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Abstract

Modern superscalar processors dominate the field of computing. While dynamic exe-

cution allows for versatility in code, these processors are complex. Statically scheduled

code has historically enabled simpler processor designs, but static scheduling cannot

account for variables that are unknown at compile time. Furthermore, static schedul-

ing has many inefficiencies, such as the need to insert a large number of nops for code

in traditional Very Long Instruction Word (VLIW) processors. In this dissertation,

we explore a novel architectural approach for statically scheduled code by breaking

the code into several synchronous instruction streams. By representing code in a

fundamentally new way, we demonstrate that we can create robust processors that

can handle dynamic levels of instruction level parallelism (ILP), and demonstrate the

potential it has to target traditional weaknesses typically associated with statically

scheduled processors. This dissertation is an exploration of the consequences of allow-

ing for multiple instruction streams, as well as the possibilities opened up by changing

program representation to allow for several simultaneous streams of instructions.

xix





Chapter 1

Introduction

Processors individually dealing with sequential instructions have an upper limit of

performance. To make headway, then, we look to make progress on multiple instruc-

tions in parallel, leading to speedup using instruction-level parallelism (ILP). ILP

is often obtained through pipelining, but to get further performance improvements,

modern techniques involve simultaneously issuing multiple instructions that are not

constrained by dependencies. Maximizing ILP in general programs, however, is no

trivial task, and remains a long-open research problem.

The two most popular approaches are Very Long Instruction Word (VLIW) proces-

sors and Superscalar processors. However, both processors have limitations. VLIW

processors are quite energy efficient, and often excel when the instruction streams are
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highly regular, such as in digital signal processing or scientific computing, but they

often struggle due to a lack of flexibility and significant code bloat from excess no-

operation (nop) instructions. Superscalar processors are capable of handling irregular

programs much better, but lack scalability due to reliance on complex front ends that

focus on extracting parallelism from a single instruction stream.

This work proposes and expands upon a new processor architecture, which we refer

to as the Synchronized Lane Architecture (SLA) processor. SLA architectures can

capitalize upon advancements made in the VLIW field, but offers opportunities to

address key weaknesses of VLIW processors in general-purpose computing. Our pro-

cessor architecture was designed so that the back end behaves similarly to a VLIW

processor, but addresses several key weaknesses of the VLIW processor by exploiting

simultaneous, synchronous instruction streams.

While VLIW processors represent parallelism through bundling independent opera-

tions into packs of operations in a single stream of instructions, the SLA paradigm

instead represents parallelism using streams of operations. By decoupling these in-

struction streams, we provide mechanisms for streams to be dynamically started and

resumed, eliminating many NOPs and allowing for instruction streams to execute

independent of other streams.

The SLA processor has several key features that make it distinct from prior processors.

Similar to a VLIW processor, the SLA processor is split into sections of execution

2



units. We refer to these units in the SLA processor as lanes, where each lane behaves

similarly to a traditional pipelined processor, and is responsible for an individial

instruction stream. Unlike a VLIW processor, each lane is provided it’s own program

counter so that each lane can track a separate instruction stream. Since one stream

must always be active, we also provide a special lane, called lane 0, that is responsible

for managing other instruction streams. Finally, we provide a new ISA design that

encodes synchronization using a single bit embedded in each instruction, which we

call the suspend/resume (sr) bit, and demonstrate that it is sufficient for handling

instruction stream synchronization in most cases.

The SLA processor behaves similarly to a VLIW processor by ensuring lanes have

the same lock-step behavior. However, we allow the design to stop lanes when not

executing code to reduce nops in code and improve instruction cache (icache) occu-

pancy. We demonstrate that this approach not only maintains performance, but also

improves energy usage.

The SLA processor architecture is orthogonal to many techniques that already exist,

and provides the opportunity to design hybrid architectures where the SLA design

can effectively tune a processor to various widths during periods of varying IPC.

Furthermore, we explore variations of the SLA processor in which lanes are small

VLIW-like processors instead of the single-lane approach. This wide-lane approach

allows for much of the same benefit that the SLA processor provides, without the

3



need to have as many meta instructions and hardware structures.

We demonstrate that allowing for multiple instruction streams opens many potential

design paradigms, since this design can represent parallelism more efficiently than a

single instruction stream.

In the rest of this work, we intend to expand upon what we have discussed in the

introduction. Chapter 2 expands the background of current processor designs, past

efforts to improve VLIW performance, and techniques for static scheduling that have

shown success in the past. Chapter 3 presents the challenges of creating a processor

simulator when a reliable compiler is not available, and techniques for pinpointing the

point of failure when both the compiler and the simulator could be the source. Chap-

ter 4 defines the fundamental structure of the SLA architecture, which consists of the

instruction set, the scheduling, and the processor hardware requirements. Chapter 5

explores a configuration of the SLA architecture that maintains the same maximum

width of an original SLA processor while reducing the overhead of maintaining multi-

ple program counters by lowering width-granularity in the processor, instead defining

lanes as small VLIW-like processors that process packs of operations. Finally, Chap-

ter 6 concludes the work with an analysis of what is discussed.

4



Chapter 2

Background

2.1 Existing Architectural Approaches

Post-Moore’s law, parallelism, the concept of making progress on multiple instruc-

tions at once, has reigned as the king of improving performance. Parallelism can be

achieved through many different techniques, such as thread-level parallelism or dis-

tributed computing solutions, but the most transparent approach to parallelism, as

well as the most universally applicable, has been instruction-level parallelism. Com-

pilers and processors work together to optimize and schedule code to maximize ILP

in an attempt to make single threads as performant as possible. Modern processors

have moved beyond single-stage processors to simple pipelined processors, and from

5



pipelined processors to processors with wider issue widths containing multiple execu-

tion units. However, program dependencies limit which instructions can be sent to the

execution units in a specific order to ensure program correctness. The two major ar-

chitecture paradigms that have found the most success in showing performance while

maintaining correctness have been superscalar processors and very-long-instruction-

word (VLIW) processors.

2.1.1 Superscalar Processors

Superscalar processors dominate the current research space due to their performance

and ability to exploit ILP. To accomplish dynamic issuing of instructions, modern

processors have a complex front end designed to determine available instructions and

send them into the pipeline as resources become available such that the dependen-

cies in the program are not violated. Expanding these front ends to allow for larger

amounts of parallelism when available can be quite powerful, but it is a complex

solution that offers diminishing returns. First, larger fetch windows lead to larger

misprediction penalties and more frequent branch mispredictions. Second, reordering

instructions does enable potential speedup, but it is not guaranteed if the instructions

which execute early are not on the critical path. Third, when waiting on outstanding

memory instructions which have missed in a cache, all dependent instructions must

wait, leading to large chains of dependent instructions, consuming many resources.

6



Finally, it is difficult to design a simple and efficient front end for superscalar proces-

sors due to the logic they need to maximize parallelism. To maintain relationships

between instructions, superscalar processors pay attention to which waiting instruc-

tions’ values are ready, and broadcast instruction results to all waiting instructions, in

case those instructions require the computed values. This constant set of broadcasts

leads to complex, energy intensive logic, but allows for significant performance gains.

2.1.2 In-Order versus Out-Of-Order Superscalar Processors

In-order superscalar processors offer a simpler alternative to the standard out-of-

order superscalar processor. They have drastically simpler front ends, as logic for

dynamically finding independent instructions are limited to comparing the next-to-

issue instruction to in-flight instructions. The dependencies in an in-order-superscalar

can thus be represented by a bit-vector that can be accessed at instruction decode,

where each bit indicates processor registers and thus dependencies the instruction

may have. Out-of-order processors instead use a complex set of reservation stations

to both allow for register renaming and to detect when an instruction’s operands are

available. This logic is expensive, but offers a significant performance benefit, leading

most processors to have at least it’s high-performance cores to be an out-of-order

implementation.
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2.1.3 VLIW Processors

The most common alternative approach to superscalar processing is the very-long-

instruction-word (VLIW) processor. In practice, VLIW and in-order superscalar pro-

cessors behave quite similarly, with both relying on compilers to exploit parallelism.

However, the instruction representation and approach to scheduling are different.

VLIW processors are statically scheduled, where each instruction is a pack of several

operations (sub-instructions). These processors have a significantly simplified front

end which reduces power and complexity. However, there are some notable penalties

with this simple approach. Since instructions must maintain a fixed width to allow

for each sub-instruction to align properly to each VLIW execution unit, instructions

need to be padded out to fit the entire width of the machine, even when instructions

do not have a meaningful operation to execute in the given execution unit. Padding

instructions out with a large number of what is equivalent to no-operations causes

VLIW processors to suffer from inefficient code-space usage. Since VLIW instructions

are so large and cannot easily be reduced in size, VLIW code often leads to larger

code size and worse instruction cache performance. Since instruction width is critical

for maintaining alignment, there is also a limitation in terms of backwards compati-

bility, as a larger width VLIW processor cannot run code compiled for a smaller width

VLIW processor and vice versa. VLIW processors also lack the dynamic nature of

a superscalar processor, since packs of instructions proceed in lock-step through the

8



pipeline. The VLIW instruction holds up all execution units until the slowest instruc-

tion completes, meaning a unit that executes a shorter instruction cannot be handed

new operations to process until the other parts of the VLIW instruction have com-

pleted. So, despite power efficiency and simplicity advantages, these limitations in the

VLIW processor have caused it to remain in use only for relatively niche cases such as

signal processing, compared to the ubiquity of it’s superscalar counterpart. Through-

out this proposal, we will refer to a VLIW instruction as a grouping of operations,

called a pack, with each individual operation in the pack being a sub-instruction.

These sub-instructions can be considered as equivalent to a single instruction in a

superscalar. Similarly, we can view a VLIW processor as a group of pipelined proces-

sors adjacent to each other, with each pipelined processor being responsible for it’s

own sub-instruction. We refer to each individual pipeline as a lane, and can refer to

an individual lane by treating it as an index into the part of the instruction for which

it is responsible.

2.2 EPIC Architecture

The VLIW processor’s shortcomings are a well-known problem. Intel and Hewlett-

Packard both recognized this, and worked to develop an architecture to resolve these

issues, dubbed the Explicitly Parallel Instruction Computing (EPIC) architecture

[33]. The EPIC architecture addressed backwards compatibility by allowing packs of
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instructions (called bundles) to not remain aligned to the system by using meta-bits

to give the processor a concept of the width of the program. Packs also had a bit

to indicate if the following pack was dependent on the current pack, allowing larger

width processors to issue multiple packs in a single cycle if the width of a larger

processor supported it. The bundle strategy meant that EPIC processors needed

complex structures to dynamically determine what instructions had to be fetched in

the next cycle. The other challenge is that memory instructions, especially loads, do

not have deterministic delays and can potentially cause an entire pack to stall. To

maintain the lock-step nature, the EPIC Architecture made heavy use of prefetching

and hints in the ISA to minimize cache misses, but the result was that the architecture

was limited by cache-access time. Although the primary motivation in the creation

of the architecture was to create a simpler front end to allow for faster clock speeds

than an out-of-order superscalar, processors ended up being locked to the speed of

the cache instead.

The creation and design of EPIC significantly advanced the compiler techniques for

code motion. EPIC allowed for communication from a processor to a compiler of

where in the cache hierarchy a given datum would likely be found at compile time

through the use of prediction and profiling. Furthermore, the ISA provided signif-

icant tools to manage the caches to give the compiler more predictable latencies.

Furthermore, the compiler was provided tools to allow for data speculation. While

traditionally code must remain conservative, the EPIC architecture introduced the
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ability for the compiler to generate schedules that assume certain loads and stores are

to different memory locations, even if there is some small chance that they map to

the same location. This speculation was achieved using a data speculative load and

a data verifying load, and used the verifying load to detect if there was a memory

conflict in the processor[3].

To address branches, the EPIC architecture split branches into a prepare-to-branch

computation, which was responsible for target computations, a compare, which com-

puted the branch condition, and the actual branch which indicated control-flow

needed to be changed. By splitting the branch into three parts, the prepare-to-

branch operation allowed for the hardware to speculatively prefetch instructions at

the branch target. Furthermore, the architecture supports predicating instructions,

where instructions are executed only if a provided boolean value (called the predicate)

is true. By shifting from traditional control flow to predication, the design aims to

mitigate complexities and delays caused by traditional branches.
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Conventional 3-Wide VLIW
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i2
i3
i4
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i1 i2 i3

i4 nopi5

nop nopi6

i7 i8 i9

Figure 2.1: Traditional Instruction Stream vs 3-wide VLIW processor

2.3 Code Scheduling and Representation

2.3.1 Code Representation

Superscalar processors and VLIW processors represent their instructions as a single

stream of instructions. For superscalar processors, each instruction represents some

form of operation that the processor must handle, whether it is data movement or

a computation. For VLIW processors, each instruction serves as a pack of opera-

tions. Each execution unit in the processor is responsible for a sub-instruction of

each statically-scheduled instruction, and each sub-instruction serves as the equiva-

lent of a single superscalar processor instruction. If a lane does not have any actions
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scheduled for a cycle, then that lane is provided a no-operation (nop) sub-instruction.

How the code is laid out is quite indicative of how these two processor types behave.

Figure 2.1 shows how instructions may be provided as schedules. Dotted arrows rep-

resent dependencies in the code, so operation i4 can be read as dependent on i1 and

i2. On the left is a conventional stream, commonly used by superscalar processors.

In-order processors, such as in-order superscalar processors, execute the conventional

code from top to bottom, and will not progress if the next instruction to be issued

does not have available resources. Out-of-order superscalar processors dynamically

select instructions that are independent and ready to issue, meaning that as long as

the indicated dependency chains are not violated, it is possible to reorder instructions.

For instance, an out-of-order processor may decide to execute i3 prior to i1 and i2

if resources for i1 and i2 are not available. Since a dependency is not violated, this

would be a valid execution order. VLIW processors, however, have instructions that

are grouped together as bundles of operations, allowing for parallelism without the

need for the same complex selection logic of an out-of-order processor.

For both processors, instruction ordering is important to achieve the best possible

performance. For any nontrivial code segment, there may be many valid instruction

orderings that can produce an equivalent computational output. Yet, despite many

correct solutions, not all instruction orderings make effective use of the processor

resources that are available to them. An instruction ordering that maintains a high

degree of temporal locality, for instance, can provide much better performance than
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an instruction ordering that more often requests information that has since been

evicted from a higher-level cache.

The problem of finding the best order of instructions is NP-complete, hence we often

rely on heuristics to find instruction layouts that maximize performance. The art of

effectively ordering instructions is referred to as instruction scheduling. Out-of-order

superscalar processors are referred to as dynamically-scheduled processors, and are

designed to select instructions out-of-order when in-order instructions are otherwise

unavailable, improving speculation and parallelism capabilities. In-order and VLIW

processors, however, have a simpler front end that cannot dynamically reorder in-

structions, meaning instruction ordering becomes even more important. While many

scheduling algorithms exist, we cover a handful of them particularly useful for these

statically scheduled processors.

2.3.2 List/Basic Block Scheduling

The simplest scheduling algorithm is often referred to as list or basic block schedul-

ing. In list scheduling, each instruction is assigned a heuristically determined priority,

based on both the compiler and the machine being targeted[14]. Then, the algorithm

greedily schedules the highest-priority instruction that has not been scheduled, and

14



whose dependencies have already been fulfilled. Since instructions which have out-

standing dependencies cannot be scheduled using this process, violations in instruc-

tion ordering cannot occur. We generate a valid schedule by repeating this process

until all instructions have been scheduled. These schedules are typically applied to

moving instructions within basic blocks, meaning that the window for ordering is

typically quite small. Thus, limited opportunities are available for maximizing per-

formance.

2.3.3 Trace Scheduling

Trace scheduling takes the concept of list scheduling and expands it to be run on

a set of potential traces (or profiles) throughout a set of blocks in the code, while

prioritizing code that is most commonly executed in the traces[11, 14]. At each entry

and exit point, code can then be inserted to compensate for unique traces that do

not match the commonly scheduled portions. By expanding the available distance

for instructions to move, trace scheduling significantly increases opportunities for

improved scheduling and can potentially collapse branches into larger basic blocks.

The global perspective provided by trace scheduling allows for significantly increased

opportunities over basic block scheduling.
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2.3.4 Superblock/Hyperblock Scheduling

The biggest penalty of trace scheduling typically comes from potentially large expan-

sions of compensation code[14]. Since trace scheduling requires code to compensate

when a program takes a less common path through the scheduled section, many dupli-

cates can be made of instructions throughout the program. To mitigate code expan-

sion, the concept of superblock scheduling was developed[17]. Superblocks limit code

motion and reduce potential duplication while maintaining much of the advantages

of trace scheduling by focusing on traces only through superblocks. A superblock

is simply a large set of basic blocks with a single entrance. All side entrances are

disregarded. This approach minimizes potential duplications due to atypical back

edges. A slight extension, called hyperblock scheduling, does the same thing, but

adds predication to merge paths stemming from some conditional branch. The hy-

perblock and superblock scheduling techniques are notably implemented in the Tri-

maran compiler, a major compiler designed to produce code for VLIW (and later

EPIC) architectures[6, 38].
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2.3.5 Static and Dynamic Scheduling

Out-of-order superscalar processors dynamically schedule operations in their instruc-

tion window, and thus are able to both more effectively deal with dynamic latencies

as well as support speculation. However, they cannot handle the holistic approaches

that compiler scheduling can offer, meaning even out-of-order dynamically scheduled

processors are reliant upon well-scheduled code. EPIC pioneered many past ap-

proaches to allow for static scheduling to emulate some of the advantages of dynamic

scheduling, such as using prediction-with-compensation code in EPIC architecture

and predicating instructions[3, 12, 33]. Similar approaches to combine the advan-

tages of dynamic scheduling and static scheduling have been done to great effect, such

as predicating and executing instructions prior to dependent branches[37], limiting

side-effects of predicted instructions in statically scheduled machines until a branch

is confirmed[39], or allowing for schedules that explicitly instruct the processor when

to predict values for loads and when to check for load correctness to hide memory

latencies[13]. Dynamic scheduling has significant overhead in terms of complexity,

and work has also been done to offload tasks of dynamic scheduling where benefits

were minimal to static scheduling in an attempt to reclaim area savings[7].
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Chapter 3

ISA, Architecture, and Compiler

Codesign

3.1 Introduction

Statically scheduled processors that implement novel architectural changes may need

to offer a new interface for compilers to properly take advantage of the hardware. In

some cases, this may only be a small addition to an existing ISA, but in situations

where the hardware is significantly different an entirely new ISA may need to be

developed.

New ISAs, in a practical sense, tend to be large undertakings that require input from
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many invested parties, such as in the case of RISC-V. An equally important and chal-

lenging task, however, is the verification of the design. Verification is a fundamentally

complex task that requires both an environment for generating executables in the new

ISA, as well as the environment for executing the executables to locate errors.

As part of our research, we first designed and implemented a new ISA called the

Statically Controlled Asynchronous Lane Architecture (SCALE) ISA. Designing the

new ISA involves creating a complex tool chain to produce the code and a simulator

capable of running programs compiled for the ISA.

The complexity of both the simulator and code generator leads to a chicken-and-egg

problem, where verification of the simulator relies upon correctly generated code, but

verification of the code generator requires a correct simulator, compiler, optimizer,

and assembler. While some errors can cause a program to terminate in a quick

fashion, such as a segmentation fault detected in the simulator, there are many errors

which can take a significant amount of simulation time after the error occurs before

a simulated program fails. Detection of the cause of an error becomes even more

difficult when a program terminates gracefully, but output is simply incorrect.

Due to the complexity of each interlocking part, finding the first point in which a

program deviates from expected behavior becomes an important and challenging first

step for locating the errors in the system.
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To address the issue of locating points of failure, we provide a workflow for generating

a new ISA using MIPS as an intermediate ISA. This workflow was implemented by

a team comprising of members from Michigan Technological University and Florida

State University. In this workflow, we first demonstrate a technique for quickly pin-

pointing where a simulator diverges from the expected control path. Next, we ex-

pand upon the divergence detection technique to allow for comparisons from a single

pipelined processor to a VLIW processor. Finally, we expand the technique to allow

for designs that support moving from a VLIW processor to processors where instruc-

tion ordering and instruction types may be entirely different, despite the program

being equivalent.

3.2 Designing a Bilingual Assembler

To validate our new ISA, we first created a bilingual assembler with a verified ISA,

alongside our target SCALE ISA. Described by Mortensen et. al [25], a bilingual

assembler is one that accepts two instruction sets as valid. For our verified ISA, we

used MIPS as it was the closest to our target ISA. To create a bilingual assembler, we

first defined our target ISA, and provided macros that mapped all MIPS instructions

into SCALE instruction equivalents. We then developed a simple functional simulator

that accepts code using the SCALE ISA. The simulator is a bare minimum simulator

to read in instructions, process them, and emit the results. All simulated hardware
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Figure 3.1: Workflow of Code Generation

was the minimum for what was required for the simulation to run.

During this first step, we tested the developed ISA using verified MIPS programs. We

implemented each MIPS instruction as a macro of one or more SCALE instructions,

and used the designed MIPS to SCALE macros in the assembler. By transforming

the MIPS ISA to a SCALE ISA using mechanical macros, the processor simulator

running the SCALE ISA was able to reach a level of robustness prior to adding any

further tools.

Once the simulator and basic assembler had a degree of confidence, we provided

the tools to a team responsible for our assembly optimizer, which we refer to as

asopt. Asopt takes both the MIPS assembly, as well as some metadata files, that are

produced by gcc to output a modified assembly file. The metadata files are used for

register liveness analysis across function calls, and asopt modifications are dependent

on flags and configurations. Different flags for asopt specify the types of optimizations

to be performed. By using gcc, we can compile files using a variety of source languages
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as well as leverage optimizations performed by the gcc compiler. Figure 3.1 shows how

the workflow of code reaches the simulator and the role asopt plays as a translator for

MIPS to SCALE. Prior to the introduction of asopt, we instead followed the control

flow indicated by the dashed line, where we directly provided the assembly produced

by gcc to the bilingual assembler.

Initially, asopt only provided MIPS code to the bilingual assembler, and since the

assembler provided translations from MIPS to SCALE using mechanical macros, the

optimizer was able to implement one SCALE instruction at a time. As more SCALE

instructions were implemented, asopt could phase out MIPS instructions as they

became redundant. Once instructions were implemented, we could verify instruction

correctness by disabling old MIPS instructions from the bilingual assembler.

3.3 Fast Divergence Detection

When developing for two processors that have different architectures, but the same

source program, detecting divergences quickly can be tracked through monitoring any

unexpected changes that occur in the execution of the program. There are several

variables that can be tracked throughout the lifetime of a program despite differences

in architecture. Chief among these is the control flow of a program in the simulator.

In programs without randomness, the path taken through a program is deterministic,
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and minor changes in a program can drastically alter control flow. For these deter-

ministic programs, we can design an error isolator for a target simulator by comparing

the program counter of retiring instructions against a dynamically created trace of

the program from a functional simulation to determine proper execution.

Figure 3.2 shows how fast divergence detection works. Since traces are often quite

large, dynamically generating the trace with a verified simulator allows us to compare

proper execution with a target simulator. The verified simulator, at retire, emits

program PCs to a named blocking pipe. The target simulator, at retire, reads the

PCs and verifies that the values match with what the target simulator has calculated.

If at any point values diverge, the simulation can immediately pause to allow for

inspection at the point of failure.

Note that this technique can be extended with a second named blocking pipe to ensure

both simulations behave in lock-step, allowing for inspection of the verified simulator

at the same point of failure if needed, such as comparing register files.
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When comparing different ISAs, different program instruction counts can cause coun-

ters to become desynchronized. If the two ISAs have a one-to-one mapping of in-

structions, then comparing PCs are sufficient. However, when that is not an explicit

guarantee, one ISA may split a computation into a different combination of instruc-

tions compared to another ISA or vice versa, which may change instruction counts.

Since instruction spaces are no longer identical in layout, comparing program coun-

ters becomes impossible. In these cases, progress must be monitored through other

means.

When PC comparisons are not practical, we instead use a technique we call coarse-

grain tracking. In coarse-grain tracking, we track the program progress through a

combination of tracking side-effects in the program, and relating them to function

call and return order. At retire for store instructions, we emit stored values and

addresses to our verified simulator, and use the same design in Figure 3.2 to track

when emitted values no longer match, similar to comparing PCs. Similarly, we make

a note of each time an instruction for entering or returning from a function is retired,

though we do not compare destinations, since the simulator does not have a mapping

of where functions are in the code space. While the coarse-grained approach is not as

responsive as tracking program-counters, control flow and value divergence is typically

quickly reflected through stored values and function calls.
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3.4 Considerations for comparing execution be-

tween a simple instruction streams vs nonstan-

dard instruction streams

In most cases, PCs are more responsive for divergence detection than side-effect track-

ing, since changes are typically reflected more quickly. In architectures where in-

structions are represented in bundles of operations, like a VLIW processor, steps are

taken to enforce equivalence during simulator development and assembly optimiza-

tion. To take advantage of PC comparisons when shifting to comparing a verified

single-instruction execution stream to a VLIW simulator, we take steps to ensure

that the streams maintain equivalence. VLIW instructions are represented sequen-

tially as a group of instructions in the verified simulator. First, we enforce operations

within a single VLIW instruction respect antidependencies, meaning that execution

of each individual instructions in-order in the pack will still allow for correct execu-

tion. Second, we compare the PC of each individual operation in the VLIW pack

from first to last, instead of using only the PC of the entire long instruction word.

We do not compare PCs of nops in both the VLIW pack and target simulator due to

control flow changes causing discrepancies in retired instruction counts.
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When shifting to a new processor description, instruction ordering and PC repre-

sentation can change. Depending on the approach, we have found that variants of

coarse-grained tracking are often effective.

3.5 Technique Limitations and Uses

When pinpointing errors, the technique of divergence helps detect where the location

of the error is. The nature and type of error typically requires further analysis. Ensur-

ing identical workspaces can be particularly important when dealing with simulators

that use specific resources.

In particular, system calls can cause a divergence in loaded values or control flow

if the verified simulated program and the target simulated program are in different

directories and the exact file path is of a different length, in which case the function call

strlen()may return a different value or iterate a different number of times. Similarly,

values such as file descriptors may return different values depending on the simulator’s

proxy kernel implementation, leading to something like an fopen() call to write a

different file descriptor. When implementing these techniques, attention should be

paid to the types of system call differences that may arise, and the environment should

ensure the proxy kernels behave the same between simulators.
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Chapter 4

Synchronized Lane

Architecture(SLA)

4.1 Introduction

Statically scheduled processors require the compiler to be responsible for exploiting

instruction-level parallelism, allowing for significantly simpler frontends. However,

despite their simplicity, they are often left to niche application areas, such as regular

scientific code and digital signal processing. Due in part to these use cases, advance-

ments in statically scheduled processors started to stagnate with the sunsetting of

Intel and Hewlett-Packard’s Itanium architectures.
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Figure 4.1: Realizing SLA Operation through Single and Multiple
Program Counters. (a): VLIW Code, (b): Multi-lane code, with PCS for

each stream, (c): Multi-lane code with lane start/resume

Most statically scheduled architectures are variations of very long instruction word

(VLIW) processors, which group independent operations into long instruction words

(or bundles of operations). Hence, long instruction words are groups of operations

that look much like what is portrayed in Figure 4.1(a), which shows the code for

a 4-wide VLIW processor. In this representation, each long instruction is arranged

in contiguous memory and are referenced using a single PC. The execution of this

code is fundamentally the same as that of a simple pipelined processor, except each

instruction can encode more than one operation. If there aren’t enough independent

operations to be packed into the instruction, no operations (nops) are substituted

instead. This code execution would proceed in a VLIW processor as follows: In the

first cycle, the instruction containing i0, i1, i2, and i3 is issued. In the next cycle, the

instruction containing i4 and three nops is issued. Finally, in the third cycle, the third

instruction containing i5, i6, and i7, along with another nop is issued. While there have

been variations, the outlined execution is typical of VLIW processors where a single

program counter (PC) points to an instruction which contains multiple operations.

Having multiple operations per PC allows for a simple way to to sequence the parallel
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execution of operations.

This horizontal design for representing parallelism is powerful, but it has certain

limitations. While operations can remain consistent between two VLIW processors,

code generated for a VLIW of a given width cannot run on a processor of a larger

width, limiting backwards-compatibility without additional mechanisms such as the

stop bits and bundle templates used in the Itanium architecture[15, 35]. Furthermore,

the instruction stream is filled with large numbers of nops that reduce instruction

cache performance and lower much of the energy savings of the simplified frontend.

We believe there is potential in reevaluating the fundamental representation used

by VLIW processors. In this respect, many of the weaknesses of past statically

scheduled processors can be targeted by reevaluating the approach we use to represent

parallelism in the instruction stream.

In this chapter, we introduce a new statically scheduled processor architecture which

we call the Synchronized Lane Architecture (SLA). The SLA is a multi-threaded pro-

cessor architecture in which thread synchronization is accomplished through simple

instruction encodings under compiler control. As such, it can emulate the full be-

havior of statically scheduled processors and enables a vertical design as shown in

Figure 4.1(b), as opposed to the horizontal design shown in Figure 4.1(a). In this

approach, independent operations forming the VLIW instruction are distributed onto

separate streams which are processed in a lock-step fashion. Each cycle, all streams
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use their own PC to simultaneously fetch the next operation encoded in their stream,

in essence dynamically forming the VLIW instruction through the parallel operation

of the lanes. We refer to each stream and their accompanying execution unit as an

execution lane. Although each lane maintains its own PC, they read from and write

to a shared register file, just like a VLIW processor.

Now, consider the code sequence shown in Fig. 4.1 (b). When executed on an SLA

processor, in the first cycle, lane 0 issues i0, lane 1 issues i1, lane 2 issues i2 and lane 3

issues i3. The PC for each lane is incremented by the length of an operation, then the

process is repeated. Lane 0 issues i4 and the other three lanes issue nops. Finally, in

the last cycle, lane 0 issues i5, lane 1 issues i6 and lane 2 issues i7 while lane 3 issues

another nop, yielding the same exact schedule as the VLIW processor.

While benefits of this approach may not be initially obvious, it is easy to see that the

mechanism becomes quite powerful when we allow lanes to dynamically suspend and

resume their operation. Encoding when a lane should be suspended or resumed is

easily accomplished by reserving a single bit of the instruction representation, which

we refer to as the suspend-resume (sr) bit. Suspend-resume bits are the primary

means of synchronization in SLA. Since a suspended lane cannot resume operation

on its own, we keep one lane, namely lane 0, always active and use that lane’s suspend-

resume information to resume other lanes.

In this chapter, we utilize this simple synchronization mechanism provided by the
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multi-threaded design of SLA to control independent streams of instructions scheduled

by the compiler in a lock-step fashion to emulate VLIW architectures. Clearly, this

approach is more powerful than just simply emulating a VLIW processor architecture.

We would like to develop SLA into a multi-threaded, compiler controlled architecture

to open up new research in statically controlled processor architectures. This chapter,

being the first step in that direction, simply aims to demonstrate that even when

emulating simple VLIW behavior, the SLA approach is efficient and flexible enough

to provide non-inferior performance to that of a traditional VLIW, while providing

significant power savings.

Revisiting our example, any instruction in lanes 1 through 3 with its (sr) bit set will

still result in the lane’s PC being incremented after that instruction is issued, but the

lane ceases making progress after the current operation is issued. On the other hand,

an instruction with the sr bit in lane 0 indicates that other suspended lanes should

resume execution in the next cycle.

We can see how the sr bit works in Figure 4.1(c), where operations with the .sr

mnemonic have the suspend-resume bit set. In this version, each stream of instruc-

tions is contiguous in memory instead of packs of operations being contiguous. In the

first cycle, lane 0 issues i0, lane 1 issues i1, lane 2 issues i2, and lane 3 issues i3. Since

lanes 1, 2, and 3 each issued an instruction with the sr bit, they increment their PCs

to i6, i7, and the nop instructions, respectively, but enter a suspended state. The
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next cycle, only lane 0 issues i4, and other lanes remain suspended. Since the lane 0’s

sr bit is set, other lanes are instructed to resume execution in the next cycle. Finally,

just like in the last example, the final group of operations can issue with each lane

issuing it’s own operation.

As it can be seen, having the ability for lanes to dynamically start and stop allows us

to eliminate the majority of nops in the program. Furthermore, when a lane is not

active, lanes can enter into a low-power state without the need to fetch and decode

nops or access that lane’s instruction cache. Since lanes that never execute can remain

in a suspended state, we can easily execute code compiled for a narrower machine on

wider machines without any code modifications.

The SLA approach allows for significant power reductions, but introduces special

challenges. For example, before a stream can be utilized, the PC responsible for

that lane must be initialized with the beginning address of that stream, such as

L0 1, L0 2, etc., shown in Figure 4.1(c). Such beginning addresses will change upon

encountering any branch instruction, as well as function calls, since all lanes need to

change direction to their respective target addresses to maintain the lock-step flow

of the instruction streams. Use of multiple branch instructions is a possibility, but

it will not be efficient as these additional branch instructions will take up valuable

issue slots. Furthermore, such a solution would require all lanes to be active during

the execution of those branch instructions. Due to separate compilation of functions,
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the number of active streams necessary for a given function will not be known in

advance, so mechanisms are needed for the processor to be in a predictable state

upon entering the function. Similarly, the callee’s use of the streams may be different

from the caller’s needs, so the architecture must provide tools to restore the caller’s

streams as well.

4.2 Overview of the SLA Approach

A SLA processor can be designed to allow up to n operations to simultaneously issue,

one per each execution unit. We refer to each unit as a lane, which we label as 0,

1, ..., n-1. We generate code so that the instructions for each lane within a function

are contiguous in memory. Having each lane appear as though they are a single

instruction stream facilitates fetching the next sequential instruction for a lane when

there is not a transfer of control.

We refer to the group of instructions that are synchronously executed together as

a pack of instructions. A pack of instructions can be seen as equivalent to a wide-

instruction in a VLIW processor in function, but operations in SLA packs are not

in contiguous memory, but instead are fetched from separate instruction streams.

Since operations are not contiguous, nop instructions are not required for alignment.

Since alignment is not an issue, synchronization becomes particularly important. To
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maintain synchronization, we provide several mechanisms to ensure that lanes are

synchronized.

PC−0
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Increment 

Control

PC−3

...

...
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ExecuteRegister 

Read

EX−0

Control

EX−2

EX−3
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Instruction caches

DecodeFetch

Figure 4.2: An Overview of the SLA Processor

In an SLA architecture, lanes can be in one of three states, all of which are under

complete compiler control:

† An inactive (or halted) state indicates that the lane has not started execution

for that function or has been explicitly disabled. This is the initial state when

the processor is powered on for all lanes except lane 0.

† A suspended state indicates that the lane’s execution had started, but is cur-

rently suspended.

† An active state indicates that the lane’s execution for that function has started

and is currently active.
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To prevent deadlocks, lane 0 is always active. However, the other lanes can be active,

suspended, or inactive at various points during the execution of a program. When a

lane is not active, the lane is left in a low-power state, since it does not need to fetch

or process any instructions. If a lane does not need to provide an instruction in a

given cycle, access to that lane’s cache is also suppressed.

Since the architecture is synchronous (i.e., lock-step) a miss in any instruction cache

associated with an active lane stalls all lanes. If multiple caches miss, each one

pipelines their request to the level 2 cache so that progress can be made on multiple

caches at once.

An overview of the processor is shown in Figure 4.2. Each of the lanes maintain

their own program counter, have their own dedicated instruction cache, and have

a dedicated decoder. Delineated by the dotted lines, each lane looks and functions

similar to that of a simple pipelined processor in the frontend, but they share a

single register file. In fact, an SLA processor can directly execute a single RISC style

instruction stream in lane 0, since lane 0 is active when the processor is initialized.

In this respect, code generated for a simple pipelined processor can be considered

to be a special case of SLA code where the width of the processor is always one

operation wide. The rest of the execution pipeline is nearly identical to a typical

VLIW processor, including its forwarding logic, as well as the execution pipelines.
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A significant difference between an SLA processor and a VLIW processor is the in-

crement control unit, which is responsible for maintaining lane status for each lane.

These responsibilities include suspending, resuming, or, halting a particular lane.

Since these actions need to take immediate effect, sr bits always occupy the same

position in an instruction. Having a dedicated bit permits immediate use of this

information by the control unit as soon as an instruction is fetched and before it is

decoded.

The SLA paradigm is orthogonal to many VLIW pipelined processor designs. In

other words, any VLIW processor design can be converted to an SLA architecture

by replacing the frontend with one which utilizes streams in the described manner.

Therefore, we do not further discuss the details of the execution pipelines under the

paradigm, except the necessary modifications, as needed. In our evaluations however,

we faithfully simulate a 5-stage pipelined VLIW processor in a cycle-accurate manner.

This design is utilized as the baseline processor, as well as forming the basis for the

SLA architecture by replacing its frontend as previously discussed.
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4.3 The SLA ISA and Code Generation

Traditional VLIW processors employ an instruction encoding where each instruction

has a number of operands and multiple opcodes describing each of the multiple op-

erations to be performed by a single wide instruction. Since the SLA architecture

fetches individual operations using multiple program counters, each of the streams

can fetch and execute RISC style instructions that describe the particular operation

to be performed. In order to evaluate the SLA paradigm, we rely on an entirely new

instruction set architecture. We refer to this new ISA as the Statically Controlled

Asynchronous Lane Execution (SCALE) ISA. The SCALE ISA introduces a suspend-

resume bit, which is a dedicated opcode bit, so the SCALE ISA has fewer available

opcodes than other 32-bit ISAs. Furthermore, we introduce several instructions ded-

icated to supporting multiple-lane control-flow.

The single bit sr field occupies the most significant bit in each instruction. In this

manner, lane control actions can be completed when the instruction is fetched without

decoding the instruction.

A dedicated sr bit also allows us to have two versions of the same instruction, one

which sets the sr bit and another which has a zero sr bit. The former utilizes the

assembly mnemonics of the instruction followed by .sr and the latter does not have
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the suffix. For example, our SLA add instruction would either be add $2,$3,$4, or,

add.sr $2,$3,$4. As previously mentioned, when the sr bit is set for an instruction

in any lane other than lane 0, then the bit indicates that this lane is suspended after

the current instruction executes. Any subsequent instructions are not to be dispatched

until lane 0 encounters an instruction with an sr bit set. In all lanes, except lane

0, the sr bit affects (suspends) only the lane in which it is executed and in lane 0,

it affects (resumes) all other suspended lanes. We later discuss how suspends and

resumes are accomplished in the instruction pipeline. Since sr bits are handled by

their own lanes, multiple instructions can suspend the execution of their lanes in the

same synchronized pack.

4.3.1 Handling Function Calls

The SLA paradigm relies on all control-flow being primarily controlled by lane 0,

and only lane 0 is allowed to have branches, special call and call-register (callr), and

return instructions. Since function calls are much more involved than simply changing

the program counter to the target address, we extend the base instruction set with

the addition of special call and return instructions. These instructions ensure the

program will be in a predictable state upon a function invocation. Two instructions

we introduced, namely call/callr instructions, are analogous to jal or jalr in MIPS,

but they cause all lanes other than lane 0 to be marked as inactive while the lane 0
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PC is set to the call target.

When a call or callr instruction is encountered, the processor saves the processor state

into a set of registers, which is equivalent to the return address register in conventional

architectures. The special registers are called RT registers, and each lane is provided

one to store the PC state at the point of the function call. Similarly, a previous lane

status (PLS) register is provided to store the state of each lane in the processor.

For any non-leaf function, the compiler is responsible for scheduling instructions to

store each of the RT registers in the function prologue and instructions to restore

each of the RT registers in the function epilogue. Since these are not general-purpose

registers, the ISA has special store (swrt) and load (lwrt) instructions to save and

restore RT registers, respectively. An additional store-active-status (sas) and load-

active-status (las) instruction is also provided for the PLS register.

Lanes that are never enabled in a function never need to load or store an RT register.

Since restoring the RT register to the previous state is handled by callee functions,

if a callee modifies the RT register of a lane that is inactive in the caller function,

the register will be restored to the proper state once a call occurs. The RT register

restoration being handled by the callee means that caller functions do not need to

know the total width of the processor, and do not need to store or load values for

lanes the function does not activate.
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The inverse of the call instructions is the (return) instruction, which is typically the

last instruction executed in each function. In the SLA ISA, the return instruction

indicates for all lanes to restore their PC and their active status using the RT and

PLS registers.

Since some library functions execute jump instructions to other functions and analysis

of some of the library code is difficult, we also provide a callm instruction, short

for call-muted, which behaves identically to a normal call instruction, but does not

update RT or PLS registers.

4.3.2 Creating and Halting Instruction Streams

Since call instructions mark nonzero lanes as inactive, functions are scheduled with

colane instructions to activate new instruction streams. There can be as many streams

as there are lanes supported by the processor, or fewer if the function does not have

enough parallelism to fully utilize the processor’s resources. To minimize required

changes in the BTB to support colane instructions, we enforce that these instructions

can only be scheduled in lane 0, similar to branches. Each colane instruction specifies

the instruction stream’s starting offset and the lane assigned to handle the instruction

stream. Note that we allow a colane instruction to activate a lane that can be

immediately suspended with a nop.sr instruction.
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We also introduce a halt instruction. This instruction marks the lane in which it

resides as inactive, disabling it for the rest of the function execution. This instruction

always has the “.sr” bit set, but also halts the lane, so the lane is not resumed on all

further lane 0 “.sr” bits. Note that lane 0 cannot use this instruction and treats a

halt as a nop in case of mispredicted control flow. Setting a lane to inactive frees up

instruction space and reduces the number of times a lane is woken up, allowing for

power savings.

4.3.3 Scheduling Branches and Jumps

A conditional branch or unconditional jump only contains enough information to

affect the PC of the lane in which the transfer of control resides. Since branches and

jumps can only be issued in lane 0, they behave identically in that lane compared to

standard processors. For simplicity, we have each lane follow the same control flow,

meaning that nonzero lanes do not need to perform the redundant truth operation for

conditional branches. Instead, we provide an instruction that allows for nonzero lanes

to update their PC when a branch or jump is taken in lane 0. The prepare-branch

(pb) instruction takes a PC-offset and no other arguments. Before a branch, each lane

other than lane 0 must execute a pb instruction to prepare the target destination of

the lane prior to the lane 0 branch. When it is fetched, it sets a register with the

destination called the PB register. Upon lane 0 taking a branch, whether conditional
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or unconditional, each lane that is active or suspended sets the lane PC to be equal

to the destination stored in the PB register.

Lane 0 Lane 1 Lane 2 Lane 3

i0.1 i1.1 pb LN_2 pb.sr LN_3

i0.2 pb LN_1 i2.1.sr -

j LN_0 i1.2 - -

... ...

Figure 4.3: An example of pb instruction Scheduling

Since pb instructions are independent of other instructions, they can be scheduled any

time prior to the branch in lane 0, as shown in Figure 4.3, Allowing for pb instructions

to be scheduled prior to a branch also lifts the requirement for all lanes to be active

at the time as the branch or duplicating branches for each lane.

4.3.4 Code Generation Strategy for an SLA Processor

Traditional MIPS processors support a displacement addressing mode for loads and

stores. In order to initiate a long latency memory operation early in a pipelined

data path, modern dynamic processors dynamically break a load (or store) with the

displacement into two machine instructions[16]. The first instruction computes the

effective memory address and the second performs the data memory access.

The SLA processor also exploits this feature by (1) supporting a register deferred

addressing mode only for loads or stores, and by (2) requiring the code generator
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makekey: makekey 1: makekey 2: makekey 3:

colane makekey 1,1

colane makekey 2,2 addiu $sp,$sp,-64
colane makekey 3,3 addiu $3,$sp,24 addiu $7,$sp,44
addiu $10,$sp,40 pb lane1,$L52 1 addiu $8,$sp,32 pb lane3,$L52 3

addiu $9,$sp,36 addiu $2,$sp,20 pb lane2,$L52 2 addiu $1,$sp,28
sw $16,($2) swrt $rt0,($1) move $16,$5 swrt $rt3,($10)
sw $17,($3) swrt $rt2,($9) swrt $rt1,($8) sas.sr ($7)
beqz.sr $6,$L52 move $2,$6 move $17,$4
$L46: $L46 1: $L46 2: $L46 3:

slt $1,$0,$16 pb.sr lane1,$L49 1 pb.sr lane2,$L49 2 halt

beqz.sr $1,$L49
sll $5,$16,1 move $4,$2 move $7,$17
addu $5,$5,$2 pb lane1,$L48 1 pb lane2,$L48 2

$L48: $L48 1: $L48 2:

lbu $3,($7) addiu.sr $1,$4,1 nop.sr

andi $3,$3,0xf
addiu.sr $3,$3,65
sb $3,($4) addiu $4,$4,2 nop

lbu $3,($7) seq.sr $6,$4,$5 addiu.sr $7,$7,1
srl $3,$3,4
addiu.sr $3,$3,74
beqz $6,$L48 sb $3,($1) nop

sll.sr $16,$16,1 nop nop

$L47: $L47 1: $L47 2:

addiu $1,$sp,28 addiu $3,$sp,20 addiu $6,$sp,36
addiu $4,$sp,24 addiu $5,$sp,44 addiu $7,$sp,32
addiu $8,$sp,40 lwrt $rt1,($7) addiu $sp,$sp,64
lwrt $rt3,($8) lw $17,($4) lwrt $rt2,($6)
lwrt $rt0,($1) addu $16,$2,$16 las ($5)
return sb $0,($16) lw $16,($3)
$L52: $L52 1: $L52 2: $L52 3:

sll $4,$5,1 lalui $6,$LC0 addiu $5,$0,1 addiu.sr $7,$0,177
call.sr ckd calloc addiu $4,$4,1 laori $6,$6,$LC0
nop pb.sr lane1,$L46 1 pb.sr lane2,$L46 2 halt

b.sr $L46
$L49: $L49 1: $L49 2:

move $16,$0 pb.sr lane1,$L47 1 pb.sr lane2,$L47 2

b.sr $L47

Figure 4.4: Example of SLA generated code

to statically split every memory instruction to use a register deferred memory mode

instead. Deferred addressing allows for memory instructions to access the data cache

at the same time the rest of a bundle performs computations in execution units. We
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developed a post-assembly optimizer that includes various optimizations including

VLIW scheduling, which is required for high quality SLA code generation.

We first generate 32 bit MIPS assembly code using gcc with the -03 flags. We then

perform VLIW scheduling to generate packs of VLIW operations for our target-width

SLA processor. For each function, we then perform transformations on the assembly

code as described in the rest of this subsection to generate our final SLA code.

As a case study for SLA code generation, consider the general layout of a 4-lane

function in Figure 4.4, taken from the function makekey in the 482.sphinx3 benchmark

from spec2006. In our study, we allow the code to schedule floating-point and memory

operations anywhere, but similar to a VLIW processor, SLA processors can allow

for asymmetric lanes where certain capabilities are limited to specific lanes, such as

memory ports only being accessible to instructions in lanes 0 and 1. The actual

number of lanes is determined by the largest width of the VLIW pack without nops

in the scheduled code. For makekey, the maximum width is 4. Vertical lines denote

each lane, and instructions are aligned to show when they will execute in a pack

together, so blank spots indicate when a lane is either suspended or inactive.

We also take steps to always generate conditional branches to compare a single register

to zero (e.g. beqz or bnez ) due to fewer available instruction opcodes. We then change

all function calls and returns to call and return instructions. The call and return

instructions are italicized in Figure 4.4.
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In order to create a separate instruction stream per lane, each nonzero lane is assigned

unique labels by duplicating labels in the lane 0. Each lane’s target labels are a copy

of the label, with an extension of #, where # is the lane number to provide a unique

destination in each instruction stream.

Next, we insert lane specific pb instructions prior to jumps or branches in lane 0,

with each PC reflecting the lane-duplicated label in tandem with the destination of

lane 0. Duplicated labels and inserted pb instructions are marked in bold. Each pb

instruction can be scheduled anywhere within the basic block of the same lane, as

long as it is prior to the branch instruction in lane 0. As a minor loop transformation,

each pb instruction in a single basic block loop is moved out to its loop preheader as

being shown in the loop at label $L48 in Figure 4.4.

Any time prior to the first call of the function, there must be an swrt instruction

scheduled for each lane to store the return PC for that lane. However, only a single

sas instruction is performed for the entire processor, since active information requires

only two bits per lane, allowing for all lanes to store the state in a single word (up

to 16 lanes in a 32-bit word). For each function with a call, the epilogue prior to

a return must contain lwrt instructions executed to restore the state of each lane.

Similarly, there must be a single las instruction to restore the lane active status for

each lane. Since makekey has a call, we insert stores (swrt/sas) to save the current

values of the RT and PLS registers to its stack frame at the function prologue, and
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loads (lwrt/las) to restore the values at each function epilogue (return block). The

inserted instructions for saving and restoring RT and PLS registers are highlighted

in Figure 4.4.

After making changes described above, we reapply VLIW-style scheduling using the

maximum detected width of the function. Since all lane instructions simultaneously

execute, even during control flow changes, the sb and lw instructions scheduled in

lanes 1 and 2 alongside the return instruction in Figure 4.4 will execute prior to any

instructions at the return point in the lane 0. Similarly, the instructions scheduled

alongside the return will execute before any instructions in the callee.

We next insert colane instructions at the function entry to provide the starting address

of each lane within the function. With the exception of lane 0 (the master lane), we

need to insert a colane instruction for each lane in which one or more instructions

are scheduled within the function. If we detect limited parallelism, we can limit the

number of colane instructions. Figure 4.4 shows colane instructions as underlined.

We then introduce proper synchronization when lanes need to be suspended or re-

sumed. We insert sr bits in lane 0 when there are more instructions in the next

pack, and can contract processor width using sr bits in those packs. When a lane is

started, but does not have a ready instruction to execute, we insert a nop instruction

to maintain lane alignment. The nop can also have an sr bit set. In a worst case, the

packs with nops behave as the same as a single full-width VLIW pack.
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We follow this step by detecting where to insert halt instructions. We perform a simple

analysis to detect when a lane will no longer perform any instructions outside of those

required for synchronization. During this analysis, we omit the function epilogue,

since epilogue instructions can be re-scheduled into other lanes. If no further useful

instructions are detected, we place a halt instruction (marked with double-underlined

instructions in Figure 4.4) in the lane to disable unnecessary sr bit reactivations. We

eliminate instructions in those lanes, and shift any remaining computations that are

assigned to that lane in the function epilogue into other lanes.

An overview of all introduced synchronization instructions are in Table 4.1, with a

definition of of each architectural effect.

4.4 Architectural Design of an SLA processor

4.4.1 The SLA Frontend

The SLA processor is designed to be similar to several simple 32-bit pipelined pro-

cessors working in conjunction. As is shown in Figure 4.5, each frontend is similar

to a simple pipelined processor. Any new registers are defined in Table 4.2. Lane

0 behaves nearly identically to a typical pipelined processor, but sends a message

to other lanes when calls, returns, and branches are encountered, as well as when
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Instruction Arguments Description

call/callr
target address
or address register

Sets L0 PC to the target address,
halts all other lanes,
and saves the PC and status of each lane.
Each lane PC is stored in a separate RT register.
Each lane active status in a PLS register.

callm target address A call instruction that does not save lane states.

return
Restore the PC from each
corresponding RT register
and restores status from the PLS register.

swrt rt reg, store address reg
Stores the value of rt reg
using store address reg.

lwrt rt reg, load address reg
Loads the value using
load address reg into rt reg.

sas store address reg
Stores the value in the PLS register
at the address in store address reg.

las load address reg
Loads the value at the address in
load address reg into the PLS register.

colane/fork lane id, target address
Sets lane of lane id to active, and starts
it’s PC at target address.

halt
Halts the lane executing the instruction,
does nothing in lane 0.

pb branch offset

Sets the PB register for a nonzero lane.
When lane 0 takes a branch,
each lane sets PC to the
value in the PB register.

Table 4.1
SLA Synchronization Instructions

instructions with .sr bits are fetched from the instruction cache. Nonzero lanes are

also similar, but do not need to access the BTB. Instead, nonzero lanes simply access

a PB register which is updated via pb instructions, and takes directional information

from Lane 0.

The processor also expands the BTB to support colane instructions. A colane instruc-

tion is a transfer of control flow for another lane, and to prevent waiting for a lane to

decode the instruction, colane instructions update the BTB, storing the target lane

50



PC

BTB/
RAS

L1+...

Instruction
cache

Instruction
decode

branch
type

L1+ ...

... EX ...
P
C
+
4

.sr
bit

PC

PB/
RAS

L0 Branch
Type

L0 sr
message

Instruction
cache

Instruction
decode

... EX ...

LSR

P
C
+
4

.sr
bit

P
B

Lane 0 Lanes 1+

Figure 4.5: The SLA Frontend Design for Lane 0, and Lanes 1+

Register/Use Size Location

PB
Prepare Branch Address

PC Size Each Nonzero Lane

LS
Lane Status

2 Bits Each Lane

RT
Return Address

PC Size
Register File
(Per Lane)

PLS
Previous Lane Status

2 Bits per lane Register File

Table 4.2
New SLA Registers

and target address when relevant. To prevent the requirement of larger BTB entries

or a dedicated structure, we limit a single colane instruction to the entire pack.

Note that unlike a traditional VLIW, in which any operation in the wide instruction

can potentially contain branches or jumps, all transfers of control occur in lane 0.

This simplifies BTB accesses since only lane 0 in the SLA processor needs to access

the BTB. Aside from the normal BTB structures, the BTB needs to have two bits to

indicate if the instruction in the BTB is a colane and the target lane number.
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The return address stack (RAS) in each lane also behaves similar to a normal pro-

cessor, but needs to also store previous lane state along with the destination PC.

Bit
Configuration

LSR State

0 0 Inactive. Suppress lane 0 wakeup requests.

1 0 Suspended. Wake up on lane 0 sr requests.

1 1 Active. Execute Instructions.

Table 4.3
LSR States

To maintain the state of each lane, we introduce a lane status register (LSR). The

LSR stores two bits. Table 4.3 shows the valid states. The most significant bit is

responsible for suppressing requests to resume execution, while the least significant

bit is responsible for lane active status. When the LSR active bit is 0, the entire lane

is suspended.

When nonzero lanes receive a branch type from lane 0, they may also modify the

LSR in their lane. When a call instruction is encountered, the value of the LSR is

set to inactive. When a return instruction is encountered, the value of the LSR is

updated by the values stored in the lane’s RAS. The LSR is also updated to active

and enabled when a colane instruction is sent from the BTB. If a halt instruction is

decoded, the LSR is set to 00 in that lane. Since the halt instruction always has the

sr bit set, the lane first sets the LSR to suspended when the halt is fetched, then the

lane is set entirely to inactive once the instruction is decoded.

The instruction caches of SLA processors are separated, so the SLA processor has
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separate tags associated with each operation in a pack. Since the instruction caches

of the SLA processor are at an operation granularity, it has similar overhead to a

more traditional processor. The VLIW, however, only has one tag associated with

an entire wide instruction. Since the VLIW processor tracks fewer overall PCs due

to the use of wide instructions, it uses fewer tags in its instruction cache than other

processor designs.

4.4.2 Supporting Single-Cycle PB Updates

When a branch instruction immediately follows a PB instruction, the PB instruction

would be decoded at the same point that the BTB is being accessed, meaning the PB

register is stale by the point of a control flow change from a jump or taken branch.

To ensure the PB register is correct by the end of the fetch stage, we propose pre-

decoding pb instructions at the point of insertion into the instruction cache. When a

line is filled in the L1 instruction cache for a nonzero lane, we examine the opcodes

of the instructions loaded in for any pb instructions. When one is detected, we can

add the PC of the instruction to the offset field, leaving the instruction predecoded

in the instruction cache.

To mark predecoded instructions, we add a bit to the instruction cache called the

PB-target (PBT) bit. Since PB instructions always target the same address, when a
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PB instruction is loaded into the instruction cache, we add the PC of the instruction

to the offset, and store it in the 31 lower bits to preserve the sr bit of the instruction.

The most significant bit can be reconstructed using the PC when the instruction is

fetched. When a PB instruction is fetched, the sr bit is handled the exact same way

as all other instructions, but the remaining fetched data is simply moved into the PB

register for that lane.

Lane 0 does not need to implement the PBT modification, and does not need to have

the same pre-decode step when performing an L1 cache line fill, since PB instructions

are only placed in nonzero lanes.

4.4.3 The SLA Processor Backend

Unique to the architecture are two other required registers that do not reside in the

frontend, and are defined in Table 4.2. These two registers are the (PLS ) register

and the (RT ) registers.

These registers do not need to reside in the front end. Since they are not speculatively

updated, they can be updated similar to the return register for a jump-and-link

instruction. The PLS register stores the concatenation of all previous lane status

values upon a call instruction and is designed to maintain data for the processor to

use upon a return if the RAS is insufficient. Similarly, the RT register is responsible
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for maintaining previous lane PCs. Since the LSR works in conjunction with the PC,

the processor must restore both the PC and LSR upon rollback. The PLS and RT

registers inform rollbacks when a return is mispredicted.

Much of the remaining pipeline design closely resembles a standard VLIW processor,

since instructions proceed lock-step through the rest of the pipeline.

4.4.4 Supporting Speculation

Speculation can be supported in a similar fashion to a normal processor, but special

considerations must be made to support speculation in the face of speculative lane

active status updates. Upon a rollback, each lane must restore both the lane PCs

and states, since lanes could have been enabled or disabled on a wrong path.

LS registers can be repaired using the state of the processor at EX using similar

mechanisms to PC, but lane PCs need to be calculated with the repaired LS states.

If a load encounters an exception, a similar step needs to be taken to ensure the

pack properly replays. Similar to a normal processor, program counters need to be

rolled back to the state that the prediction is made, including verifying suspended

and halted lanes did not do so speculatively.

However, PB registers do not need to be restored. Since PB instructions are always

55



scheduled prior to the next branch or jump instruction, the PB registers will be

correct by the time they are read and used, even when incorrect PB targets may have

speculatively written to those registers.

Similarly, the RT and PLS registers are not speculatively written to, so they do not

need additional hardware support for speculation.

4.4.5 Variable-Width Behavior in SLA

By providing explicitly started instruction streams and supporting colane design, the

SLA processor is capable of behaving like a narrower-width processor. If a wider SLA

processor is provided with code compiled for a narrower SLA processor, the program

will function as though the wider SLA processor were the same width as the processor

targeted by the compiler.

Explicit activation of lanes enable the SLA processor to naturally support backwards

compatibility with lower-width processors, which requires additional engineering for

standard VLIW processors, since PC increments in VLIW processors vary based on

the width of the wide instruction.

While the SLA processor is underutilized during these parts, the SLA processor na-

tively supports narrower width code with no modifications. VLIW processors also
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underutilize their hardware when executing narrower code, but also need ways to

modify PC increments, as well as structures to align packs when widths do not match.

4.4.6 Expanding BTB Capabilites

While not evaluated in this work, our processor does not need to necessarily impose

the lane 0 restriction on branches. Simply, we propose this to maintain simplicity

in our baseline design. At the cost of a slightly more complex BTB, we can allow

nonzero lanes to contain branches.

The primary motivation for allowing nonzero lanes to execute instructions is to enable

functionality of partially committing packs. Instructions in lanes prior to the branch

can commit, while instructions in lanes after the branch can be filled with instructions

in the not-taken path, and are discarded if the branch is computed taken in the

execution step of the pipeline.

While it is possible for VLIW processors, including our baseline VLIW, to contain

multiple branches per pack, many state-of-the-art VLIW processors still only allow

for one branch to be predicted in the BTB per instruction pack, such as the currently

in-production TigerSHARC TS-101S[2, ch.8 p.44]. This restriction allows the BTB

entry to be accessed using an aligned instruction address and removes the need for

multiple BTB accesses per pack.

57



Similarly, we can access the BTB using only the PC of lane 0. Since the BTB stores

both a lane identifier for colane instructions as well as a mechanism to move the

stored address to that lane, the primary modification is an addition of a PB register

to lane 0 and mechanisms to squash instructions in lanes that follow lane 0.

Upon a BTB hit that predicts taken, the lane that corresponds with the BTB entry’s

identifier adopts the value of the target in the BTB. The targets of each other lane

are computed using the PB registers for that lane. At the cost of some complexity

and energy, allowing instruction packs to partially commit offers more flexibility for

compiler scheduling, potentially improving performance.

4.5 Methodology

Fundamentally, the objective of this design is to propose a new processor. To mea-

sure performance, we are aiming to categorize characteristics versus a baseline VLIW

processor. The team at Florida State University developed an assembly optimizer to

perform transformations at the assembly level for this project. Use of an assembly

optimizer allows us to leverage all the optimizations performed by a mature com-

piler like gcc while being able to perform low-level transformations in a much simpler

infrastructure. We first generate MIPS assembly code using gcc. The assembly op-

timizer next expands pseudo assembly instructions that comprise of more than one
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machine instruction to equivalent assembly instructions so that there is a one-to-one

mapping between assembly and machine instructions. At this time, the assembly op-

timizer also translates instructions to the new SCALE instruction set. We also obtain

information from gcc indicating which registers are passed as arguments at the point

of each call and which register(s) are used as a return value at the point of each re-

turn. This information allows the assembly optimizer to exactly know which registers

are live at each instruction, then schedules the assembly instructions as described in

Section 4.3.4.

We use the Fast/ADL simulator [28] to simulate both a conventional SCALE VLIW

processor as the baseline and a modified processor supporting the SLA approach.

These processors use variants of the SLA ISA and are implemented as faithful cycle-

accurate simulators. In ADL, the instructions are loaded from an instruction cache,

data values are loaded from the data cache, values are obtained through an explicitly

simulated pipeline, branch target addresses from the branch target buffer are actually

used, etc. In other words, these simulators are not simple emulation and timing

implementations.

Table 4.4 shows other details regarding the processor configuration that we utilize in

our simulations. We support a separate L1 instruction cache for each lane to allow

simultaneous instruction fetches. The total L1 instruction cache space for all lanes

is 32KiB, but the SLA instruction cache space is split among dedicated instruction
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Branch Predictor
4096 entry direct-mapped BTB
GShare predictor
w/ 17-bit branch history.

Page Size 4KB

L1 ICs
32KiB total, 64B line size,
4-way, VLIW: 11 cycle miss pen.
SLA: 12 cycle miss pen.

L1 DC 32KiB, 64B line size, 4-way

DTLB 32 entries, fully associative

L2 Unified Cache
1MiB, 64B line size,
16-way, 80 cycle miss pen.

5 stage integer pipeline IF, ID, RF, EX, WB

Table 4.4
Processor Configuration

caches for each lane. In our simulations, the L2 cache does not have dedicated ports

for each L1 instruction cache, so L1 icache requests are pipelined and other caches

must wait if another cache is occupying the L2 cache ports. These delays can be

reduced by adding more ports into the cache at the cost of higher energy usage, but

this was not modeled in our experiments.

We support a 5 stage integer pipeline, where the memory reference for a load instruc-

tion is executed in the EX stage due to no displacement with loads. While more

modern processors use deeper pipelines, both processors are affected in the same way.

In both the baseline VLIW and the SLA processors, misprediction penalties are in-

creased by each stage that occurs prior to the misprediction detection, and latencies

increase with each additional stage added to the processor as a whole.

We test two 4-wide SLA processors and two 8-wide SLA processors. The processors

are identical, aside from the lanes and their instruction cache configurations. We test
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Description L0 L1 L2 L3 L4 L5 L6 L7

SLA-4x8k 8 8 8 8 - - - -

SLA-16-8-4-4 16 8 4 4 - - - -

Wide-SLA-8x4k 4 4 4 4 4 4 4 4

Wide-SLA-Asym 8 4 4 4 4 4 2* 2*

Table 4.5
KiBs allocated per SLA Lane Instruction Cache

*2KiB caches have 32 Byte lines

both a symmetric and asymmetric design, and caches are set to store a total of 32KiB

of instruction cache space. The processor configurations are shown in Table 4.5. The

2KiB caches of the Wide-SLA-Asym configuration are set to be 32-byte lines instead

of the 64-byte lines of other caches since these caches are quite small and lanes are

often much more frequently disabled.

4.5.1 Ensuring Equivalent Workloads

We ran the simulator on a variety of SPEC 2006 benchmarks on reference inputs.

Simulating benchmarks with their full ref inputs takes unacceptably long, so an-

other mechanism to ensure both simulations execute the same specific window in

the program is required. Similarly, since both simulators offer fundamentally differ-

ent instruction spaces, IPC is insufficient to compare performance, since VLIW and

SLA both contain many instructions that do not directly contribute to a program’s

execution, but are needed for correctness.

Instead, to ensure equivalent workloads, we classified each operation of the benchmark
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as either meaningful or meta instructions. In this context, an instruction is a single

operation.

We classify meta instructions as operations that are not part of a program’s core

control flow or calculations. These include loads and stores as part of nonzero lanes

for RT and PLS registers, and any accompanying add immediate instructions used to

calculate their addresses. The load and store for RT registers for lane 0, however, are

equivalent, to a load and store of $31 for the VLIW processor, and thus are not marked

as meta instructions. We also categorize pb instructions as meta instructions, since

they serve to keep lanes synchronized. Furthermore, we classify any nop instructions

asmeta instructions, as VLIW uses these for alignment, and the SLA may occasionally

insert these after an sr is broadcast from lane 0. Finally, the lane control instructions

of colane and halt are meta instructions that are unique to the SLA processor.

Instructions that are not meta instructions contribute directly to the completion of

the program, and a program can be tracked through the progress of these instructions.

We refer to these instructions as meaningful instructions. During the lifetime of a

program and function, both the VLIW and SLA processor execute the same number

of meaningful instructions. In both cases, actual rate of progress through a program is

measured using Meaningful Instructions per cycle (MIPC), which is a representation

of MIPC = Instructionsmeaningful/Cyclestotal. Since we count all cycles but omit

meta instructions, if a section of code consists of only meta instructions, the MIPC
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for that section would be 0. To verify that this is correct, we tracked the number of

function calls for several benchmarks in both the SLA and VLIW processor to ensure

they performed the same number of function calls in a given window of meaningful

instructions.

In our simulations, we allow each benchmark to warm up for 2 billion meaningful

instructions, followed by gathering statistics for 10 billion meaningful instructions.

Each benchmark was compiled using gcc and passed through our assembly optimizer

to generate both VLIW and SLA code with identical optimizations. Expansion from

VLIW to SLA was completely mechanical using our assembly optimizer, and no ad-

ditional code optimizations were performed once the SLA conversion occurred.

When performing power calculations, we use CACTI 7 [4] with 32 nm technology

and 1 read port for the L1 caches, with the port being 32 bits for each SLA lane,

and 128/256 bits for the baseline 4-wide/8-wide VLIW. Similarly, the L2 cache is

simulated with a read/write port instead, but it is otherwise identical between the

two processors.
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Figure 4.6: Meaningful IPC (Higher is Better)

4.6 Results

4.6.1 Performance Analysis

As shown in Figure 4.6, we find that meaningful IPC is similar to that of a baseline

VLIW processor in nearly every benchmark. While the SLA processor introduces

extra instructions to the stream, which lowers MIPC, the L1 instruction cache for

each lane functions significantly more efficiently. The primary reason performance can

be maintained despite an increase in instructions is due to improved L1 instruction

cache performance.
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VLIW

SLA 4x8k
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Figure 4.7: Arithmetic Mean Instruction Cache Misses Per 1000
Meaningful Instructions over Spec 06 (Lower is better)

We can see instruction cache performance from Figure 4.7. The L1 instruction cache

misses less often for SLA processors than the VLIW. Performance is highly sensi-

tive to instruction cache hit rates, meaning that even marginal improvements can

make significant differences in terms of performance. SLA instruction caches do not

need to store many nop instructions, hence they can hold a larger number of mean-

ingful operations and fewer meta instructions. While the total number of misses

in SLA processors are marginally higher, across all four instruction caches (13.74

for SLA 4x8k, and 13.75 for SLA 16-8-4-4, many misses occur immediately after a

taken branch. During these taken branches, all instruction caches miss, allowing for

opportunities to pipeline requests to the L2 cache, reducing the overall instruction

cache miss penalty. Also, instructions that trigger a cache miss, but suspend the
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lane can begin handling the cache miss without interrupting execution of other lanes.

Furthermore, cache lines in lanes that are often suspended can functionally service

more packs of operations before a miss occurs, as lanes do not change their program

counters when inactive.

Due to improved performance for instruction caches, we find that on average, mean-

ingful IPC is within 0.04% for both configurations of the SLA processor and the

VLIW baseline, despite the increase of around 1.2% in total packs executed.

4.6.2 Instruction-Cache Behavior
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Figure 4.8: SLA 4x8k caches, number of accesses with respect to lane 0
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Figure 4.9: Instruction Cache Power Normalized to VLIW (Lower is
Better)

Figure 4.8 shows how frequently that each lane accesses the instruction cache for an

SLA processor with the symmetric 4-8K cache configuration over the entire bench-

mark suite. We do not show the SLA 16-8-4-4 configuration since it behaves nearly

identically (within 1% for each lane). When a lane is suspended or halted, that lane

does not need to issue a cache request. Suspending lanes means that during periods

of lower IPC, lane instruction caches can save significant energy on average. What

we see is that, on average, lane 3 accesses it’s instruction cache 35.97% as often as

lane 0. Furthermore, each instruction cache is significantly smaller than the VLIW

instruction cache, lowering power requirements for each cache.

Since instruction caches are more lightweight in the SLA processor, we find that the
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majority of the time, only one or two of the instruction caches are accessed. As

shown in Figure 4.9, this allows for the SLA processor to save significant energy

with instruction caches in most cases. 458.sjeng performs most poorly due to bad

instruction cache coverage coupled with many small, function calls. When a function

is encountered for the first time, the SLA processor needs to perform an L2 instruction

cache access for each lane instead of the single access that the VLIW requires. The

instruction cache hit rate for 458.sjeng is lowest in the benchmarks, and due to how

poorly it caches, the SLA processor needs to more frequently access the L2 cache

compared to the VLIW when a new function is encountered. While the SLA processor

still saves energy with the L1 caches, the power requirements for additional L2 cache

accesses offsets some of the power savings of the L1 caches. However, this is the

exception, and not the rule, and the power savings of these instruction caches are

otherwise significant, with an average mean reduction in power being 55.17% for

SLA-4x8K and 55.29% for SLA-16-8-4-4. The number of bits being read for the

cache per access is also significantly larger for the VLIW, so when an instruction

cache is off, caches benefit from both searching smaller caches, as well as an effective

reduction in the total number of bits being read from the instruction caches. SLA-16-

8-4-4 performs marginally better despite on average using slightly more power in lane

0 since there are fewer calls to the L2 instruction cache from lane 0, which typically

has the largest lane code footprint.
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4.6.3 Lane Power Analysis

Lane 0

Lane 1

Lane 2

Lane 3

0% 25% 50% 75% 100%

Active Suspended Halted

Figure 4.10: SLA 4x8k - Distribution of Lane Status across Spec06

While lane power statistics are more difficult to calculate, we can perform analysis

on the state of each lane and time spent in lower power modes. When suspended

or inactive, lanes do not need to fetch or decode any operations, providing energy

savings beyond the IC benefits. Figure 4.10 shows that lanes 2 and 3 are spent in

a low-power state the majority of clock cycles. Similarly, lane 1 only executes, on

average, 60.31% of cycles, while suspended or halted the rest of the time. Lanes 2

and 3 execute even less, needing to be active in under half of the total cycles. We use

slightly more power when all lanes are active, but find our energy usage is much better

when any lanes are turned off. Overall, the lane utilization of the entire processor

occurs under 35.97% of the time, meaning that the lane configuration is capable of

69



significant power savings. Almost 40% of cycles involve only lane 1 actively working

with full power and all other lanes maintain a lower power state.

4.6.4 SLA Scalability
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Figure 4.11: 8-Wide Meaningful IPC

When the width of the processor is expanded, the SLA processor scales better than

same-width VLIW processors. A comparison of MIPC is shown in Figure 4.11. We

find that as the width of the processor grows, the SLA processor performs better with

respect to MIPC than the VLIW. Since the discrepancy of lane sizes is slightly higher

for the wider-width processor, we also see that the performance of the asymmetric

configuration is better than the symmetric configurations, since some performance is
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lost by lane 0 instruction cache misses. When comparing IPC to the 4-lane configu-

ration, 8-wide processors perform slightly worse due to the nature of general-purpose

benchmarks.

During points of limited IPC, the VLIW processor performs worse at higher widths

since instruction cache hit rate dramatically decreases, and increased parallelism does

not compensate for the increase in nop instructions. For instance, in 401.bzip, the

4-wide VLIW has a 98.72% instruction cache hit rate, but hit rate drops in the 8-

wide VLIW to 91.58%, which is a 7.14% drop in hit rate. However, the hit rate of

the asymmetric SLA processor is impacted significantly less than a VLIW. In SLA-

16-8-4-4, the lane 0 hit rate of SLA-16-8-4-4 in 401.bzip2 was 99.96%, while the lane

0 hit rate of Wide-SLA-Asym only decreased to 98.28%, a 1.68% drop in hit rate.

All other caches for the asymmetric cache configurations degraded less than lane 0,

meaning the SLA processor is able to maintain performance even during periods of

low IPC.

Since nops are not needed to be stored in caches, we find that instruction cache per-

formance scales significantly better than VLIW processors. Figure 4.12 demonstrates

the instruction cache power usage of an 8-wide VLIW vs SLA configurations. All

SLA configurations, including the 8-wide configurations outperform 4-wide VLIW on

average (shown as 0% in the figure), though the symmetric 8-wide configuration does

not perform quite as well as the asymmetric version due to more L2 cache accesses
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Figure 4.12: 8-Wide Cache Power Statistics (Normalized to 4-wide
VLIW)

from lane 0. While Wide-SLA 8x4 requires 20.35% less instruction cache energy than

the baseline 4-wide VLIW, Wide-SLA Asym is able to perform better by using 42.95%

less instruction cache energy than the baseline 4-wide VLIW, almost as well as the

4-wide SLA configurations despite having more lanes.

4.6.5 Binary Encoding Size

Another notable byproduct of eliminating nops compared to VLIW processors are

smaller binary sizes. In smaller systems where storage is at a premium, smaller code

size can impact cost. For instance, embedded systems often have the binary on ROM
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chips and decreasing code size could decrease the size of ROM chips needed, which

can reduce cost. Figure 4.13 shows the number of operations required to encode the

binaries for each of the benchmarks, excluding libraries. We find that the 4-wide SLA

processor only needs to encode 63.50% of the number of operations compared to the

same binary for a 4-wide VLIW.

Furthermore, when the size is expanded to 8-wide processor configurations, we find the

SLA processor maintains a significantly smaller binary. Larger pack widths introduce

more no-operations. However, the 8-wide SLA configuration requires a smaller binary

than even the 4-wide VLIW configuration, encoding just 80.74% of the operations

compared to the 4-wide baseline. In contrast, the 8-wide VLIW requires 190.85% of
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the encoded operations compared to the 4-wide VLIW. This shows that SLA code

generation results in binaries that have little code size growth as the number of lanes

increases.
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Chapter 5

Variable-Width SLA Processor

Design

5.1 Introduction

Meta instructions, or instructions that do not directly contribute to the completion

of a program and are instead inserted for processor maintainence, must be inserted

to begin and maintain each instruction stream in a Synchronized Lane Architecture

(SLA) processor. The number of required meta-instructions is directly correlated

with the width of the processor. In general, the higher the width of the lanes, the

more meta-instructions are needed to maintain synchronization.
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Each instruction stream, aside from the initial lane, must be started with a colane

instruction, which instructs a lane to begin execution, and at which PC. Similarly, at

the point of a function call, each lane must save it’s lane PC for when the function

returns.

Lane 0 Lane 1 Lane 2 Lane 3
colane 1, ...
colane 2, ... ...
colane 3, ... ... ...
... ... ... ...

Figure 5.1: Traditional Function Initialization in an SLA Processor

While both SLA and VLIW representations are able to represent the same program,

an SLA processor introduces some meta-instructions in exchange for better instruc-

tion cache power efficiency. Since meta instructions are often scheduled in function

prologues and epilogues, they can add to the critical path of the program and can offer

a significant performance penalty in cases where the code cannot fit in the instruc-

tion cache. Figure 5.1 shows the typical initialization for a 4-wide function. If the

function is not cached, the highlighted instructions each trigger a cache miss for their

respective lane. This means that encountering a new 4-wide function begins with

a penalty of four full instruction cache misses. While the SLA processor will take

longer to encounter the next cache miss compared to an equivalent VLIW processor,

the SLA processor cannot make use of this in functions that are short and infrequent.

When smaller functions are frequently encountered that do not already reside in the
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instruction cache, the performance of the SLA processor degrades. While packs re-

siding in the L1 instruction cache for each lane tend to perform better than their

VLIW counterpart, smaller functions often do not benefit from this. Furthermore,

since these small functions have a higher warm-up penalty, the overhead of the SLA

approach becomes less negligible.

Lane 0 Lane 1 Lane 2 Lane 3
... ... ... ...
addiu $1,$sp... addiu $2,$sp,... addiu $3,$sp,... addiu $4,$sp,...
swrt $rt0,$1 swrt $rt1, $2 swrt $rt2, $3 addiu $5,$sp,...
swrt $rt3,$4 sas $5 ... ...
... ... ... ...
call foo ... ... ...
... ... ... ...
addiu $1,$sp... addiu $2,$sp,... addiu $3,$sp,... addiu $4,$sp,...
lwrt $rt0,$1 lwrt $rt1, $2 lwrt $rt2, $3 addiu $5,$sp,...
lwrt $rt3,$4 las $5 ... ...
return ... ... ...

Figure 5.2: Function Saving and Restoring in a Traditional SLA
Processor, assuming 4 active lanes.

Furthermore, as shown in Figure 5.2, meta overhead can also increase memory pres-

sure in the data cache. Prior to a function call, the return registers must be saved

and restored through the use of swrt and lwrt instructions. An additional store and

load must also be performed to store all lane states, which is executed by the las

and sas instructions. In the given case, we find that this can cause unwanted growth,

particularly in asymmetric configurations with limited memory ports.

When analyzing short functions, we also find that many smaller functions also have

limited opportunity to exploit parallelism, and a small width VLIW processor would
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be sufficient to fully handle the processor design. Furthermore, multiple-stream pro-

cessing is orthogonal to multiple-operation processing.

L0: L0 1: L0 2: L0 3:
i0 i1.sr i2.sr i3.sr

i4.sr
i5 i6 i7 nop
... ... ... ...

L0: L0 1:
i0 i1 i2.sr i3

i4.sr nop
i5 i6 i7 nop
... ... ... ...

PC0: PC1: PC2: PC3: PC0: PC1:

(a) (b)

Figure 5.3: Traditional SLA and Hybrid instruction streams.

Compared to the traditional SLA processor instruction stream shown in Figure 5.3(a),

we observe that another valid configuration is to allow for SLA processors that consist

of VLIW packs of varying sizes, such as what is seen in Figure 5.3(b). In this example,

each lane of the SLA processor behaves as a 2-wide VLIW processor. Instead of

four lanes, we have two lanes, each fetching two operations per cycle. Unlike the

traditional SLA processor, this processor fetches bundles of operations, such that

each lane processes two instructions at a time. Lane 0 fetches operations starting at

label L0:, and lane 1 fetches operations starting at label L0 1:. Each lane fetches

and processes two operations at a time. The first pack of instructions contains the

operations i0, i1, i2.sr, and i3. Lane 0 is responsible for i0 and i1, and lane 1 is

responsible for i2.sr and i3. Since i2.sr has the sr bit set, the entire lane suspends.

Unlike the SLA processor, since i1 is part of lane 0’s execution, it does not have an sr

bit. Similarly, i3 does not need an sr bit, since sr is handled by i2.sr. The next pack

contains i4.sr, and since the lane needs to maintain alignment, a nop is scheduled
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alongside it. Since the sr bit is set, each other lane, which in this example is just lane

1, is instructed to resume execution. Finally, the last pack of the i5, i6, i7 and a nop

are handled similar to the previous examples.

By enabling the SLA processor lanes to each behave as a smaller VLIW processor,

we allow for the processor to maintain many of the power efficiency advantages of

the SLA while lowering meta-instruction and SLA hardware overhead that comes

with increasing processor width, as well as reclaiming fewer tags per operation in the

instruction cache similar to traditional VLIW processors. We refer to this architecture

as the SLA Variable-Width Design (SLA-VW).

In the SLA-VW approach, lanes can process multiple operations at the same time.

Each lane is given a width of N ways, where each way can handle a single operation.

A group of all operations in a single lane are referred to as a bundle. In the SLA-VW

organization, a pack consists of all bundles across all lanes.

5.2 SLA-VW Lane Design Considerations

Functionally, an SLA processor is an SLA-VW processor with the added restriction

of each lane maintaining a bundle size of 1. We refer to each SLA configuration using

the shorthand of L# for each lane, where # is the lane width. So a processor with
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a lane 0 that is size 1, and two lanes of size 4 would be an SLA processor with an

L1-L4-L4 configuration.

Just as in SLA processors, each lane in an SLA-VW processor is either active, inac-

tive (halted) or suspended. Active lanes fetch instructions and execute the fetched

instructions, as per usual. Suspended lanes have a tracked PC, but do not execute

instructions until lane 0 encounters an instruction with an sr bit set. Finally, inac-

tive/halted lanes are fully disabled, and suppress any sr requests.

Lane 0 Lane 1 Lane 2 L0 State L1 State L2 State
i1 i2 i3.sr i4 - - active active halted
i5.sr i6 - - - - active suspended halted
i7 i8 i9 i10 - - active active halted

Figure 5.4: sr behavior in SLA-VW processor with an L2-L2-L2 configu-
ration

An example of sr usage is in Figure 5.4. The most significant instruction is responsible

for the sr bit representation in our example. On the left is the instruction stream,

and the right indicates the state of the lane in the corresponding pack. At the start,

we assume lanes 0 and 1 are active, and lane 2 is inactive. The most significant bit

of lane 1 is set, so the lane is marked as suspended in the next cycle. Similarly, in

the second pack, lane 0 encounters a pack with an sr bit, so each suspended lane is

marked as active for the next pack. Since L2 is halted, any sr requests are suppressed.

Each lane has an associated width which informs the number of instructions fetched
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by the lane and the number of resources available in that lane. Each lane width

is defined by the architecture, based on the number of execution units allocated to

the lane. Since PC increments are independent, lane widths do not need to be tied

together, meaning the same processor can provide a lane with width 1, and another

lane of width 3.

Streams are started the same way as SLA processors. Colane (or fork) instructions

provide a lane ID and a target address offset. In the next pack, the new lane begins

execution at the target PC. Halt can be placed into any nonzero lane and halt the

entire lane, including all ways of the lane. Packs with a halt, similar to a traditional

SLA, imply the pack’s sr bit is set.

Since lanes can be of multiple sizes, we can expand the size of the processor with

fewer colane instructions than a traditional SLA processor.

5.2.1 Control Flow and Lane Width Considerations

Control flow is handled the same as a traditional SLA processor. Prior to a branch,

each nonzero lane must execute a single prepare-branch (PB) instruction. The in-

struction can be inserted anywhere in a lane, and when lane 0 encounters a taken

branch, each lane jumps to the address of the last executed PB instruction.
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Encoding of the PB operation can either be using PC offsets relative to the size of the

bundle, or to the size of individual operations. Displacement calculations that use

operation granularity allow for lanes of arbitrary size, but limit the distance the lane

can branch with a single PB operation. Since powers of two can be quickly repre-

sented using bit-shifts, operation granularity and allows for simpler calculations when

inserting the bundle into the instruction cache. Conversely, displacement calculations

that use bundle granularity can be nontrivial when bundle sizes are not a power of

two, since offsets must then be represented with a multiplication operation.

5.3 SLA-VW Architectural Design

The SLA-VW processor is similar to the traditional SLA processor, but has key

differences in the front end of the processor. Wider lanes require a VLIW-style fetch

unit, meaning multiple operations are fetched and decoded by those lanes each cycle.

Figure 5.5 shows the basic layout of an SLA-VW processor with an L1-L2-L4 con-

figuration. Dotted lines separate lanes, with lane 0 being on top. Depending on

lane-width decisions, the overall design may be fundamentally different. While the

depth of pipeline stages can be expanded, the basic layout remains the same.

At maximum width, the L1-L2-L4 processor in Figure 5.5 can behave as a 7-wide
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Figure 5.5: Overview of an SLA-VW processor with an L1-L2-L4
configuration

VLIW processor, using only 3 instruction streams. Note that each lane behaves

similarly to a small pipelined processor or VLIW processor, but with a shared register

file for all lanes.

Each lane is similar, but the number of operations processed in each lane are defined by

the width of the lane. In the L1-L2-L4 configuration, lane 0 is given a single operation

per pack, meaning it decodes and executes a single operation. Similarly, lane 1 fetches

2 operations per bundle, meaning it decodes and executes two operations. Lane 2 is

4-wide, meaning it fetches 4 operations, decodes them, and executes them per bundle.

The PC increment is determined by the width of the lane, since the bundles in each
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lane may be of different sizes, but beyond the fetch unit, the design is similar to the

original SLA design.

Since instruction packs only require a single SR bit, a single bit is analyzed for

each lane, but lane semantics remain the same as an SLA processor, with lane 0

broadcasting to other lanes when an sr bit is encountered, and other lanes stopping

execution when an instruction with an sr bit is set.

5.3.1 Instruction Cache Design

Similar to an SLA processor, each lane has a dedicated instruction cache. However,

unlike an SLA processor, each cache may be of a different width depending on the size

of the packs being stored. A side effect of bundling operations means that instruction

caches only need one tag per bundle, as opposed to one tag per operation. This saves

instruction cache space in a similar form to traditional VLIW processors, where only

one tag is needed per wide-instruction.

Similar to a normal SLA processor, prepare branch (PB) instructions are pre-decoded

and inserted into the instruction cache to allow for single-cycle updates to a register

in the corresponding lane front end, called the PB register. When a pre-decoded PB

instruction is fetched, the PB register is set with the value of the PB’s target address.

When lane 0 encounters a branch or jump, each lane sets their PC to the value in the
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PB register for the next cycle. For nonzero lanes, each PB instruction must execute

prior to a branch or jump in lane 0. To allow for these instructions to be scheduled

the cycle prior to a jump, we pre-decode PB instructions as they are inserted into the

instruction cache. When a pre-decoded PB instruction is fetched, the value in the

cache, aside from the SR bit, is loaded directly into the PB register.

In a traditional SLA processor instruction cache, there is a single bit reserved to

indicate an operation is a PB instruction. In one-wide lanes, the same PB target

(PBT) bit that the SLA instruction caches use are sufficient. In lanes wider than

one-wide, there are three primary ways to encode PB instructions.

PBT Representation
Bits Required
Per N-wide Bundle

Assign PBT bits for each operation N

Assign PBT bits to indicate which way
contains a PB instruction

⌈log2(N)⌉

Enforce PB instructions are only scheduled in way 0. 1

Table 5.1
Predecoded PBT Options

Table 5.1 discusses three possible PBT configurations. The simplest solution is to have

a PBT bit for each operation in a bundle. This is equivalent to an SLA processor’s

design, since each bundle of size one. However, since there is ever only one PB

instruction in a bundle, we can instead use a set of PBT bits to indicate either which

way contains the PB instruction.
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Alternatively, PB instructions are given a particular way they must be assigned to, re-

ducing the overhead to predecoded PB instructions into a single bit per bundle. How-

ever, if ways have specific asymmetric computational capabilities, such as a memory

ports or floating point units being available in only specific lane ways, this solution

may limit scheduling flexibility.

5.4 Methodology

The objective of this new processor is to lower SLA overhead while minimizing the

cost of added nops.

We modified our SLA assembly optimizer to perform transformations for a L2-L2

SLA-VW design. Initial assembly is formed and optimized by gcc, before feeding

the assembly into our assembly optimizer. Next, we expand the pseudo instructions

into individual machine instructions and schedule the machine instructions using the

optimizer in conjunction with register information for calls and returns from gcc

to maintain register liveness information. All optimizations were the same for all

processors. We first generate VLIW code, with optimizations using global scheduling,

then use mechanical transformations to generate both SLA and SLA-VW L2-L2 code.
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We use the Fast/ADL simulator [28] to simulate a 4-wide VLIW processor, a tra-

ditional 4-wide SLA processor, and a SLA-VW L2-L2 processor configuration. The

processors use variants of the SLA ISA and are implemented as faithful cycle-accurate

processors.

We ran the simulator on a variety of SPEC 2006 benchmarks using reference inputs.

For power statistics, we use CACTI 7 with 32nm Technology. Each instruction cache

is provided 1 read port, with the width being the size of the lane’s bundle. So for

the SLA processor, the read port is 32 bits, the SLA-VW L2-L2 processor is 64 bits,

and the 4-wide VLIW processor is 128 bits. The L2 cache is simulated using a single

read port for the instruction caches, meaning that if two or more instruction caches

are contending for the L2 cache, the requests must be handled in a pipelined fashion.

Branch Predictor
4096 entry direct-mapped BTB
GShare predictor
w/ 17-bit branch history.

Page Size 4KB

L1 Partitioned IC
32KiB total, 64B line size,
4-way, VLIW: 11 cycle miss pen.
SLA and SLA-VW: 12 cycle miss pen.

L1 DC 32KiB, 64B line size, 4-way

DTLB 32 entries, fully associative

L2 Unified Cache
1MiB, 64B line size,
16-way, 80 cycle miss pen.

5 stage integer pipeline IF, ID, RF, EX, WB

Table 5.2
Processor Configuration

Table 5.2 shows our processor configurations for our experiments. The VLIW pro-

cessor uses a single instruction cache configuration of 32KiB, the SLA-VW L2-L2
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processor uses a 16KiB cache for each lane, and the SLA processor uses a 4KiB

cache for each lane. To ensure fairness, we measure performance using meaningful

instructions.

For our benchmarks, we allowed each simulator to warm up for 2 billion meaningful

instructions, followed by gathering statistics for 10 billion meaningful instructions.

5.5 Results

5.5.1 Performance Analysis

Figure 5.6 shows MIPC for each benchmark. MIPC indicates that the L2-L2 con-

figuration of the SLA processor performs much closer to the VLIW than the SLA

processor on it’s own. Notably, in benchmarks where VLIW performs significantly

better, we find that SLA-VW performs closer to VLIW than SLA. 401.bzip2 performs

well for SLA-VW, since when IPC is between 1 and 2 instructions, lanes do not need

to be activated, allowing for SLA-VW to take advantage of better cache performance

without the need for many additional meta instructions. Benchmarks with regular

and highly parallelizable code tend to perform better on the VLIW processor, and

what we find is that the SLA-VW processor can achieve similar parallelism faster and

with fewer instructions, so in these benchmarks the overhead of meta instructions are
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Figure 5.6: Meaningful IPC (Higher is Better)

significantly reduced.

5.5.2 Energy Analysis

Figure 5.7 shows what the state of lane 1 is throughout the lifespan of the benchmarks

run. We find that lane 1 only needs to execute around 38.3% of all instruction packs.

During other times, it is either suspended or halted, allowing the lane to remain in a

low-power state. This is similar to the benefits provided by an SLA processor, and

disabling fetching and instruction cache access allows for opportunities for energy

savings.
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Figure 5.7: SLA-VW L2-L2 Lane Active States for Lane 1
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Figure 5.8: Instruction Cache Power Normalized to VLIW (Lower is
Better)

As shown by Figure 5.8, SLA-VW loses some power savings in the instruction cache

since the lane active granularity is lower than the SLA processor. However, it still

outperforms the VLIW processor, with around a 21.3% reduction in instruction cache
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power. The most notable exception to power reduction is 429.mcf, which had poor

instruction cache performance, meaning more accesses to the unified level 2 cache,

driving up power usage. However, in all other cases, the SLA-L2-L2 simulator reg-

ularly performed between the instruction cache power of the VLIW and the SLA

processors.

VLIW

SLA-VW

SLA

0.00 5.00 10.00 15.00

Lane 0 Lane 1 Lane 2 Lane 3

Figure 5.9: Instruction Cache misses per 1k meaningful instructions
(Lower is Better)

Figure 5.9 shows that, in our benchmarks, we find instruction cache misses increase

for the SLA processor due to a significant number of introduced meta instructions

in lane 0. However, we find that the performance of the SLA-VW processor is more

resiliant to high numbers of meta instructions, as the potential to move them off of the

critical path is increased. Both processors have a marginally better cache hit rate per
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access, but due to an increase in meta instructions, perform worse in the meaningful-

instructions metric. However, the decrease in performance is mitigated by the the

ability to mask instruction cache latency by interleaving cache miss requests when

a lane misses, since caches can send requests when suspended, and when multiple

caches miss at the same time, requests can be pipelined.

5.5.3 Critical Path Expansion Analysis
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Figure 5.10: Total Instruction Packs Retired Normalized to VLIW
(Lower is Better)

We analyze the total number of packs retired during the benchmark execution of

10 billion meaningful instructions to determine the length of the critical path of
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the processor. Figure 5.10 shows that SLA-VW expands the length of the critical

path significantly less than the SLA processor, since many functions that previously

introduced meta instructions only have modest parallelism, and functions that do

not expand the width of the processor do not introduce as many meta instructions.

The SLA-VW processor only expands the path by 3% throughout spec06. The main

reason 470.lbm and 482.sphinx3 significantly expand the packs retired involves tight

loops, where a pack must be dedicated for pb instructions to finish executing. Many

of the tight loops needing an additional pack for pb instruction are eliminated in

the SLA-VW L2-L2 configuration, since a way in lane 1 can be dedicated for a pb

operation while a meaningful operation can be scheduled in the other way. Increasing

pb flexibility scheduling reduces the chances of the pb operation expanding the critical

path, especially in tight loops that contain only a few operations. In 462.libquantum,

SLA shrinks the critical path compared to SLA-VW, this is primarily due to functions

that do not execute a colane in SLA-VW, where SLA-VW expands to 3 lanes. This is

due to the scheduler for the SLA-VW finding that remaining 2-wide was preferential

to 4-wide in a large number of functions, and that the meta instruction overhead

would be greater than the performance gained by an additional two active lanes.
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Figure 5.11: Total Operations Encoded (Normalized to VLIW)

5.5.4 Binary Encoding Size

When analyzing the size of the binary encodings, we find that SLA-VW processors

tend to perform much closer to SLA processors than VLIW processors, as shown by

Figure 5.11. Similar to before, we omit the libraries and count the total number

of encoded operations for each benchmark. In most lanes, we found that the op-

erations encoded were close to that of the SLA-VW processor. Notably, we found

that 462.libquantum encoded fewer operations than the SLA-VW, primarily due to

the number of functions that remained 2-wide instead of 3-wide in the SLA binary,

meaning that there were fewer meta instructions introduced.
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5.6 Related Work

5.6.1 Multi-PC and Distributed VLIW Designs

The approach of increasing granularity was addressed by research into clustered

VLIWs. To mitigate wire delays, from centralized resources, Zhong et al. proposed

a variation of the VLIW processor design, called the distributed control path VLIW

(DVLIW) [42]. The DVLIW processor design similarly distributed fetch, decode, and

distribution logic, and each cluster was provided it’s own PC. There have been other

clustered VLIW approaches as well, which cluster and partition resources. The Mul-

tiVLIW processor proposed by Sánchez and González introduced partitioned VLIW

architecture design, and designed partitions to maximize locality and minimize wire

delays, along with distributing cache memory and instruction fetch. Both of these

designs focused on mitigating wire delay and improving VLIW scalability through

clustering resources, not the ability to synchronize lanes through suspending and

resuming control flow.
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5.6.2 Static Code Compression

There have been many techniques to reduce the code size of VLIW architectures by

the use of compression. Some architectures compress nop operations in the VLIW by

setting special bits within the VLIW, such as the Philips Trimedia and TigerSHARC

processors [1, 2], which is also referred to as variable length VLIW encoding [36, 40].

Some of these architectures will compress the VLIWs in memory and have the nop

operations explicitly represented in the instruction cache or have hardware dedicated

to realigning packs of instructions that cross cache boundaries and variable PC in-

crements informed by the size of previous packs [2, 5, 19]. A scheme proposed by

Li. et al. considers vertical instruction stream compression, but focuses on increas-

ing parallel decoding of Huffman codes [24] instead of entirely decoupling streams.

Other proposals to allow for on-the-fly decoding of compressed binaries using ded-

icated hardware have also been used[23, 34]. The Itanium processor uses template

bits to represent which types of operations are placed in a bundle to indicate that

the operations are independent and can be executed in parallel [35]. Other solutions

include allowing support for compact operations, which take up less space than nor-

mal operations, allowing for some packs to have more operations than the normal

instruction width would allow [18, 36]. All of these techniques introduce additional

complexity to reduce code size. We believe the SLA processor offers many of the same

benefits as these compression algorithms without the need for dedicated mechanisms
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to maintain alignment that are required in VLIW processors.

5.6.3 Instruction Cache Power

There are many cache improvements that have been targeted for traditional processor

designs, and many are not mutually exclusive to the SLA processor. A notable

technique is like drowsy instruction caches [22], which reduce power via reducing cache

leakage, which can be informed by lane state instead of predictions. Similarly, there

are many techniques involving tools to predict either the cache way or subdividing

instruction caches to only access parts of the cache that likely contain the data [8, 21,

41]. The instruction cache design in the SLA processor gains efficiency using similar

principles by having each lane have it’s own instruction cache that is responsible for

that specific lane’s data.
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Chapter 6

Conclusion and Future Work

This dissertation provides a new architectural design paradigm, where single threads

can be represented by parallel instruction streams. We explored novel techniques to

schedule and execute these streams, and analyzed the consequences of SLA processors

versus existing VLIW design through the SCALE ISA.

In this work, our primary contributions were:

1. We formed a novel program representation that decouples independent instruc-

tions within a pack into separate instruction streams within a single thread.

2. We designed a new ISA to support this new representation, called the Stati-

cally Controlled Synchronous Lane Architecture ISA, which provided tools for
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effective lane management.

3. We implemented simulators of a new architecture called the Synchronized Lane

Architecture, which encompasses both the hardware and accompanying instruc-

tion stream design.

4. We showed an extension of the SLA design, called SLA-VW, that supports a

hybrid VLIW-like design for each lane, allowing for wider lanes, and showed

how we can minimize SLA overhead while widening the processor.

We believe that the representation of single-threads as a set of instruction streams

offers a significant new design space that has previously been unexplored. While

this work does not resolve certain issues, such as variable-length instruction latencies,

it removes the need for instruction packs to be represented together and lays the

groundwork for future solutions to these weaknesses. The SLA processor is a funda-

mentally new architecture, and with maturity, we believe that this new design can be

a powerful, new tool for representation of parallelism in binary code. We demonstrate

that the SLA processor’s ability to dynamically start and stop streams of instructions

without the need for nops allows it to remain competitive with current solutions in

Chapter 4.

While not as mature as many other processors, the design is orthogonal to many
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other approaches, meaning the SLA processor can still benefit from many of the op-

timizations and opportunities that exist in in-order superscalar and VLIW machines,

and can even become a hybrid processor capable of handling combinations of other

instruction styles. We also demonstrate an SLA-unique optimization that allows for

hybrid alternatives, giving behaviors similar to a combination of the VLIW and SLA

processors in Chapter 5.

We aim to continue exploring avenues that this design can offer, including widening

the width of the machine to allow for more streams, decoupling the frontend and

backend widths, and exploring how fetch windows can be expanded with superscalar

machines capable of using multiple streams. We also believe there is promise in

looking for ways to remove the need for an explicit synchronization bit, and instead

using register dependencies to track lane active requirements to relax the lock-step

requirements to which lanes have so far been limited.

In conclusion, we have designed, implemented, and evaluated the new SLA architec-

ture and accompanying ISA, and developed techniques to compare performance with

traditional processor design. The approach was comparable to other representations,

and shows promise as a new avenue of code representation and execution.
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[28] S. Önder and R. Gupta, “Automatic generation of microarchitecture simulators,”

in IEEE International Conference on Computer Languages, Chicago, May 1998,

pp. 80–89.

107



[29] K. J. Ottenstein, R. A. Ballance, and A. B. MacCabe, “The program dependence

web: a representation supporting control-, data-, and demand-driven interpre-

tation of imperative languages,” in Proceedings of the ACM SIGPLAN 1990

conference on Programming language design and implementation, 1990, pp. 257–

271.
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Appendix A

Scale ISA Instructions

The SCALE ISA is a MIPS-like ISA that uses the same major instruction categories

of R-type, J-type, and I-type operations, though some instructions concatonate fields.

Furthermore, since the opcode fields are more contracted, we add an additional type to

handle many floating point operations, called FP-type. Below is the ISA and bit lay-

outs for the SCALE ISA, followed by tables of introduced dedicated synchronization

instructions and their definitions and then tables of all other SCALE instructions.

31 30 · · · 26 25 · · · 21 20 · · · 16 15 · · · 11 10 · · · 6 5 · · · 0

sr opcode rs rt rd shamt funct

Figure A.1: R-type instruction layout
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31 30 · · · 26 25 · · · 0

sr rs offset

Figure A.2: J-type instruction layout

31 30 · · · 26 25 · · · 21 20 · · · 16 15 · · · 0

sr opcode rs rt immediate

Figure A.3: I-type instruction layout

31 30 · · · 26 25 · · · 21 20 · · · 16 15 · · · 11 10 · · · 6
5 ·
· · 4

3 ·
· · 0

sr opcode copf1 rt/ft fs fd ufc cond

Figure A.4: FP-type instruction layout
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