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Abstract

The condition number, being critical to solving linear systems, has many impor-

tant applications. Specifically for robust control analysis, the Euclidean norm has

widespread use over the 1-norm and ∞-norm such as determining a control system’s

stability to uncertainty [1]. Much work has been done with estimating the Euclidean

condition number, but current algorithms for computing said condition number, with

large matrices, tend to run slow as well as requiring a large amount of computa-

tional resources. This report seeks to provide a more time efficient algorithm that

utilizes MATLAB’s eigs, svds, and normest commands as well as the recently devel-

oped RIM-C that can be ran with off-the-shelf software with commercially available

hardware.

xv





Chapter 1

Introduction

Let {Ek} be a sequence of measurable sets in R, and µ (
⋃∞

k=1Ek) < ∞. If

inf
k≥1

(µ (Ek)) = α > 0. Show that µ

(
lim sup
k→∞

(Ek)

)
≥ α.

Consider a general matrix A ∈ Cn×n that takes on the map A : Cn → Cn under the

Euclidean norm ∥ · ∥2. Consider vectors −→x ∈ Cn and
−→
b ∈ Cn such that A−→x =

−→
b

and a small perturbation
−→
bδ such that the difference is relatively small, or:

∥
−→
b −
−→
bδ ∥2

∥
−→
b ∥2

≈ 0

If we define −→xδ such that A−→xδ =
−→
bδ , we additionally have:
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∥A−→x − A−→xδ∥2
∥A−→x ∥2

≈ 0

Abstractly, the relative condition of a matrix A (and all future mentions of the con-

dition of A will be assumed relative) informs us how sensitive the solution −→x is to

small perturbations in
−→
b . In other words, how large the difference is from −→x to −→xδ

with perturbtation to
−→
b in the form

−→
bδ . A is called well-conditioned if the following

holds:

∥−→x −−→xδ∥2
∥−→x ∥2

≈ 0

If A is ill-conditioned, we conversely expect the quantity to be ”further” from 0, or:

∥−→x −−→xδ∥2
∥−→x ∥2

≫ 0

Knowledge of the condition of A yields information to how stable the system is.

Though there exists the 1−norm and ∞−norm definitions of the condition of A that

have been well studied and optimized, for this report we will focus primarily on the

maximal Euclidean condition number of A which will tell us the condition of A under

the Euclidean norm with specific application in robust control systems. To exemplify
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a possible application, knowing the condition of A can provide insight as to how to

precondition the system to guarantee high accuracy in the solution −→x [2].

To find the Euclidean condition number of A given we are defining the perturbation

to apply to the right vector
−→
b , we can use the relative difference between −→x and −→xδ

as well as inequalities to set an upper bound on the relative difference.

In finding this upper bound, consider A−→x =
−→
b and note that we can rewrite A−→xδ =

−→
bδ

as (A+ δG)−→xδ =
−→
b + δ−→g where G is an appropriate matrix G ∈ Cn×n and −→g is

an appropriate vector −→g ∈ Cn. This implies δ = 0 is a lack of perturbation in
−→
b

so without loss of generality let δ > 0. Following from Lambers’ [3] construction of

the ceiling on the relative difference between −→x and −→xδ , suppose A is invertible and

define A−1 as the inverse. Also define r = ∥δA−1G∥2 < 1 for simplicity. Note that by

Triangle Inequality, ∥A−→x ∥2 ≤ ∥A∥2∥−→x ∥2. We construct the upper bound such that:
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∥−→xδ −−→x ∥2
∥−→x ∥2

= δ
∥A−1 (−→g −G−→xδ) ∥2

∥−→x ∥2

= δ
∥A−1 (−→g −G−→x )− A−1G (−→xδ −−→x ) ∥2

∥−→x ∥2

≤ δ
∥A−1 (−→g −G−→x ) ∥2

∥−→x ∥2
+ r
∥−→xδ −−→x ∥2
∥−→x ∥2

≤ 1

1− r
δ
∥A−1 (−→g −G−→x ) ∥2

∥−→x ∥2

≤ 1

1− r
δ∥A−1∥2

(
∥−→g ∥2
∥−→x ∥2

+ ∥G∥2
)

≤ 1

1− r
δ∥A∥2∥A−1∥2

(
∥−→g ∥2
∥
−→
b ∥2

+
∥G∥2
∥A∥2

)
.

This then yields:

(1− r) ∥−→xδ −−→x ∥2
δ∥−→x ∥2

(
∥−→g ∥2
∥
−→
b ∥2

+
∥G∥2
∥A∥2

)−1

≤ ∥A∥2∥A−1∥2

Here we now notate the Euclidean condition number κ2 (A) = ∥A∥2∥A−1∥2 which sets

a worst possible upper bound on the error a small perturbation to
−→
b can make on

the solution −→x .

It is well known that computing the inverse of a matrix is an O (n3) costly operation

and so computing ∥A−1∥2 is at least O (n3) costly. However, eigenvalues and singular

values have a close relation with the norms ∥A∥2 and ∥A−1∥2 as well as avoiding the
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need to compute A−1. Denote {λi}ni=1 as the set of eigenvalues of A, {γi}ni=1 as the set

of eigenvalues of AHA, and {σi}ni=1 as the set of singular values of A. Dependent on

whether A is Hermitian or non-Hermitian, we can transform the problem of finding

κ2 (A) into that of finding the absolutely largest and smallest eigenvalues or singular

values - even having the flexibility to choose one over the other. This stems from the

fact that ∥A∥2 = maxi ({σi}ni=1) and ∥A−1∥2 = 1

mini({σi}ni=1)
. This implies a singular

matrix encounters division by 0, and so it is defined that κ2 (A) =∞ if A is singular.

Depending on whether A is Hermitian or non-Hermitian, we have 2 equivalencies for

κ2 (A):

† A is Hermitian: If A is Hermitian, that is A = AH , then we have:

κ2 (A) =
maxi ({|λi|}ni=1)

mini ({|λi|}ni=1)
=
|λmax|
|λmin|

=
σmax

σmin

Where the eigenvalues in the set {λi}ni=1 are the roots to the characteristic

polynomial given by det (A− λIn), and In is the n×n identity matrix. Because

A is Hermitian, {|λi|}ni=1 = {σi}ni=1.

† A is non-Hermitian: If A is non-Hermitian, that is A ̸= AH , then we have:

κ2 (A) =
maxi ({σi}ni=1)

mini ({σi}ni=1)
=
σmax

σmin

=

√
γmax

γmin

Where the eigenvalues in the set {γi}ni=1 are the roots to the characteristic
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polynomial given by det
(
AHA− γIn

)
. Similar to when A is Hermitian, we have

{σi}ni=1 = {√γi}ni=1 in which all γi are guaranteed to be real and non-negative

since AHA is positive semi-definite.

Different, widely used methods already exist to quickly obtain minimal and maximal

singular values and eigenvalues, and these methods can be called upon and used

with MATLAB’s implementations eigs and svds. MATLAB also has the command

normest which is seemingly unbeatable in obtaining ∥A∥2 leaving singular values and

eigenvalues the task of obtaining ∥A−1∥2.

However, in 2018 the novel method RIM-C has been introduced, and has been shown

to be competitive with eigs with reliable accuracy. Further testing also suggests that

RIM-C is more likely to produce a reliable result to more general matrices when

obtaining λi without having to fine-tune parameters dependent on A. Since RIM-C

targets eigenvalues inside a given complex contour, and the speed for smaller contours

has been noticed to be faster than larger contours, this potentially makes RIM-C

preferable for finding λmin.

It should be noted that normest has been observed to produce more error in finding

∥A∥2 than both eigs and svds. The purpose of finding κ2 (A) is to obtain a magnitude

as the magnitude provides more information of the conditioning of A than the precise

value. That is, if the condition has magnitude of 1014, we care more about obtaining

6



a value with the same magnitude. So say the true value is κ2 (A) = 2.073682E + 14;

obtaining a value of 2.000000E + 14 is sufficient for determining how to handle the

ill-conditioned matrix. So long as the approximation from any of the implemented

methods is on the same magnitude as the true values for ∥A∥2 and ∥A−1∥2, we should

get a sufficient approximation for κ2 (A).

The goal of this report will be to use these methods to more quickly and reliably

compute a reasonable estimate of κ2 (A) for any general matrix A by taking advantage

of where each method is strongest. For future context, normest has been observed to

be the fastest and most reliable at obtaining ∥A∥2 and so this method will be preferred

for such a purpose. For Hermitian matrices, eigs has been observed to be faster with

the caveat of potentially failing for finding ∥A−1∥2 and so it is preferable to use eigs

with other methods being used as ”fail safes”. svds seemingly fails whenever eigs fails

as well as generally being slower for Hermitian matrices so if eigs fails, we will use

RIM-C to find ∥A−1∥2. For non-Hermitian matrices, svds tends to be faster and will

be tried first before passing the computation to RIM-C. Specifically for MATLAB,

determining if a matrix is Hermitian or not is negligible computationally so we can

cheaply determine whether A is Hermitian without having such information prior.

The MATLAB code can be ran on most computers with out of the box software such

as MATLAB with memory being the leading constraint.
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Chapter 2

Existing Methods

Considering normest performs essentially half of the work for finding κ2 (A), it is

beneficial to review the work in which normest is built from. Though MATLAB

does not cite the references behind normest as was done with eigs and svds, it can

be presumed it is built from algorithms found in LINPACK. This specific algorithm

incorporated into LINPACK by Cline et al. [4] ultimately uses both LU and singular

value decompositions to estimate ∥A∥2 and ∥A−1∥2, but a discussion is provided on

how QR decomposition can be used. For dense matrices with random elements, the

algorithm incorporating QR decomposition is able to provide more numerical stability.

However, Cline et al. make the argument that it is not common in practice to work

with dense systems of linear equations with random elements. LU decomposition is

able to better leverage these non-random elements to more quickly converge to κ2’s

9



approximation. For the sake of this report, we consider large general matrices - be they

common in practice or not. Both the QR decomposition and the LU decomposition

algorithms will be provided.

2.1 LINPACK Incorporation - QR Decomposition

Suppose A can be decomposed into an orthogonal matrix Q and an upper triangular

matrix R such that:

A = QR

From here, we have the following equalities:

∥A∥2 = ∥R∥2

∥A−1∥2 = ∥R−1∥2

κ2 (A) = κ2 (R)

It can be stated here that computing ∥R∥2 is preferable to computing ∥A∥2. However,
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∥R−1∥2 is still expensive. Now consider the following linear system for −→x and
−→
b

taking on abstract meanings:

R−→x =
−→
b

Then we can seek to solve the equivalent problem:

max

(
∥−→x ∥2
∥
−→
b ∥2

)
= ∥R−1∥2

Consider a singular value decomposition of R such that R = UΣV T , and denote −→ui as

the ith column of U (similarly −→vi as the ith column of V ). We are given that the bound

max
(

∥−→x ∥2
∥
−→
b ∥2

)
is achieved when

−→
b = −→un, or

−→
b is the last column of U . When κ2 (A) is

large, we state that there is a high probability the bound is a ”good” approximation

to ∥R−1∥2.

Though this process has high probability of ”good” results for κ2 is large, we seek to

refine our choice of
−→
b to exemplify this natural probability even for smaller values

of κ2. Note that the choice of
−→
b = −→un is expensive, and so one would wish to use a

cost efficient algorithm like inverse iteration. In theory, one could choose a random

−→
b , solve R−→x =

−→
b , and use the solution as a new choice of

−→
b iteratively. What

11



often results, however, is the linear combination of the solved −→x in the first iteration

has −→vn as its dominant term which tends to be nearly orthogonal to −→un. When this

happens, the linear combination of −→x does not have −→un as its dominant term. In

the second step when the ”old” −→x becomes the ”new”
−→
b , −→un is poorly represented,

and solving R−→x =
−→
b will not yield a ”large” solution. This results in either a poor

approximation to ∥R−1∥2, or would require many more steps.

Consider a two-step method where we solve 2 linear systems at each iteration:

RT−→x =
−→
b

R−→y = −→x

Our new bound we seek to maximize then becomes max
(

∥−→y ∥2
∥−→x ∥2

)
in which now a

random choice of
−→
b has a high probability to approximate ∥R−1∥2 regardless of the

size of κ2.

12



2.2 LINPACK Incorporation - LU Decomposition

In practice, most dense linear systems are commonly solved with Guassian elimi-

nation; a form of pivoting matrix elements. Separating from the previous section,

consider U and Q abstract. Given a matrix A, we can fully pivot the matrix with

non-singular matrices multiplying such that PAQ. When Q = I, we say the product

PA is a partial pivot of A. Given these criteria, assume we have already pivoted A

appropriately and notate it Ap, and we can decompose such that, for a unit lower

triangular matrix L, its row i column jth elements li,j, and an upper triangular matrix

U :

Ap = PAQ = LU

|li,j| ≤ 1 ∀ i, j

Similarly to how we refined the approach featuring QR decomposition, we can apply

the 2-step approach such that we now consider the following systems:

13



(LU)T −→x =
−→
b (2.1)

LU−→y = −→x

Note that by pivoting, ∥A−1∥2 = ∥A−1
p ∥2 so we can focus on finding the 2-norm of

our inverse pivoted matrix A−1
p equivalently. Again similar to the QR approach, now

max
(

∥−→y ∥2
∥−→x ∥2

)
is our bound we seek. In solving 2.1, we can further decompose yielding

2 more systems to solve for each iteration:

UT−→z =
−→
b

LT−→x = −→z

Similar to the previous section, now a random choice of
−→
b should yield with high

probability a good approximation to ∥A−1∥2.
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Chapter 3

MATLAB’s Eigenvalue and

Singular Value Solvers

Solving for κ2 (A) via eigen and singular value solvers, there will be three methods

we will utilize - two of which pre-existing in MATLAB. MATLAB’s eigs derived from

Lehoucq, Sorenson, & Yang’s algorithm and improved upon by Stewart [5, 6] is used

generally for Hermitian matrices as it demonstrates the best efficiency with the caveat

it may fail and produce no usable results. MATLAB’s svds derived from Larsen’s

bidiagonalization with partial reorthogonalization method and improved with aug-

mented implicit restarting [7, 8] is similarly used for non-Hermitian matrices for sim-

iliar reasoning. Using svds also avoids the need to consider finding the square root of

κ2
(
AHA

)
as matrix multiplication can be an expensive operation.
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3.1 MATLAB eigs

MATLAB’s eigs function utilizes forward stable Krylov-Schur decomposition to ob-

tain eigenvalues from A as opposed to the potentially forward unstable implicitly

restarted Arnoldi algorithm. eigs is generally the fastest method of those used in

this report. However, the function has a tendency to fail on large matrices albeit the

error tends to not waste too much computational time. It is seen as generally best to

attempt this method first on Hermitian matrices.

First, assume A is Hermitian, let −→u be abstract, and define −→u1 ∈ Rn as a random

vector satisfying ∥−→u1∥2 = 1. Generate −→u2, −→u3, . . . from sequentially orthogonalizing

the Krylov sequence −→u1, A−→u1, A2−→u1, . . . using the Lanczos method. By Lanczos,

A being Hermitian implies our vectors −→ui satisfy the following relation for scalars

αi, βi ∈ R:

βi
−−→ui+1 = Ai

−→ui − αi
−→ui − βi−1

−−→ui−1

Up to a desired order k, abstract the variables U and
−→
b , and define the matrix

Uk =

(
−→u1 −→u2 . . . −→uk

)
. Also define Bk =

(
−→
b1

−→
b2 . . .

−→
bk

)
as the order k

Rayleigh quotient. We define the Krylov-Schur decomposition as follows:

16



AUk = UkBk +
−−→uk+1

−−→
bk+1

H

Define −→ei as the appropriately sized vector where the ith element is the only non-zero

entry, and equal to 1. Because A is Hermitian, ∃ a tridiagonal matrix of order k,

denoted by Tk, composed of αi, βi which satisfies:

AUk = UkTk + βk
−−→uk+1
−→ek T

Finishing up the Lanczos decomposition, we now have Tk as the Rayleigh quotient,

Tk = Bk, or:

Tk = UH
k AUk

By Schur [9], there exists a unitary matrix Q and an upper triangular matrix Sk such

that:

Bk = QSkQ
−1

Note that Sk is upper triangular and unitarily similar to Bk. We say that Sk stresses

17



the triangularity of Bk. Define Ŝk =

 Sk

−−→
bk+1

H

 and we can write the form:

AUk = Uk+1Ŝk

Now we have sufficiently setup what was needed to begin the Krylov-Schur decom-

position method. Each step of the method then iterates through the equality:

AUk = UkSk +
−−→uk+1

−−→
bk+1

H

Each step goes through two main phases; the expansion phase in which the Krylov

sequence is expanded, and the contraction phase in which unwanted Ritz values are

purged where the Ritz values are defined as the eigenvalues of the matrix Tk. We

expand by orthogonalizing A−−→uk+1 against Uk+1. The result is normalized to yield −−→uk+2

which allows us to form Sk+1 from the previous Sk. Let v, w, and ν be programming

variables and assume Uk+1 is initialized into U and Ŝk initialized into S; the following

pseudocode implements the expansion phase:

In floating point arithmetic, we will need to reorthogonalize such that v is orthogonal

to the column space of U .
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Algorithm 1 Krylov-Shur Decomposition Expansion Phase

1: v = AU [:, k + 1]
2: w = UHv
3: v = v − Uw
4: ν = ∥v∥2
5: U =

(
U v

ν

)
6: Ŝ =

(
Ŝ w
0 ν

)
This process can be repeated. Define the scalar η such that the pseudocode above is

ran η−k times. So for one iteration, η = k+1. This yields our expanded Krylov-Schur

decomposition:

AUη = UηSη +
−−→uη+1

−−→
bη+1

H

It is now we are on the contraction phase - purging unwanted Ritz values. To do

so, note that we are able to truncate the decomposition at any position. Setting

up, define the block forms Uη =

(
U1 U2

)
, Sη =

S1,1 S1,2

0 S2,2

, and uη+1

−−→
bη+1

H =

−→u
(
−→
b1

H −→
b2

H

)
. The following equality is also a Krylov-Schur decomposition:

AU1 = U1S1,1 +
−→u
−→
b1

H

At this point, the approximations to the desired eigenvalues of A will be located on
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the diagonal entries of S1,1.

3.2 MATLAB svds

MATLAB’s svds improves upon Larsen’s bidiagonalization with partial reorthoginal-

izations by restarting the augmented Krylov subspaces which are obtained in the

standard method. The method addresses the issue that many scientific computa-

tional problems require only a few of the largest and / or smallest singular values -

this report requiring only the single largest and smallest. Since this method has been

observed in all cases to be slower than eigs on Hermitian matrices, we only use svds

on non-Hermitian matrices A.

To begin the method, order the singular values of A such that:

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0

Note this now equates σ1 = σmax. There will then be n associated left and right

singular vectors. Denote the normalized left singular vectors −→uj ∈ Rm and the nor-

malized right singular vectors −→vj ∈ Rn for indices 1 ≤ j ≤ n. For all j, we have the

following equalities:

20



A−→vj = σj
−→uj

AH−→uj = σj
−→vj

We also have:

A =
n∑

j=1

σj
−→uj−→vj T

The matrices composed of all these singular vectors U = [−→u1,−→u2, · · · ,−→un] and V =

[−→v1 ,−→v2 , · · · ,−→vn] have orthonormal columns. Per index j, {σj,−→uj ,−→vj } will be called the

jth singular triplet of A. Furthermore, the 1st singular triplet is the largest singular

triplet, and the nth is the smallest singular triplet.

Both Lanczos bidiagonalization and the improvement found in svds will compute se-

quences of projections of A onto well-chosen lower dimensional subspaces. Compared

to the original Lanczos bidiagonalization method, svds introduces restarting by aug-

mentation of Krylov subspaces determined similarly to the subspaces from Lanczos

bidiagonalization.

Starting the partial Lanczos bidiagonalization, introduce a randomized vector−→p1 ∈ Rn
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satisfying ∥−→p1∥2 = 1. Ideally, we want −→p1 to be a linear combination of the right

singular vectors of the associated singular value we desire.

Let l denote the partial steps we take. Abstract the variable Q and let Pl ∈ Cn×l

and Ql ∈ Cn×l be resulting orthonormal matrices. Let Bl ∈ Cl×l be a bidiagonal

matrix with main and super diagonals whose singular values are similar to A. A

downfall of the basic Lanczos bidiagonalization method entails σmax is more quickly

approximated than σmin. This will be corrected with svds contribution on the method.

For a sufficiently small choice of l, the following decomposition exists:

APl = QlBl (3.1)

Denote Il ∈ Cl×l to be the identity matrix, −→ej ∈ Rn to be the all 0 vector save for

a 1 in the jth row (axis vector), and let −→rl ∈ Rn be the residual vector. From the

decomposition we also have the following:

AHQl = PlB
H
l +−→rl−→el T (3.2)

PH
l Pl = Il = QH

l Ql
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Pl
−→e1 = −→p1

With this information, we may now introduce the Lanczos bidiagonalization method

iteratively. Without further information, choose −→p1 to be a random unit vector.

Letting αj be the j
th main diagonal entry of Bl, βj be the j

th super diagonal entry of

Bl, and
−→qj be the jth column of Ql, we have the following algorithm:

Algorithm 2 Lanczos Bidiagonalization Method

1: P1 =
−→p1

2:
−→q1 = A−→p1

3: α1 = ∥−→q1∥2
4:
−→q1 =

−→q1
α1

5: Q1 =
−→q1

6: for j = 1 : l do
7:

−→rj = AH−→qj − αj
−→pj

8:
−→rj = −→rj − Pj

(
PH
j
−→rj
)

9: if j < l then
10: βj = ∥−→rj ∥2
11:

−−→pj+1 =
−→rj
βj

12: Pj+1 = [Pj,
−−→pj+1]

13:
−−→qj+1 = A−−→pj+1 − βj−→qj

14:
−−→qj+1 =

−−→qj+1 −Qj

(
QH

j
−−→qj+1

)
15: αj+1 = ∥−−→qj+1∥2
16:

−−→qj+1 =
−−→qj+1

αj+1

17: Qj+1 = [Qj,
−−→qj+1]

18: end if
19: end for

As stated, this method yields better approximations of σmax than σmin, and these

approximations get better as we use larger values of l. Noting that steps on lines (8)

and (14) are reorthoginalization steps, it is stated by Baglama [7] that we often need
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a full, not partial, reorthoginalization to get high accuracy.

3.2.1 Augmentation by Ritz Vectors to Obtain σmax

Regarding σmax, though we claim Lanczos Bidiagonalization yields good approxima-

tions, augmentation by Ritz vectors to find only σmax is introduced to make svds

less sensitive to propogated round-off error. Let −→aj be the associated left singular

vector of Bl, and let
−→
bj be the associated right singular vector of Bl. We define the

approximated left and right singular vectors of A respectively using singular vectors

of Bl such that:

−→̃
uj = Ql

−→aj

−→̃
vj = Pl

−→
bj

Denote σ̃j as a singular value of Bl. Note that
−→̃
vj is a Ritz vector of AHA associated

with (σ̃j)
2. For all j such that 1 ≤ j ≤ l, we have:

AHA
−→̃
vj − (σ̃j)

2−→̃vj = αl
−→rl−→el H

−→
bj
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Recalling decompositions 3.1 and 3.2, we can now choose the first column of Pl as a

Ritz vector, and restart the computations to increase accuracy. Letting this vector

be available to us,
−→̃
v1 , note that the Ritz vector is orthonormal with −→rl . Introduce

the following matrix:

P̃2 =
[−→̃
v1 ,
−−→pl+1

]

We then have the consequence that −−→pl+1 is parallel to −→rl . Following:

AP̃2 =
[
σ̃1
−→̃
u1, A

−−→pl+1

]

Orthogonalizing AP̃2 against
−→̃
u1 then gives us:

A−−→pl+1 = ζ̃
−→̃
u1 +

−→̃
r1

Where
−→̃
r1 is the residual orthogonal to

−→̃
u1 and ζ̃ can be easily computed such that:
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ζ̃ =
(−→̃
u1

)H
A−−→pl+1

= −−→pl+1
HAH−→̃u1

= −−→pl+1

(
σ̃1
−→̃
v1 +

−→rl−→el H−→a1
)

= βl
−→el H
−→̃
u1

Now we can construct our augmented decomposition analogous to 3.1 so that:

Q̃2 =

[
−→̃
u1,

−→̃
r1

∥−→̃r1∥2

]

AP̃2 = Q̃2B̃2

Where B̃2 has a main diagonal and the right-most column as potentially non-zero.

To get the augmented analogous decomposition to 3.2, we will need to express AHQ̃2

in terms of P̃2 and B̃H
2 . Since the first column of AHQ̃2 is a linear combination of

−→̃
v1

and −−→pl+1, we have the following:
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AH−→̃u1 = σ̃1
−→̃
v1 +

−→rl−→el H−→a1

= σ̃1
−→̃
v1 +

−−→pl+1ζ̃

Because AH
−→̃
r1

∥−→̃r1∥2
is orthogonal to

−→̃
v1 , we can express the following:

AH

−→̃
r1

∥−→̃r1∥2
= ∥−→̃r1∥2−−→pl+1 +

−→̃
f2 (3.3)

Where
−→̃
f2 ∈ Cn×1 is orthogonal to both

−→̃
v1 and −−→pl+1, and can be computed from (3.3).

This now yields the augmented decomposition analogous to (3.2):

AHQ̃2 = P̃2B̃
H
2 +
−→̃
f2
−→e2H

Hence, the Lanczos bidiagonalization method can be ran on the analogous decompo-

sition recalling σmax ≈ σ̃max. Furthermore, σ̃max will be in entry ()1,1 of B̃2.
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3.2.2 Augmentation by Harmonic Ritz Vectors for σmin

Regarding σmin, we know the Lanczos bidiagonalization method often requires a full

reorthoginalization to yield a high accuracy approximation. However, Kokiopoulou,

Bekas, and Gallopoulos [10] observed that a faster approximation with high accuracy

can be obtained when shifting by harmonic Ritz values as opposed to shifting by the

standard Ritz values.

From the standard Lanczos bidiagonalization method, suppose for all indices j that

αj and βj are non-zero - in particular Bl is non-singular. The harmonic Ritz values

θj of AHA with respect to the partial Lanczos tridiagonalization method are the

eigenvalues of the generalized problem:

((
BH

l Bl

)2
+ α2

l β
2
l
−→el−→el H

)−→
ω̂j = θjB

H
l Bl

−→
ω̂j (3.4)

Where
−→
ω̂j ∈ Cl×1 is non-zero (further details found from Morgan or Paige, Parlett, and

van der Vorst). By defining −→ωj = Bl

−→
ω̂j , we can avoid computing BH

l Bl by choosing

−→ωj to be piecewise orthonormal and formulating:

(
BlB

H
l + β2

l
−→el−→el H

)−→ωj = θj
−→ωj (3.5)
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Define Pl+1 =
[
Pl,

−→rl
βl

]
and let Bl,l+1 be defined by AHQl = Pl+1B

H
l,l+1. We also have

the following:

Bl,l+1B
H
l,l+1 = BlB

H
l + β2

l
−→el−→el H

Now introduce the notation {σ̂j,
−→
âj ,
−→
b̂j } as the singular triplets (singular value, left

and right associated singular vectors respectively) of Bl,l+1 for 1 ≤ j ≤ l. Now we

order the singular values so that:

0 < σ̂1 ≤ σ̂2 ≤ . . . ≤ σ̂l (3.6)

Considering we are interested in only the smallest singular value of A, we have the

following:

Bl,l+1

−→
b̂1 =

−→
â1 [σ̂1] (3.7)

BH
l,l+1

−→
â1 =

−→
b̂1 [σ̂1] (3.8)
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Referring now to (3.7) and (3.8) as the partial singular value decompositions of Bl,l+1,

it follows also from (3.6) that σ̂2
1 and

−→
â1 form an eigenpair of (3.5). We also have σ̂2

1

and B−1
l

−→
â1 as an eigenpair of (3.4). This implies the two mentioned eigenpairs can be

determined from (3.7) and (3.8) in which Baglama and Reichel claim for a sufficiently

small l are computationally negligible to obtain.

The family harmonic Ritz vectors of AHA associated with each θj is then given by:

−→
hj = Pl

−→
ω̂j

It was observed by Morgan the Zeng that the residual errors associated with each

harmonic Ritz pair θj and
−→
hj are parallel. This result becomes central to the aug-

mentation used in the method and so we obtain the result:

30



AHA
−→
hj − θj

−→
hj = AHAPl

−→
ω̂j − θjPl

−→
ω̂j

=
(
PlB

H
l Bl + αl

−→rl−→el H
)−→
ω̂j − θjPl

−→
ω̂j

= Pl

(
BH

l Bl − θjIl
)−→
ω̂j + αl

−→rl−→el H
−→
ω̂j

= PlB
−1
l

(
BlB

H
l − θjIl

)−→ωj +
−→rl−→el H−→ωj

= PlB
−1
l

(
−β2

j
−→el−→el H−→ωj

)
+−→rl−→el H−→ωj

= −→el H−→ωj

(−→rl − β2
l PlB

−1
l
−→el
)

We now have our scaled residual vector:

−→
r̂l =

−−→pl+1 − βlPlB
−1
l
−→el

And finally we can form our relation analogous to 3.2 such that:

[−→
h1σ̂1,

−→
r̂l

]
= Pl+1

B−1
l

−→
â1 [σ̂1] βlB

−1
l
−→el

0 1



To get to the proper form, introduce the following QR-factorization:
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B−1
l

−→
â1 [σ̂1] βlB

−1
l
−→el

0 1

 = Q̂2R̂2

Defining P̂2 = Pl+1Q̂2, we obtain our proper analogous form:

AP̂2 = [APl, A
−−→pl+1] Q̂2

= [QlBl, A
−−→pl+1]

B−1
l

−→
â1 [σ̂1] βlB

−1
l
−→el

0 1

 R̂−1
2

=
[
Ql

−→
â1 [σ̂1] ,−βl−→ql + A−−→pl+1

]
R̂−1

2

Using the above form in Lanczos bidiagonalization method is then possible, and will

yield an approximation to σmin of A.
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Chapter 4

RIM-C and Proposing

newEuclidCond

4.1 RIM-C

RIM-C is a novel eigenvalue solver that arose from the transmission eigenvalue prob-

lem. RIM-C is valued in this report for its reliability as well as the method of targeting

a contour to find eigenvalues within. This method has been observed to require more

time the larger the spectral contour making it seemingly ideal for eigenvalues near

the origin - specifically λmin. Consider the generalized eigenvalue problem:
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A−→x = λB−→x

Though we find the eigenvalues of A such that B = In for this report, keep B

sufficiently abstract for the sake of the algebra. Assuming A : Cn → Cn is bounded

on a complex Hilbert space, the resolvent set of A is given as:

ρ(A) = {z ∈ C : ∃ (A− zB)−1}

If z ∈ ρ (A), then the resolvent is given as:

Rz (A) = (A− zB)−1 =⇒ τ (A) = C \ ρ (A)

Where τ (A) is the spectrum of A. Assuming that A has only point spectrum and

each eigenspace associated with any λk ∈ τ (A) is finite-dimensional, we can form the

spectral projection given as, for a closed spectral contour Γ:

PΓ (A) =
1

2πi

∫
Γ

Rz (A) dz

For a random vector
−→
f satisfying ∥

−→
f ∥2 = 1, PΓ (A)

−→
f is named the indicator,

34



and indicates there is at least one λk ∈ Γ if ∥PΓ (A)
−→
f ∥2 ̸= 0. Applying a simple

quadrature rule, let {ωk}Wk=1 be the set of quadrature points and {−→xk}Wk=1 be the

solutions to the linear systems (A− zkB)−→xk =
−→
f for {zk}Wk=1 ∈ ρ (A) - we can

approximate the indicator such that:

PΓ (A)
−→
f ≈ 1

2πi

W∑
k=1

ωk
−→xk =⇒ PΓ (A) = ∥PΓ (A)

−→
f ∥2

Lastly, we face the problem of deciding when the indicator is zero. With a constant

tolerance T > 0, if we do not scale our indicator then we could miss eigenvalues even

though PΓ (A) < T is true. To circumvent this, we project onto the normalization of

PΓ (A)
−→
f such that we obtain our scaled indicator:

δΓ = ∥PΓ

(
PΓ (A)

−→
f

PΓ (A)

)
∥2 (4.1)

Thus we can iterate. Suppose Γ is a simple spectral circle of radius r and let T be

the tolerance. If δΓ < T , we claim there are no eigenvalues in Γ and we expand our

search region such that for Γ ⊂ Γ̇, we test PΓ̇ (A). Conversely, we can shrink our

search radius. Let ϵ > 0 be real and a minimum radius. Denoting r̂ > ϵ as the radius

of Γ̂ ⊂ Γ, we check PΓ̂ (A) with decreasing r̂ until our radius equals ϵ in which case

we have an approximate for the observed λk with absolute error at most ϵ
√
2, and
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claim λk ∈ Γ.

Now that we have outlined the standard RIM method, we notice most of the compu-

tational cost comes from obtaining δΓ since it effectively doubles the linear systems we

must solve - once for the indicator, and again to scale the indicator. Since δΓ plays

a major role in not missing eigenvalues, we circumvent the large number of linear

systems we need to solve by introducing Cayley transformation as well as carrying

out the Arnoldi process.

We begin with Cayley transformation to take advantage of the parametarized linear

systems with the same structure as those required for RIM. Consider the family of

linear systems for z ∈ C:

(A− zB)−→x =
−→
f (4.2)

If B−1 exists, we can left multiply B−1 to both sides such that we obtain:

(
B−1A− zIn

)−→x = B−1−→f

Given a matrix M , vector
−→
b , and a scalar m ∈ N, the Krylov subspace is defined as:
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Km

(
M,
−→
b
)
= span

(
{Mk−1−→b }mk=1

)

For α, β ∈ C, by shift-invariance we also have:

Km

(
αM + βIn,

−→
b
)
= Km

(
M,
−→
b
)

This implies the Krylov subspace of B−1A−zIn is the same as B−1A which alleviates

dependence on z. Though Cayley transformation is able to fix the case where B−1

does not exist, Arnoldi’s method is able to exploit a result of Cayley transformation

hence why we perform the transformation regardless that B = In. To continue,

suppose ψ ̸= z is not a generalized eigenvalue. Left multiply (A− ψB)−1 to 4.2 to

obtain:

(A− ψB)−1−→f = (A− ψB)−1 (A− zB)−→x

= (A− ψB)−1 (A− ψB + (ψ − z)B)−→x

=
(
In + (ψ − z) (A− ψB)−1B

)−→x

Let M = (A− ψB)−1B and
−→
b = (A− ψB)−1−→f . Then 4.2 can be treated as:
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(In + (ψ − z)M)−→x =
−→
b (4.3)

Because the Krylov subspace exhibits shift invariance, Km

(
In + (ψ − z)M,

−→
b
)

=

Km

(
M,
−→
b
)
. This result is exploitable. Consider the orthogonal projection method

for M−→x =
−→
b . Take an initial guess of −→x0 =

−→
0 ; we seek an approximate solution −→xm

in Km

(
M,
−→
b
)
by imposing the following Galerkin condition:

(−→
b −M−→xm

)
⊥ Km

(
M,
−→
b
)

(4.4)

Consider Arnoldi’s full orthogonalization method [11]:

Algorithm 3 Arnoldi’s Full Orthogonalization Method

1: Generate −→v1 satisfying ∥−→v1∥2 = 1
2: for j = 1 : m do
3: for i = 1 : j do
4: hi,j = ⟨M−→vj ,−→vi ⟩
5: end for
6:

−→wj =M−→vj −
∑j

i=1 hi,j
−→vi

7: hj+1,j = ∥−→vj ∥2
8: if hj+1,j = 0 then
9: Stop algorithm
10: end if
11:

−−→vj+1 =
−→wj

hj+1,j

12: end for

Let Vm =

(
−→v1 · · · −→vm

)
be an orthogonal matrix, and Hm be m×m Hessenberg

matrix with entries enumerated by the above algorithm. Proposition 6.5 from Saad
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[11] yields for us:

MVm = VmHm +−→vmhm+1,m
−→emT

4.4 is constrained by:

span (col (Vm)) = Km

(
M,
−→
b
)

By letting −→xm = Vm
−→y , 4.4 becomes:

V T
m

−→
b − V T

mMVm
−→y =

−→
0

Shown by Saad [12], V T
mMVm = Hm holds implying:

Hm
−→y = V T

m

−→
b

By construction, −→v1 =
−→
b

∥
−→
b ∥2

. Let β = ∥
−→
b ∥2. Then we can write:

39



−→y = βH−1
m
−→e1

This lets us rewrite the residual of the approximate solution −→xm as:

∥
−→
b −M−→xm∥2 = hm+1,m|−→emT−→y | (4.5)

By shift invariance, we further have that:

(In + (ψ − z)M)Vm = Vm (Im + (ψ − z)Hm) + (ψ − z)−−→vm+1hm+1,m
−→emT (4.6)

We can impose a Galerkin condition similar to 4.4 to obtain:

V T
m

−→
b − V T

m (In + (ψ − z)M)Vm
−→y = 0

=⇒ (Im + (ψ − z)Hm)
−→y = β−→e1 (4.7)
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From 4.5 we can then obtain:

∥
−→
b − (In + (ψ − z)M)−→xm∥2 = (ψ − z)hm+1,m|−→emT−→y | (4.8)

Here, M is a n × n matrix and Hm is the m × m upper Hessenberg matrix such

that m ≪ n. Hm and Vm constructed by Arnoldi’s process can be used to solve 4.7

for different values of z in which the residual is given by 4.8. Since the residual is

relatively easy to compute, the additional cost associated with monitoring the residual

is small.

Now we can discuss how Arnoldi’s process is used with RIM to produce RIM-C.

Recall how we are approximating the indicator with the a parameterized system of

4.2 with −→xk being a solution per k in (A− zkB)−→xk =
−→
f . We are able to solve across

quadrature points zk by choosing a proper shift - a non-generalized eigenvalue ψ.

Define M = (A− ψB)−1B and
−→
b = (A− ψB)−1−→f . From 4.3, we have:

(In + (ψ − zk)M)−→xk =
−→
b

Further from 4.6 and 4.7 we have:

41



−→yk = β (Im + (ψ − zk)Hm)
−1−→e1 (4.9)

−→xk ≈ Vm
−→yk (4.10)

P
−→
f ≈ 1

2πi

∑
wkVm

−→yk (4.11)

Hence the Krylov subspace for M can be used to solve for −→xk associated with quadra-

ture points zk which are near the shift ψ. Because we are reliant on zk being near ψ,

different Krylov subspaces may be used for differing zk to evaluate PΓ (A)
−→
f .

Recall 4.1 how we projected the indicator onto a normalization of itself to scale

the indicator. This created two linear systems with different right hand sides - the

different representations being
−→
f and PΓ(A)

PΓ(A)

−→
f . To solve these linear systems for one

shift ψ, we are constructing two Krylov subspaces in which a new approach to a more

efficient indicator is proposed.

The idea behind this new indicator is to assume Γ is a square contour, and ap-

ply different sets of trapezoidal quadrature points that take advantage of Arnoldi’s
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exploitation of the Cayley transformation result 4.3. Because a circle can be circum-

scribed inside a square, we can use this quadrature for said circumscribed circle by

how we choose to subdivide the initial Γ. It is stated that this method works well in

practice without introducing extra ”eigenvalues” [13].

Define PΓ (A)
−→
f |N as the approximation of PΓ (A) with N quadrature points. In

section 4.6.5 of the work of Davis et al. [14], it is given that trapezoidal quadratures

of a periodic function converges exponentially. That is for a constant C dependent

on
−→
f :

∥PΓ (A)
−→
f −

(
PΓ (A)

−→
f |N

)
∥2 = O

(
e−CN

)

Since this is an approximation, PΓ (A)
−→
f |N ̸= 0 still indicates that ∃ at least one

λ ∈ Γ, and conversely PΓ (A)
−→
f |N ≈ 0 indicates all λ /∈ Γ. For a sufficiently large N0,

we further have that:

∥PΓ (A)
−→
f |2N0∥2

∥PΓ (A)
−→
f |N0∥2

=


∥PΓ(A)

−→
f ∥2+O(e−C2N)

∥PΓ(A)
−→
f ∥2+O(e−CN )

∃ λ ∈ Γ

O(e−C2N)
O(e−CN )

= O
(
e−CN

)
λ /∈ Γ

Hence this is our new indicator, which we will denote δ̄Γ =
∥PΓ(A)

−→
f |2N0

∥2
∥PΓ(A)

−→
f |N0

∥2
. Based on
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numerical examples presented in the work of Huang et al. [13], δ̄Γ > 0.2 is said to

indicate ∃ at least one λ ∈ Γ where δ0 = 0.2 ≈ O
(
e−CN

)
was chosen from experimen-

tation, and it is stated that truly computing O
(
e−CN

)
in practice is difficult. The

notation δ0 will be useful when presenting the algorithm. Because of 4.9, 4.10, and

4.11, computing δ̄Γ is not expensive.

Now that we have outlined RIM and its algorithm, and the theory behind the im-

provements Cayley transformation and Arnoldi’s method both offer to RIM, we can

now outline the algorithm for RIM-C. Given Γ, we position our first shift ψ at Γ’s

center. ThenKm

(
M,
−→
b
)
is constructed and stored in memory. For an initial quadra-

ture point z, the algorithm first attempts to solve the linear system given by 4.2. If

the residual is greater than a given tolerance ϵ, another Krylov subspace with a new

shift is constructed, stored, and then used to solve the linear system. In the next

step, RIM-C constructs multiple Krylov subspaces for shifts corresponding to all dif-

fering quadrature points zk, and uses them to solve each linear system dependent on

zk. Again because of 4.9, 4.10, and 4.11, we speed up solving this family of n linear

systems for all zk by solving a reduced family of m linear systems for most zk. These

improvements upon RIM is what yields RIM-C. The full algorithm for RIM-C can be

found in the work of Huang et al. [13].
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4.2 Proposing newEuclidCond

It is here that we can propose the algorithm for newEuclidCond. Since the goal is

for use on any general matrix with no priori information, the only input required is

a matrix A ∈ Cm×n, and the output being κ2 (A). Consider the algorithm below:
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Algorithm 4 newEuclidCond

1: if m ̸= n then
2: κ2 (A) =∞
3: End algorithm
4: end if
5:

6: if AH = A then ▷ Find ∥A+∥2
7: try
8: emin = |eigs (A, 1,′ smallestabs′) |
9: catch ERR
10: if ERR is singular matrix then
11: emin = 0
12: else
13: emin = RIMCSearch (A)
14: end if
15: end try
16: else
17: emin = svds (A, 1,′ smallest′)
18: end if
19:

20: if emin = 0 then
21: κ2 (A) =∞
22: End algorithm
23: end if
24:

25: if AH = A then ▷ Find ∥A∥2
26: emax = |eigs (A, 1,′ largestabs′) |
27: if emax = NaN then
28: emax = svds (A, 1,′ largest)
29: end if
30: else
31: emax = svds (A, 1,′ largest′)
32: end if
33:

34: κ2 (A) =
emax

emin
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Chapter 5

Results and Conclusion

In this section, we test the proposed newEuclidCond algorithm compared to com-

monly incorporated eigenvalue and singular value solvers for large linear systems -

namely MATLAB’s eigs and svds. As the purpose is to more reliably and efficiently

compute κ2 for any general matrix, the approach used will assume we have no priori

information. It should also be noted that RIM-C is purely an eigenvalue solver -

eigenvectors are not computed and so eigs is already disadvantaged having to spend

more computational time to return a vector we do not need. Regardless, the following

results can give comparable information on the abilities of each algorithm to converge

to a result as well as the speed at which they perform. All tests are performed on the

M2 Macbook Air with 8GB memory. Though not discussed, note that MATLAB’s

cond for the Euclidean norm has no estimate - it is exact, and condest is strictly for
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the 1-norm.
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5.1 Example 1: nemeth15

The nemeth15 matrix, sourced from SuiteSparse Matrix Collection, is a 9506× 9506

real, Hermitian matrix resulting from the 15th Newton-Schultz iteration. The matrix

is said to have a Euclidean condition number κ2 = 1.116283E+02 and is 0.5973638%

dense. Below are the results of how each algorithm performed:

Table 5.1
κ2 estimate of nemeth15

time κ2 estimate
eigs 1.996167E±00 NaN
svds 1.874850E±00 NaN
cond 3.164562E+01 1.116283E+02

newEuclidCond 2.103470E±00 1.116183E+02

Here we see that eigs and svds took less time of the same magnitude just to out-

put NaN. Upon closer inspection, eigs and svds both failed to converge to λmax and

σmax respectively leading to NaN results. Though not faster, this is a case where

newEuclidCond demonstrates its ability to better obtain an answer with no priori in-

formation where the additional time from eigs failing is relatively ≈ 21% for nemeth15

with relative estimate error ≈ 0.009% from the provided value of κ2.
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5.2 Example 2: ramage02

The ramage02 matrix, sourced from SuiteSparse Matrix Collection, is a 16830×16830

real, Hermitian matrix resulting from a finite element scheme applied to Navier Stokes

and Continuity equations used in computational fluid dynamics. The matrix is said

to have a Euclidean condition number κ2 = 2.705462E+112 and is 1.011955% dense.

Below are the results of how each algorithm performed:

Table 5.2
κ2 estimate of ramage02

time κ2 estimate
eigs 2.036057E+01 Inf
svds 3.005157E+01 Inf
cond 1.821085E+02 7.031472E+286

newEuclidCond 2.147360E+01 Inf

Considering the ramage02 matrix is real and has no infinite elements, we know that

eigs, svds, and newEuclidCond are all returning that the matrix is singular. Specifi-

cally, eigs states ramage02 is singular when attempting to find the smallest absolute

λ, and does not return any value. Both svds and newEuclidCond returned λmin ≈ 0.

Even cond ’s estimate differs from the previous claim of κ2’s true value. This problem

can likely be circumvented by adjusting the minimum tolerances in each algorithm

accordingly to obtain non-zero λmin and σmin values, but again this report works

under the assumption we have no priori information on A.
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5.3 Example 3: Trefethen 20000

The Trefethen 20000 matrix, sourced from SuiteSparse Matrix Collection, is a 20000×

20000 Hermitian matrix with prime elements listed along the main diagonal and 1’s

scattered following the construction from Problem 7 of the Hundred-dollar, Hundred-

digit Challenge Problems, SIAM News vol 35 no. 1. It is stated that Trefethen 20000

has a Euclidean condition number of 2.005593E + 05 with 0.138617% density. Table

4.3 displays the results of each algorithm:

Table 5.3
κ2 estimate of Trefethen 20000

time κ2 estimate
eigs 1.212770E+01 NaN
svds 1.608059E+02 NaN
cond 3.276611E+02 2.005593E+05

newEuclidCond 5.083751E+02 2.005593E+05

Here we have another instance where eigs and svds produce NaN results. Again, λmax

and σmax are what causes eigs and svds respectively to return said results. And even

though newEuclidCond obtained a result, this is an instance where the algorithm is

terribly slow even compared to MATLAB’s cond. This is due to how RIM-C requires a

contour input. Note that aside from ”startup time”, RIM-C’s time mostly correlates

to the time required to run; using newEuclidCond to find κ2 of a matrix with an

absolutely large λmax will result in longer runtime unless the algorithm to increase
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the contour to find λmax is itself optimized.
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5.4 Example 4: mycielskian15

The mycielskian15 matrix, sourced from SuiteSparse Matrix Collection, is a 24575×

24575 Hermitian binary matrix representative of an undirected graph. The general

set of mycielskian matrices share the characteristics of a known minimum of colors

required to color the vertices without same-colored neighbors, and being triangle

free. It is stated that mycielskian15 has 1.839799% density while we are given no

information of the expected κ2. Below is how each algorithm performed:

Table 5.4
κ2 estimate of mycielskian15

time κ2 estimate
eigs 2.628998E+01 4.996015E+05
svds 3.932115E+02 4.996015E+05
cond 7.594096E+02 4.996015E+05

newEuclidCond 2.863092E+01 4.996015E+05

In this case, all algorithms obtained the same κ2 to 7 significant figures and so we only

wish to observe the time each algorithm took in which we see eigs was the fastest,

and newEuclidCond being comparable. Since newEuclidCond attempts to run eigs

first on Hermitian matrices to obtain λmin before falling back to other algorithms,

and attempting eigs or power iteration to obtain λmax, it makes sense to assume that

newEuclidCond in this case is running the same operations as eigs with extra checks

to ensure this is the right decision. With svds and cond being on the next magnitude
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in terms of time, there is little discussion to be had other than these algorithms are

not preferable.
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5.5 Example 5: case39

The case39 matrix, sourced from SuiteSparse Matrix Collection, is a 40216 × 40216

real, Hermitian matrix used in an electrical power system. More importantly, this

matrix is used to benchmark the algorithm presented by Quanyuan et al. to solve 2

linear systems sequentially with 2 right vectors. Again, we are not given κ2 from the

source. Note that. With case39 having density 9.892869E − 06%, below is how each

algorithm performed:

Table 5.5
κ2 estimate of case39

time κ2 estimate
eigs 5.807436E±00 1.228018E+14
svds 6.850321E+02 Inf
cond 1.738608E-01 NaN

newEuclidCond 5.520929E±00 1.228018E+14
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5.6 Example 6: raefsky3

The raefsky3 matrix, sourced from SuiteSparse Matrix Collection, is a 21200× 21200

real, non-Hermitian matrix used in computational fluid dynamics - though with no

further information on the usage. The matrix is said to have a Euclidean condition

number κ2 = 1.980662E + 11 and is 0.331250% dense. Below is how each algorithm

performed:

Table 5.6
κ2 estimate of raefsky3

time κ2 estimate
eigs 9.093270E-01 1.980627E+11
svds 9.997307E±00 Inf
cond 3.984497E+02 1.980627E+11

newEuclidCond 1.008368E+01 Inf

Here the results are seemingly surprising. Covered in Chapter 1, to use eigs on a non-

Hermitian matrix, we need to input AHA which first requires computing the matrix

product.
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5.7 Example 7: human gene2

The human gene2 matrix, sourced from SuiteSparse Matrix Collection, is a 14340×

14340 real, Hermitian matrix representing a human gene regulatory network. The

matrix is said to have a Euclidean condition number κ2 = 3.833767E + 05 and is

8.786605E ± 00% dense. Below is how each algorithm performed:

Table 5.7
κ2 estimate of human gene2

time κ2 estimate
eigs 6.535021E+01 3.833767E+05
svds 4.769057E+01 3.833767E+05
cond 1.172534E+02 3.833767E+05

newEuclidCond 6.373140E+01 3.833767E+05

Here we can see that all algorithms got the correct value of κ2 to seven significant

figures. Though svds computed κ2 the fastest, newEuclidCond was able to come in

second place with a time comparable to eigs.
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5.8 Example 8: windtunnel evap3d

The windtunnel evap3d matrix, sourced from SuiteSparse Matrix Collection, is a

40816× 40816 real, non-Hermitian matrix containing data from a simulation of soil-

water evaporating from a water-filled sand box to the air via a pipe. The condition

number is not given from the source, but the matrix is found to be 4.825955E − 02%

dense. Below is how each algorithm performed:

Table 5.8
κ2 estimate of windtunnel evap3d

time κ2 estimate
eigs 5.130059E+02 8.335535E+13
svds 6.160788E+02 Inf
cond 1.490372E-01 NaN

newEuclidCond 6.100461E+02 Inf

Here, eigs yielded errors hinting at the poor condition of the matrix, but was the only

algorithm to yield a numeric answer while being faster than svds and newEuclidCond.

Following from the previous matrix, this places newEuclidCond in second again as it

was roughly six seconds faster than svds.
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5.9 Example 9: bayer01

The bayer01 matrix, sourced from SuiteSparse Matrix Collection, is a 57735× 57735

real, non-Hermitian matrix with no given information to its usage; the source also

does not provide an estimate for κ2. The matrix can be found to be 8.252827E−03%

dense. Below is how each algorithm performed:

Table 5.9
κ2 estimate of bayer01

time κ2 estimate
eigs 1.452240E+00 Inf
svds 3.493545E-01 Inf
cond 5.583635E-02 NaN

newEuclidCond 3.134055E-01 Inf

We can see that aside from cond not having enough memory to complete the com-

putation, newEuclidCond found the unanimous estimation κ2 = Inf in the shortest

amount of time with svds requiring about 0.03 more seconds, and eigs at least able

to output a usable answer. Unfortunately, not a single algorithm tested was able to

obtain κ2 numerically and resorting to assuming σmin = 0.
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5.10 Example 10: c-67

The c-67 matrix, sourced from SuiteSparse Matrix Collection, is a 57975×57975 real,

Hermitian matrix with no given information to its usage nor κ2 approximation. The

matrix is found to be 1.577546E−02 dense. Below is how each algorithm performed:

Table 5.10
κ2 estimate of c-67

time κ2 estimate
eigs 4.405881E+00 1.931770E+13
svds 4.751642E+02 Inf
cond 9.391576E-02 NaN

newEuclidCond 4.599063E+00 1.931770E+13

Here, newEuclidCond is competative with eigs being roughly two tenths of a second

slower while obtaining the same approximation. Meanwhile, svds took roughly one

hundred times longer while yielding Inf results.

60



5.11 Example 11: crankseg 2

The crankseg 2 matrix, sourced from SuiteSparse Matrix Collection, is a 63838×63838

real, Hermitian matrix with no given information to its usage nor κ2 approximation.

The matrix is found to be 3.471865E − 01% dense. Below is how each algorithm

performed:

Table 5.11
κ2 estimate of crankseg 2

time κ2 estimate
eigs 3.015859E+00 4.823690E+07
svds 5.334748E+01 4.823690E+07
cond 6.861389E-03 NaN

newEuclidCond 3.244273E+00 4.823690E+07

Here, the three approximation algorithms correctly determined κ2 with eigs being

the fastest by two tenths of a second compared to newEuclidCond.
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5.12 Example 12: ACTIVSg70K

The ACTIVSg70K matrix, sourced from SuiteSparse Matrix Collection, is a 69999×

69999 real, Hermitian matrix which holds data representing a synthetic electric grid

which is statistically and functionally similar to that of a real electric grid while

containing no confidential critical energy infrastructure information. The source does

not provide an approximation for κ2, but the matrix can be found to be 4.870078E−

03% dense. Below is how each algorithm performed:

Table 5.12
κ2 estimate of ACTIVSg70K

time κ2 estimate
eigs 1.502308E-01 2.169271E+08
svds 3.128693E-01 2.169271E+08
cond 1.965708E-03 NaN

newEuclidCond 1.329327E-01 2.169271E+08

Here, each algorithm was able to obtain the same κ2 to seven significant figures

where newEuclidCond is shown to be the fastest; we disregard the NaN results of

cond. However, newEuclidCond is faster than eigs by the small margin of less than

two hundredths of a second.
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5.13 Example 13: consph

The consph matrix, sourced from SuiteSparse Matrix Collection, is a 83334 × 83334

real, Hermitian matrix which was used to benchmark matrix multiplication on graph-

ics hardware in 2008 by NVIDIA. The source does not provide an approximation for

κ2, but yields enough information to find that the matrix is 8.654953E − 02% dense.

Below is how each algorithm performed:

Table 5.13
κ2 estimate of consph

time κ2 estimate
eigs 9.015638E±00 9.398337E+06
svds 3.609578E+02 9.398337E+06
cond 7.924231E-02 NaN

newEuclidCond 8.728722E±00 9.398337E+06

To seven significant figures, all algorithms but cond found the same estimate of κ2.

We also observe that newEuclidCond was again the fastest algorithm, outperforming

eigs by roughly three tenths of a second. svds however took well over three hundred

seconds while eigs and newEuclidCond both stayed under ten seconds.
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5.14 Example 14: rajat16

The rajat16 matrix, sourced from SuiteSparse Matrix Collection, is a 94294× 94294

real, non-Hermitian matrix with no information given as to its usage nor an estimation

of κ2. The matrix can be found to be 5.362128E − 03% dense. Below is how each

algorithm performed:

Table 5.14
κ2 estimate of rajat16

time κ2 estimate
eigs 1.042170E+03 3.757711E+12
svds 6.289650E+02 Inf
cond 1.234742E-01 NaN

newEuclidCond 6.367650E+02 Inf

Here, eigs was the only algorithm to return a numeric approximation while taking the

most time to run. svds and newEuclidCond each took less time to run comparatively,

but both returned Inf results indicating the assumption of σmin = 0 was utilized.
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5.15 Example 15: Goodwin 095

The Goodwin 095 matrix, sourced from SuiteSparse Matrix Collection, is s 100037×

100037 real, non-Hermitian matrix. The data represents a finite element discretization

of the Navier-Stokes (and similar transport equations) on geometries provided by

Ralph Goodwin. The source does not provide an approximation to κ2 but it can

be found that the matrix is 3.223680E − 02% dense. Below is how each algorithm

performed:

Table 5.15
κ2 estimate of Goodwin 095

time κ2 estimate
eigs 4.185872E+00 2.265450E+07
svds 9.049208E+00 2.265451E+07
cond 2.468913E-02 NaN

newEuclidCond 9.052039E+00 2.265451E+07

Here we see that svds and newEuclid performed near identical with a time difference

in the thousandths of seconds yet the same κ2 to seven significant figures. However,

eigs was able to agree with the other approximations to six of seven significant figures

while performing a little under five seconds faster.
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5.16 Conclusion

First note that cond was never meant to be a competing algorithm but rather a way

to confidently ensure κ2. With cond having given NaN results nine times, we will

leave this algorithm out of the discussion.

In terms of speed, newEuclidCond performed faster than both eigs and svds in four

of the tested matrices (case39, bayer01, ACTIVSg70K, and consph). Of the eleven re-

maining matrices, newEuclidCond was able to be faster than either eigs or svds seven

times (ramage02, mycielskian15, human gene2, windtunnel evap3d, c-67, crankseg 2,

rajat16 ). This means in eleven matrices, newEuclidCond was able to secure at least

second place with respect to only time - even including cases where the other two

algorithms simply failed.

Trivially numerical outputs are valid; define an output of Inf as valid, and only

consider matrices where the three algorithms being observed yield valid results (ra-

mage02, mycielskian15, case39, raefsky3, human gene2, windtunnel evap3d, bayer01,

c-67, crankseg 2, ACTIVSg70K, consph, rajat16, Goodwin 095 ). If we sum each al-

gorithm’s time across all these matrices, we end up with the following table:
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Table 5.16
Total Time Across Valid Outputs

time
eigs 1.696119E+03
svds 3.310208E+03

newEuclidCond 1.402322E+03

The table above implies that newEuclidCond would be able to find κ2 of the thirteen

previously listed matrices faster than both eigs and svds where all three algorithms

would run to completion (IE yield a valid result).

With reliability being a less straightforward goal, a quick discussion for each of the

fifteen matrices will be provided:

1. nemeth15 : newEuclidCond was the only non-exact algorithm to approximate

κ2. The approximation is correct up to four significant figures.

2. ramage02 : None of the algorithms obtained the correct κ2 to even one significant

figure. It will be stated that κ2 = 2.705462E + 112 represents a very poorly

conditioned matrix. Depending on the application, Inf may be sufficient.

3. Trefethen 20000 : Again newEuclidCond is the only non-exact algorithm to

approximate κ2. The approximation is correct to seven significant figures.

4. mycielskian15 : Though the source did not provide κ2, all four algorithms agree

on the same value to seven significant figures.
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5. case39 : eigs and newEuclidCond are the only two algorithms to output a nu-

meric approximation, and agree. svds yielding Inf may suffice dependent on

application.

6. raefsky3 : newEuclidCond failed to find a numeric approximation while eigs

succeeded. svds and newEuclidCond agree on Inf.

7. human gene2 : All four algorithms agree on the value of κ2 to seven significant

figures.

8. windtunnel evap3d : eigs was the only algorithm to obtain κ2 numerically, and

again svds agrees with newEuclidCond on Inf.

9. bayer01 : All three non-exact algorithms agree on an output of Inf where we

cannot use the source nor cond to confirm σmin = 0.

10. c-67 : eigs and newEuclidCond agree on the same numeric value to seven sig-

nificant figures where svds yields Inf.

11. crankseg 2 : All three non-exact algorithms agree on κ2 numerically.

12. ACTIVSg70K : All three non-exact algorithms agree on κ2 numerically.

13. consph: All three non-exact algorithms agree on κ2 numerically.

14. rajat16 : eigs was the only algorithm to obtain κ2 numerically, and again svds

agrees with newEuclidCond on Inf.
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15. Goodwin 095 : svds and newEuclidCond agree on κ2 to seven significant figures.

All three non-exact algorithms agree on κ2 to six significant figures.

If we define reliable as all algorithms agreeing on κ2 numerically or newEuclidCond

agreeing with the source (or with simply cond if the source does not provide such

information), both to most of the significant figures, we say newEuclidCond is reliable

in eight of the tested matrices. Holding eigs to this standard, it is reliable in seven of

the matrices, and likewise svds is reliable in six of the tested matrices. It will be left

as a note that this is a rather strict definition of reliability, and more testing would

have to be done to deny false negatives (IE c-67 counts eigs and newEuclidCond as

unreliable since κ2 wasn’t given and svds didn’t numerically agree with both eigs and

newEuclidCond ; also potential cases where σmin = 0 may be true implying κ2 = Inf

is reliable), or potentially false positives.

Overall, newEuclidCond has been shown to be faster with select matrices, and faster

in bulk testing (when excluding NaN results). newEuclidCond also has been shown

to be competitively reliable against eigs. And though svds performed better on select

matrices, its overall performance is poor compared to the other non-exact algorithms.
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Appendix A

Code 1: newEuclidCond

The code for the proposed algorithm newEuclidCond is provided as below:

A.1 newEuclidCond.m

function C = newEuclidCond(A)

% Constants

global MAT_A;

global MAT_SIZE;

MAT_A = A;

clear A; % Free up memory - don 't double store

MAT_SIZE = size(MAT_A);

E_MIN_TOL = 10^( -13);
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IS_HERMITIAN = false;

% Ensure we don 't attempt to find singular matrix ←↩
condition number

if MAT_SIZE (1,1) ~= MAT_SIZE (1,2)

C = Inf;

fprintf('\nInputted matrix is non -square and ←↩
therefore singular !\n')

return;

end

% Ensure A is sparse

if not(issparse(MAT_A))

MAT_A = sparse(MAT_A);

end

% Determine Hermitian

IS_HERMITIAN = ishermitian(MAT_A);

% Find |\ lambda _{min }|: A is Hermitian

if IS_HERMITIAN

% Try using eigs since it is fastest; resort to ←↩
RIM -C if fails

try

E_min = abs(eigs(MAT_A ,1,'smallestabs '));

catch ERR

if strcmp(ERR.identifier ,'MATLAB:eigs:←↩
SingularA ') % If error thrown is singular ←↩
matrix

E_min = 0;

else

fprintf('\nUnidentified error from "eigs←↩
"! Using RIM -C:\n')
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E_min = RIMCSearch ();

end

end

% Determine if |\ lambda _{min}| = 0

if E_min <= E_MIN_TOL

C = Inf;

fprintf('\nInputted matrix is detected to be←↩
singular !\n')

return;

end

% A is non -Hermitian: Find \sigma _{min}

else

E_min = svds(MAT_A ,1,'smallest ');

% Determine if \sigma _{min} = 0

if E_min <= E_MIN_TOL

C = Inf;

fprintf('\nERROR: MATLAB "svds" returned a ←↩
"0" singular value!\n')

return;

end

end

% Find |\ lambda _{max}|

if IS_HERMITIAN

warning('off')

E_max = abs(eigs(MAT_A ,1,'largestabs '));

warning('on')

if isnan(E_max) % 'eigs ' failed to find eig

%envalue

E_max = powerIter ();

end
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% A is asymmetric: Find \sigma _{max}

else

E_max = svds(MAT_A ,1,'largest ');

end

% Get final result

C = E_max / E_min;

end

%% Standard Power Iteration

function curr_E = powerIter ()

global MAT_A;

global MAT_SIZE;

mat_size = MAT_SIZE (1,1);

prev_eVec = rand(mat_size ,1) + (1i .* rand(mat_size←↩
,1));

curr_eVec = prev_eVec;

prev_E = 1;

curr_E = 0;

iterations = 100;

while abs(prev_E - curr_E) >= 10^( -6)

prev_E = curr_E;

for i=1:1: iterations

curr_eVec = (MAT_A*curr_eVec) ./ (norm(MAT_A←↩
*curr_eVec));

end

curr_E = abs(mean((MAT_A*curr_eVec)./ curr_eVec))←↩
;

if isnan(curr_E) % If NaN result , reset and try ←↩
again with less iterations
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if iterations == 1

curr_E = prev_E;

return;

else

iterations = ceil(iterations / 2);

curr_eVec = prev_eVec;

curr_E = prev_E;

prev_E = curr_E + 1;

end

else

prev_eVec = curr_eVec;

end

end

end

%% RIM -C Search Algorithm

function E = RIMCSearch ()

global MAT_B;

global MAT_SIZE;

MAT_B = speye(MAT_SIZE);

s = [-(1/ sqrt (8));-(1/ sqrt (8));(1/ sqrt (8));(1/ sqrt←↩
(8))]; % Initial search region with area 1/2

E = [];

vecSize = size(E);

while vecSize (1) == 0

E = RIMCv0(s);

s = 2 .* s;

vecSize = size(E);

end

E = min(abs(E));
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end

%% RIM -C Code

function E = RIMCv0(s)

% The code computes generalized eigenvalues of

% Ax = lambda Bx

% in a rectangle s on the complex plane.

% Input:

% A -- N x N matrix {GLOBAL}

% R -- N x N matrix {GLOBAL}

% s -- 4 x 1 vector [xmin ymin xmax ymax]

% Output: l

% lambda -- generalized eigenvalues in s

% Jiguang Sun , 05/09/2017 , jiguangs@mtu.edu

% Please report bugs to jiguangs@mtu.edu

% Copyright (c) 2017, Jiguang Sun , all rights reserved.

% THIS SOFTWARE IS PROVIDED "AS IS".

% Redistribution and use in source and binary forms , ←↩
with or without

% modification , for academic purpose only are permitted.

% References:

% 1. J.Sun and A.Zhou , Finite Element Methods for ←↩
Eigenvalue Problems , CRC Press , 2016.

% 2. R.Huang , A.Struthers , J.Sun and R.Zhang ,

% Recursive integral method for transmission ←↩
eigenvalues ,

% Journal of Computational Physics , Vol. 327, ←↩
830-840, 2016.

% 3. R Huang , J Sun , C Yang ,

% Recursive Integral Method with Cayley ←↩
Transformation

% - arXiv preprint arXiv :1705.01646 , 2017 - arxiv.←↩
org

78



l1=s(1); r1=s(2); l2=s(3); r2=s(4);

tol = 1.0e-12;

size_Krylov_space =50;

delta_len = min(min((l2 -l1)/50,(r2 -r1)/50) ,0.04);

global f_test;

global MAT_A;

N = length(MAT_A);

f_test=rand(N,1)+2*exp(1i*rand(N,1));

Square_point=zeros (10000 ,5);

Selected_point=zeros (10000 ,5);

final_point=zeros (10000 ,1);

tol_robust =0.1* tol;

global p;

global p_test;

p←↩
=[0 ,1/2 ,1/4 ,3/4 ,1/8 ,5/8 ,3/8 ,7/8 ,1/16 ,9/16 ,5/16 ,13/16 ,3/16 ,11/16 ,7/16 ,15/16];←↩

p_test =[0 ,1/2 ,1/4 ,3/4 ,1/8 ,5/8 ,3/8 ,7/8];

f_test=f_test/norm(f_test);

len_l=l2-l1; len_r=r2-r1;

size_length=ceil(len_l/delta_len);

size_width=ceil(len_r/delta_len);

global k;

global number_reduce_sys;

global V_h;

global D_h;

global V_h_inv_v;

global H_para;

global shift_phi;
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k=size_Krylov_space;

V_h=zeros(k,k,100);

D_h=zeros(k ,100);

V_h_inv_v=zeros(k ,100);

H_para=zeros (1 ,100);

shift_phi=zeros (1 ,100);

number_reduce_sys =0;

for i=1: size_length

for j=1: size_width

Square_point ((j-1)*size_length+i,1)=l1+(i-1)←↩
*delta_len;

Square_point ((j-1)*size_length+i,2)=r1+(j-1)←↩
*delta_len;

Square_point ((j-1)*size_length+i,3)=l1+i*←↩
delta_len;

Square_point ((j-1)*size_length+i,4)=r1+j*←↩
delta_len;

end

end

Square_number=size_length*size_width;

for i=1: Square_number

ind=[i-1,i-size_length ,i-size_length +1,i-←↩
size_length -1];

ind=ind(ind >0);

if isempty(ind)==1 || number_reduce_sys == 0

shift=( Square_point(i,1)+Square_point(i,3))←↩
/2+1i*( Square_point(i,2)+Square_point(i,4)←↩
)/2;

arnoldi(shift);

Square_point(i,5)=number_reduce_sys;

else
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flag=check_ind(Square_point(ind ,5),←↩
Square_point(i,1:4) ,tol_robust);

if (flag ~=0)

Square_point(i,5)=flag;

else

shift=( Square_point(i,1)+Square_point(i←↩
,3))/2+1i*( Square_point(i,2)+←↩
Square_point(i,4))/2;

arnoldi(shift);

Square_point(i,5)=number_reduce_sys;

end

end

end

tol_iter=ceil(log2(delta_len/tol_robust));

for i=1: tol_iter

Selected_number =0;

for j=1: Square_number

if (Check_square(Square_point(j,:))==1)

Selected_number= Selected_number +1;

Selected_point(Selected_number ,:)=←↩
Square_point(j,:);

end

end

Square_number=Selected_number *4;

for j=1: Selected_number

l1=Selected_point(j,1);

r1=Selected_point(j,2);

l2=Selected_point(j,3);

r2=Selected_point(j,4);

index=Selected_point(j,5);
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Square_point ((j-1) *4+1 ,1:5)=[l1 ,r1 ,(l1+l2)←↩
/2,(r1+r2)/2,index];

Square_point ((j-1) *4+2 ,1:5) =[(l1+l2)/2,r1 ,l2←↩
,(r1+r2)/2,index];

Square_point ((j-1) *4+3 ,1:5) =[(l1+l2)/2,(r1+←↩
r2)/2,l2,r2 ,index];

Square_point ((j-1) *4+4 ,1:5)=[l1 ,(r1+r2)/2,(←↩
l1+l2)/2,r2 ,index];

end

end

Num_Eigenvalue =0;

for i=1: Selected_number

if (Selected_point(i,5) ~=0)

tmp=Selected_point(i ,1:4);

num =1;

for j=1: Selected_number

if (norm(Selected_point(i,1:4) -←↩
Selected_point(j,1:4)) <16*tol)

num=num+1;

tmp=tmp+Selected_point(j,1:4);

Selected_point(j,5)=0;

end

end

Num_Eigenvalue=Num_Eigenvalue +1;

tmp=tmp./num;

final_point(Num_Eigenvalue)=(tmp (1)+tmp(3))←↩
/2+1i*(tmp(2)+tmp(4))/2;

end

end

E=final_point (1: Num_Eigenvalue);

end
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function flag = Check_square(point)

flag =0;

center =( point (1)+point (3))/2+1i*(point (2)+point (4))←↩
/2;

radius=sqrt((real(center)-point (1))^2+( imag(center)-←↩
point (2))^2);

ind=point (5);

global p;

global k;

global D_h;

global V_h_inv_v;

global shift_phi;

Para_p=center+radius*exp(1i*2*pi*p);

iter =[0,2,4,8,16];

w=[1/2 ,1/4 ,1/8 ,1/16];

res=zeros (1,4);

u=rand(k,1);

level = 3;

for i=1: level

for j=iter(i)+1: iter(i+1)

tmp_v=u'*(( V_h_inv_v(:,ind)./( ones(k,1)+(←↩
shift_phi(ind)-Para_p(j))*D_h(:,ind))));

res(i)=res(i)+w(i)*( Para_p(j)-center)*tmp_v;

end

res(i+1)=res(i)*1/2;

end

if (abs(norm(res(level -1))/norm(res(level))) <15)

flag =1;

end

end

83



function ind = check_ind(index ,point ,tol)

global p_test;

global k;

global V_h;

global D_h;

global V_h_inv_v;

global H_para;

global shift_phi;

center =( point (1)+point (3))/2+1i*(point (2)+point (4))←↩
/2;

radius=sqrt((real(center)-point (1))^2+( imag(center)-←↩
point (2))^2);

Para_p=center+radius*exp(1i*2*pi*p_test);

ind =0;

for i=1: length(index)

flag =1;

for j=1: length(Para_p)

if abs(H_para(index(i))*V_h(k,:,index(i))*(←↩
V_h_inv_v(:,index(i))./(( ones(k,1)+(←↩
shift_phi(index(i))-Para_p(j))*D_h(:,index←↩
(i))))))>tol

flag =0;

end

end

if flag ==1

ind=index(i);

break;

end

end

end
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function arnoldi(phi)

global f_test;

global k;

global number_reduce_sys;

global V_h;

global D_h;

global V_h_inv_v;

global H_para;

global shift_phi;

global MAT_A;

global MAT_B;

I=sparse(k,1);

I(1)=1;

number_reduce_sys=number_reduce_sys +1;

[L,U,P,Q]=lu(MAT_A -phi*MAT_B);

b=Q*(U\(L\(P*f_test)));

V1=zeros(length(MAT_A),k+1);

H1=zeros(k+2,k+1);

V1(:,1)=b/norm(b);

for i=1:k

v1=Q*(U\(L\(P*( MAT_B*V1(:,i)))));

for j=1:i

H1(j,i)=V1(:,j)'*v1;

v1=v1-H1(j,i)*V1(:,j);

end

H1(i+1,i)=norm(v1);

V1(:,i+1)=v1/H1(i+1,i);

end

[V,D]=eig(H1(1:k,1:k));

V_h(:,:, number_reduce_sys)=V;

D_h(:, number_reduce_sys)=diag(D);

V_h_inv_v(:, number_reduce_sys)=V\I;
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shift_phi(number_reduce_sys)=phi;

H_para(number_reduce_sys)=H1(k+1,k);

end
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Appendix B

Code 2: Test Each Method’s

Euclidean Norm Approximations

Each of the methods mentioned throughout this paper - RIM-C, eigs, svds, and

normest - have been tested on a collection of matrices from public repositories such

as SuiteSparse Matrix Collection to test each method’s efficacy and efficiency. The

information from these tests was used to determine the algorithm for newEuclidCond.

Provided below is the code used to test each method to determine how newEuclidCond

should best be formulated:
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B.1 valueTimings.m

% Clean workspace to clear memory

close all;

clear all;

clc;

% Inform user of format

fprintf (" Format: Method - time for ||A|| & value - time ←↩
for ||A^{+}|| & value if applicable\n\n")

% Vector of matrices to test; negligable to memory

mats = [

"nemeth15.mat"

"ramage02.mat"

"Trefethen_20000.mat"

"mycielskian15.mat"

"case39.mat"

"raefsky3.mat"

];

% Initialize time & estimate variables to be averaged

currTime = 0;

currEst = 0;

% Iterate through each matrix testing each method

for i=1: length(mats)

%% Setup

% Load matrix , store , & clear uneeded data

load(mats(i));

mat = Problem.A;
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clear Problem;

% Tell user which matrix is being ran

fprintf (" Matrix %s results :\n\n", mats(i))

%% normest

% sigma_{max}

tic

warning('off')

currEst = normest(mat) + normest(mat) + normest(mat)←↩
;

warning('on')

currTime = toc;

fprintf (" normest time: %.6E\nnormest approximation ←↩
sigma_{max}: %.6E\n\n", currTime/3, currEst /3)

% Reset

currTime = 0;

currEst = 0;

%% eigs

% sigma_{max}

tic

warning('off')

currEst = eigsHelper(mat , 1) + eigsHelper(mat , 1) + ←↩
eigsHelper(mat , 1);

warning('on')

currTime = toc;

fprintf ("eigs time: %.6E\neigs approximation sigma_{←↩
max}: %.6E\n", currTime/3, currEst /3)

% Reset

currTime = 0;

currEst = 0;

% sigma_{min}

tic
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warning('off')

currEst = eigsHelper(mat , 2) + eigsHelper(mat , 2) + ←↩
eigsHelper(mat , 2);

warning('on')

currTime = toc;

fprintf ("eigs time: %.6E\neigs approximation sigma_{←↩
min}: %.6E\n\n", currTime/3, currEst /3)

% Reset

currTime = 0;

currEst = 0;

%% svds

% sigma_{max}

tic

warning('off')

currEst = svds(mat , 1, 'largest ') + svds(mat , 1, '←↩
largest ') + svds(mat , 1, 'largest ');

warning('on')

currTime = toc;

fprintf ("svds time: %.6E\nsvds approximation sigma_{←↩
max}: %.6E\n", currTime/3, currEst /3)

% Reset

currTime = 0;

currEst = 0;

% sigma_{min}

tic

warning('off')

currEst = svds(mat , 1, 'smallest ') + svds(mat , 1, '←↩
smallest ') + svds(mat , 1, 'smallest ');

warning('on')

currTime = toc;

fprintf ("svds time: %.6E\nsvds approximation sigma_{←↩
min}: %.6E\n\n", currTime/3, currEst /3)

% Reset
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currTime = 0;

currEst = 0;

%% RIM -C

tic

warning('off')

currEst = RIMCSearch(mat) + RIMCSearch(mat) + ←↩
RIMCSearch(mat);

warning('on')

currTime = toc;

fprintf ("RIM -C time: %.6E\nRIM -C approximation ←↩
sigma_{min}: %.6E\n\n\n", currTime/3, currEst /3)

% Reset

currTime = 0;

currEst = 0;

end

%% Helper Functions

function eigVal = eigsHelper(inMat , target)

matSize = size(inMat);

% Obtain desired eigenvalue

if target == 1 % If wanting sigma_{max}

if ishermitian(inMat) % Eigen values are singular ←↩
values

eigVal = abs(eigs(inMat , 1, 'largestabs '));

return;

else % Eigen values are squared singular values

if matSize (1) >= matSize (2) % Tall skinny matrix

eigVal = sqrt(eigs(inMat '*inMat , 1, '←↩
largestabs '));

return;

else

% Short fat matrix
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eigVal = sqrt(eigs(inMat*inMat ', 1, '←↩
largestabs '));

return;

end

end

else % If wanting sigma_{min}

if ishermitian(inMat)

% Get min eigenvalue; possibly 0

try

eigVal = abs(eigs(inMat , 1, 'smallestabs '));

catch ERR

if strcmp(ERR.identifier ,'MATLAB:eigs:←↩
SingularA ') % If error thrown is singular ←↩
matrix

eigVal = 0;

return;

else % Unidentified and unhandleable error; ←↩
NaN

eigVal = NaN;

return;

end

end

else

if matSize (1) >= matSize (2) % Tall skinny matrix

% Get min eigenvalue; possibly 0

try

eigVal = sqrt(eigs(inMat '*inMat , 1, '←↩
smallestabs '));

catch ERR

if strcmp(ERR.identifier ,'MATLAB:eigs:←↩
SingularA ') % If error thrown is ←↩
singular matrix

eigVal = 0;

return;
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else % Unidentified and unhandleable ←↩
error; NaN

eigVal = NaN;

return;

end

end

else % Short fat matrix

% Get min eigenvalue; possibly 0

try

eigVal = sqrt(eigs(inMat*inMat ', 1, '←↩
smallestabs '));

catch ERR

if strcmp(ERR.identifier ,'MATLAB:eigs:←↩
SingularA ') % If error thrown is ←↩
singular matrix

eigVal = 0;

return;

else % Unidentified and unhandleable ←↩
error; NaN

eigVal = NaN;

return;

end

end

end

end

end

end

% RIM -C Code here & all below

% Find minimal eigenvalue

function E = RIMCSearch(inMat)

global MAT_A;

global MAT_B;
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mat_size = size(inMat);

matHermitian = ishermitian(inMat);

if not(matHermitian)

if mat_size (1) >= mat_size (2)

MAT_A = inMat '*inMat;

else

MAT_A = inMat*inMat ';

end

else

MAT_A = inMat;

end

mat_size = size(inMat);

MAT_B = speye(mat_size);

s = [-(1/ sqrt (8));-(1/ sqrt (8));(1/ sqrt (8));(1/ sqrt←↩
(8))]; % Initial search region with area 1/2

E = [];

vecSize = size(E);

while vecSize (1) == 0

E = RIMCv0(s);

s = 2 .* s;

vecSize = size(E);

end

clear global;

E = min(abs(E));

if not(matHermitian)

E = sqrt(E);

end

end

function E = RIMCv0(s)
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% The code computes generalized eigenvalues of

% Ax = lambda Bx

% in a rectangle s on the complex plane.

% Input:

% A -- N x N matrix {GLOBAL}

% R -- N x N matrix {GLOBAL}

% s -- 4 x 1 vector [xmin ymin xmax ymax]

% Output: l

% lambda -- generalized eigenvalues in s

% Jiguang Sun , 05/09/2017 , jiguangs@mtu.edu

% Please report bugs to jiguangs@mtu.edu

% Copyright (c) 2017, Jiguang Sun , all rights reserved.

% THIS SOFTWARE IS PROVIDED "AS IS".

% Redistribution and use in source and binary forms , ←↩
with or without

% modification , for academic purpose only are permitted.

% References:

% 1. J.Sun and A.Zhou , Finite Element Methods for ←↩
Eigenvalue Problems , CRC Press , 2016.

% 2. R.Huang , A.Struthers , J.Sun and R.Zhang ,

% Recursive integral method for transmission ←↩
eigenvalues ,

% Journal of Computational Physics , Vol. 327, ←↩
830-840, 2016.

% 3. R Huang , J Sun , C Yang ,

% Recursive Integral Method with Cayley ←↩
Transformation

% - arXiv preprint arXiv :1705.01646 , 2017 - arxiv.←↩
org

l1=s(1); r1=s(2); l2=s(3); r2=s(4);

tol = 1.0e-12;

size_Krylov_space =50;

delta_len = min(min((l2 -l1)/50,(r2 -r1)/50) ,0.04);
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global f_test;

global MAT_A;

N = length(MAT_A);

f_test=rand(N,1)+2*exp(1i*rand(N,1));

Square_point=zeros (10000 ,5);

Selected_point=zeros (10000 ,5);

final_point=zeros (10000 ,1);

tol_robust =0.1* tol;

global p;

global p_test;

p←↩
=[0 ,1/2 ,1/4 ,3/4 ,1/8 ,5/8 ,3/8 ,7/8 ,1/16 ,9/16 ,5/16 ,13/16 ,3/16 ,11/16 ,7/16 ,15/16];←↩

p_test =[0 ,1/2 ,1/4 ,3/4 ,1/8 ,5/8 ,3/8 ,7/8];

f_test=f_test/norm(f_test);

len_l=l2-l1; len_r=r2-r1;

size_length=ceil(len_l/delta_len);

size_width=ceil(len_r/delta_len);

global k;

global number_reduce_sys;

global V_h;

global D_h;

global V_h_inv_v;

global H_para;

global shift_phi;

k=size_Krylov_space;

V_h=zeros(k,k,100);

D_h=zeros(k ,100);
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V_h_inv_v=zeros(k ,100);

H_para=zeros (1 ,100);

shift_phi=zeros (1 ,100);

number_reduce_sys =0;

for i=1: size_length

for j=1: size_width

Square_point ((j-1)*size_length+i,1)=l1+(i-1)←↩
*delta_len;

Square_point ((j-1)*size_length+i,2)=r1+(j-1)←↩
*delta_len;

Square_point ((j-1)*size_length+i,3)=l1+i*←↩
delta_len;

Square_point ((j-1)*size_length+i,4)=r1+j*←↩
delta_len;

end

end

Square_number=size_length*size_width;

for i=1: Square_number

ind=[i-1,i-size_length ,i-size_length +1,i-←↩
size_length -1];

ind=ind(ind >0);

if isempty(ind)==1 || number_reduce_sys == 0

shift=( Square_point(i,1)+Square_point(i,3))←↩
/2+1i*( Square_point(i,2)+Square_point(i,4)←↩
)/2;

arnoldi(shift);

Square_point(i,5)=number_reduce_sys;

else

flag=check_ind(Square_point(ind ,5),←↩
Square_point(i,1:4) ,tol_robust);

if (flag ~=0)

Square_point(i,5)=flag;
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else

shift=( Square_point(i,1)+Square_point(i←↩
,3))/2+1i*( Square_point(i,2)+←↩
Square_point(i,4))/2;

arnoldi(shift);

Square_point(i,5)=number_reduce_sys;

end

end

end

tol_iter=ceil(log2(delta_len/tol_robust));

for i=1: tol_iter

Selected_number =0;

for j=1: Square_number

if (Check_square(Square_point(j,:))==1)

Selected_number= Selected_number +1;

Selected_point(Selected_number ,:)=←↩
Square_point(j,:);

end

end

Square_number=Selected_number *4;

for j=1: Selected_number

l1=Selected_point(j,1);

r1=Selected_point(j,2);

l2=Selected_point(j,3);

r2=Selected_point(j,4);

index=Selected_point(j,5);

Square_point ((j-1) *4+1 ,1:5)=[l1 ,r1 ,(l1+l2)←↩
/2,(r1+r2)/2,index];

Square_point ((j-1) *4+2 ,1:5) =[(l1+l2)/2,r1 ,l2←↩
,(r1+r2)/2,index];

98



Square_point ((j-1) *4+3 ,1:5) =[(l1+l2)/2,(r1+←↩
r2)/2,l2,r2 ,index];

Square_point ((j-1) *4+4 ,1:5)=[l1 ,(r1+r2)/2,(←↩
l1+l2)/2,r2 ,index];

end

end

Num_Eigenvalue =0;

for i=1: Selected_number

if (Selected_point(i,5) ~=0)

tmp=Selected_point(i ,1:4);

num =1;

for j=1: Selected_number

if (norm(Selected_point(i,1:4) -←↩
Selected_point(j,1:4)) <16*tol)

num=num+1;

tmp=tmp+Selected_point(j,1:4);

Selected_point(j,5)=0;

end

end

Num_Eigenvalue=Num_Eigenvalue +1;

tmp=tmp./num;

final_point(Num_Eigenvalue)=(tmp (1)+tmp(3))←↩
/2+1i*(tmp(2)+tmp(4))/2;

end

end

E=final_point (1: Num_Eigenvalue);

end

function flag = Check_square(point)

flag =0;

center =( point (1)+point (3))/2+1i*(point (2)+point (4))←↩
/2;
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radius=sqrt((real(center)-point (1))^2+( imag(center)-←↩
point (2))^2);

ind=point (5);

global p;

global k;

global D_h;

global V_h_inv_v;

global shift_phi;

Para_p=center+radius*exp(1i*2*pi*p);

iter =[0,2,4,8,16];

w=[1/2 ,1/4 ,1/8 ,1/16];

res=zeros (1,4);

u=rand(k,1);

level = 3;

for i=1: level

for j=iter(i)+1: iter(i+1)

tmp_v=u'*(( V_h_inv_v(:,ind)./( ones(k,1)+(←↩
shift_phi(ind)-Para_p(j))*D_h(:,ind))));

res(i)=res(i)+w(i)*( Para_p(j)-center)*tmp_v;

end

res(i+1)=res(i)*1/2;

end

if (abs(norm(res(level -1))/norm(res(level))) <15)

flag =1;

end

end

function ind = check_ind(index ,point ,tol)

global p_test;

global k;
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global V_h;

global D_h;

global V_h_inv_v;

global H_para;

global shift_phi;

center =( point (1)+point (3))/2+1i*(point (2)+point (4))←↩
/2;

radius=sqrt((real(center)-point (1))^2+( imag(center)-←↩
point (2))^2);

Para_p=center+radius*exp(1i*2*pi*p_test);

ind =0;

for i=1: length(index)

flag =1;

for j=1: length(Para_p)

if abs(H_para(index(i))*V_h(k,:,index(i))*(←↩
V_h_inv_v(:,index(i))./(( ones(k,1)+(←↩
shift_phi(index(i))-Para_p(j))*D_h(:,index←↩
(i))))))>tol

flag =0;

end

end

if flag ==1

ind=index(i);

break;

end

end

end

function arnoldi(phi)

global f_test;

global k;
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global number_reduce_sys;

global V_h;

global D_h;

global V_h_inv_v;

global H_para;

global shift_phi;

global MAT_A;

global MAT_B;

I=sparse(k,1);

I(1)=1;

number_reduce_sys=number_reduce_sys +1;

[L,U,P,Q]=lu(MAT_A -phi*MAT_B);

b=Q*(U\(L\(P*f_test)));

V1=zeros(length(MAT_A),k+1);

H1=zeros(k+2,k+1);

V1(:,1)=b/norm(b);

for i=1:k

v1=Q*(U\(L\(P*( MAT_B*V1(:,i)))));

for j=1:i

H1(j,i)=V1(:,j)'*v1;

v1=v1-H1(j,i)*V1(:,j);

end

H1(i+1,i)=norm(v1);

V1(:,i+1)=v1/H1(i+1,i);

end

[V,D]=eig(H1(1:k,1:k));

V_h(:,:, number_reduce_sys)=V;

D_h(:, number_reduce_sys)=diag(D);

V_h_inv_v(:, number_reduce_sys)=V\I;

shift_phi(number_reduce_sys)=phi;

H_para(number_reduce_sys)=H1(k+1,k);

end
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