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Abstract

Programmers typically rely on a keyboard and mouse for input, which poses sig-

nificant challenges for individuals with motor impairments, limiting their ability

to effectively input programs. Voice-based programming offers a promising al-

ternative, enabling a more inclusive and accessible programming environment.

Insights from interviews with motor-impaired programmers revealed that memo-

rizing unnatural commands in existing voice-based programming systems led to

frustration. In this work, we explore how programmers naturally speak a single

line of code and present a comprehensive methodology for a voice programming

system aimed at making programming more accessible for diverse users.

To achieve this, we adopted a two-step pipeline. The first step focuses on recogniz-

ing single lines of spoken code by adapting a large pre-trained speech recognition

model. By adapting the model with just one hour of spoken programs and lever-

aging existing natural English language data, we reduced the word error rate

from 28.4% to 8.7%. Additional improvements were achieved by decoding with

a domain-specific N-gram model and rescoring with a fine-tuned large language

model tailored to programming languages, resulting in a WER of 5.5%.

xiv



The second step involves translating the recognized text into the target line of

code. Our approach to text-to-code translation is the first to address spoken pro-

grams, converting a single line of text to a single line of code, whereas current

systems typically translate comments to blocks of code. We used a large language

model known for generating code from comments and adapted it to learn how

to generate single lines of code. This adaptation led to a significant improve-

ment in the CodeBLEU score from 56.9% to 83.3% on our test set. In addition,

when translating recognized transcripts to target code, our best-adapted model

showed marked success. The CodeBLEU score improved from 53.7% to 76.7%,

demonstrating the model’s ability to handle errors from the speech recognizer.
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Chapter 1

Introduction

1.1 Motivation

The traditional reliance on keyboards and mice for programming presents signif-

icant challenges, particularly for those with motor impairments. While typing is

the standard method for code input, it creates barriers that can prevent individuals

with motor impairments from pursuing or advancing in computer science. Fur-

thermore, the physical strain of prolonged typing can result in Repetitive Strain

Injury (RSI). RSI can severely limit a person’s ability to type, effectively removing

them from their profession despite their skills and passion for programming.

Voice programming offers a compelling alternative, allowing code input through

speech rather than typing. This approach benefits those with existing motor im-

pairments and serves as a preventive measure against RSI for all programmers.

With the help of advancements in speech recognition and natural language pro-
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cessing, voice programming has the potential to revolutionize the coding process,

making it more inclusive and less dependent on traditional input devices.

1.2 Challenges in Speaking Code

Speaking code is different than typing code. Transitioning from typing to speaking

code introduces challenges that must be addressed to develop an effective voice

programming system. While programming languages have strict grammar rules

that should theoretically make them more predictable than natural language,

several factors complicate this predictability:

• Variation in Spoken Programs: Different programmers may speak a line

of code differently. Novice programmers might struggle with speaking code

correctly, while experts might use shorthand or more advanced terminol-

ogy. A single line of code can be spoken in various ways. For instance, the

statement “System.out.println(”Hello, World”);” could be spoken pre-

cisely (e.g., “System dot out dot println open parenthesis quote Hello

comma World quote close parenthesis semicolon”) or more naturally (e.g.,

“print Hello, World to the console”). The latter approach is more intu-

itive and reduces the cognitive load on the programmer, as it does not require

the programmer to recall the exact syntax. However, this natural method

can lead to misinterpretation. For example, the command “Create a for

loop that iterates from 1 to 10” neither specifies whether the loop counter

should be declared within the loop or separately nor details how it should

2



increment the variable and the name of the variable.

• User-defined Symbols: Dictating user-defined symbols such as variable

names, method names, and class names can be particularly challenging.

For example, a variable named “userAge” might be spoken as “user age”

or “usersage”, or with capitalization specified as “user uppercase a age”.

Furthermore, abbreviations and numbers mixed with words can add to the

complexity. For instance, a method named “get3rdItem” could be spoken as

“get third item” or “get three rd item”. A particularly ambiguous case

might involve a variable name that can be spelled out or spoken as the full

name, like “cnt”, which could be spoken as “c n t” or “count”.

• Mixed Natural Language and Programming Terms: Another signif-

icant challenge arises from the mix of natural language and programming-

specific terms in comments and documentation. For instance, a user might

say, “set user status to null if no record is found”, where the pro-

gramming term “null” is mixed with natural language. Another exam-

ple could be “comment: validate emailAddr before submitting”, where an

abbreviated variable name is interspersed with natural language. Addi-

tionally, a user might say, “check if isActive boolean is true before

processing”, combining the programming term “boolean” with natural lan-

guage.

3



1.3 Current Landscape of Voice Programming

Developing a voice programming system is complex, as it involves more than

merely dictating lines of code. It requires accurately recognizing domain-specific

terminology, handling diverse accents, integrating with existing programming en-

vironments, and managing complex programming constructs and syntax. This

chapter presents the overall picture of the current landscape of voice program-

ming systems. Details about user studies, methodology, and the evaluation of the

systems will be provided in Chapter 3.

Several software developers with motor impairments have developed voice pro-

gramming systems for personal use and for others willing to invest significant effort

in learning a new spoken language. Tavis Rudd, a software developer who suf-

fered from RSI, created a voice-based system to write code. His spoken Python

language [54] requires users to learn over 1000 specific commands. For example,

users must say “snake case underscore variable” to input a variable name like

“snake_case_variable”. Tavis Rudd’s system uses the Dragon Naturally Speak-

ing recognizer, customized extensively to handle the programming-specific vocab-

ulary. Dragon Naturally Speaking [58] is a speech recognition engine designed to

dictate natural text. In a study [20] evaluating Dragon Naturally Speaking, it

achieved a WER of 3-5% for Python, but 13-18% for C and 20-27% for Java. Its

use in programming is thus limited by its general-purpose nature, requiring signif-

icant customization and scripting to support programming languages effectively.

After developing severe hand pain, Ryan Hileman left his full-time software

4



engineer job to develop Talon1. Talon allows hands-free input through speech

recognition and eye tracking. Rick Mohr, also diagnosed with RSI, developed Vo-

cola2, a spoken command language to control a computer. Additionally, Matt Wi-

ethoff, after his RSI diagnosis, developed Serenade3, a popular voice programming

platform. Serenade requires precise spoken commands. Talon, Vocola, Serenade,

and Tavis Rudd’s developed system all require commands to match predefined

sets exactly, lacking natural language processing capabilities. The limitation here

is the steep learning curve due to the vast number of commands.

Previous research has predominantly focused on command-based voice pro-

gramming systems, which necessitate that programmers learn specific grammati-

cal structures and syntax to function effectively [35, 51, 37, 66, 22]. These systems

typically involve users issuing predefined commands that the system recognizes

and converts into code. Some studies have investigated the potential for users

to create custom commands tailored to their individual needs [35]. Furthermore,

there have been efforts to integrate voice programming into existing development

environments, which leverages the familiar tools and workflows that programmers

already use [7, 37, 35].

Evaluations of command-based systems [35, 51, 37, 66, 22] with motor-impaired

programmers have been limited, although some studies have aimed to address

this gap [51, 37]. The existing command-based systems have often highlighted

challenges such as limited speech recognition accuracy and inefficiency in real-
1https://talonvoice.com/
2http://vocola.net/
3https://serenade.ai/
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world scenarios. The limited accuracy of speech recognition systems has been

a significant barrier, often resulting in incorrect code generation and increased

user frustration. Additionally, the inefficiency of these systems in real-world pro-

gramming environments, where quick and accurate input is required, has further

limited their adoption. These challenges underscore the need for improved speech

recognition technology that can more accurately interpret spoken commands and

better support the needs of all programmers.

In addition to command-based systems, block-based voice programming tools

[66, 44, 27] have been developed, allowing users to construct programs using a more

visual interface. However, they still suffer from the fundamental issue of speech

recognition limitations. According to their evaluation, the system was easy to use,

but users found it hard to learn the predefined commands. The authors concluded

that more accurate speech recognition is required as short commands like “in”

or “up” were misrecognized 70% of the time. While these visual programming

languages are primarily designed for educational purposes and are rarely used by

professional programmers, they play a crucial role in introducing programming

concepts to novices.

Researchers have explored developing natural language-based systems that

enable users to speak more naturally without needing to learn specific commands

or structures [3, 6, 15]. Some have even developed conversational systems [63] to

facilitate programming through natural language interactions. CONVO supports

program creation, editing, and execution using voice and text inputs. The system

allows users to issue commands such as “create a variable” and engage in a dialogue
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to complete programming tasks. While CONVO demonstrates the potential of

conversational programming, it faces significant challenges, particularly in speech

recognition accuracy. Using Google’s Cloud Speech-To-Text API, the study found

that current ASR systems often misinterpret programming-specific commands and

highlighted the need for custom ASR models tailored to programming languages.

However, these systems are still underdeveloped: they struggle with accurately

recognizing and interpreting domain-specific terminology.

Despite progress in voice programming, challenges like speech recognition ac-

curacy and needing precise commands are still major barriers. Current systems

often require users to remember many voice commands or need a lot of customiza-

tion. While customization can reduce the need to remember specific commands

for simple programming statements, it comes with challenges. Customization

can be time-consuming and may not scale well as programming tasks become

more complex. As the number of required commands grows, managing these cus-

tomizations can become cumbersome, highlighting the limitations of current voice

programming systems. This underscores the need for improved solutions that can

intuitively understand and execute natural language instructions with minimal

user training or customization.

1.4 Our Approach

Developing a voice-based programming system is a challenging endeavor that re-

quires sophisticated speech recognition models and intelligent translation mech-
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Figure 1.1: A two‐step pipeline of a voice programming system.

anisms to handle the variability and complexity of spoken code. Previous ap-

proaches have relied on unmodified speech recognizers trained in natural English.

These systems often fail to accurately capture the nuances and specific syntax of

programming languages, leading to frequent misinterpretations and errors in code

generation. Our research represents the first work to build a voice programming

system from the ground up, collecting training data specifically tailored for recog-

nizing spoken code. This method allows us to develop purpose-built components

for the task, significantly improving speech recognition accuracy for programming.

Our research focuses on creating a voice programming system tailored to Java.

However, the methods and insights gained from this work are broadly applicable

to other programming languages. We aim to develop methodologies that can

be adapted for different programming languages, ultimately contributing to the

development of a versatile voice programming system.

1.4.1 A Two-Step Pipeline

We adopted a two-step approach: first, recognizing spoken code, and second,

translating the recognized text into accurate code as shown in Figure 1.1. The
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two-step pipeline offers several key benefits: by breaking down the task into dis-

tinct steps, we can address the challenges of speech recognition and code gener-

ation separately, leading to a more adaptable system. Additionally, each model

can be trained and fine-tuned to handle specific speech types, such as naturally

spoken programs or command-based spoken programs, thereby improving recog-

nition accuracy and translation precision. Furthermore, each component can be

optimized independently to support different target languages. In contrast, an

end-to-end model would require significantly more acoustic data to handle diverse

accents and speech variations, making it less efficient and flexible.

The first step focuses on speech recognition, converting spoken input into tex-

tual form. This step leverages state-of-the-art commercial and advanced neural

research recognizers to capture the diverse ways programmers speak code. The

second step involves translating this text into correct code and handling the syn-

tactic and semantic requirements of the target programming language. Separating

speech recognition from code generation allows for targeted improvements in each

area. It provides a more manageable framework for developing an effective voice

programming system by focusing on the unique challenges each step presents.

1.4.2 A Line-by-Line Approach

We focus on a line-by-line approach to voice programming instead of generating

whole code blocks. Several key reasons support our choice of the line-by-line

approach:

• Accuracy and Trust Issues: Large language models (LLMs) [49, 10, 12,

9



29] have revolutionized programming by generating code blocks from text

prompts. However, their accuracy can vary significantly, largely depending

on the quality and scope of their training data [61]. According to the 2023

StackOverflow survey4, 70% of the 89,184 programmers surveyed were either

using or planning to use AI tools in their development process that year,

with 32% noting that these tools have significantly increased their produc-

tivity. Despite this, only 2.85% of respondents highly trusted the output,

and 39.3% somewhat trusted it. When LLMs struggle to produce accurate

results, it often becomes necessary to correct individual lines or sections of

the generated code manually.

• Non-Linear Workflows: Programmers often work in non-linear fashions,

jumping between code sections or revisiting previously written lines. They

may prefer incrementally breaking down tasks into smaller, manageable

pieces and writing code.

• Learning and Skill Retention: LLMs can undoubtedly automate rou-

tine and repetitive coding tasks, freeing up programmers’ time for more

complex and creative aspects of development. However, an over-reliance on

LLMs to generate entire code blocks could hinder novices’ understanding

of fundamental coding concepts and problem-solving skills. Even for ex-

perienced developers, excessive dependence on LLMs could diminish their

manual coding skills and ability to debug effectively, potentially impacting
4https://survey.stackoverflow.co/2023/
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their long-term career prospects.

• Control and Precision: Speaking code line-by-line gives programmers

more control and accuracy, ensuring the final code meets their needs.

Based on these insights, we collected data on how programmers speak indi-

vidual lines of code rather than entire programs. We adapted LLMs originally

designed to handle whole code blocks to recognize and process code spoken line-

by-line better, aiming to improve the accuracy of voice-driven coding and ensure

programmers can maintain control over the coding process.

1.5 Research Questions

Our work addresses the following research questions:

1. RQ1: What are motor-impaired programmers’ perceptions, needs, and chal-

lenges regarding voice programming systems?

2. RQ2: How do different programmers naturally speak programs without pre-

scriptive grammar?

3. RQ3: How can we improve the accuracy of recognizing line-by-line spoken

programs?

4. RQ4: How can we accurately translate the recognized text into the target

line of code?
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1.6 Dissertation Outline and Contributions

The organization of the rest of the dissertation is as follows:

• Chapter 2: This chapter presents an interview study with motor-impaired

programmers. The contributions include:

– Providing a comprehensive understanding of the unique challenges

faced by motor-impaired programmers, offering valuable insights for

designing more accessible and effective voice programming systems.

– Highlighting motor-impaired programmers’ needs and preferences, which

can guide the development of tailored solutions to enhance their pro-

gramming experience.

• Chapter 3: This chapter investigates how novice and expert programmers

naturally speak a line of code. The contributions include:

– Providing new insights into how diverse programmers vocalize code

without being taught specific grammar. This can inform the develop-

ment of more effective voice-based systems.

– Conducting the first comparison of two methods for collecting spoken

code: speaking a missing and highlighted line of code. This helps

identify the more effective approach for capturing necessary variations

and developing accurate language models.

– Releasing the first dataset5 that includes individual spoken lines of
5https://osf.io/h6nk4
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code, corresponding target lines of code, and transcripts of how pro-

grammers vocalized those lines, offering a valuable resource for the

research community.

• Chapter 4: This chapter focuses on the first step of our two-step pipeline:

recognizing the literal words spoken by programmers. The contributions

include:

– Conducting the first study that recognizes line-by-line spoken programs

by adapting a speech recognizer with knowledge of natural language

using our collected spoken programs.

– Improving line-by-line spoken program recognition by adapting a large

pre-trained language model trained on various programming languages.

• Chapter 5: This chapter focuses on the second step: converting recognized

text into the target line of code. The contributions include:

– Demonstrating methods to adapt a large language model for incremen-

tal code generation originally trained to generate whole code blocks.

– Illustrating how considering the context surrounding each line of code

can significantly improve the model’s ability to produce syntactically

and semantically correct code.

• Chapter 6: This chapter concludes the dissertation by summarizing the

contributions, discussing limitations, and suggesting future work.
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Chapter 2

Interviewing Motor-impaired Programmers

2.1 Introduction

The first step in developing a voice programming system that effectively meets

user needs is to thoroughly understand the challenges and requirements of the

target users. For programmers with motor impairments, programming by voice

can significantly enhance their productivity by providing an alternative to tradi-

tional input methods. This chapter explores the experiences and perceptions of

programmers with motor impairments using voice programming tools. The goal

is to uncover their vision for an ideal voice programming system. This insight

will guide future development efforts to create a system that truly benefits these

users.
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2.2 Related Work

A 2018 article [39] described three motor-impaired programmers’ experience of

using existing voice programming systems to continue their work despite motor

impairment. These individuals turned to voice coding to alleviate the strain of

traditional typing. The article highlighted the extensive setup and training re-

quired to become proficient with voice coding tools. The article also mentioned

that learning and adapting to the necessary voice commands often took months

of effort. Users reported benefits such as reduced physical strain and maintained

productivity. However, they also faced significant challenges due to the lack of nat-

ural language processing in existing systems, which required memorizing precise

command phrases. Building on this, our interview study of seven motor-impaired

programmers provides new insights into some of the significant challenges in pro-

gramming by voice (e.g. speaking variable names and editing code) and how these

programmers envision an ideal voice programming system. To our knowledge, no

other studies have interviewed target users in the context of voice programming.

2.3 Participants

We recruited seven motor-impaired programmers with between 6 and 20 years of

programming experience. All participants were native English speakers who wrote

programs almost daily, utilizing a combination of mouse, keyboard, and voice for

programming tasks. They also used voice user interfaces for everyday activities
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such as writing emails and getting directions. The participants were recruited

through word of mouth. Table 2.1 provides detailed participant information.

2.4 Procedure

We conducted semi-structured interviews with the participants, beginning with

obtaining informed consent from each participant. We explained the study’s ob-

jectives, tasks, and potential risks and emphasized that participation was entirely

voluntary. The study comprised a questionnaire followed by a series of open-ended

questions.

The questionnaire gathered demographic information, participants’ experi-

ences with voice user interfaces, and their programming backgrounds. It also

included a 7-point Likert scale to rate their programming experience. Appendix

A includes the questionnaire and the open-ended questions.

During the open-ended questions, participants described their use of voice

user interfaces for non-programming tasks, shared their experiences with voice

programming tools, and discussed their challenges when inputting programs by

voice. We also asked them to envision an ideal, highly accurate future voice pro-

gramming system and identify the most challenging aspects of programming by

voice. Additionally, participants were asked about any privacy or social concerns

regarding voice programming systems and in what situations they believed voice

programming would be most useful. The interviews were conducted via videocon-

ferencing software. Participants were compensated $20 for their participation.

16



P. Gender Current job Physical condition Prog. Exp.

P1 female graduate student chronic musculoskeletal pain 8 years
P2 male web developer neurological accident 7 years
P3 female graduate student spinal muscular atrophy 20 years
P4 female academic researcher small fiber neuropathy 16 years
P5 male professor congenital upper limb deficiency 17 years
P6 male academic researcher upper limb musculoskeletal disorder 6 years
P7 male software architect temporary repetitive strain injury 24 years

Table 2.1: Details about the interviewed participants with motor impairments.
(P. = Participant, Prog. Exp. = Programming Experience)

We transcribed the interview recordings and reviewed the transcripts to under-

stand the participants’ perspectives better. Using thematic analysis, we derived

codes from the interview data and grouped similar codes into broader themes.

Finally, we cross-checked the themes with the original transcripts to ensure they

accurately represented the participants’ views.

2.5 Results

Our questionnaire revealed six participants used voice interfaces to write emails

and get directions. Two participants strongly agreed, and four agreed that speech

interfaces sometimes misunderstood them. Five participants strongly agreed that

they were expert programmers. Four agreed, and three strongly agreed that they

frequently wrote programs.

From the thematic analysis of the qualitative data, we found five themes:

experience, vision, challenges, privacy, and usefulness. The resulting themes, short

descriptions, and corresponding quotes are presented in Table 2.2. A detailed
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discussion of each theme follows, providing a deeper insight into the participants’

perspectives and experiences.

Theme: Experience. All participants indicated they took frequent breaks

while writing programs. All participants used both Dragon Naturally Speaking1

and VoiceCode2. Three of them currently use Talon3 to dictate programs. One

participant said that existing voice programming technologies can dictate simple

words accurately, such as print, insert tabs, and add punctuation, such as sin-

gle and double quotes. Two participants stated that the technologies they used

to program by voice were poorly documented. In addition, the interviewees men-

tioned that the existing systems forced them to learn a large number of commands.

Learning these commands required many hours, and the process was frustrating

and stressful. Two participants said that the system occasionally misrecognized

a very long command, and they found it annoying and time-consuming to input

the command again.

Theme: Vision. Five participants wished they could write programs via

natural language. They also mentioned that there should be a mechanism to

distinguish between words that sound the same in English but signify different

things in the context in which they were stated (e.g. the word “to” and the number

“two”). Participants thought an intelligent voice programming system should be

able to incorporate corrections. According to one participant, navigating through

the code and editing a specific word on a certain line would be useful.
1https://www.nuance.com/dragon.html
2https://voicecode.io/details
3https://talonvoice.com/
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Themes Description Illustrative quotes

Experience Experience of using
voice user interfaces
to write code

“It’s certainly not doing natural language process-
ing in interpreting your commands, but they try
to make them feel like a natural command, and I
think they do it at the expense of the power and
unambiguous nature that you could get.” (P1)

“A lot of people bounce off of dictating code when
they start because it’s really annoying and un-
pleasant to learn all these commands.” (P4)

Vision Vision of a future
voice programming
system

“I’m going to assume something closer to like the
Star Trek computer that has a lot of natural lan-
guage processing.” (P2)

“I guess it would be more similar to the experi-
ence of pair programming with someone.” (P4)

Challenges Parts of program
difficult to input by
voice

“Switching between comments and the rest of
your code is I think a little hard because those
are really two different modes.” (P4)

“There are some real challenges with variable
names that might not be normal spoken words.”
(P1)

Privacy Privacy or social
concerns of using a
voice programming
system

“I have privacy concerns about using voice in-
terfaces if I’m not in a private place and can be
overheard.” (P1)

“I would never use a cloud-based speech recog-
nizer to write programs as it’s hard to know what
information is gathered and who might have ac-
cess to it.” (P6)

Usefulness Situations in which
voice programming
would be useful

“People won’t be intimidated by typing by hand,
so it would give them more energy and focus on
actually solving the problem.” (P3)

“For people who are on the verge of developing
RSI and also for people who can’t type in the
first place.” (P7)

Table 2.2: Details of the five themes and representative quotes from the thematic
analysis of the interview data.
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Theme: Challenges. Six participants thought variable names would be

very challenging to dictate as they are sometimes not normal spoken words. Two

participants expressed that dictating new variables is hard, and they wish there

were a mechanism to save all previously used variable names for faster dictation.

Two participants mentioned that switching between dictating programming terms

and speaking English was difficult when they needed to write comments in the

code. Three participants mentioned that indentation would be a big challenge

when writing Python code. All participants pointed out that dictating code from

scratch and editing existing code by voice are two distinct things. Five participants

mentioned that navigating the code and correcting errors would be challenging.

Theme: Privacy. Two participants were concerned about using a cloud-

based recognizer as it’s uncertain whether data would be retained and stored.

Two other participants mentioned they would be concerned about privacy if they

had to speak programs where others could hear them. Others said they would not

be concerned about privacy if their voice remained anonymous.

Theme: Usefulness. All participants thought programming by voice would

be useful for people with motor impairments like themselves. Two participants

stated that programming by voice would also be useful for people with no motor

impairments as they can relax while speaking easy parts of a program. Another

participant mentioned that programming by voice would be useful for people

who program as part of their job as they could focus more on problem-solving.

According to all participants, programmers who are at risk of developing RSI

or are in the early stages of it need ways to reduce their use of the keyboard
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and mouse. For these programmers, voice programming could be very useful in

minimizing the strain on their hands and preventing further injury.

2.6 Discussion

The interviews with motor-impaired programmers revealed significant challenges

and yielded insights regarding voice programming systems. Most motor-impaired

programmers found today’s speech recognition technology helpful for general tasks

such as writing emails. However, this technology falls short in creating content

in markup languages (e.g. HTML, and LaTeX) or writing code in programming

languages like Python. In these areas, the available voice solutions are often

awkward and require substantial training, forcing users to adapt to the limitations

of the technology rather than the technology accommodating their needs.

Learning complex commands emerged as a major hurdle, particularly for novice

programmers and those new to programming by voice, such as individuals in intro-

ductory courses. Participants emphasized the difficulty in mastering the extensive

command sets required by existing systems. This challenge could be mitigated

by exploring how programmers speak programs naturally without learning com-

mands.

In theory, programming languages are more predictable than natural languages

because they have strict grammar rules. However, this gets complicated by user-

defined names such as variable and function names. Variable names may contain

abbreviated words and mixed capitalization, which makes them less predictable.

21



Furthermore, it is not apparent whether programmers will speak a line of code

using its exact syntax or more naturally. A key step in developing an intelligent

voice programming system would be investigating how programmers speak various

programs and user-defined names.

Programming involves more than just writing code; it also includes navigating

the code, editing, debugging, and correcting errors. Making these interactions

accessible to individuals with diverse motor abilities presents significant challenges

because they require precise control and complex commands that can be difficult to

perform without traditional input devices. Current voice-based systems primarily

focus on code input, but further research is needed to develop effective voice-based

tools for debugging and code correction.

While current speech recognition technology provides some benefits for general

tasks, it is inadequate for more specialized programming tasks. Addressing the

challenges of training data scarcity, command complexity, and user-defined name

variability is essential for developing a practical and naturally spoken program-

ming system. Given recent advances in speech and natural language processing,

creating such a system appears feasible and would benefit both motor-impaired

and able-bodied programmers.

2.7 Conclusion

In conclusion, our interviews revealed a clear desire among motor-impaired pro-

grammers for a more natural and purpose-built voice programming solution. De-
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spite the availability of several voice programming systems, participants expressed

frustration with the current system’s accuracy and usability. They highlighted

numerous challenges, such as the difficulty dictating code accurately, speaking

variable names, switching between coding and commenting, and the lack of com-

prehensive documentation. Participants also pointed out the steep learning curve

of mastering the extensive commands required by existing systems. While there

are many challenges, we think a practical and naturally spoken programming

system would be valuable to many, given recent advances in speech and natural

language processing.

23



Chapter 3

Exploring How Programmers Speak Code

As we progress toward developing voice programming systems, it becomes im-

perative to understand the nuances of how programmers naturally speak code.

Training language models for such systems requires large datasets encompassing

diverse spoken code examples. This diversity ensures that the models can ef-

fectively handle various speech patterns and programming contexts. To collect

examples of people speaking programs, we conducted three user studies, each

building on the insights of the previous one. In all our user studies, participants

spoke to a hypothetical system. Our primary goals were twofold: first, to capture

the diverse ways programmers speak code, and second, to create a comprehensive

dataset for training language models and fine-tuning acoustic models. Addition-

ally, we aimed to identify effective and scalable methods for collecting spoken

programs. This chapter details the methodologies, findings, and implications of

our user studies.
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3.1 Related Work

Research into voice-based programming systems has evolved over the years, with

various studies focusing on different methodologies to facilitate voice program-

ming. This section reviews key developments in voice programming systems,

highlighting their methodologies, user studies, and lessons learned from their eval-

uations.

Arnold et al. [3] designed a command-based voice programming system called

VocalGenerator. VocalGenerator takes a Context Free Grammar (CFG) and a

voice vocabulary for a programming language as input and generates a program-

ming environment where users can write programs by voice. The system is no

longer being developed.

Maloku and Pllana [35] developed HyperCode, a tool that enables coding in

Java with voice commands using the speech recognition engine Dragon Naturally

Speaking [58]. The tool is embedded within IntelliJ IDEA, a commercial Java

Integrated Development Environment (IDE). HyperCode allows users to create

their own custom voice commands. In a user study, participants coding with a

combination of keyboard, mouse, and voice commands using HyperCode com-

pleted tasks faster, with an average time of 46 seconds. In contrast, participants

using only a keyboard and mouse took an average of 65 seconds, and those using

only voice input took an average of 84 seconds.

Rosenblatt et al. [51] conducted a comprehensive study to develop and evalu-

ate a web application named VocalIDE, a vocal programming editor. A Wizard
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of Oz (WOz) study was conducted with ten participants without motor impair-

ments who completed programming tasks by giving vocal instructions to a human

controlling a text editor. Based on the results from the WOz study, VocalIDE

was designed and developed. VocalIDE enabled users to write and edit code using

voice commands. It incorporated a browser-based automatic speech recognition,

WebKitSpeechRecognition, and a rule-based syntax parser. VocalIDE was eval-

uated with eight participants with upper limb mobility impairments to assess its

usability. The efficiency of the system was limited by inadequate speech recogni-

tion accuracy.

Wagner et al. [66] developed Myna to make block-based visual programming

language accessible. Myna is a voice-driven interface designed to enable motor-

impaired children to learn to program in Scratch1. In an evaluation, Myna took

15.6 seconds less time on average than the mouse and keyboard [65]. However, the

study also highlighted a significant challenge: non-native English speakers made

more errors while using Myna compared to native English speakers.

Price et al. conducted a Wizard of Oz study to explore a spoken language in-

terface for beginner programmers, simulating a system where students described

Java programming tasks aloud. Participants interacted with an expert posing as

the system, providing insights into natural language descriptions and preferred

vocabulary. The study revealed that untuned speech recognition systems strug-

gled with domain-specific language, and disfluencies in speech posed challenges.

Despite these issues, participants responded positively, indicating potential ben-
1https://scratch.mit.edu
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efits for such a natural language-based interface. However, the simulated nature

of the study did not fully reflect real-world interactions, as participants were not

interacting with an actual system but with a human intermediary, which could

influence their behavior and responses.

Desilets [15] conducted a study to understand the challenges involved in pro-

gramming by voice, such as dictating punctuation and variable names with abbre-

viated words and items in mixed cases. The author later developed a tool named

VoiceGrip that enabled users to speak code using a pseudo-code syntax that was

then translated into native code. The system’s capabilities were restricted to a

manually created database containing mapping from native symbols (e.g., “<”)

to pseudo symbols (e.g., “less than”) and some predefined rules to understand

programming constructs.

Brummelen et al. [63] conducted a user study evaluating a voice-based system

called CONVO. CONVO allowed users to program using conversation speech.

For instance, when a user says, “Create a program,” CONVO responds with,

“What do you want to name it?” The authors found that novices appreciated

using natural language, while advanced users preferred text input for accuracy

and efficiency. This study supports our belief that developing a system allowing

users to speak code naturally is worthwhile. However, the reliance on predefined

responses and regex-based parsing may limit the system’s flexibility in handling

diverse programming constructs and languages. The authors also highlighted

that current ASR systems are not sufficient for voice-based programming and

emphasized the need for a custom ASR model tailored for programming tasks.
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Begel and Graham [6, 7] investigated how programmers read aloud Java code

written on paper by asking ten expert programmers to read a page of Java code

as if they were instructing a second-year undergraduate student. They discovered

that, regardless of programming experience, the programmers had similar speech

patterns, though their speaking styles varied significantly depending on the pro-

gramming constructs. This research led to the development of a system called

Spoken Java, which uses a rule-based approach to recognize spoken code. This

system employs a lexical analyzer to break down spoken commands into tokens

and a semantic analyzer to interpret these tokens using contextual information.

However, the authors noted potential limitations, suggesting that their method

might not capture all variations in spoken code, as people might speak differently

when dictating code from scratch versus reading pre-written code aloud. This con-

cern inspired our investigation into collecting spoken code through two methods:

one where the speaker can see the code and another where the speaker cannot see

the code while speaking.

Few studies have investigated the use of natural language in voice program-

ming. Previous research has primarily focused on developing command-based

systems for voice programming, which necessitates that programmers learn spe-

cific grammatical structures. Our approach is distinct. We aim to explore how

programmers naturally speak code without imposing rigid command structures.

Our objective is to understand the diverse ways in which programmers verbalize

code, allowing for a more natural interaction with the system.
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3.2 Study 1: A Pilot

We began with a pilot study to understand the basic challenges and opportunities

in collecting spoken code data. It provided a foundation for refining our methods

and ensuring that our subsequent studies would be more effective.

3.2.1 Participants

The pilot study was completed by 16 undergraduate students. Students had an

average of two years of programming experience. 43% of participants agreed

they frequently wrote programs. 62% of participants were male and 38% were

female. All were native English speakers. According to the responses to the

initial questionnaire, only 5% participants strongly agreed and 5% agreed that

they frequently use voice user interfaces.

3.2.2 Procedure

The pilot study relied on participants downloading and completing the study

via a PowerPoint file. Upon signing the consent form, participants were given the

PowerPoint file. The file included an initial questionnaire, instructions to complete

the experiment, 20 different Java programs, and a final questionnaire. The initial

questionnaire included demographic questions, participant’s experience of using

voice user interfaces, and programming experience. The final questionnaire asked

the participants about their overall experience. Participants typed responses into
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Java program with line 8 missing Java program with line 7 highlighted
1 // Calculates the sum of first n
2 // natural numbers using a for loop
3 public static void main(String[]

args) {
4 int n, i;
5 int sum = 0;
6 Scanner scan = new Scanner(

System.in);
7 n = scan.nextInt();
8
9 sum = sum + i;

10 }
11 System.out.println(”Sum = ” +

sum);
12 }

1 /* The program initializes an
2 * integer variable largeNumCounter
3 * to 0 and increments it.
4 */
5 public class Complex {
6 private double largeNum;
7 private int largeNumCounter=0;

8 public double increment() {
9 largeNumCounter++;

10 }
11 }

Table 3.1: Example of two Java programs from the user studies 1 and 2. The left program
has a missing line. The right program has a highlighted line.

the slides for the questionnaires. Initial and final questionnaires are included in

Section A.2.

We created two PowerPoint files, each having the same 20 Java programs.

In the first PowerPoint file, odd-numbered programs had a missing line, while

even-numbered programs had a highlighted line. In the second, we reversed this.

Half the participants received the first version, and the other half received the

second one. The programs involved a variety of statements, including loops, con-

structors, switches, variable declarations, object creations, if statements, defining

and invoking methods, comments, and math statements. One program had a

multi-line comment. Each program included comments that helped participants

understand the purpose of the program. Table 3.1 shows an example of one Java
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program with a missing line and one Java program with a highlighted line. All

programs used in the experiment are available online2.

Participants completed the study remotely using their own computer and mi-

crophone. They did not receive any feedback while recording their voice. The

participants were paid $15, and some also received extra credit in a course. At

the beginning of the experiment, participants were instructed as follows:

a) “Imagine you are a programmer who has an injury. Typing on the

keyboard is difficult for you. How would you speak code to an intelli-

gent computer program that could convert your speech into code?”

b) “There are no rules in how you speak code.”

We collected a total of 320 recordings. We trimmed silence and the start and

end of recordings from the recorded audio files. Next, we created text transcripts

for each audio file. We listened to each audio file and transcribed it verbatim,

including spoken symbols, words, and spaces. For example, “case quotation

marks t w o end quotation marks colon”.

3.3 Study 2

Study 1 relied on participants downloading and completing the study via a Power-

Point file. This approach did not allow us to log user actions, limiting our ability

to analyze participant behavior during the experiment. In addition, the pilot
2https://osf.io/h6nk4
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study involved a small, homogeneous group with similar programming experi-

ence. This limited our ability to capture a wide range of spoken code utterances.

We conducted Study 2 with the goal of understanding: 1) the diverse ways in

which different programmers speak code, 2) various ways specific programming

constructs can be uttered, and 3) the most effective method for collecting spoken

code.

3.3.1 Participants

We recruited 12 novice programmers (7 female, 5 male) from introductory Java

courses. We recruited 12 expert programmers (2 female, 10 male) through word-

of-mouth. Experts were required to have at least four years of programming

experience and be familiar with Java. Experts’ programming experience ranged

from two to 23 years. All participants were native English speakers. As for their

usage of speech interfaces, 8% of novices and 18% of experts strongly agreed or

agreed that they frequently used speech interfaces. We asked participants how

frequently they wrote programs. 58% of novice participants and all of the expert

participants strongly agreed or agreed that they frequently wrote programs.

3.3.2 Procedure

We created two sets of programs, each consisting of 20 identical Java programs. In

the first set, the odd-numbered programs had missing lines(s), and even-numbered

programs had highlighted line(s). In the second one, we reversed this. Partici-

pants were randomly assigned to the first version or the second version. Out
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of the 20 Java programs, 16 had single missing or single highlighted lines, while

four had multiple missing or highlighted lines of code. The single lines of code

included various code constructs, such as function calls, if-else statements, loops,

input-output statements, arrays, comments, decrement operations, mathematical

calculations, and variable declarations. The multiline code snippets included an

if-else block, a for-loop block, a multiline comment, and a function body. Table

3.1 shows an example of a Java program with a missing line and highlighted line

as used in our study. On average, the single-line and the multi-line programming

statements were 42 and 53 characters long, respectively. All 20 programs were

different and ranged from 6 to 16 lines. All programs used in the experiment are

available online3.

Instead of PowerPoint, we used a web application to better log user actions and

interactions, providing more precise data. Using the web application, participants

first signed a consent form and filled out a demographic questionnaire.

For each program, participants recorded themselves speaking either the miss-

ing line(s) or highlighted line(s) of each program. They received no feedback

while speaking but could play back their recording afterward. Participants could

re-record the audio for a given program as many times as they wanted; we only

kept the last recording. Finally, they completed a questionnaire that asked about

their experience during the study.

We manually reviewed all collected recordings. Novice participants often sub-

mitted empty recordings for the multi-line tasks, which we discarded. In total,
3https://osf.io/h6nk4
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we collected 224 audio files (192 for single lines, 32 for multi-lines) from the

novices and 240 audio files (192 for single lines and 48 for multi-lines) from

the experts. We listened to each audio file and typed a verbatim word-by-

word transcript of what the person said, including spoken symbols, words, and

spaces. For example, “string very large string two equals quotation mark

world end quotation mark semicolon”. Each recording was transcribed into a

one-line transcript for both single and multi-line programming statements. We

have made the text transcripts of SpokenJava 1.0 available4, but unfortunately,

we did not have ethics approval to release the audio recordings.

3.3.3 Results

Novices completed the experiment on average in 48 minutes (SD = 8.8), while ex-

perts took 45 minutes (SD = 26.2). We analyzed two participant groups, novices,

and experts, to analyze two measures: speaking style and speaking rate in both

the missing and highlighted conditions. Additionally, we investigated the varia-

tions of speaking different programming constructs and the ambiguity in spoken

code. Finally, we analyzed participants’ subjective feedback.

Speaking Style: Natural versus Literal

Two human judges independently assessed the speaking style of each utterance in

the transcripts and categorized each as either natural or literal. Before judging,

they discussed the criteria for judgment and the definition of natural and literal
4https://osf.io/h6nk4
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Figure 3.1: Comparison of speaking naturally in the missing and highlighted conditions.

Participant Condition
Missing Highlighted

Novice 51.1±21.2 [0, 100] 58.2±20.1 [0, 100]
Expert 40.8±20.7 [0, 100] 36.7±17.3 [10, 100]
Mixed ANOVA Main effect of Condition: F(1, 22) = 0.2, p = 0.65

Table 3.2: Numerical results from the user study on the proportion of speaking naturally
for different conditions (Missing vs. Highlighted), including statistical test details. Results are

presented as mean ± 95% confidence interval [minimum, maximum].

utterances. Utterances were considered natural if participants spoke most parts of

the code using natural phrases (e.g., “start a comment”) instead of literal adher-

ence to the required characters (e.g., “forward slash forward slash“). The two

judges did not see each other’s ratings beforehand. Inter-rater reliability was very

high (Cohen’s kappa = 0.98), indicating an almost perfect agreement between

the raters. To ensure consistency, the judges then discussed their judgment and

resolved any disagreements.

A mixed analysis of variance (ANOVA) design was conducted to investigate
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the effects of experience level (novice versus expert) and conditions (missing versus

highlighted) on the use of natural language in code dictation. The results revealed

no significant interaction between experience level and condition (F(1, 22) = 3.0,

p = 0.09) (Table 3.2). This indicates that the effect of the condition did not differ

significantly between expert and novice programmers. Furthermore, there was

no significant main effect of experience level on the use of natural language (F(1,

22) = 1.8, p = 0.19), with expert programmers using natural language slightly

more often than novices (62% versus 45%, respectively). However, there was no

significant main effect of condition on the use of natural language (F(1, 22) = 0.2, p

= 0.65). These findings suggest that the use of natural language in code dictation

is not significantly influenced by experience level and that both novice and expert

programmers are similarly affected by the missing or highlighted conditions.

Verbalization by Programming Construct

We found wide variations in how certain programming constructs and some specific

parts of code were verbalized. Most variations occurred when speaking method

declarations, user-defined names, assignment operations, elements of an array,

comments, and punctuation. Fewer variations occurred when speaking if-else

statements and for-while loops. Table 3.3 shows some examples of how novice

and expert programmers’ speech varied.

Method signature and method call Eight expert programmers verbalized

different parts of the method, such as return type, method name, and a parame-

ter list naturally (e.g., “declare function public static return type integer
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Target code User Human Transcript

items[i] =
scan.nextInt();

novice items square bracket i end square bracket equals scan
dot next int semicolon

expert items at location i is equal to scan dot next int

largeNumCounter–; novice large num counter minus minus semicolon

expert decrement large num counter

while(num >= 1) novice while parenthesis num is greater than or equal to one
end parenthesis quotation

expert start while loop start condition num is greater than
or equal to one end condition end while loop

total =
calculate_sum(age,5);

novice total equals calculate underscore sum open parenthe-
sis age comma five close parenthesis semicolon

expert variable total is equal to method calculate sum where
the first argument is variable age and the second ar-
gument is the number five

// this program
searches an array
for the minimum
value

novice comment this program searches an array for the min-
imum value end comment

expert start comment this program searches an array for the
minimum value end comment

Table 3.3: Some examples of the variations in the speech of novice and expert
programmers.

name cube parameter int num”). In contrast, all but one novice programmer

spoke methods in a literal way (e.g., “public static integer cube open paren

int num close paren”).

User-defined names While dictating user-defined names such as variable and

method names, two expert programmers mentioned naming conventions (e.g., “camel

case very large string”) while one expert spelled them out. Five other experts

and three novices verbalized capitalization (e.g., “large capital n num capital
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c counter”). We also observed that two expert programmers, but no novices,

occasionally said the term “variable” while dictating a variable name.

Comments As comments are written in natural language that might involve

references to variable names or method names such as “// The method getMin

searches an array for the minimum value”. We wanted to see how participants

spoke such elements in the comment and how they switched between the syntax

required to denote a comment and the comment itself. All experts but only 4

novices started a comment by speaking “open comment”, “header comment” or

“comment”. The other novice participants spoke comments by verbalizing “slash

slash” or “forward slash forward slash”. Nine experts explicitly mentioned if

their intent was a single-line or multi-line comment.

Abbreviated words Abbreviated words were either spoken as full words or

spelled out. 80% of experts and novices verbalized the function “sqrt” as “square

root” while others spelled it out. Two expert programmers verbalized the full form

for an abbreviated variable name, for example, saying “number” instead of “num”.

Additionally, 90% of the experts and 40% of the novices verbalized the function

“println” naturally as “print line” while others spoke it as “print l n”.

Assignment operation 70% of experts used phrases such as “is assigned”

or “becomes” or “set” instead of verbalizing the “equal” symbol. for instance, one

expert uttered the variable assignment “i = 1” as ‘i is assigned one”. None of

the novices used such natural phrases for assignment operation.

Multi-line code We had programmers speak four multi-line programs. We

aimed to explore how participants might verbalize a block of code, including, for
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example, specifying the transition to a new line. Most experts uttered phrases like

“new line”, “enter”, “begin body”, or “start for loop body” to transition to a

new line. None of the novices explicitly uttered any term for a new line. Instead,

they dictated the entire code block as if it were on a single line (e.g., “static int

cube int num end parenthesis curly bracket return num times num times num

curly bracket”).

Symbols and punctuation

We found significant variations in spoken punctuation. Experts who spoke nat-

urally used some natural phrases for punctuation; for instance, two experts ut-

tered “end line” instead of “semicolon”. In addition, eight experts and three

novices dictated array elements as “items at location i”, “items at index i”

or “items sub i” while the other participants dictated them in a literal way

(e.g., “items open square bracket i close square bracket”).

Participants used a variety of terms to refer to the quote symbol, includ-

ing natural terms like “character” or “string” as well as more specific terms

like “quote”, “single quote”, “opening quote”, “end quote”, “quotation marks”.

Additionally, participants spoke parentheses in varied ways, such as “paren”,

“left parenthesis”, “open parenthesis”, and “close parenthesis”. Variation

also occurred in speaking brackets or braces, e.g., “left curly brace”, “open

curly brace”, “close curly brace”, “curly bracket” or “bracket”.

Participants who spoke in a literal way had a tendency to omit punctuation

in both highlighted and missing conditions. We considered all single-line literal
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utterances and calculated the proportion of spoken punctuation in the transcript

to actual punctuation in the target code. Notably, only participants who spoke

literally at least 50% of the time in both conditions were included in the analysis,

consisting of eight novices and three experts.

Overall, participants spoke parentheses 83% of the time in the highlighted

condition versus 72% of the time in the missing condition. Interestingly, partic-

ipants verbalized quotation marks 100% of the time in the highlighted condition

but only 42% of the time in the missing condition. In the case of semicolons, par-

ticipants spoke fewer in the missing condition (60% of the time) compared to the

highlighted condition (69% of the time). This suggests two potential explanations

for the differences in punctuation use. First, it is possible that participants strug-

gled to balance out the parentheses or quotes when they could not see the line

of code, leading to a decrease in their use of punctuation. Second, it is possible

that participants anticipated that an intelligent voice programming system would

auto-complete the missing punctuation, leading them to rely less on their own use

of these punctuation marks.

Correctness and Semantic Ambiguity

We suspected participants might sometimes speak incorrect code (i.e. code that

does not achieve the program’s stated objective). This could occur especially of-

ten when participants could not see the line. Missing lines could be problematic

because participants had to infer the missing content based on the surrounding

code, which could result in incorrect or incomplete utterances. Even highlighted
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lines could result in incorrect utterances if participants misunderstood the con-

text or omitted something important. For example, consider a highlighted math

statement: “double result = (a + b) * c;” A participant might incorrectly in-

terpret and speak: “double result equals a plus b times c”, changing the in-

tended order of operations and potentially leading to incorrect results.

Two human judges independently categorized each spoken single line of code

as either correct or incorrect. we looked at the whole program since we needed to

judge if it would result in a correct implementation. Utterances were considered

incorrect when the spoken code was incomplete, incorrect, or ambiguous. Inter-

rater reliability was high (Cohen’s kappa = 0.88), indicating close agreement

between the raters. To ensure consistency, we reviewed our ratings and resolved

any disagreements.

We calculated the proportion of participants’ incorrect spoken code. Overall,

novices spoke incorrect lines 16% of the time, while experts spoke incorrect lines

7% of the time. As might be expected, participants spoke more incorrect code in

the missing condition than in the highlighted condition. Novices spoke incorrect

lines 28% of the time in the missing condition but only 4% in the highlighted

condition. Similarly, experts spoke incorrect lines 12% of the time in the missing

condition but only 2% in the highlighted condition.

We observed that the incorrect spoken programs in the highlighted condition

were always the result of unclear or ambiguous speaking patterns. We felt a voice

programming system might have difficulty accurately transcribing such speech.

For example, a few participants spoke the line of code “result=Math.sqrt(x+y)/z”
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as “result equals math dot square root x plus y divided by z”. Without men-

tioning the order of arithmetic operations, the system might interpret this as

“x+y/z”. Some participants mentioned the order explicitly, for example, saying

“result equals math dot square root open paren x plus y close paren divided

by z”.

Some participants failed to specify whether a line of spoken code included a

digit or a character. This particularly occurred in the conditional statement “c

<= ′9′” in which participants simply spoke it as “if c less than or equal to

nine”. We also observed a few participants mistakenly spoke “backslash” while

dictating a comment instead of “forward slash”. Additionally, we observed that

some participants did not specify whether a line of spoken code was a comment

but instead spoke just the comment’s text. Such ambiguity or lack of context may

lead to an inaccurate machine translation of the spoken code to its target code.

Speaking Rate

We trimmed silence from the start and end of the recordings and calculated the

speaking rate of an utterance in words per minute (wpm). As we did not have

enough multi-line code from novices, we analyzed only the single lines. In the

transcripts, there were about 18.3 words per missing line and 19.2 words per

highlighted line on average.

A mixed ANOVA analysis revealed no significant interaction between experi-

ence level and condition (F(1, 22) = 0.2, p = 0.67) on speaking rate. There was

no significant main effect of experience level on the speaking rate (F(1, 22) =
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Participant Condition
Missing Highlighted

Novice 84.0±10.1 [55.9, 114.0] 92.7±10.6 [75.2, 125.0]
Expert 95.2±16.7 [44.5, 138.0] 105.8±16.3 [59.8, 148.1]
Mixed ANOVA Main effect of Condition: F(1, 22) = 18.9, p = 0.0003
Pairwise t-test (Novice) Novice: Highlighted > Missing, p = 0.025
Pairwise t-test (Expert) Expert: Highlighted > Missing, p < 0.001

Table 3.4: Numerical results from the user study on speaking rate under different
conditions (Missing vs. Highlighted), including the statistical test details. Result format: mean

± 95% CI [min, max]. The speaking rate is measured in words per minute (wpm).

1.20, p = 0.29). However, the condition had a significant effect on the speaking

rate (F(1, 22) = 18.9, p = 0.0003). Post-hoc pairwise comparisons with Bonfer-

roni corrections revealed that experts spoke significantly faster in the highlighted

condition than in the missing condition (p < 0.001), with 105.8 wpm in high-

lighted versus 95.2 wpm in missing. Similarly, novices spoke significantly faster

in the highlighted condition (p = 0.025), with 92.7 wpm compared to 84.0 wpm

in the missing condition (Table 3.4). It might be the case that the increased cog-

nitive demands of mentally visualizing the target line based on the surrounding

code may have required additional time, resulting in a slower speaking rate when

participants could not see the line.

We also calculated the speaking rate of novices and experts when speaking nat-

urally versus when they spoke in a literal manner. We excluded participants who

always spoke naturally (one novice and two experts) or always spoke in a literal

manner (one novice). This resulted in a sample of ten novices and ten experts. We

found no significant interaction between experience levels and speaking styles on
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Participant Style
Natural Literal

Novice 98.9±14.3 [66.8, 133.9] 85.1±10.3 [60.0, 118.5]
Expert 99.5±17.6 [48.0, 136.4] 89.1±13.0 [61.2, 135.3]
Mixed ANOVA Main effect of Style: F(1, 18) = 9.231, p = 0.007
Pairwise t-test (Novice) Novice: Natural > Literal, p = 0.02
Pairwise t-test (Expert) Expert: not significant, p = 0.14

Table 3.5: Numerical results from the user study on speaking rate under different
speaking styles (Natural vs. Literal), including the statistical test details. Result format: mean

± 95% CI [min, max]. The speaking rate is measured in words per minute (wpm).

the speaking rate (F(1, 18) = 0.2, p = 0.68) (Table 3.5. There was no significant

main effect of experience level (F(1, 18) = 0.1, p = 0.79), but there was a signifi-

cant main effect of speaking style on the speaking rate (F(1, 18) = 9.2, p = 0.007).

Post-hoc pairwise comparisons with Bonferroni corrections indicated that novices

had a significantly faster speaking rate when speaking naturally than speaking lit-

erally (p = 0.02). At the same time, there was no significant difference in speaking

rate between the two styles for experts (p = 0.14). This suggests that the effect

of speaking style on speaking rate did not differ significantly between novice and

expert speakers, but how novice participants spoke affected their speaking rate.

It might be the case that following strict rules of grammar and syntax imposed

additional cognitive demands on novices which slowed down their speaking rate

compared to a more natural speaking style. Additionally, syntax-style utterances

could likely be harder to say fluently.
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Figure 3.2: Comparison of speaking rate.

Subjective Feedback

Participants rated five statements about their overall experience with the study on

a 7-point Likert scale (1=strongly disagree, 7=strongly agree). Experts’ ratings

significantly differed (χ2(3) = 111.3, p = 0.00001). Posthoc pairwise comparisons

with Bonferroni adjustment revealed that experts found it significantly easier to

speak a single highlighted line (mean = 6.2, SD = 1.4) compared to a single

missing line (mean = 4.8, SD = 1.6) (p = 0.0002) with a large effect size (Cohen’s

d = 0.89). There were no significant differences in their ratings for the ease of

speaking a single missing line versus multiple missing lines (mean = 3.5, SD =

1.7) or between a single highlighted line versus multiple highlighted lines (mean

= 4.8, SD = 1.8).

A significant difference was also found in novices’ ratings (χ2(3) = 121.7, p <
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0%

8%

17%

25%

50%

100%

92%

75%

67%

25%

0%

0%

8%

8%

25%

I found the programs were easy to understand

I found speaking multiple missing lines easy

I found speaking a single missing line easy

I found speaking multiple highlighted lines easy

I found speaking a single highlighted line easy

100 50 0 50 100
Percentage

strongly disagree
disagree

slightly disagree
neutral

slightly agree
agree

strongly agree

(b) Feedback from experts

Figure 3.3: Novice participant feedback (top) and expert participant feedback (bottom).
The percentages on the left are the portion of participants who strongly disagreed, disagreed,
or slightly disagreed with the statements. The percentages in the middle correspond to the
portion who were neutral. The percentages on the right correspond to those who strongly

agreed, agreed, or slightly agreed

0.000002). Post-hoc pairwise comparisons revealed significant differences in their

ratings for the ease of speaking a single highlighted line (mean = 6.2, SD = 1.4)

versus a single missing line (mean = 4.8, SD = 1.6) (p = 0.036) with a large effect

size (Cohen’s d = 1.25), as well as for the ease of speaking multiple highlighted

lines (mean = 5.2, SD =1.5) versus multiple missing lines (3.4, SD = 1.4) (p

= 0.036) with a large effect size (Cohen’s d = 1.20). However, there were no

significant differences in their ratings for the ease of speaking a single missing line
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versus multiple missing lines or between a single highlighted line versus multiple

highlighted lines.

In general, both novices and experts found speaking a missing line challenging,

but novices faced more difficulty in speaking multiple missing lines. One expert

said, “It is more difficult to make nontrivial code from scratch as opposed to

reading a line that already exists”. Speaking missing lines of code seems practical

and relevant as in the context of an actual voice programming system, people may

need to describe code without being able to see it. However, verbalizing missing

code does require more cognitive effort. Although we provided participants with

some context in the form of comments (e.g., “this program reads ten integers

from standard input into an array named items”) in both highlighted and missing

conditions, it is worth noting that such comments might lead participants to rely

heavily on the provided information. One expert participant acknowledged that

he was biased, “When reading comments, I had a temptation to want to follow

the comment that was provided”. This suggests that an effective data collection

methodology for spoken code needs to balance the benefits and drawbacks of

speaking missing lines to ensure reliable data while also taking steps to avoid

biasing the programmer to one particular solution.

We asked participants about the ease of the programs. All experts and all but

one novice found the programs easy to understand. When asked about the parts

of programs they were most uncertain about how to dictate, novices and experts

had differing opinions. All experts and three novices indicated that dictating

function declarations was the hardest. One expert said, “I was most uncertain
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about method keywords, for example, how to differentiate different parts of the

method declaration.”. None of the novices but five expert programmers thought

dictating variables was really challenging. One expert said, “It’s complicated to

figure out how to speak variable names when considering issues like capitalization

and whether to spell out an identifier.”.

Some participants were uncertain about whether to dictate punctuation, and

they believed that an intelligent voice programming IDE should handle punctua-

tion automatically, especially when it comes to balancing braces and parentheses.

According to a novice programmer, “I was uncertain mostly what punctuation I

needed to state directly and what could be auto-completed”. This suggests further

investigation is required to overcome the challenges in dictating difficult parts of

code such as method declarations, variable names, and punctuation.

A few expert programmers shared additional comments on how an intelligent

voice programming tool should work in general. One expert said “I started off

very literal but pretty soon realized that would be an unmanageable way to code

and started assuming a smarter model. For instance, typically, Java style is to

camel case variable names, so I assumed that should be the default interpretation”.

Another expert programmer noted, “There is a lot of nuance to simple code such

as Math.sqrt(x+y). Although it’s very short and simple to spell out, I found it

really challenging to try to express it in a command-type way”. These insights

support our approach of collecting data by asking participants to speak code

without imposing any rules, enabling the system to account for the diverse ways

in which people might speak code. For instance, an intelligent system should
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be able to recognize the function “sqrt” regardless of whether it is spelled out

letter-by-letter or spoken naturally as “square root”.

3.4 Study 3

Based on the insights from Study 2, we conducted Study 3 with the aim of con-

structing a dataset containing a wide range of programming statements robust

enough to train language models and creating a publicly available dataset that

other researchers could use. In Study 2, we observed variability in how different

programmers spoke code, with different participants verbalizing the same line of

code in multiple ways. This variability highlighted the need for a dataset that cap-

tures a diverse set of programming constructs and spoken utterances. To address

these issues, we made several changes in Study 3. Each participant spoke a variety

of statement types and completely different lines to capture a wide range of pro-

grams spoken by different speakers. Additionally, we only considered highlighted

lines based on feedback from Study 2, where participants found it challenging to

infer and speak missing lines accurately. We also observed that participants spoke

highlighted lines faster and with similar variability as they did for missing lines.

3.4.1 Participants

We recruited 28 programmers (3 female, 25 male) through programming courses

and word of mouth. Participants’ ages ranged from 18 to 56 years, and their

programming experience varied from 2 to 40 years. All participants were na-
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tive English speakers. Among them, 29% strongly agreed or agreed that they

frequently use speech interfaces to control a computer. A significant majority,

91.4%, strongly agreed or agreed that they frequently write programs, but none

used voice-to-input programs. We also inquired about disabilities; one partici-

pant reported having carpal tunnel syndrome. The exact questionnaire used is

available in Section A.3.

3.4.2 Data Extraction and Preparation

To generate the lines of code for our study, we extracted Java code snippets from

the CodexGlue [34] dataset. CodexGlue is derived from CodeSearchNet [26] and

includes a filtered set of examples that meet specific criteria: they must be parsable

into an abstract syntax tree, contain between 3 and 256 tokens, and be in English.

The CodexGlue dataset contains both code snippets (a method) and their corre-

sponding method header comments. For our study, we extracted the Java code

snippets, each representing a single method. We then used the JavaLang parser

to extract and construct different programming constructs from these snippets,

such as for loops, while loops, if-else statements, method signatures, method calls,

mathematical statements, variable declarations and initializations, and comments.

Additionally, we extracted any code before and after the line to provide context

for our machine translation experiment described in Chapter 5. An example from

our dataset is shown in Table 3.6
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Human Transcript
for int j equals offset while j less than length j plus plus

Target line of code
for (int j = offset; j < length; j++)

Preceding code
public void processData(int offset, int length, byte[] data) {

if (data == null || offset < 0 || length > data.length) {
System.out.println(”Invalid data or parameters.”);
return;

}

Following code
processByte(data[j]);

}
System.out.println(offset + ” to length ” + length);

Table 3.6: An example from the SpokenJava 2.0 dataset.

3.4.3 Procedure

From Study 2, we observed that using highlighted lines could be a faster and more

effective way to capture sufficient variations, similar to missing lines. Therefore,

in Study 3, we adopted the approach of only providing highlighted lines. Each

participant was given 50 lines of code and asked to read each line aloud. In Study

2, participants were given the same programs and spoke the same lines of code,

which resulted in overlapping data. This overlap was not ideal for training models,

as it reduced the variety and size of the dataset. This time, we ensured that each

participant received 50 different lines to maximize the variety of programming

constructs collected. Participants were given the same instruction prompt as in
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studies 1 and 2, emphasizing that there were no specific rules for speaking the

code.

We also noted significant variability in loops, if-else statements, variable dec-

larations, and methods from Study 2. Thus, we allocated 20% of the lines to each

of these constructs per participant. For other types of statements, such as com-

ments and mathematical statements, we allocated 10%. The variable declaration

and initialization statements were distributed to cover different types, including

float, double, int, boolean, and string.

3.4.4 Data Analysis

Unlike previous studies, which focused on detailed speaking style and preferences

analysis, the primary motivation of this study was to generate a comprehensive

dataset while also gathering additional subjective feedback to understand user

preferences and improve future voice programming systems.

We first listened to each audio file and transcribed them verbatim, capturing

spoken symbols, words, and spaces, just as we did in the previous study. Incom-

plete or empty audio recordings were filtered out to maintain the dataset’s quality.

In total, we collected 1243 spoken single lines of code from 28 speakers. The final

dataset includes audio files, their corresponding transcripts, before-and-after code

snippets, and the target code. The dataset is available online5.

Then we conducted a thematic analysis of participants’ responses to under-

stand their experiences during the study, preferences, and vision for an ideal voice
5https://osf.io/6axd2/?view_only=518e06e29e1e4e0b90a9447e6e56c84f
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programming system. This analysis aimed to understand their experiences with

the study, preferences, and vision of an ideal voice programming system. Two

human judges independently reviewed the responses and identified themes. Dis-

crepancies were resolved through discussion with a third reviewer, and the final

themes were agreed upon.

3.4.5 Subjective Feedback

The thematic analysis revealed the following key themes:

Theme: Preference for flexibility versus rules

Participants were asked, “Did you find it preferable to speak with no strict rules,

or would you rather learn specific rules for spoken commands?” There was a mix

of preferences for specific rules for precision or a more natural, rule-free approach.

In our study, we did not impose strict rules on how participants should speak

the code, like Study 1 and Study 2. We wanted to observe their natural speaking

tendencies and to gather insights into their preferences for a more intuitive voice

programming system. Based on the responses, 15 participants preferred to speak

without strict rules. One participant stated, “I found it preferable to speak with no

strict rules as it would be more accessible to talk”. In contrast, eight participants

expressed a preference for learning rules. One participant noted, “I would rather

learn specific rules as long as they were decently intuitive so that I could get a

more precise outcome”.

Additionally, five participants appreciated the freedom of speaking without

strict rules but mentioned that having rules for specific constructs could be ben-
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eficial. For example, one participant noted, “Speaking without strict rules feels

more natural, but if common commands (loops and method declarations) had

set spoken syntax, there would be less confusion on what is actually going to be

declared”. Another participant added, “I think a spoken command for things like

’system.out.println’ could be perfect or for creating a Java Main method would

be very useful”. Others did not clearly indicate a preference for flexibility or rules.

Theme: Challenges in verbalizing programming constructs

Participants were asked, “What types of code (e.g., variables, loop, method) were

you most uncertain about what to speak and why?” Participants reported ex-

periencing significant challenges when speaking method headers, variable names,

loops, and mathematical statements.

Most reported difficulty speaking complex code constructs such as method

headers because they have multiple components, including access modifiers, return

types, method names, and parameters. One participant expressed, “Writing out a

method header seemed to be the most uncertain as there are many different parts

to it, and if it was more complex, it would be harder.”

Variable names also posed a significant challenge due to the need for careful

verbalization of cases and different naming conventions, such as camel case and

snake case. A participant noted, “Variable names were tough because you have

to be careful with the capitalization and underscores.” This statement reflects the

complexity of maintaining accurate case sensitivity and understanding Another

participant highlighted this issue, saying, “Longer variable names with multiple

words can be really tricky to say without making a mistake”.
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Math statements presented another layer of complexity due to the need to

clearly convey sequences and relationships among variables, operators, and num-

bers. One participant said, “The math statements were difficult since they com-

monly had a group of letters and numbers that relied on stacking multiple oper-

ations.”

Loops were another source of uncertainty, particularly because of the need

to articulate initialization, condition, and increment parts of the construct. One

participant explained, “I found loops to be difficult because of the semicolon-

separated code and the incremented variables.”

Punctuation and syntax, such as parentheses, introduced challenges. A par-

ticipant commented, “The code with lots of parentheses got a little confusing on

when to specifically mention them or not.” This quote highlights the difficulty of

remembering and accurately expressing the correct use of punctuation in spoken

code.

Theme: Vision for a future voice programming system

Participants were asked, “Imagine you are writing a fairly complex line of code.

How would you envision a speech interface working to support entering such a

line?” The responses indicated a strong desire for a speech interface that could

interpret code contextually while also providing real-time feedback.

Participants envisioned a more intelligent and context-aware system. One

participant shared, “I imagine that it would work by interpreting what exactly is

being called (function, if statement, etc.) and then looking for code that could fit

into each parameter.” Another participant emphasized the importance of context-
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aware commands, stating, “Having a system that understands the context of what

I’m trying to do, like setting up an if-statement or a loop, would make things much

smoother.” This highlights the necessity for the system to grasp the broader

context of the user’s coding task to provide relevant assistance.

Participants showed a desire for the system to break down and understand

complex conditional logic step-by-step. One participant suggested, “It may be

most efficient to start by identifying the main if statement with its four ’and’

conditions first. Then, move to the first ’and’ condition. If that condition has an

’or’ condition inside it, the system should recognize this and allow you to specify

each part of the ’or’ condition one by one.” This implies a desire for the system to

follow a clear and structured way of inputting code, where users can speak each

part of the code step-by-step.

Additionally, participants suggested that real-time feedback could significantly

enhance the usability and efficiency of a voice programming system. One partic-

ipant mentioned, “It would have to be able to write as the person spoke so they

could catch any possible mistakes before it writes a whole line wrong.” This

means that the system should immediately transcribe spoken code, allowing users

to see and correct errors instantly rather than waiting until a full line of code is

completed.

Overall, the thematic analysis revealed a diverse range of preferences for flex-

ibility versus specific rules in voice programming, significant challenges in verbal-

izing complex code constructs like method headers, variable names, loops, and

mathematical statements, and a strong desire for a context-aware, interactive sys-
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tem with real-time feedback. These findings highlight the need for developing an

intelligent, adaptive voice programming tool that enhances usability and efficiency

while catering to various user preferences and addressing the specific challenges

faced during code verbalization.

3.5 Discussion and Limitations

The primary goal of our work was to understand how programmers naturally

verbalize code to develop voice programming systems that reduce the need for

memorizing commands, making programming more accessible and intuitive. Our

user studies aimed to capture the diverse ways programmers speak code and the

various methods for collecting spoken code data. Rather than imposing a pre-

scriptive grammar for writing such statements, we observed how programmers

naturally speak code. This approach, if successful, could ease or eliminate the

need for programmers to remember complex commands.

In Study 2, participants spoke code both naturally and literally. This aligns

with the trend of using natural language prompts for code generation, making

programming more intuitive. However, natural language can introduce ambiguity.

For instance, a prompt like “find the most similar items in a collection” is unclear

without further context. On the other hand, literal speaking, while potentially

more tedious, can increase accuracy since it adheres more closely to the exact

syntax required. Another significant finding from Study 2 was that both novice

and expert programmers did not show different speaking styles in the missing
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versus highlighted conditions, but they spoke faster in the highlighted condition.

This suggests that the reduced cognitive demand in speaking presented code, as

opposed to generating code from scratch, contributed to this difference.

Existing code corpora, such as CodeXGLUE and CodeSearchNet, are sourced

from written code. While these corpora are useful for tasks like code summariza-

tion, code suggestion, and code generation, they are not well-suited for training

systems to transcribe spoken code line-by-line. Motivated by the need for a dataset

that can support the development of voice programming systems, we conducted

User Study 3 to address this gap. In this study, we collected data that includes

spoken single lines of Java code, their corresponding transcripts, before-and-after

code snippets, and the target line code. This dataset can be used for tasks like

code generation and spoken line-by-line program recognition. The surrounding

context can provide better support for code generation, enhancing the accuracy

and usability of such systems. To our knowledge, this is the first work to build

a spoken program corpus of this nature, making a significant contribution to the

field of voice programming research. However, scaling up from our initial dataset

presents several challenges. Recruiting participants with programming experience

is necessary but difficult due to the specialized nature of the population.

One limitation of our current approach was having people record themselves

speaking code to a hypothetical system. It could be that a person’s speaking style

changes when interacting with a real system. Lacking a real system, one could

instead collect audio via a Wizard of Oz approach. However, a more significant

challenge is collecting a larger and more diverse data set. This data should include
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programmers with motor impairments, a wider range of programming constructs,

and languages beyond Java. While many languages share similar programming

constructs, the details of a specific language may require additional support for

certain purposes (e.g., how to specify indentation in Python).

Another limitation is that we asked programmers to speak single lines of code

in our user studies. People may speak differently when creating an entire program

from scratch, working on more complex programs, or using advanced language

constructs. While generating blocks of code from a single utterance (e.g., “create

a for-loop that prints all the prime numbers in array nums”) might be desirable, it

may not align with all programmers’ needs and preferences. Novice programmers

or experienced programmers may prefer speaking single lines of code for editing

or modifying existing code rather than generating large blocks of code from a

single utterance. Supporting robust entry of individual lines is a necessary first

step before considering the input of larger blocks. Even single lines of code can

be long, requiring an interface incrementally displaying a partially completed line

as the user speaks.

3.6 Conclusion

This chapter has laid the groundwork for developing voice programming systems

by investigating how programmers naturally verbalize code. Our user studies

captured the diverse ways in which programmers speak code, moving away from

prescriptive grammar and instead observing speech patterns without imposing
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any rules. The findings from our studies inform the development of an intelligent,

adaptive voice programming tool that enhances usability while catering to various

user preferences for speaking naturally or literally, addressing challenges in code

verbalization, and incorporating natural language processing for handling ambi-

guities and contextual understanding effectively. We developed a spoken program

corpus that can be a valuable resource for developing a voice programming system

and can contribute to the research community. Expanding our dataset to include

a more diverse range of participants, additional programming constructs, more

complex constructs, and multiple programming languages will further strengthen

the applicability of a voice programming system.

The subsequent chapters will build upon the foundation established here.

Chapter 4 will focus on the first step of our process, which involves speech recogni-

tion experiments and detailing how our dataset is used to improve the accuracy of

recognizing spoken code. Chapter 5 will explore the second step, which involves

machine translation techniques for converting recognized speech into accurate

code.
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Chapter 4

Recognizing Spoken Programs

4.1 Introduction

The speech patterns among different programmers and programming constructs

vary significantly compared to natural language. For example, programmers might

verbalize the assignment statement int x = 10; in a natural way such as “declare

an integer x and set it to ten”, or they may choose a more literal approach

such as “int x equals ten semicolon”. This distinctive dialect and hybrid lan-

guage style and limited data in this domain make accurate recognition challenging.

This chapter focuses on the first step in our two-step pipeline: recognizing the

literal words spoken by programmers. We initially investigate the effectiveness of

a commercial speech recognizer and then train a research-based recognizer using

our collected data, aiming to tailor the recognition process more closely to the

specific nuances of spoken programs.
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4.2 Related Work

To the best of our knowledge, there is no existing work in the literature that

specifically adapts commercial or research speech recognizers to recognize spoken

programs accurately. While systems like Dragon Naturally Speaking [58] have

been used for programming tasks, they have not been adapted to fully address

the unique challenges of recognizing spoken programs. The closest related work

involves ASR for low-resource domains, focusing on developing effective recog-

nition systems despite limited training data. In this section, we discuss works

related to Automatic Speech Recognition (ASR) for low-resource domains, speech

recognition in domains with strict syntax similar to programming languages, and

advancements in language models for code generation.

4.2.1 Speech Recognition in Low Resource Domains

The traditional approach for ASR relies on a supervised method where ASR mod-

els are trained with a large number of audio examples paired with their correspond-

ing transcriptions. One of the major challenges of building an ASR system for

a specific domain is the need for ample labeled training data. In addition, tran-

scribing such audio data is time-consuming and labor-intensive. This led to the

development of semi-supervised and unsupervised approaches to leverage abun-

dant unpaired audio and text data [4, 5, 71]. Self-training for end-to-end speech

recognition [28] is another approach that uses noisy labels generated from a model

trained on a smaller labeled dataset. In self-training, a model initially trained on
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a smaller labeled dataset generates transcriptions (noisy labels) for a larger set of

unlabeled audio data. These generated transcriptions are then used as training

data to improve the model further. This method helps overcome the scarcity of

labeled data by using the vast amounts of available unlabeled data.

Other approaches include predictive coding [14], which focuses on learning

transferable speech representations that can be applied to various downstream

tasks. For example, a model trained with predictive coding can be fine-tuned for

tasks like speech recognition, speaker identification, or emotion detection. Fine-

tuning involves taking a pre-trained model and further training it on a specific

task to improve its performance in that domain.

Weak distillation [31] emphasizes improving performance in recognizing rare

words and proper nouns. For instance, weak distillation techniques can help an

ASR system better recognize uncommon names or technical jargon not frequently

encountered in the training data.

4.2.2 Speech Recognition in Syntax-Intensive Domains

Although the recognition of spoken programming languages has not been explored,

notable progress has been made in similar fields requiring precise syntax and

specialized symbols, such as mathematics and SQL queries. For instance, Song

et al. [57] developed an end-to-end neural architecture named SpeechSQLNet to

translate human speech into SQL queries. In the mathematics domain, tools such

as Math Speak & Write [23], MathSpeak [56], and TalkMaths [67] convert speech

into mathematical equations. These tools enable users to dictate mathematical
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expressions, making the process more accessible and efficient for those who cannot

use traditional input methods.

4.2.3 Advances in Code Generation Models

In recent years, large language models have made significant strides in generat-

ing code from text. Code generation models such as CodeBert [19], CodeGPT

[34], and PLBART [1] primarily focus on single-turn code generation, where users

express the intent of a complete block of code (e.g., an entire function) in one ut-

terance. These models are trained on extensive corpora of code and corresponding

comments sourced from open repositories like GitHub. Specifically, CodeBert was

trained on the CodeSearchNet [26] dataset, which pairs method header comments

with a single method. In contrast, CodeGPT and PLBART were trained on the

CodeXGLUE [34] dataset, a filtered version of CodeSearchNet.

Nijkamp et al. [38] developed CODEGEN, a model capable of program synthe-

sis, which entails generating executable code from comments. They demonstrated

that multi-turn program synthesis could effectively enhance program synthesis

quality by using comments intended for subprograms. The CODEGEN mod-

els were trained on three datasets: THEPILE, BIGQUERY, and BIGPYTHON.

THEPILE [21] is an 825.18 GiB English text corpus created for language mod-

eling. BIGQUERY, a subset of Google’s publicly available BigQuery dataset1,

contains code in multiple programming languages. BIGPYTHON [38] focuses on

Python programming language data and is compiled from public, permissively
1https://cloud.google.com/bigquery/public-data/
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licensed Python code on GitHub as of October 2021.

While existing models leverage comments that programmers write to express

the functionality of a section of code, these comments might lack detailed informa-

tion or fail to align perfectly with the written code. For instance, a comment might

describe the purpose of a function without detailing the specific implementation

steps, causing the ASR system to produce incorrect or incomplete code. An-

other significant challenge is the limited availability of spoken programming lan-

guage data compared to widely available general speech data, such as LibriSpeech

(960 hours) [46] and Common Voice (over 9,000 hours) [2]. Programmers’ speech

includes domain-specific terms, user-defined names, and abbreviated words not

commonly found in everyday language corpora. Collecting and transcribing this

type of data is time-consuming and costly, as it requires programming expertise.

Despite these challenges, code generation models that understand comments and

are familiar with code-related terms can be integrated into the ASR pipeline for

more accurate transcription of spoken programs. Additionally, leveraging existing

comment datasets and utilizing the structured information in written comments

can improve the ASR system’s understanding of programming-specific language

and syntax, thereby bridging the gap and enhancing transcription accuracy.
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4.3 Experiments with A Commercial Recognizer

We conducted offline recognition experiments on our collected data with Google

Cloud Speech-to-Text2. We used our SpokenJava 1.0 dataset as test data: 224

recordings (after discarding the incomplete recordings) from the novice study and

240 recordings from the expert study as described in Chapter 3. The aim was to

establish a baseline for comparison with the research recognizer later.

4.3.1 Experiment Setup and Methodology

First, we recognized our audio recordings using a web API by submitting audio

using 16-bit linear encoding at a sampling rate of 16 kHz. Google Cloud Speech-

to-Text provides a language model adaptation feature, which improves recognition

accuracy by incorporating custom transcripts that help the model understand the

context better. We used Google’s language model adaptation feature, incorporat-

ing human-generated transcripts.

We performed a leave-one-participant-out cross-validation approach, a modi-

fied form of k-fold cross-validation where each fold excluded one participant’s data.

In each fold of this approach, we adapted the model using data from all partic-

ipants except one and then tested it on the excluded participant. This method

ensured that the model was tested on speech from unseen users. This process was

repeated for each of the 24 participants.

To avoid overlap between adaptation and test data, we split the transcripts
2https://cloud.google.com/speech-to-text
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into two sets: the first half containing transcripts from the first ten programs and

the second half from the last ten programs. Each set included distinct program-

ming constructs such as loops, if-else statements, expression statements, arrays,

comments, and functions.

Google’s model adaptation requires a set of unique phrases to improve recog-

nition accuracy. We generated different n-grams from the adaptation transcripts,

ranging from bigrams (e.g. “left paren”) to 5-grams (e.g. “for i equal to zero”).

These n-grams were chosen to meet the limits of Google’s speech-to-text adapta-

tion API (5000 maximum phrases per request, 100,000 characters per request, and

100 characters per phrase). We found that bigrams yielded the best recognition

accuracy, likely because frequently repeated phrases or keywords like “system

dot”, “int i”, “plus plus”, and “open paren” are more common in spoken code

transcripts than complete sentences. Higher-order n-grams detect more complex

and infrequent patterns and increase the model’s complexity and computational

cost, which can be impractical for larger datasets. A detailed breakdown of WER

for all n-grams is shown in Table B.1.

To investigate the impact of the data collection strategy, we adapted the model

using transcripts from either the missing lines or the highlighted lines. For in-

stance, to recognize P1’s first ten spoken programs, we adapted the model with

missing line transcripts from the last ten programs of all participants except P1.

This process was repeated for each participant.

We examined the impact on recognition accuracy by gradually increasing the

amount of adaptation data from 25%, 50%, 75%, and finally, 100% on recog-
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nition accuracy. We created adaptation sets by randomly sampling 25%, 50%,

and 75% of the missing transcripts combined with 25%, 50%, and 75% of the

highlighted transcripts, respectively, and finally, 100% of the transcripts. This

random sampling was repeated ten times, and the average accuracy was taken.

4.3.2 Results from A Commercial Recognizer

We utilized simple heuristic rules to post-process the recognition results from

Google’s recognizer by converting all numbers and symbols into their correspond-

ing words. This was necessary to ensure a fair comparison with our human

transcriptions, which also spelled out all numbers and symbols. Using human

transcripts, we calculated the Word Error Rate (WER) for the post-processed

recognition results. WER was computed by adding up the number of insertions,

deletions, and substitutions in the recognition result compared to the reference

transcript, dividing by the total number of words in the reference, and then mul-

tiplying by 100.

The baseline model had a high WER, with 28.3% for novices and 23.1% for

experts (Table 4.1). The highlighted and missing conditions provided similar im-

provements when adapting the language model, indicating that each condition

contains enough variation in spoken code to enhance the model’s learning. Grad-

ually increasing the number of transcripts used for adaptation led to a significant

reduction in error rates. As illustrated in Figure 4.1, with just 25% of the adap-

tation transcripts, the WER dropped notably by 18.4% relative to the baseline

across all participants. Further increasing the number of transcripts resulted in
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Adaptation Data WER (%)
Novice Expert

None (baseline) 28.3 ± 3.0 23.1 ± 2.0
All missing transcripts 22.8 ± 2.0 18.9 ± 2.0
All highlighted transcripts 23.0 ± 2.0 17.9 ± 2.0
25% missing + 25% highlighted transcripts 23.3 ± 2.0 18.7 ± 2.0
50% missing + 50% highlighted transcripts 22.5 ± 2.0 18.1 ± 2.0
75% missing + 75% highlighted transcripts 21.8 ± 2.0 17.6 ± 2.0
All missing and highlighted transcripts 20.8 ± 2.0 17.0 ± 2.0

Table 4.1: Word error rate (WER) using Google speech recognizer. ± values represent
sentence‐wise bootstrap 95% confidence intervals calculated by averaging WERs for each

sentence across all repetitions.

a slight additional reduction in error rate, although the improvements began to

diminish. This suggests that the model captured most of the essential patterns

and information early on, making additional data less beneficial. On average,

using 100% of the transcripts for adaptation reduced the WER by 27% relative

to the baseline across all participants.

Table 4.2 shows some examples of our human reference transcripts, recognition

results using the base model from Google, and recognition results using language

model adaptation on 100% of the transcripts. Model adaptation improved the

recognition of homophones such as “for” versus “four”, “i” versus “eye”, “u” ver-

sus “you” and “two” versus “to”. Recognition of “for”, “i”, “u” and “two” were

improved by 70%, 74%, 8%, and 9% relative respectively. This suggests that the

model learned the context in which these words were used.

Adapting the language model with all 444 transcripts resulted in an average
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Figure 4.1: Comparison of Word Error Rate (WER) using increasing amounts of
adaptation transcripts for the novices (left) and the experts (right). The mean value is marked
as a red triangle. The x‐axis shows the percentage of transcripts used and the exact number

of lines in parentheses.

WER of 19% across participants, indicating that the system inaccurately recog-

nized nearly one out of every five words spoken. This level of performance is

suboptimal, especially compared to the low WERs achieved in recent years for

natural language speech recognition [4]. Additionally, uncommon words in natu-

ral language, such as “int” and “num” were frequently misrecognized, with error

rates of 99% and 74%, respectively, even after model adaptation.
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Model Text

human string very large string two equals world
base model string very large string to equals world

adapted model string very large string two equals world

human while num greater than equal to one
base model well none greater than equal to one

adapted model while none greater than equal to one

human for i equals one i less than or equal to n i plus plus
base model four equals one i less than or equal to an eye plus twelve

adapted model four equals one i less than or equal to n i plus plus

human large num counter minus minus
base model large and dumb counter minus minus

adapted model large num counter minus minus

Table 4.2: Recognition results used the base model and the adapted model on 100%
of the transcripts. Recognition errors are highlighted in red and underlined.

4.4 Experiments with Research Recognizer

The goal of using a research recognizer was to overcome the limitations of commer-

cial speech recognizers by incorporating more domain-specific audio and text data

to improve both the acoustic and language models. We utilized wav2vec 2.0 [4]

that can learn speech representations directly from raw audio waveforms without

needing a large amount of labeled training data. wav2vec 2.0 is a self-supervised

model for speech recognition that processes raw audio waveforms using a multi-

layer convolutional neural network [30] to extract key phonetic features, known

as latent speech representations. These representations are then fed into a Trans-

former network, which learns context by predicting masked audio portions based
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on the surrounding context. The model’s output consists of context-aware rep-

resentations, which can be fine-tuned for specific tasks such as automatic speech

recognition.

In this work, we fine-tuned the model on a dataset of spoken programs to

enhance its ability to recognize line-by-line spoken code. This process involved

improving the acoustic model by training it with domain-specific audio data and

decoding it with a language model trained with domain-specific text data. We

investigated the recognition accuracy of models trained with general spoken En-

glish versus spoken programming language. To our knowledge, this is the first

work focused on recognizing line-by-line spoken programs.

4.4.1 Datasets and Preprocessing

SpokenJava 1.0 Dataset

We use the SpokenJava 1.0 dataset collected in Studies 1 and 2 described in

Chapter 3. We split the data into train, development (dev), and test sets with

an 80/10/10 ratio. We split data by speakers and target lines of code to mea-

sure recognition performance on unseen programs spoken by different users. The

dataset was divided into 10/5/5 programming statements, and the corresponding

utterances were included in the train/dev/test sets. The relatively compact Spo-

kenJava dataset consisted of 269/27/28 utterances, 29/6/6 users, and 60/5.7/6.9

minutes of audio for the train/dev/test sets, respectively. It includes various pro-

gramming constructs such as method signatures, if-else statements, loops, input-
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output statements, arrays, single and multi-line comments, decrement operations,

math statements, and variable declarations. This dataset is unique as it focuses

on spoken code, unlike existing datasets that contain written code comments or

function descriptions. The transcripts of SpokenJava 1.0 are available online3.

CodeSearchNet and CodeXGLUE Datasets

In our language modeling experiment, we used a dataset from CodeSearchNet [26],

encompassing six programming languages, including Java. The CodeSearchNet

corpus comprises 2 million examples from open-source libraries hosted on GitHub.

Each data point includes a method, its corresponding method header documenta-

tion, and metadata such as repository information. This dataset was later filtered

to create the CodeXGLUE [34] dataset. The filtering process involved removing

examples where the code could not be parsed into an abstract syntax tree, exclud-

ing examples with fewer than three or more than 256 tokens in the documents,

discarding documents containing special tokens (e.g.,“ <img>” or “https”), and

eliminating non-English documents. An example is shown in Table 4.3.

We then selected all 181K Java examples from the CodeXGLUE dataset and

extracted only the docstrings or comments. To better align this dataset with our

spoken code dataset, we performed the following preprocessing steps: 1) breaking

multi-line descriptions into single lines, 2) splitting camel-case names into sep-

arate words, and 3) discarding lines containing symbols such as angle brackets,

hyphens, or underscores. This preprocessing resulted in a refined dataset of 495K
3https://osf.io/h6nk4
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Documentation:

/**
* Sets the value of the given variable.
* @param name the name of the variable to set
* @param value the new value for the given variable
*/

Code:

public void setVariable(String name, Object value) {
if (variables == null)

variables = new LinkedHashMap<>();
variables.put(name, value);

}

Table 4.3: Example of a Java method and associated documentation from the
CodeXGLUE [34] dataset.

examples. An example of a single-line comment from this dataset is: “sets the

value of the given variable”. Although this dataset does not consist of spoken

programs, comments often describe the purpose and functionality of code in natu-

ral language. Using this dataset could help the language model better understand

the vocabulary and context related to programming.

4.4.2 Fine-tuning wav2vec2

We conducted fine-tuning experiments with the open-source wav2vec 2.0 model

[4], initially trained on natural English speech. Our primary goal was to explore

the model’s ability to adapt to spoken Java code. Additionally, we aimed to

evaluate the impact of data diversity and quantity on the model’s performance.
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For our experiments, we used the Fairseq toolkit [45] following the settings

specified in [4]. We employed a learning rate of 1× 10−4 with the Adam optimizer,

utilizing a tri-state rate schedule to enhance convergence. This schedule included

warming up the learning rate for the first 10% of updates, maintaining it constant

for the subsequent 40%, and then linearly decaying it. We applied a layer dropout

rate of 0.1 to prevent overfitting. The models were fine-tuned using 16-bit precision

on two NVIDIA RTX 2080 Ti GPUs with a batch size of 4 samples per GPU.

All network parameters were updated except for the feature encoder. We set

the time-step and channel mask probabilities to 0.65 and 0.25, respectively, as

recommended in [4].

We began with the wav2vec 2.0 base model, pre-trained on 960 hours of un-

labeled spoken English data from the Librispeech dataset. This model comprises

12 transformer layers, each featuring 8 attention heads. We fine-tuned this base

model using the SpokenJava 1.0 training data for 10K updates, adhering to the

configuration in [4]. We observed no significant improvement beyond 10K up-

dates. The number of updates and other hyperparameters were validated using

the dev set.

Next, we utilized a fine-tuned checkpoint of wav2vec 2.0, which had undergone

training on the LibriSpeech corpus with text labels for up to 300K updates. Build-

ing on this checkpoint, we conducted an additional round of fine-tuning using our

in-domain SpokenJava 1.0 data. The aim of using a fine-tuned checkpoint was to

leverage the knowledge acquired from the labeled natural English data during the

initial fine-tuning stage.
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4.4.3 Training N-gram Language Models

We trained different n-gram word language models using SRILM [59], testing

from trigram to 8-gram. Models larger than 8-gram could not be trained due to

insufficient 8-gram occurrences in our SpokenJava dataset.

Our first dataset included human-generated transcripts of individuals speaking

lines of Java code. We set aside 5% of this data as a held-out dev set, leaving

255 sentences (4K words) for training. Additionally, we trained separate 4-gram

language models on single-line comments from CodexGlue [34] (495K sentences,

4M words) and normalized LibriSpeech (40M sentences, 803M words). All text

was uppercased.

Each model employed modified Kneser-Ney smoothing with a vocabulary of

203K words, mapping out-of-vocabulary words to an unknown token. The vocabu-

lary was constructed by merging 200K words from LibriSpeech, all words from our

primary training corpus, and words appearing at least five times in CodexGlue.

The five-occurrence threshold helped exclude idiosyncratic non-camel-case multi-

word combinations.

We evaluated each model based on perplexity, which measures how well a

language model predicts a sequence of words. A lower perplexity indicates that

the model predicts the next word more effectively in a sequence. Our evaluation

revealed that the 4-gram model consistently yielded the best performance across

all datasets. Detailed results for all n-gram models are provided in the Appendix

B.2.
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Subsequently, we created a mixture model by linearly interpolating the 4-gram

models from the SpokenJava, CodeXGlue, and LibriSpeech datasets. A mixture

model combines multiple language models, each trained on different datasets, to

create a single model that leverages the strengths of each component. We opti-

mized the mixture weights to minimize the perplexity on the held-out dev set,

ensuring that the resulting model was well-suited to recognizing spoken program-

ming languages.

4.4.4 Beam Search Decoding

We evaluated our fine-tuned models by calculating the Word Error Rate (WER)

using beam search decoding with both the LibriSpeech 4-gram model and our best

4-gram mixture model across various wav2vec2 models. We used a lexicon-based

beam search decoder available in the Flashlight framework [48] for decoding. The

decoder aims to maximize:

logPAM(ŷ|x) + α logPNGRAM(ŷ) + β|̂y| (4.1)

where ŷ represents the output sequence, x is the input, pAM corresponds to the

acoustic score, pNGRAM represents the language model score, and |̂y| is the char-

acters in the transcription (including spaces). α is the language model weight,

and β is the word insertion penalty, both of which were optimized based on min-

imizing WER on the Java dev set. The word insertion penalty helps balance the

contribution of the acoustic and language models.
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We initially set the beam width to 500 for beam search decoding and tuned

other parameters, such as language model weights and word insertion penalties for

all models following [4]. Our hyperparameter tuning searched over language model

weights in [0, 5] and word insertion penalties in [-5, 5] using Bayesian optimization4

for 128 trials. The best hyperparameters for each model are included in the

Appendix B. Once the optimal parameters were identified, we gradually decreased

the beam width down to 5 to find a better balance between speed and accuracy.

We found that a beam width of 35 provided the optimal balance, decoding at 11.3

sentences per second and 1004.7 tokens per second. Increasing the beam width

to 40 did not improve accuracy and reduced decoding speed to 10.85 sentences

per second and 965.6 tokens per second. Larger beam widths continued to reduce

performance, with a beam width of 500, dropping to 3.5 sentences per second and

312.8 tokens per second.

4.4.5 Rescoring with a Transformer Language Model

Motivated by the success in enhancing ASR recognition by rescoring with a trans-

former language model [32], we employ a similar strategy. We utilize the CodeGen-

NL model with 350 M parameters from the Hugging Face Transformers Library

[68]. CodeGen was trained on the Pile dataset5, a portion of which includes

GitHub code repositories. Using a causal language modeling objective, we fine-

tuned the model with our SpokenJava corpus.
4https://github.com/bayesian-optimization/
5https://pile.eleuther.ai/
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We conducted a grid search to optimize hyper-parameters by minimizing per-

token perplexity on the held-out dev set. We searched over learning rates in [1e-5,

5e-5], weight decays in [0.001, 0.1], epochs in [1-10], and training batch sizes of 2

and 4. The optimal configuration included a learning rate of 5e-5, batch size of 2,

and 3 epochs.

Fine-tuning was performed using two NVIDIA RTX 2080 Ti GPUs, while

inference for rescoring was executed on a single GPU.

We rescored the top 50 candidates from our first pass search, calculating a

weighted linear combination following [25]. The re-estimated final ranking for

each candidate was:

logPAM(ŷ|x) + α1 logPNGRAM(ŷ) + α2 logPNLM(ŷ) + β|̂y| (4.2)

Here, ŷ represents the output sequence, x is the input, PAM corresponds to the

acoustic model score, PNGRAM and PNLM represent the N-gram and transformer

language model scores respectively, α1 and α2 are the weights assigned to the N-

gram and transformer language model scores, respectively, and β is the weight

assigned to the length penalty term |̂y|.

Our hyperparameter tuning for rescoring searched over α1 in [0.0, 1.0], α2 in

[0.0, 1.0], and β in [-5.0, 5.0] using Bayesian optimization6 for 128 trials. The best

parameters identified were α1 = 0.3, α2 = 0.2, and β = 0.3.
6https://github.com/bayesian-optimization/
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Labeled Data Dev Test
LibriSpeech (960h) 31.1 28.4
SpokenJava (1h) 18.0 25.9
LibriSpeech (960h) + SpokenJava (1h) 8.1 8.7

Table 4.4: Word Error Rate (WER) on the dev and test sets varying the labeled data used
for fine‐tuning. Results obtained by greedy decoding without a language model.

4.4.6 Results from wav2vec 2.0

We calculate WER for all models on our dev and test sets in three scenarios:

without external language model decoding, with beam search decoding using an

N-gram language model, and with beam search decoding followed by rescoring

with a transformer language model. For all evaluations, we selected the model

checkpoint with the lowest WER on the dev set.

The pre-trained wav2vec 2.0 base model, which had no prior exposure to spo-

ken programs and was initially fine-tuned on 960 hours of labeled LibriSpeech

data, showed a high WER of 31.1% on the dev set and 28.4% on the test set, as

shown in Table 4.4. With just one hour of SpokenJava, we observed a 42.1% rela-

tive improvement in WER on the dev set but only an 8.8% relative improvement

on the test set, both compared to the base model (Table 4.4). The model strug-

gled to generalize on the test set, likely due to overfitting from the limited training

data and the more diverse programming statements in the test set. However, when

we took the model already fine-tuned on 960 hours of labeled LibriSpeech data

and further adapted it with spoken programs, it achieved a WER of 8.1% on the

dev set and 8.7% on the test set. It could be that adding extensive natural En-
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Figure 4.2: Word Error Rate (WER) on the dev set for different models for different
fine‐tuning steps. The minimumWER values for each model are highlighted.

glish data improved the model’s capability to handle diverse speakers and spoken

content.

In our N-gram language modeling experiment, we found that a mixture model

produced the best results. Our best N-gram model was a combination of 4-gram

SpokenJava (weighted at 0.7), 4-gram LibriSpeech (weighted at 0.2), and 4-gram

CodexGlue (weighted at 0.1). We think this improvement can be attributed to

the inherent natural English language in spoken Java programs, which benefited

from LibriSpeech data, and learning written comments from a partially in-domain

CodexGlue dataset.
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Model LM Dev Test
LibriSpeech (960h) 4-gram-libri 22.3 24.1
LibriSpeech (960h) 4-gram-mixture 11.2 11.3
LibriSpeech (960h) + SpokenJava (1h) 4-gram-libri 6.5 7.6
LibriSpeech (960h) + SpokenJava (1h) 4-gram-mixture 5.6 6.0
LibriSpeech (960h) + SpokenJava (1h) 4-gram-mixture

+ rescoring
4.5 5.5

Table 4.5: Word Error Rate (WER) on the SpokenJava dev and test sets of different
wav2vec and language model combinations.

Table 4.5 shows the impact of different language models on the fine-tuned

models, with the 4-gram LibriSpeech model as the baseline. Despite having a lim-

ited amount of in-domain text data, we substantially improved the WER decoding

with our 4-gram mixture model. Specifically, for the 960h-Libri fine-tuned model,

the WER decreased by 49.8% and 53.1% relative. Using the 4-gram mixture model

with one hour of SpokenJava data, the WER decreased by 13.8% and 21.0% on

dev and test sets, respectively, relative to the LibriSpeech 4-gram model with one

hour of SpokenJava data. Rescoring with our adapted transformer model further

improved accuracy, resulting in a 19.6% and 8.3% relative reduction in WER on

the dev and test sets, respectively, compared to the best 4-gram decoded model.

In our experiment with a commercial speech recognizer, we tested performance

using Google’s speech-to-text on our collected data, which resulted in a high WER

of 25%. Even with language model adaptation, the WER remained high at 19%.

In contrast, our best-trained wav2vec 2.0 model achieved a significantly lower

WER of 5.5% on the test data. Although the test data in the experiments with
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Model Text

Human items at index i is equal to scan dot next int

Base model items a index eyes equal to scan dot next int

Best adapted model items at index is equal to scan dot next int

Human constructor public employee int age comma double
salary

Base model instructor public employ n comet double salary

Best adapted model instructor public employ int age comma double salary

Human for int i equal zero i less than five i plus plus

Base model or in equal zero eye less than five eye plus plus

Best adapted model for int i equals zero i less than five i plus plus

Human create a public static method called print phrase
that takes two arguments the first is a string phrase
and the second is a double called num

Base model create a public setoc method called print phrase that
takes two arguments the first is a string phrase and
the second is a double called numb

Best adapted model create a public static method called print phrase
that takes two arguments the first is a string phrase
and the second is a double called num

Table 4.6: Example human transcripts and predictions from the 960h‐libri model decoded
with a 4‐gram LibriSpeech language model (base model) and our rescored model. Word errors

are underlined and in red.

Google’s speech-to-text and wav2vec were two different subsets of our SpokenJava

1.0 dataset, they were similar in nature.

We observed the predictions from the base model and our best-trained model(Table

4.6). The base model with knowledge of natural English learned the natural de-

scription of a small method but struggled with some fundamental Java keywords
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like “static” and abbreviated terms like “num”. Our best model with knowledge

of both natural English and spoken Java programs learned some Java terms like

“int”, “for” and some common variable names like “i” or “num”. This suggests

effective domain-specific learning. Our best model still struggled with text con-

taining a blend of natural language words like “employee” and code-related words

like “public” or “int” indicating potential issues arising from sparsely labeled data.

4.5 Discussion and Limitations

Our study aimed to enhance the accuracy of speech recognition systems for spoken

Java programs. Initially, we utilized Google’s speech recognizer, which revealed

significant difficulties in accurately recognizing programming language. Although

this general-purpose recognizer could be adapted to some extent for specific tasks,

there were limitations. Despite a 26.4% relative reduction in WER from the base-

line with our transcribed spoken code, the system’s performance plateaued with

further data adaptation. This plateau suggests that the underlying models were

not fully equipped to handle the unique vocabulary and syntax of programming

languages. This might be due to the specific limitations of Google’s language

model adaptation algorithm in handling the unique syntax and vocabulary of

programming languages, as well as potential challenges in adapting to the diverse

accents and speaking styles specific to programming speech

Given these limitations, we turned to the wav2vec 2.0 research recognizer,

allowing precise model customization. By fine-tuning both the acoustic and lan-
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guage models and incorporating transformer-based rescoring, we achieved substan-

tial improvements in accuracy. This underscores the importance of having control

over model components to address the specific needs of spoken programming lan-

guage recognition effectively. From our experiment with the research recognizer,

we observed marked improvements in accuracy by fine-tuning the wav2vec 2.0

model with both general English speech data (labeled 960 hours of LibriSpeech)

and a small amount of domain-specific speech data (labeled one hour of Spoken-

Java). This exposure of both data enabled the model to better understand the

unique vocabulary and syntax of programming languages. Our results showed

fewer errors and more accurate transcriptions of key programming terms, indicat-

ing that the model effectively adapted to the spoken programs.

However, our best-trained wav2vec 2.0 model sometimes struggled with certain

terms and symbols unique to programming, such as “int” and “num” which were

often misrecognized. One potential solution could be data augmentation. Data

augmentation techniques, such as generating text-to-speech audio from a large

dataset of comments, could provide additional training data and enhance model

performance. A strong language model can significantly improve the accuracy

of a speech recognizer, which requires a large amount of text data. This can

be achieved by generating synthetic text data through few-shot learning, which

involves training a large language model with a limited amount of annotated data.

However, as an initial exploration, our study establishes the groundwork for future

research in this domain.
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4.6 Conclusions

In conclusion, our study lays a solid groundwork for future research in the field

of spoken programming language recognition. The average WER achieved by

Google’s speech-to-text system, combining results from both novice and expert

programmers, was 18.9%. This provided initial insights and informed our data

collection strategy, ensuring adequate capture of data variations. By subsequently

fine-tuning the wav2vec 2.0 with a mix of general speech data and in-domain

data, we achieved a low final error rate of 5.5% on the test set, demonstrating

the effectiveness of this domain-specific adaptation. These findings emphasize the

potential of adapted speech recognition models to greatly improve the accuracy of

recognizing spoken programming languages. Chapter 5 builds on this foundation,

exploring how to convert recognized spoken words into the target line of code.
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Chapter 5

Text-to-Code Translation

5.1 Introduction

Generating code poses more challenges than standard natural language generation

due to its strict syntax and semantic rules. Unlike natural language, where minor

grammatical errors may still convey the intended meaning, even a minor error in

code, such as a missing semicolon or a misplaced dot, can drastically alter the

code’s functionality or make it entirely incorrect.

In the previous chapter, we detailed the first step of our pipeline: recognizing

line-by-line spoken programs using our fine-tuned wav2vec model. In this chapter,

we describe the second step of our pipeline: generating single-line code from the

transcript of a spoken single-line Java program. We detail our machine translation

experiments to convert a single-line text to a single-line code.
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5.2 Related Work

In recent years, there has been significant interest in automating software engi-

neering tasks to enhance programmers’ productivity. These tasks include text-

to-code, code-to-text generation, code summarization, code translation between

programming languages, bug detection, and code completion [34, 18, 60, 36, 52].

One primary task in this domain is generating a code block from comments or

docstrings. A docstring is a type of comment used to describe the purpose and

functionality of a function or module in the code.

Early approaches, such as the sequence-to-sequence model for code generation

introduced by Ling et al. [33], laid the groundwork by demonstrating how natural

language descriptions could be converted into code. Building on this, Yin et al.

[69] improved upon traditional decoders by integrating grammatical rules and gen-

erating abstract syntax trees before converting them into code. They employed a

Recurrent Neural Network (RNN) with Long Short-Term Memory (LSTM) units.

RNNs are designed to handle sequential data by tracking previous steps to in-

fluence future ones. However, they struggle with long-term dependencies, where

critical information needed for predictions is far apart, making it difficult for

RNNs to retain information over long sequences [24, 8]. In addition, RNNs can

not be efficiently trained on large datasets as they require sequential processing

of tokens, making parallelization difficult since each token’s computation depends

on the previous hidden state.

The development of the transformer architecture [64] and the availability of ex-
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tensive codebases [26, 34, 12, 11] have marked a new era of advancements in code

generation. Transformer models process entire sequences simultaneously, offering

a significant advantage over RNNs by capturing long-range token dependencies.

This advantage primarily comes from the self-attention mechanism, which assesses

the relevance of each token in the input sequence by considering the entire context

when predicting each token in the output. This makes them particularly effec-

tive for tasks like code generation, where understanding the broader context and

maintaining long-term dependencies are required.

OpenAI’s GPT family models [70, 9] have demonstrated the capability to gen-

erate code based on prompts. These models are capable of learning from minimal

examples with in-domain data. GPT-3, for instance, showcased the feasibility of

few-shot learning, where the model is given only a few examples to learn from.

This achieves competitive results in various tasks, such as code generation. One

such model is CodeGPT [34], a transformer-based language model pre-trained on

programming languages. CodeGPT supports text-to-code generation tasks. It’s

based on the architecture and training objectives of GPT-2 [70]. CodeGPT is

pre-trained on Python and Java code from the CodeSearchNet [26] dataset. This

dataset includes pairs of functions and code snippets extracted from GitHub, with

1.1 million Python and 1.6 million Java code snippets.

CodeBERT [18] is a pre-trained model that supports tasks like code doc-

umentation generation and is based on Google’s BERT [16] model. BERT is a

masked language model that predicts the missing words in a sentence based on

the context. The training data for CodeBERT comes from the CodeSearchNet
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[26] dataset, which includes bimodal (a code snippet paired with its documenta-

tion) and unimodal (a code snippet) data points. The dataset contains 2.1 million

bimodal and 6.4 million unimodal data points across six programming languages:

Python, Java, JavaScript, PHP, Ruby, and Go.

PLBART [1] is a model that can summarize and generate code from text. It

is pre-trained on a large collection of Java and Python functions and associated

comments. The training data for PLBART consists of 470 million functions for

Java and 210 million functions for Python all extracted from GitHub as well as

47 million questions and answers from StackOverflow.

Meta’s Code Llama [53] is a set of large language models designed for pro-

gramming tasks based on the Llama 2 [62] architecture. These models achieve

state-of-the-art performance and can complete code, handle long input contexts,

and follow prompts to generate code. Code Llama supports multiple programming

languages, including Python, Java, and C++. The models come in different sizes:

7, 13, and 34 billion parameters, each trained on 500 billion tokens, and a larger

70B model trained on 1 trillion tokens. The training data consists of a collection

of publicly available source code. Additionally, 8% of the training samples are

from natural language datasets related to code, including discussions about code

and code snippets in question-and-answer forums.

Gemini [55], released by Google’s DeepMind, is a multimodal large language

model. Gemini can complete missing code and generate code based on prompts,

primarily producing code snippets. It is trained on a diverse dataset that includes

data from web documents, books, and code, as well as image, audio, and video
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data or internally generated from an internal dataset.

All these models excel at understanding code, but they are capable of generat-

ing code snippets from the method header comments. However, our task focuses

on generating a single line of code from a line of spoken programming transcript

rather than from comments. This distinction highlights the unique challenge of

our work, as natural speech often lacks the structured context provided by the

written comments.

5.3 Text-to-Code Translation

5.3.1 Dataset and Preprocessing

We utilized the SpokenJava 2.0 dataset1 from Study 3, as described in Chapter 3.

This dataset provided a diverse set of programming statements, including spoken

code transcripts for single-line code, the corresponding target code, and the target

line’s preceding and following code snippets. Incorporating these contextual snip-

pets allowed us to investigate whether providing additional context could improve

the model’s ability to generate accurate code.

The dataset was split into training, development (dev), and test sets, with the

training set consisting of 833 lines, the dev set having 115 lines, and the test set

containing 295 lines. We split the dataset by participants, with 67.9% of par-

ticipants’ data used for training, 10.7% for development, and 21.4% for testing.

Splitting by participants ensured that each split contained all programming con-
1https://osf.io/6axd2/?view_only=518e06e29e1e4e0b90a9447e6e56c84f
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structs we used and that data from any participant was included in only one of

the three sets. Thus eliminating any potential for data leakage and ensuring the

independence of the evaluation sets.

5.3.2 Evaluation Metrics

In this work, we used exact match accuracy and CodeBLEU [34] to evaluate

our adapted models. Exact match accuracy was calculated by comparing the

generated line of code with the reference line of code and measuring the percentage

of cases that matched exactly. This metric provides a straightforward assessment

of correctness but does not account for partial correctness or the syntactic and

semantic quality of the generated code.

For CodeBLEU, we used a composite metric that combines the scores of four

sub-metrics to evaluate the quality of generated code. Each sub-metric was cal-

culated, and their weighted average, with a standard weight of 0.25 for each

sub-metric, was taken to get the final CodeBLEU score.

The quality of machine translation models is typically assessed by the BLEU

(Bilingual Evaluation Understudy) score [47]. While BLEU was originally devel-

oped for evaluating machine translation of natural languages, it has limitations

in evaluating code due to its focus on natural language, neglecting syntactic and

semantic features.

CodeBLEU [50] is used to evaluate the quality of generated code for tasks such

as code generation and translation. Research [50, 17, 34] indicates that CodeBLEU

aligns more closely with human evaluations than BLEU or exact match accuracy
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for evaluating code generation models. CodeBLEU is a composite metric that

combines the scores of four sub-metrics:

• Standard BLEU: Measures n-gram overlap, treating all code tokens equally.

• Weighted BLEU: Assigns higher importance to keywords. For example,

in Python code, keywords such as “def”, “return”, and “import” are given

more weight.

• Abstract syntax tree: Analyzes the code’s syntactic structure.

• Data-flow graph: Examines the semantic flow and variable dependencies.

The final CodeBLEU score is a weighted average of these sub-metrics, with a

standard weight of 0.25 giving the best results [50].

5.3.3 Fine Tuning Code Llama

Given the significant computational resources required for training and deploy-

ing large-scale LLMs, we focused on code-targeted LLMs and chose Code Llama

7B. Code Llama is capable of generating code and understanding the natural

language of code, making it suitable for our task. Additionally, Code Llama’s

capability to handle long input contexts is particularly advantageous for our task.

Due to resource limitations, we fine-tuned Code Llama 7B using 4-bit quantization

[13]. The 4-bit quantization technique reduces model weights to 4 bits instead of

the standard 16 or 32 bits. This allowed us to train the Code Llama 7B model on

available hardware.
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Prompt with no context

Convert the given text into a single line of Java code.

### Text:
add value to total value

### Output:
totalValue += value;

Prompt with pre-context

You are given a text and a preceding
code snippet that comes before the output. Convert the text into a single line
of Java code.

### Text:
if is eligible

### Preceding Code:
boolean isEligible = checkEligibility(user);

### Output:
if (isEligible)

Prompt with preceding and following code context

You are given a text, a preceding code snippet that comes before the output, and
a following code snippet that comes after the output. Convert the text into a
single line of Java code.

### Text:
if is eligible

### Preceding Code:
boolean isEligible = checkEligibility(user);

### Following Code:
processResult(result, isEligible);

### Output:
if (isEligible)

Table 5.1: Sample prompts used for fine‐tuning Code Llama
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Code Llama uses a prompt, an instruction given to the model, to help the

model understand a task. A well-crafted prompt can significantly enhance the

model’s performance by clearly defining the task. We experimented with various

prompts and evaluated the model on the dev set based on the CodeBLEU score,

selecting the best-resulting prompt.

We conducted three sets of experiments to evaluate the model’s performance:

1. First experiment - without context: In this baseline experiment, we

fine-tuned the model using only the input text and target code as labels in

the prompt without including any surrounding code snippets. This helped

us understand the model’s performance when generating code solely from

the spoken transcript. An example prompt is given to the model for training,

which includes the instruction, human transcript of the spoken single-line

Java code as text, and the target line of code as the output (Table5.1).

2. Second experiment - with preceding context: In the second exper-

iment, we included the preceding code context to provide the model with

additional information about the code that came before the target line as

shown in Table5.1. This scenario mirrors real-world programming situa-

tions where developers add a new line to existing code. Due to memory

constraints, only up to two lines of preceding code were included. If any

lines contained only punctuation (e.g., only a closing curly brace) without

code content, we continued reading subsequent lines until we encountered

lines with code content.
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3. Third experiment - with both preceding and following context:

In the third experiment, we included both preceding and following code

snippets to give the model context from both directions as presented in

Table5.1. This approach aimed to see if additional context before and after

the target line of code would further improve the model’s performance. This

scenario mirrors real-world programming, where developers often need to

modify a line in the middle of the code. We experimented with two preceding

and two following code lines that could fit the memory.

We conducted a grid search for each experiment to optimize hyperparameters

based on the CodeBLEU score on the dev set. The hyperparameter ranges in-

cluded a learning rate between [1e-5, 3e-3], weight decay between ([1e-3, 1e-1]),

and batch size between ([4, 8]). We conducted a grid search for each experiment to

optimize hyperparameters based on the CodeBLEU score on the development set.

The hyperparameter ranges included a learning rate between [1e-5, 3e-3], weight

decay between [1e-3, 1e-1], and batch size between [4, 8]. We used gradient ac-

cumulation with an accumulation step of two to manage memory constraints.

Gradient accumulation simulates a larger batch size by accumulating gradients

from multiple small batches before performing an optimization step. This ap-

proach allowed us to effectively increase the batch size without exceeding memory

limits.

We ran the training over five epochs, employing early stopping to prevent over-

fitting. Early stopping stops the training process when the model’s performance on

the validation set does not improve further. We utilized a patience of three, which
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means training was terminated if there was no improvement for three consecutive

epochs. The best checkpoint from the training process was used to evaluate the

model on the test set. All fine-tuning experiments were performed using 16-bit

precision to reduce memory consumption and computational requirements. The

experiments were executed on two NVIDIA RTX 2080 Ti GPUs.

We incrementally added data to our best-performing model to determine the

optimal training data needed. We started with 25% of the data, then increased

to 50%, 75%, and finally 100%. We shuffled and randomly selected these data

portions using three random seeds and then averaged the resulting CodeBLEU

scores.

Finally, with the 100% SpokenJava 2.0 training data, we added SpokenJava

1.0 training data (269 lines) used in the wav2vec fine-tuning experiment presented

in Chapter 4. This resulted in a total of 1102 lines. We have added the before

and after context for each example in the SpokenJava 1.0 dataset from the code

snippets we used in the data collection studies. Our goal was to determine whether

increasing the amount and variability of training data would improve the model’s

ability to handle the nuances of natural language when translating spoken code

into actual code.

5.3.4 Inference

We selected the best model from each experiment and performed inference using

the same prompt format the model was trained with, as shown in Table 5.1. For

this process, we employed a single NVIDIA RTX 2080 Ti GPU with a batch size
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of eight, the maximum that could fit into memory.

We used beam search decoding, which tracks multiple hypotheses to select the

most probable sequence. However, Beam Search was computationally expensive,

and we could only fit up to beam three with a batch size of eight.

In addition, we evaluated the performance of our best-adapted model on the

recognized transcripts from our fine-tuned wav2vec model described in Chapter

4. Recognized transcripts might contain errors due to recognition inaccuracies,

unlike human transcripts. Our goal was to assess the model’s capability to man-

age real-world scenarios where input data from a speech recognizer may contain

inaccuracies.

5.4 Results

This section presents the CodeBLEU and exact match accuracies for different

models evaluated on the dev and test sets. The models include the base model, the

fine-tuned no-context model with no context, the fine-tuned model with preceding

context, and the fine-tuned model with both preceding and following context. We

selected the model checkpoint with the highest CodeBLEU score on the dev set

for all evaluations.

5.4.1 Model Performance Across Different Contexts

The base model achieved a CodeBLEU score of 52.9% on the dev set and 56.9% on

the test set. As shown in Table 5.2, transitioning from the base model to the fine-
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Model Pre- Post- Dev Test
context context CB(%) EM(%) CB(%) EM(%)

Code Llama-7B – – 52.9 19.8 56.9 23.4
Code Llama-7B-adapted – – 64.1 37.1 75.9 47.1
Code Llama-7B-adapted 2 – 69.7 47.4 81.5 58.0
Code Llama-7B-adapted 2 2 70.4 52.6 83.3 65.8

Table 5.2: CodeBLEU (CB) score and Exact Match (EM) accuracies on dev and test sets
for different models trained with the SpokenJava 2.0 dataset.

tuned model without context led to a relative improvement of 21.2% on the dev set

and 33.4% on the test set in CodeBLEU score. This substantial gain suggests that

fine-tuning the model, even without additional contextual information, enhanced

its ability to generate accurate code, likely due to its increased exposure to relevant

data during the fine-tuning process. Adding two lines of preceding context further

improved performance, achieving a relative CodeBLEU increase of 8.7% on the

dev set and 7.4% on the test set. This indicates that even limited contextual

information before the target code can substantially improve the model’s accuracy.

Including two lines of preceding and two lines of following context resulted in

minimal gains on the dev set 1.0% and 2.2% on the test set. The smaller relative

improvement from adding the following context may be because the model has

already captured most of the necessary contextual information from the preceding

lines.

Precision in generating line-by-line code is essential because each line must be

correct for the entire code to function properly. The base model had exact match

accuracies of 19.8% on the dev set and 23.4% on the test set. Fine-tuning without

context improved the accuracy remarkably by a relative 87.4% on the dev set

99



and a relative 101.3% on the test set, highlighting the significant impact of fine-

tuning. Adding the preceding context further improved exact match accuracies

by a relative 27.8% on the dev set and 23.1% on the test set. Including both

preceding and following context led to additional gains, with improvements of

relative 11.0% on the dev set and 13.4% on the test set.

5.4.2 Model Performance on Different Constructs

We observed how improvements varied for each programming construct (Figure

5.1). Our dataset had several programming constructs: loops, comments, variable

declarations and initialization, method signatures and method calls, mathematical

statements, and ifElse statements. We counted the total number of samples for

each type of construct and how many were exactly correct in the test set.

The base model correctly generated 29.1% variable declaration and initial-

ization statements as shown in Figure 5.1. Fine-tuning without context signif-

icantly enhanced exact match accuracy to 75.5%. When the preceding context

was added, the exact match accuracy increased further to 78.2%. Incorporating

preceding and following contexts resulted in an exact match accuracy of 85.4%.

The base model struggled to translate compound variable names. For example,

it produced “char p = a; char s = s; char w = d; char o = o;” for the refer-

ence code “char passwd1;” when translating the spelled-out variable name “char

p a s s w d one” (Table 5.3). The no-context model also struggled with aggre-

gating variable names, translating this to “char pA sSw dOne”. The addition of

surrounding context significantly enhanced the model’s performance. While the
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Figure 5.1: Heatmap showing the exact match accuracies for various programming
constructs in the SpokenJava 2.0 test set, comparing base and adapted no‐context,

pre‐context, pre‐ and post‐context models.

variable “passwd1” wasn’t directly mentioned in the preceding context, the tar-

get line appeared within a method named “handlePassword”. This likely aided

the model in inferring the intended variable name. The best-performing model,

which incorporated both preceding and following context, accurately predicted

“char passwd1;”. The repeated mentions of “passwd1” in the following context

reinforced its correct usage and initialization.

For method signature and method call, the base model had an exact match

accuracy of 18.5%. Fine-tuning without context did not change this accuracy.
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However, adding the preceding context increased the accuracy to 33.3%. Pre-

ceding context alone did not help much for method signatures as it was the very

first line with no preceding context in some cases, which explains the significant

improvement when the following context was provided.

The base model demonstrated limited accuracy in loop constructs, achieving

an exact match accuracy of 22.8%. Fine-tuning without context yielded an im-

provement, raising the accuracy to 33.3%. Incorporating the preceding context

significantly enhanced the performance, increasing the accuracy to 57.9%. The

model that utilized both preceding and following contexts showed a further small

improvement, achieving an accuracy of 59.7%. We observed that most inconsis-

tencies arose from incorrect variable names in loop statements, even though the

overall loop structure was generated correctly.

The base model was better (43.3%) at understanding if-else statements than

other constructs. Fine-tuning without context raised this accuracy to 51.7%. The

inclusion of the preceding context and surrounding contexts significantly enhanced

the accuracy to 70.0% and 78.3%, respectively.

The proportion of correct mathematical operations saw a remarkable increase

from the base model accuracy of 9.1% to the accuracy of 59.1% with the no-context

model. Adding the preceding context increased the accuracy to 63.6%. Including

both contexts further improved the accuracy to 72.7%. This improvement was

mostly due to better handling of parentheses and structural differences. For ex-

ample, the target line “float x = x1 * (dx+i);” was correctly translated by all

fine-tuned models from the text “float x equals x one plus d x time i” but
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not by the base model, which missed the parentheses and this changed the mean-

ing of the code. This likely occurred as parentheses were not explicitly mentioned

in the spoken transcript.

Fine-tuning without context improved comment generation accuracy to 60%.

Adding the preceding context did not change this accuracy, but incorporating

both contexts increased it slightly to 70%. This might be because program-

mers have a tendency to write a comment followed by related code. When the

model saw the following context, it could better generate the comment accu-

rately. While generating comments, the base model often incorrectly produced

the literal word “comment” instead of adding “//” or “/* */” (Table: 5.3). The

base model was originally trained with comment-code pairs and could translate

comments to code, but it struggled with understanding how a particular com-

ment line was spoken. The model also struggled to generate comments when

the spoken text closely resembled executable code. For instance, the transcript

“comment loop through each buffer of the input array” had the target code

“// loop through each buffer of the input array”. The base model and the

model trained without context generated an entirely incorrect line “for(int i=0;

i<input.length; i++)”, misinterpreting the transcript as executable code rather

than a comment. The model that incorporated only the preceding context and

the model with the surrounding context correctly generated the comment. This

improvement can be attributed to the preceding context, which included lines like

“// create the buffer array to return”, likely helping the model infer that the

transcript was meant to be a comment.
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Context Text

target code float x = x1 * (dx + i);
human transcript float x equals x one times d x plus i
base float x = x * d + i;
no context float x = x1 * dx + i;
pre-context float x = x1 * dx + i;
pre & post-context float x = x1 * (dx + i);

target code for (int i = 0; i < numToRun; i++)
human transcript for i from zero to num to run increment i
base for (int i = 0; i < num; i++)
no context for (int i = 0; i < num; i++)
pre-context for (int i = 0; i < numToRun; ++i)
pre & post-context for (int i = 0; i < numToRun; i++)

target code char passwd1;
human transcript char p a s s w d one
base char p = a; char s = s; char w = d; char o = o;
no context char pA sSw dOne
pre-context char passwdOne;
pre & post-context char passwd1;

target code setTargetHost();
human transcript call set target host
base setTargetHost(call);
no context call.setTargetHost();
pre-context setTargetHost(newHost);
pre & post-context setTargetHost();

target code // loop through each buffer of the input array
human transcript comment loop through each buffer of the input array
base for(int i = 0; i < input.length; i++)
no context // for (int i = 0; i < input.length; i++)
pre-context // loop through each buffer of the input array
pre- and post-context // loop through each buffer of the input array

Table 5.3: Example code translations on the SpokenJava 2.0 test set, comparing different
models: base model, no context model, model with pre‐context, and model with both pre‐

and post‐context.
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Model Human text Recognized text
CB (%) EM (%) CB (%) EM (%)

Code Llama-7b 56.9 23.4 53.7 16.6
Code Llama-7b-adapted 83.3 65.8 76.7 50.2

Table 5.4: Comparison of CodeBLEU (CB) scores and Exact Match (EM) accuracies on the
test set between the base model (Code Llama‐7b) and the adapted model with pre‐ and
post‐code (Code Llama‐7b‐adapted), using human transcripts and recognized transcripts.

5.4.3 Model Performance on Recognized Speech

We evaluated our test data using our best-fine-tuned wav2vec model, which yielded

a recognized transcript with a Word Error Rate (WER) of 10.4%, indicating that

roughly 10 out of every 100 words were incorrect. We then used our best-adapted

model to translate these recognized single-line transcripts into actual lines of code.

Our objective was to determine how well the text-to-code model can understand

misrecognized words introduced by the speech recognizer, ultimately producing

accurate code.

As shown in Table 5.4, the base model achieved a CodeBLEU score of 53.7%

and an exact match accuracy of 16.6%, while our best-adapted model with both

preceding and following contexts achieved a higher CodeBLEU score of 76.7% and

an exact match accuracy of 50.2%. When translating human transcripts to code,

the best-adapted model had a higher CodeBLEU score of 83.3% and an exact

match accuracy of 65.8% compared to translating recognized transcripts. This

discrepancy is likely due to misrecognition in the predictions from the speech

recognizer.
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We observed how well the model translated misrecognized text into accurate

code. There were 42 instances where our best-adapted model correctly translated

the code despite errors in the recognized transcripts from the speech recognizer

out of a total of 146 instances with erroneous recognition. A few examples are

provided in Table 5.5.

For instance, consider the recognized transcript “if roles aloud is not equal

to null” with corresponding human transcript “if roles allowed is not equal

to null”. The base model produced an erroneous code “if (rolls.aloud !=

null)”. In contrast, the best-adapted model correctly generated “if (rolesAllowed

!= null)”. The context provided around the code, specifically the frequent oc-

currence and use of the term “allowed” in the preceding code snippet, helped

the fine-tuned model correctly understand and interpret the misrecognized word

“aloud” as “allowed”. This demonstrates the model’s capability to leverage the

surrounding context to make accurate corrections even from misrecognized words.

5.4.4 Impact of Training Data Size

We evaluated the performance of our best model with preceding and following

code contexts across varying amounts of training data: 25%, 50%, 75%, and

100% (Table 5.6). As the training data increases, CodeBLEU and exact match

accuracies improve on both the dev and test sets, as shown in Figure 5.2.

Initially, from 25% to 50% training data, the CodeBLEU score on the dev set

increased by 7.3% relative and on the test set by 7.0% relative. The Exact Match

accuracy on the dev set increased by 9.7% relative and on the test set by 2.6%
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Human Transcript for template type key in keys

Recognized Transcript for temple type keys in keys

Target Code for (TemplateType key : keys)

Translated Code for (TemplateType key : keys)

Human Transcript plus plus s e q n r

Recognized Transcript plus plus s e que n r

Target Code seqNr++

Translated Code ++seqNr;

Human Transcript if roles allowed is not equal to null

Recognized Transcript if rolls aloud is not equal to null

Target Code if (rolesAllowed != null)

Translated Code if (rolesAllowed != null)

Human Transcript boolean login equals true

Recognized Transcript bullion login equals true

Target Code boolean login = true;

Translated Code boolean login = true;

Table 5.5: Examples of code translations from recognized wav2vec transcripts on the
SpokenJava 2.0 test set.

relative. As we move from 50% to 75% training data, the improvements continue

but at a slower pace. The CodeBLEU score on the dev set increased by 1.9%

relative and on the test set by 2.7% relative. The exact match accuracy on the

dev set increased by 5.4% relative and on the test set by 2.7% relative. These

continued improvements, albeit smaller, indicate that the model still gains from

the additional data. However, the diminishing returns suggest that the model has

already learned a substantial portion of the patterns present in the dataset.

From 75% to 100% training data, the improvements further diminish. The
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Training Data Dev Test
CB EM CB EM

25% SpokenJava 2.0 63.3 42.1 73.9 60.9
50% SpokenJava 2.0 67.9 46.2 79.1 62.5
75% SpokenJava 2.0 69.2 48.7 81.2 64.2
100% SpokenJava 2.0 70.4 52.6 83.3 65.8

100% SpokenJava 2.0 74.4 54.3 84.6 69.2+ 100% SpokenJava 1.0

Table 5.6: CodeBLEU (CB) scores and Exact Match (EM) accuracies of Code
Llama‐7b‐adapted with two lines of pre‐ and post‐code context using varied training data
amounts. The result is an average of three random choices for 25‐75%. SpokenJava 1.0
represents data from Studies 1 and 2, while SpokenJava 2.0 represents data from Study 3

(Chapter 3).

CodeBLEU score on the dev set increased by 1.7% relative and on the test set by

2.6% relative. The exact match accuracy on the dev set increased by 8.0% relative

and on the test set by 2.5% relative. The additional examples provide incremental

improvements, but the model might have absorbed most of the variations it can

learn from the dataset.

Augmenting 100% of SpokenJava 1.0 data (269 lines) collected in Study 1 and

Study 2 with 100% of SpokenJava 2.0 led to a CodeBLEU score increase by 5.7%

on the dev set and 1.6% on the test set, relative to using 100% of the SpokenJava

2.0 dataset. The exact match accuracies increased by a relative 3.2% on the dev

set and 5.2% on the test set. Our SpokenJava 1.0 dataset had the same set of

20 different programming statements spoken by various programmers. With this

limited variation in programming statements, the model likely did not encounter

new types of code.
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Figure 5.2: CodeBLEU (CB) scores and Exact Match (EM) accuracies of Code
Llama‐7b‐adapted with two lines of pre‐ and post‐code context using varied training data
amounts. SpokenJava 1.0 represents data from Studies 1 and 2, while SpokenJava 2.0

represents data from Study 3 (Chapter 3).

5.5 Discussion and Limitations

In this chapter, we aimed to generate single-line Java programs from single-line

spoken Java transcripts, which poses unique challenges compared to generating
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code from written comments. Spoken language often lacks the structure and

clarity in written text, making the conversion process more complex. Despite

these challenges, our experiments demonstrated that fine-tuning a large language

model with surrounding context significantly improved model performance. To

our knowledge, this is the first work to adapt a model specifically for generating

single-line Java programs from spoken Java transcripts.

Our best-performing model, which utilized both preceding and following con-

text, achieved the highest CodeBLEU and exact match accuracy, demonstrating

the importance of context in generating accurate code. For instance, the model’s

performance on correctly understanding variable names improved from 29.1% to

85.4% when incorporating context. Although our results indicate that using both

preceding and following context yields the best performance, all three models —

no context, pre-context, pre- and post-context — outperformed the base model.

Depending on the coding scenario, each model can be utilized in a real system.

For instance, the no-context model can be used when a programmer starts writ-

ing new code; the preceding-context model can be helpful as the programmer

continues writing and requires an understanding of the preceding lines, and the

both-context model is ideal for editing code in the middle of a block where both

preceding and following context are available.

Despite the encouraging results, our best model occasionally misunderstood

method names as variable names when the spoken transcript did not indicate

whether it was a method or a variable. For example, given the target: “final

boolean isIdle()” and the transcript: “final boolean is idle”, the model pro-
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duced “final boolean isIdle;”. This indicates the model still struggles with

certain ambiguities inherent in spoken code. This might be due to the lack of

useful context that could help accurately translate such instances.

Our results showed marked success in translating recognized transcripts from

a speech recognizer to the target code. The best model achieved an exact match

translation 28.8% of the time, even when the transcripts contained misrecognition

errors.

We focused solely on Java in this research. The fundamental challenges of

translating text to code are common across programming languages. The tech-

niques and insights gained from this study have the potential to be adapted and

extended to other programming languages. Future research should explore similar

studies with other programming languages to validate and refine the approach,

ensuring the generalizability of our findings and contributing to the broader field

of voice programming.

The dataset used for training consisted of 833 lines, whereas large code gener-

ation models are typically trained with billions or trillions of training examples.

This limited size may not fully capture the variability and complexity of spoken

programs. Future work should focus on expanding the dataset by collecting more

spoken programs from a diverse set of speakers and with different constructs. This

would help the model generalize better to different speaking styles and accents.

Data augmentation techniques can be employed to address the limitations of

the small dataset. Paraphrasing spoken transcripts to simulate different ways peo-

ple phrase the same instruction can enrich the dataset. Additionally, generating

111



synthetic data through back-translation, where large language models convert the

target code back to spoken language, can mimic the structure and variability of

human speech. These experiments require extensive computational power due to

several factors. For back-translation, each instance requires two passes through

the model—one to translate the target code back to a reference text and another

to translate it back into code. This process can be particularly demanding when

dealing with large datasets.

Despite using 4-bit quantization to reduce memory usage, we were limited to a

batch size of 4 for the training model with surrounding contexts. This constraint

significantly restricted our ability to experiment with larger batches and more

complex models, which often impact the performance of a model.

5.6 Conclusion

In conclusion, our research demonstrates the feasibility and potential of generating

single-line Java code from spoken language, completing the final step of our two-

step pipeline. To our knowledge, this work is the first to adapt a model to generate

single-line Java code from spoken language instead of written comments. By fine-

tuning a large language model, with both preceding and following context, we

achieved a remarkable 46.4% increase in CodeBLEU relative to the base model

originally trained to generate code snippets from comments.

Despite some limitations, such as the small dataset size and computational

constraints, our results are promising and lay a solid foundation for future advance-
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ments in translating spoken transcripts into target lines of code. Our approach

of single-line code generation might be beneficial in real-world programming sce-

narios where programmers input code line-by-line. It also reduces the likelihood

of errors that can occur when generating larger blocks of code. The ability to

generate code from spoken language can significantly enhance the accessibility

and ease of programming, particularly for those who may find traditional coding

interfaces challenging.
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Chapter 6

Conclusion

6.1 Discussion

This dissertation presents a methodology for creating a voice programming system

aimed at making programming more accessible for individuals with motor impair-

ments and reducing the risk of Repetitive Strain Injury (RSI) for all programmers.

The research journey is detailed through various stages, each contributing to im-

proving voice programming systems using a two-step pipeline.

In Chapter 2, we provided a comprehensive understanding of the challenges

faced by motor-impaired programmers. Through interviews, we gained valuable

insights into their needs and preferences, which can guide the development of more

accessible and effective voice programming systems. Participants expressed frus-

tration with current systems that require learning many commands and showed a

desire for a naturally spoken programming system. Participants highlighted the
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need and importance of a voice programming system with one participant stating,

“A voice programming system would be useful for people who are on the verge of

developing RSI and also for people who can’t type in the first place.”

With insights from Chapter 2, Chapter 3 investigated how diverse program-

mers naturally speak code without learning specific commands. By analyzing

the vocalization of code by novice and expert programmers, we uncovered new in-

sights into how programmers speak code without adhering to rules. We found that

participants spoke both literally and naturally. One participant noted, “Speak-

ing without strict rules feels more natural, but if common commands (loops and

method declarations) had set spoken syntax, there would be less confusion on

what is going to be declared.” Our user studies led to creating a dataset that

includes single lines of spoken Java programs, corresponding target lines of code,

and transcripts of how programmers vocalized those lines. To our knowledge, this

is the first dataset of this nature, as traditional datasets used in programming

language processing typically include written code or annotated text-based com-

ments. The single-line spoken dataset captures the nuances of how programmers

speak code and can be used for speech recognition, text-to-code, and code-to-text

translation tasks.

In Chapter 4, we addressed the first step of our two-step pipeline: recognizing

the literal words spoken by programmers. We demonstrated how to improve the

recognition accuracy of spoken programs by adapting large pre-trained models.

Our experiments showed that fine-tuning the model with domain-specific spoken

program data and decoding with a transformer model trained with domain-specific
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spoken Java transcripts resulted in substantial improvements in recognition ac-

curacy. Our best-adapted model achieved an error rate of 4.5%, while the base

model had a high error rate of 22.3% on our test set. This chapter established

the effectiveness of adapted speech recognition models for accurately recognizing

spoken programming languages.

Chapter 5 presents the second step of the pipeline: converting recognized

transcripts of spoken Java code into the actual line of code. By adapting a large

language model to understand and utilize context, we significantly improved the

CodeBLEU score of the generated single-line code. We considered three scenar-

ios: a no-context model, a pre-context model with two lines, and a both-context

model surrounding two lines. The no-context model is particularly useful when a

programmer writes new code without existing lines. The preceding-context model

leverages the context of preceding lines of code, making it ideal for extending or

continuing existing code. The both-context model, trained with preceding and fol-

lowing contexts, is well-suited for editing or inserting code within an existing block.

Each of these models demonstrated superior performance compared to the base

model. The no-context, pre-context, and pre-and post-context models showed a

relative increase of approximately 33.4%, 43.2%, and 46.4% in CodeBLEU scores,

respectively. Moreover, our best model with surrounding context performed well

even when the recognition transcripts contained errors from the speech recognizer,

achieving a relative increase of 42.8% in CodeBLEU scores compared to the base

model. However, when translating misrecognized text, the CodeBLEU score was

slightly lower by 8% relative to translating human transcripts.

116



Our study demonstrated the effectiveness of a two-step pipeline approach,

where speech recognition and text-to-code translation are handled separately.

This modular design allows for the independent optimization of each component.

For instance, a more accurate speech recognition model can be integrated with-

out altering the text-to-code translation stage. This flexibility enables continual

improvements and the incorporation of the latest advancements in each field.

The two-step pipeline developed in this research offers flexibility in swapping

different models for each stage, which can be particularly beneficial as new and

improved models become available. The first step, recognizing spoken words,

and the second step, converting recognized text into code, can each be optimized

independently. This modular approach allows for continual improvements in each

component without requiring a complete system overhaul. For instance, if a more

accurate speech recognition model is developed, it can be integrated into the

pipeline without altering the text-to-code conversion stage, and vice versa. The

text-to-code translation model could also be adapted to generate code in different

programming languages.

6.2 Future Work and Limitations

One limitation of our work was the small dataset size. Our SpokenJava 1.0 dataset

consisted of 269/27/28 utterances, 29/6/6 users, and 60/5.7/6.9 minutes of audio

for the train/dev/test sets, respectively. The SpokenJava 2.0 dataset consisted of

833/115/295 utterances, 50/7/10 users, and 200/25/30 minutes of audio for the
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train/dev/test sets, respectively. This limited data restricted the variability and

complexity that the model could learn from. In contrast, large language models

like GPT-3 [61], Gemini [55], and LlaMA [62] are trained on hundreds of gigabytes

of text data, encompassing billions of tokens. Employing data augmentation tech-

niques, such as generating synthetic data, could help mitigate the limitations of

a small dataset. Another promising approach for expanding the dataset involves

scaling up through real-world usage. As the system is used in various environ-

ments, it can automatically gather diverse spoken Java transcripts from actual

users.

We had a very small number of programmers involved in our studies. Re-

cruiting a larger, more diverse group of participants proved challenging because

all participants needed to know Java and the labor of transcription. This re-

quirement limited our pool of potential participants. Future work could leverage

platforms such as Prolific, Amazon Mechanical Turk (MTurk), and other crowd-

sourcing platforms to recruit more participants. Expanding the participant pool

would provide more diverse data and improve the robustness of the voice pro-

gramming system. Transcribing spoken data manually is a time-consuming and

labor-intensive process. Future work could explore semi-automated or fully auto-

mated transcription methods to address this. Leveraging existing speech-to-text

systems to produce initial transcripts, followed by human verification and cor-

rection, could reduce the transcription workload. Recruiting more transcribers

through platforms like MTurk could also help scale the transcription process effi-

ciently.
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While the two-step pipeline has its advantages, an end-to-end model could

simplify the system by handling the entire process in one unified step. The model

can learn directly from spoken words to code without needing an intermediate step,

which might result in better overall performance. The direct flow of information

can allow the model to optimize the entire process as a whole, potentially capturing

subtle relationships that a two-step approach might miss. However, such a model

would require a much larger and more diverse dataset to train effectively, as it

would need to learn both tasks at once. Additionally, end-to-end models can be

more difficult to debug and optimize since errors in one part of the process can

affect the entire output.

We aim to develop a fully working system in the future based on the method-

ology and model we developed in this work. Such a system can learn and adapt

to individual programmer preferences, including variable name choices. Based on

our data, we observed that people sometimes speak code literally and sometimes

naturally. A dynamic model that can learn and switch between these modes based

on context or user history could be highly effective. For complex statements, we

found users’ preference to speak literally. For instance, integrating multiple mod-

els that specialize in different aspects—such as one optimized for literal speech

and another for natural speech could based on the detected speech pattern or user

preference, improving the overall accuracy and user experience. It could learn the

user’s coding style, preferred variable names, and commonly used code patterns,

providing a personalized coding experience.
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6.3 Final Remarks

Our contributions lay the groundwork for creating a voice-based programming

system by demonstrating the feasibility of a two-step pipeline and emphasizing

the need for a flexible, adaptable approach that can evolve with user needs. We

gained valuable insights into the challenges of motor-impaired programmers, ex-

plored how programmers naturally speak code, and created a novel dataset cap-

turing diverse speech patterns. We also improved speech recognition accuracy

by adapting a large pre-trained language model in the first step. In the second

step, we demonstrated the effectiveness of the context in enhancing text-to-code

translation. Building on our findings, future work should focus on expanding the

dataset and integrating context-aware models that adapt to user preferences. The

insights and methodologies from our work can be adapted to support other pro-

gramming languages, making the approach versatile and widely applicable. This

adaptable framework could pave the way for a more inclusive and efficient spoken

programming system, benefiting diverse users.
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Appendix A

A.1 Interview Study Questionnaire

7 motor-impaired programmers took part in your interview study presented in

Chapter 2. Figures A.1 and A.2 display the pre-interview questionnaire and the

open-ended questions we asked during the interviews, respectively.

Figure A.1: Pre‐interview questionnaire for the interview study presented in Chapter 2.
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Figure A.2: Open‐ended questions for the interview study presented in Chapter 2.
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A.2 Study 1 and Study 2 Questionnaire

Figures A.3 and A.4 show the pre-experiment and post-experiment questionnaires

used in Study 1 and Study 2 presented in Section 3.2 and Section 3.3.

Figure A.3: Pre‐experiment questionnaire used in Study 1 and Study 2 presented in
Section 3.2 and Section 3.3.
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Figure A.4: Post‐experiment questionnaire used in Study 1 and Study 2 presented in
Section 3.2 and Section 3.3.
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A.3 Study 3 Questionnaire

Figures A.5 and A.6 present questionnaires used in Study 3 presented in Section

3.4.

Figure A.5: Pre‐experiment questionnaire used in Study 3 presented in Section 3.4.
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Figure A.6: Post‐experiment questionnaire used in Study 3 presented in Section 3.4.
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Appendix B

B.1 Google Speech-to-Text Experiment Details

Table B.1 shows the Word Error Rate (WER) for different n-gram language models

we investigated in the Google speech-to-text language model adaptation experi-

ment presented in Section 4.3.

Language model WER
2-gram 20.8
3-gram 22.8
4-gram 23.5
5-gram 23.9

Table B.1: Word Error Rate (WER) for different n‐gram language models in the
experiment with Google’s speech‐to‐text presented in Section 4.3.
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B.2 N-gram Language Modeling Results

Table B.2 shows the perplexity for all trigram to 8-gram models trained on dif-

ferent datasets in our language modeling experiment presented in Section 4.4.3.

The best language model was a 4-gram mixture model with a perplexity of 22.1.

N-gram order Training dataset
SpokenJava CodexGlue LibriSpeech

3 16.6 2420.6 17215.0
4 15.4 2310.7 14983.0
5 16.3 2311.9 14983.2
6 17.6 2323.7 14999.5
7 18.1 2322.0 15527.8
8 18.5 2339.2 15591.2

Table B.2: Perplexities for different n‐gram language models trained on SpokenJava 1.0,
CodexGlue single line comments, and LibriSpeech datasets presented in Section 4.4.3.

B.3 Adapted wav2vec Model Hyperparameters

Table B.3 shows the beam search decoding parameters for the wav2vec models

presented in Section 4.4.4.

Model LM LM weight WIP

LibriSpeech (960h) 4-gram-libri 0.3143 -0.6010
LibriSpeech (960h) 4-gram-mixture 2.3922 2.6103
LibriSpeech (960h) + SpokenJava (1h) 4-gram-libri 0.9013 1.8621
LibriSpeech (960h) + SpokenJava (1h) 4-gram-mixture 1.1311 0.2042

Table B.3: Beam search decoding parameters for all fine‐tuned models presented in
Section 4.4.4. LM = Language Model, WIP = Word Insertion Penalty.
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