samples, and
yn is the class labels.

3.4.3.2. Application
Hortal et al. (2016) used an SVM classifier with a radial base
function that reduces the run-time and makes it feasible for real-
time implementation. The classification accuracy obtained for
SVMwas relatively higher (75%) compared to other classifiers for
fNIRS-based gait rehabilitation (Khan R. A. et al., 2018). SVM,
along with the genetic algorithm, are getting their popularity
due to enhancement in accuracy for fNIRS signals (Noori et al.,
2017). The genetic algorithm (GA) was used to select the optimal
feature and then find the SVMmodel’s hyper-parameters. Li et al.
(2020a) used a 2-layer-GA-SVM model instead of a single layer
to identify four types of self-regulation intentions. The results
indicated that the 2-layer-GA-SVMmodel’s accuracy is increased
by 13.8% relative to the single GA-SVM model, indicating
significant improvements in detecting self-regulated intention
using inter-subject BCIs. SVM performance was be studied in
several EEG and fNIRS studies to enhance classification accuracy
(Mihara et al., 2012; Naseer et al., 2014; Hedian et al., 2018; Kim
et al., 2019). SVM with multiple kernels is also getting favor to
use in many studies because it quickly expands linear decision
boundary into non-linear. The performance of the kernel-based
SVM classifier is greatly affected by choice of kernel and its hyper-
parameters. Multiple kernels learning with SVM outperformed
single kernel SVM classifiers in terms of accuracy and feature
fusion problems, especially in gait states classification (Li et al.,
2014; Zhang et al., 2017). Ge et al. (2017) used SVM to combine
features extracted from EEG-fNIRS signals to achieve an average
accuracy of 81.2% for an imaginary motor task. Similarly, Abtahi
et al. (2020) used SVM to differentiate datasets for classification
between Parkinson’s disease and the neurological participant’s
group. Among datasets, fused EEG-fNIRS achieved the highest
classification accuracy compared to individual fNIRS and EEG

datasets. For other fused EEG-fNIRS applications, SVM yields
an effective classification accuracy (Aghajani et al., 2017; Li et al.,
2017).

3.4.4. Gradient Boost Decision Tree (GBDT)
GBDT proposed by (Friedman, 2001) is suitable for the intention
detection model in real-time and handle large scale data (Li
et al., 2020b). The gradient boosting process involves three
components: (1) loss function, which needs to be optimized; (2)
weak learner for making a prediction; and (3) additive model,
which is used to add weak learners to minimize the loss function.
The loss function is dependent upon the nature of the problem.
Decision trees (specifically regression trees) are used as the weak
learner in gradient boosting. The additive model connects trees
to model (Zheng et al., 2017). Therefore, by continually adjusting
and optimizing the weak learner’s weight to make it a keen
learner, the loss function can be minimized and optimized.

3.4.5. Random Forest (RF)
The core concept behind the random forest (RF) is that it
randomly selects a subset of available features in feature space and
train decision tree classifiers based on these random vectors. RF
repeats the process with many of such random features subsets to
generate many decision trees (Breiman, 2001). The final output is
the fusion of all other outputs of all decision trees. The algorithm
is less sensitive to the curse of dimensionality and sufficient for
both fNIRS and EEG application, even with less training data
(Steyrl et al., 2016; Liu D. et al., 2017; Liu et al., 2018; Wang et al.,
2019).

3.4.6. K-Nearest Neighbor (KNN)
This technique’s objective is to allocate an unseen point for a
dominant class between its k nearest neighbors points within the
training set (Lotte et al., 2007). For a significantly high value of
k and sufficient training points, KNN can estimate any function
to draw a non-linear decision boundary. The function can be
Euclidean distance or Mahalanobis distance. KNN is not a very
accepted algorithm for BCI application due to its sensitivity
toward the curse of dimensionality (Friedman, 1997). However,
with low dimensional features, it proved efficient (Borisoff et al.,
2004; Khan R. A. et al., 2018).

3.4.7. Deep Neural Networks (DNNs)
Till 2017, methods of DDNs do not show any significant
improvements compared to state-of-the-art techniques used for
the classification of bio-signals in BCI (Lotte et al., 2018).
However, recent research shows its future potential due to its
ability to learn useful features and classifiers from raw data
simultaneously. Ghonchi et al. (2020) used a combination of
convolutional (extracting spatial features) and recurrent neural
networks (extracting temporal features) to achieve an accuracy
of 99.63% with the proposed model. Tortora et al. (2020) used
LSTM deep neural network to differentiate between swing and
stance states for both individuals and combine leg movements.
Similarly, spatiospectral representation learning (DNN topology)
is used to differentiate between four walking conditions using
EEG signals (Goh et al., 2018). A few other research show
increase in classification accuracy for fNIRS (Ho et al., 2019)
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and EEG signals (Zeng et al., 2018) using DNNs. Chiarelli et al.
(2018) found a significant increase in classification accuracy for
multimodel EEG-fNIRS recording than standalone EEG and
fNIRS signals and other classification algorithms. Sirpal et al.
(2019) proposed a deep recurrent neural network for seizure
detection in multimodel EEG-fNIRS recording and found that
this promising framework can be used in future EEG-fNIRS
models to make detection and prediction.

3.5. Gait Applications
EEG and fNIRS are used for a wide range of gait applications.
However, a few popular applications of gait are discussed in
this section.

3.5.1. Balance Control
Although the articles reviewed in this study do not have much
focus on balance control. However, the core importance of
neuro-imaging techniques, especially EEG and fNIRS, used to
investigate the underlying neural and hemodynamic changes
during static and dynamic balance control in humans cannot
be ignored. Wittenberg et al. (2017) reviewed neuro-imaging
techniques to investigate the cognitive, sensory, and mechanical
challenges of static and dynamic balance control. Only a few
studies used multi-imaging techniques in investigating balance
control. Al-Yahya et al. (2016) used fNIRS and fMRI to find
prefrontal activation in both single-task and dual-task conditions
and their relation with gait measure. fNIRS data were acquired
during treadmill walk while fMRI data are recorded during
simulated walking. Enhancement in brain activity changes
was found in dual-task conditions compared to single task.
Current challenges in balance control are the development
of validation for multi-imaging modalities, especially in non-
portable neuro-imaging techniques such as fNIRS. Although
fMRI has a superior spatial resolution compared to fNIRS, fNIRS
hardware mobility offers the advantage of studying the full
range of balance challenges. Therefore, future research should
investigate models linking EEG and fNIRS. Researchers working
to improve neuro-imaging hardware and software should focus
on technical challenges to combine fNIRS and EEG modalities.
The multimodal mobile fNIRS and EEG system can affect spatial
and temporal resolution, providing additional brain activity
insights involved in balance control tasks. Currently, only a
few studies used mobile EEG (Bulea et al., 2015; Kline et al.,
2015; Beurskens et al., 2016; Nathan and Contreras-Vidal, 2016;
Oliveira et al., 2016) and fNIRS (Lu et al., 2015; Takeuchi
et al., 2016) modalities for human balance control investigation.
Beurskens et al. (2016) found decreased alpha (EEG) activity
during cognitive dual tasking. Bulea et al. (2015) investigated
the balance challenge by performing a steady-state walk on
a treadmill. Two fNIRS studies investigated dynamic balance
control during overground walking (Lu et al., 2015; Takeuchi
et al., 2016).

3.5.2. Gait Intention Detection
The development of real-time BCI-based gait intention
is essential, particularly in designing useful assistive and
rehabilitation devices. Among many other significant issues in

detecting BCI-based intention is external noise, especially for
real-time conditions and classification accuracy. Currently, only
a few BCI-based systems are developed for online classification
for gait intention detection and its implemented to exoskeletons
used for lower limb gait rehabilitation. EEG signals are widely
used in detecting gait cycles such as start and stop (Sburlea
et al., 2015; Hortal et al., 2016), sitting, and standing intentions
(Bulea et al., 2014) before movement execution. In other
applications, EEG signals are used to trigger robotic devices
by continuous classification and asynchronous detection of
lower limb movement (Liu et al., 2018). A pseudo-online BCI
system to detect the unexpected obstacle was developed with an
average accuracy of 63.9%, which can help its implementation
in real-time BCI systems. Future works can help increase the
accuracy of such a BCI system to make them more feasible
for real-time applications (Elvira et al., 2019). A similar EEG-
based study was performed to detect the sudden appearance
of obstacles for the lower limb exoskeleton during walking
with an average accuracy achieved 79.5% (Salazar-Varas et al.,
2015). Likewise, hemodynamic changes can also help to detect
movement intentions. Li et al. (2020b) performed an fNIRS-
based study to detect self-paced walking intention, which forms
a foundation for the fNIRS-based BCI system for control of
gait assistive devices. Li et al. (2020a) proved the feasibility of
the fNIRS-based BCI system for decoding and detecting the
motion intention in dynamic situations. It comprehends the
potential for practical application of the fNIRS-based BCI system
in controlling gait-related assistive devices. Another fNIRS
study detects the motion intention using two variables, i.e.,
step length and walking speed. It also laid the foundation for
classification motion intention under a typical environment to
control assistive walking devices in severe motor dysfunction
patients (Hedian et al., 2018). Assistive tools for the patients can
be gradually removed to increase cognitive involvement in the
process (Costa-Garciacutea et al., 2019).

3.5.3. Parkinson’s Disease (PD)
PD is a specific disease-causing gait and balance disorder
(Schoneburg et al., 2013; Galna et al., 2015). EEG and fNIRS are
widely used for investigating cortical activation duration walking
and balancing task for PD patients (Stuart et al., 2018). PD
patients find it difficult to perform any secondary task during
walking; the fNIRS device is proved to be feasible to observe the
pre-frontal activation during dual-tasking (Nieuwhof et al., 2016)
and help with rehabilitation. Stuart et al. (2018) found that many
studies use fNIRS rather than EEG to observe the pre-frontal
activation in PD patients. However, hybrid EEG-fNIRS can help
us better understand cause and effects during the rehabilitation of
PD patients as it gives us both the neuronal and hemodynamics
information simultaneously.

3.5.4. Rehabilitation
Due to portability and excellent temporal and spatial resolution
of both EEG and fNIRS helping patients during gait rehabilitation
in terms of wearable lower limb exoskeletons, orthosis,
prosthesis, and other assistive robotic devices (Belda-Lois et al.,
2011; Chéron et al., 2012; Castermans et al., 2013; Tariq et al.,
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2018; Hobbs and Artemiadis, 2020). Belda-Lois et al. (2011)
reviewed gait therapies used in gait rehabilitation comprise
classical gait rehabilitation techniques, FES, BCI systems, and
assistive robotic devices. There is not enough evidence regarding
classical gait regeneration techniques to conclude that one
method is more effective at improving gait than another. The
combination of different rehabilitation techniques seems to
be more effective than excessive gait training alone. Robotic
devices require further research to demonstrate their suitability
for training their effects on real-time over the ground walk.
Non-invasive BCIs are limited to upper limb rehabilitation.
However, some recent works suggest that theremay be a standard
mechanism that can contribute to the rehabilitation of both
the upper and lower limb. Advancement in EEG and fNIRS
enables researchers to detect signals from specific cortex regions
during motor tasks to develop future BCIs. Future research
will analyze the impact of rehabilitation on brain plasticity,
align treatment resources to meet each patient’s needs, and
optimize the recovery process. EEG-based robot-assisted gait
rehabilitation is useful to promote mobility in stroke patients
(Calabrò et al., 2018). EEG-based neural decoding helps to
design a patient-centered closed-loop EEG-based BCI system
for better rehabilitation of lower limb and enhance cortical
plasticity (Contreras-Vidal et al., 2018). The system can be
further improved for rehabilitation (Do et al., 2013). Fused EEG-
fNIRS can help find spatial and temporal information changes
in cortical activation patterns to understand better robot-assisted
gait rehabilitation (Berger et al., 2019). Clinical deployment
of the classifier could be a significant step to real-time BCI
rehabilitation. Appropriate post-processing steps can be applied
to enhance accuracy and reduce the time (Bulea et al., 2014). In
some BCI-based rehabilitation studies, it was concluded from the
feedback by the subjects the comfortability of suspension and
body fixation should be improved considering the situation of
disabled patients (Gui et al., 2017). Future work should focus on
improving gait rehabilitation efficacy and conducting long-term
clinical experiments on paraplegic patients.

3.5.5. Non-invasive Brain Stimulation (NIBS)
NIBS techniques are widely used in healthy adults to investigate
brain mechanisms or modify and enhance cognitive, behavioral,
social, and emotional processes (Finisguerra et al., 2019). NIBS is
broadly classified into transcranial magnetic stimulation (TMS)
and FES (Liew et al., 2014). FES is further classified into three
major categories: transcranial alternating current stimulation
(tACS), transcranial direct current stimulation (tDCA), and
transcranial random noise stimulation (tRNS). The future aspect
of fused EEG-fNIRS could be the feedback cortical activation
pattern measurement to identify regions in NIBS (Teo et al.,
2016; Berger et al., 2018). FES can be set up as portable and
wireless systems, thus having complementary capabilities as well
as EEG and fNIRS (McKendrick et al., 2015). For example,
it can help identify hypo-/hyperactivity and gait disorders to
determine and guide brain stimulation protocols. It can be
applied during robot-assisted gait rehabilitation to modulate
neural networks that support gait rehabilitation (Teo et al., 2016).
The use of FES combined with different walking techniques

was shown to lead to improvements in hemiplegic gait. Hong
and Khan (2017) suggested that hybrid brain signal acquisition
electrical stimulation can improve the brain recovery process,
especially for stroke patients. For FES, the correct brain region is
essential; hence, integrating neuronal and hemodynamics signals
can better localize it.

4. DISCUSSION AND FUTURE PROSPECT

Fused EEG-fNIRS can help in understanding the
neurophysiological mechanisms underlying motor behavior
and gait impairments due to neurological diseases (Berger
et al., 2019). Both EEG and fNIRS are non-invasive, portable,
and cost-effective brain monitoring modalities. Furthermore,
EEG and fNIRS are suitable modalities for real-time clinical
applications involving gait analysis. Since fused EEG-fNIRS
captures spatial and bio-electrical temporal brain signal changes,
new features related to brain activation and connectivity can
be extracted. Understanding and identifying such new features
during a complex gait process will be a step forward in the
field of hBCI-based gait analysis. However, many questions
remain still unanswered, such as how both these bio-electrical
and hemodynamic signals are related? How can the fusion
of both signals provide benefit in terms of investigating gait
disorders caused by brain dysfunction? Some of the key findings
from different studies documenting the advantage of fusing
EEG-fNIRS are as follows:

1. The relation between neuronal changes and neuro-vascular
coupling needs further investigation. Lachert et al. (2017)
found that during the finger-tapping task, HbO increases
along with a decrease in HbR concentration and amplitudes
of alpha and beta EEG rhythms. A decrease in HbO
concentration in the primarymotor and somatosensory cortex
area with an increase in EEG alpha power following 10 Hz
and 20Hz transcranial tDCSwas observed. The authors report
that reduced alpha and beta oscillations in the cortical motor
network are expected to be accompanied by an increase in
HbO, which is a finding that is supported by related literature
investigating neural correlations during gait.

2. Fused EEG-fNIRS provides detailed spatiotemporal
information of neuro-physiological changes, both while
performing a task and during rest state. Simultaneous
measurements of EEG and fNIRS can improve the
classification accuracy by combining the feature space of
these two modalities (Leamy et al., 2011; Fazli et al., 2012;
Buccino et al., 2016; Ge et al., 2017; Li et al., 2017).

3. It is possible to use data acquired from one type of modality to
remove artifacts from other types1. Today the primary focus
of multimodal integration of EEG-fNIRS is to enhance the
performance of hBCI for MI tasks. Some of the studies already
demonstrated performance gains by fusing EEG-fNIRS in
MI tasks (Khan et al., 2014; Buccino et al., 2016), which

1Likewise, EOG modality was used to remove eye-movement artifacts from EEG

data (Liu et al., 2018).
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is of utmost importance to many gait applications such as
rehabilitation and gait intention detection.

Althoughmany studies report that fused EEG-fNIRS BCI systems
yield superior performance compared to single EEG and single
fNIRS-based BCI systems (Khan et al., 2014; Koo et al., 2015;
Naseer and Hong, 2015; Ahn and Jun, 2017), there is still
a lot of research that needs to be conducted to understand
the different aspects of fusing EEG and fNIRS fully. From a
broader perspective, the first problem is related to the hardware
and instrumentation used to collect both signals using a single
device. The second problem relates to the nature of the signals
themselves from two different domains (temporal and spatial)
that need to be jointly processed (Ahn and Jun, 2017). Another
problem that is encountered in the case of gait analysis is the
motion artifact that arises due to movements, instrumental,
and external light interference (Vitorio et al., 2017). Some of
the below problems must be resolved to make quick progress
toward real-time implementation of the EEG-fNIRS-based
hBCI system:

1. Since the fNIRS signal’s response is slower than the response
of EEG. Researchers are trying to investigate new features
and classification algorithms for immediate detection of
hemodynamic changes (Buccino et al., 2016; Hong et al., 2018;
Khan M. J. et al., 2018). The hemodynamics delays can be
estimated with computational and simulationmodels (Buxton
et al., 2004).

2. Temporal synchronization is also a critical problem due to the
information transfer rate in hybridization. Few computational
methods such Bayesian methods capturing prior information
(Morioka et al., 2014) and feature normalization (Ahn et al.,
2016) provide solutions for better performance.

3. Recording neural activity from the same location is usually
a tedious task. The same channel configuration can be
achieved when each EEG electrode is placed between the
emitter and detector of the corresponding fNIRS optode. EEG
electrodes are comparatively smaller in terms of size relative
to fNIRS optodes. The infrared light quantification in fNIRS is
negatively affected by dense hair, which not only causes a low
signal-to-noise ratio but also poses a problem related to the
same channel configuration.

4. Placing a larger number of EEG electrodes and fNIRS
optodes for simultaneous brain activity measurement can
cause higher dimensionality and higher computational
costs. Some commonly used spatial filtering methods of
common spatial patterns can reduce dimensionality and
allow us for more useful information. But, the number of
electrodes and optodes should still be carefully considered
for experimentation.

5. Most of the studies in hBCI involve only healthy subjects.
Before adopting hBCI for patients instead of healthy subjects,
more research is required. Furthermore, the comfort of EEG-
fNIRS hBCI need to be enhanced to be adopted by patients
that require a high level of comfort. Although many studies
that document high accuracy for healthy subjects suggest it is
possible to generalize those results for patients, the reality may
differ (Chaudhary et al., 2017).

6. In real scenarios where conditions differ from lab-controlled
environments, there is a need for more progress in the design
of reliable and ergonomic hardware. The recent development
in custom-made wireless and compact EEG-fNIRS can help to
solve these issues (von Lühmann et al., 2015).

Hybridization of EEG and fNIRS can provide promising results
for gait application. Some useful recommendations are deduced
from the literature that can help the researchers to better plan
gait studies. In most fNIRS studies, there is no standardization of
experimental protocols. Because of this lack of standardization,
it is recommended to report all technical information such
as source-detector separation, sampling frequency, the total
number of channels, differential path length factor (DPF)
values, assessment methodology (with resting and task time),

etc. Due to portability limitation in most of the existing EEG
and fNIRS devices, the experiments are usually performed
in lab-controlled environments. However, the recent hardware
development in hybrid EEG-fNIRS devices solves this portability
issue allowing mobility even in an uncontrolled environment.
Before starting any gait assessment, it is recommended to

carefully consider hardware specifications and characteristics in
terms of portability, the number of channels (electrode and
optodes), sampling frequency, amplifier, sensitivity, noise level,
the capacity of battery backup, and continuous recording (for

portable devices), and range of wireless digital transmission.
Additional sensory devices for recording non-brain physiological

signals such as heart rate, blood pressure, skin conductance,
and respiration can help denoise brain signals. Regions of
interest (ROIs) should be carefully taken into consideration
when selecting the hardware. In various walking and balance

studies, ROIs appeared to be selected based upon the hardware
limitation rather than task-specific regions (Stuart et al., 2018).
Hong et al. (2018) summarized different algorithms that could
be useful to determine ROIs (see section 3.2.8). Most of the
gait studies recommend using 10-20 or 10-10 international

positioning systems for optode/electrode placement. Increasing
the number of channels may allow access to many different ROIs,
but it also increases the computational cost. In the case of some
fNIRS devices, an increase in the number of channels reduces
the sampling frequency. Hence, the number of channels should
be carefully selected. During the experimental paradigm design,

the duration of the baseline time, the in-between rest time,
and task time should also be considered carefully. There is no
commonly used standard baseline time in the fNIRS studies yet.
However, a baseline rest of a minimum of 30 s is recommended

(Herold et al., 2018). Longer baseline time may affect the fNIRS
recording as it is sensitive to mind wandering (Durantin et al.,
2015). Constant DFP factor value should be avoided because
of its dependency upon the age of the participant, wavelengths,

and source-detector separations. In this case, it is recommended
to take into consideration the age and wavelength values for
computing DFP instead of relying on the default values. Some
open-source toolbox such as “nirsLAB” can help in selecting DPF
value accordingly.

Common sources of noise in gait assessment could be due
to motion artifacts, instrumental noise, and physiological noise.
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Motion-related artifacts can be removed using the filtration
methods discussed in section 3.2. Some other filters, such
as task-related component analysis, Kalman filter, and hybrid
filter techniques combining, for instance, spline interpolation
with Savitzky-Golay filtration, are also recommended to remove
motion artifacts in fNIRS signal (Tanaka et al., 2013; Jahani et al.,
2018). Physiological noise can be removed by using low- and
high-pass filters. This type of noise can also be removed by
recording the physiological parameter with additional pieces of
equipment. Open-source toolboxes could help to quickly analyze
fNIRS data such as “NIRS Brain AnalyzIR” (Santosa et al., 2018)
or “HOMER” (Huppert et al., 2009). Baseline correction and
averaging across the channels are usually performed after the
filtration of the signals.

For acceptable classification accuracy, the identification of
prominent features is essential. In hybrid EEG-fNIRS analysis, we
can classify the features as temporal, spatial, and spatiotemporal.
EEG and fNIRS studies’ most commonly used features are
signal peal, slope, mean, kurtosis, skewness, and power spectrum
density. In many gait application, event-related synchronization
and desynchronization-based features are combined with the
fNIRS feature to improve accuracy. Some other methods already
discussed in section 3.3 could also improve the performance. The
most commonly established classification algorithms in hybrid
EEG-fNIRS studies for gait are already discussed in section 3.4.
However, there are other algorithms that are not discussed in
this study, such as extreme learning machines and vector phase
analysis that are used in other than gait applications involving
hybrid EEG-fNIRS (Hong et al., 2018). In many of the gait
and balance studies, cortical activation associated with postural

change was reported. These activation types could be useful for
investigating gait disorders and controlling robotic interfaces,
especially for rehabilitation purposes.

5. CONCLUSION

The increase in the number of balance and gait disorders in
young and older adults is becoming a real challenge and burden
on the health sector. Today, the fusion of different brain and non-
brain signals help medical doctors, physicians, and researchers
better investigate various gait challenges. A combination
of hemodynamical (fNIRS) and electrophysiological (EEG)
modalities to form a hybrid BCI (hBCI) is a novel methodology
for further enhancement in the performance of BCI in terms
of classification accuracy, increase of the number of control
commands, and decrease in the response time of BCI. The
review summarizes the potential of the EEG-fNIRS-based hBCI
systems for investigating gait and balance disorders. The EEG-
fNIRS-based hBCI for the lower extremity remains still an
under-investigated research axis that holds great potentials for a
breakthrough in the field of designing BCI for gait applications.
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