
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's Reports

2024

A Virtual Time Driven Simulator for DEVS Models A Virtual Time Driven Simulator for DEVS Models

Ronald R. Stempien
Michigan Technological University, rrstempi@mtu.edu

Copyright 2024 Ronald R. Stempien

Recommended Citation Recommended Citation
Stempien, Ronald R., "A Virtual Time Driven Simulator for DEVS Models", Open Access Master's Thesis,
Michigan Technological University, 2024.
https://doi.org/10.37099/mtu.dc.etdr/1794

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr

 Part of the Other Computer Sciences Commons, and the Systems Architecture Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://doi.org/10.37099/mtu.dc.etdr/1794
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1794&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1794&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1794&utm_medium=PDF&utm_campaign=PDFCoverPages

A VIRTUAL TIME DRIVEN SIMULATOR FOR DEVS MODELS

By

Ronald R. Stempien

A THESIS

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In Computer Science

MICHIGAN TECHNOLOGICAL UNIVERSITY

2024

© 2024 Ronald R. Stempien

This thesis has been approved in partial fulfillment of the requirements for the Degree

of MASTER OF SCIENCE in Computer Science.

Department of Computer Science

Thesis Advisor: Dr. Jean Mayo

Committee Member: Dr. Soner Onder

Committee Member: Dr. Jianhui Yue

Department Chair: Dr. Zhenlin Wang

Contents

List of Figures . ix

List of Tables . xi

Acknowledgments . xiii

List of Abbreviations . xv

Abstract . xvii

1 Introduction . 1

1.1 Problem . 2

1.2 Limitations . 8

1.3 An Example Use Case . 10

2 Background . 13

2.1 Hardware Features . 13

2.1.1 Time Stamp Counter . 14

2.2 Virtualization Basics . 16

2.2.1 VMX Preemption Timer . 17

v

2.2.2 Virtualized Timekeeping . 18

2.2.3 Synchronization . 20

2.3 Discrete Event System Specification 21

2.3.1 DEVS Simulation . 25

3 VTDEVS . 31

3.1 Definition . 31

3.1.1 Simulation Algorithm . 33

4 Implementation . 39

4.1 Kernel Changes . 40

4.1.1 TSC Isolation . 40

4.1.1.1 rdmsr Capture . 42

4.1.1.2 rdtsc Capture . 44

4.1.2 VCPU Management . 45

4.1.2.1 VMX Preemption Timer 45

4.2 Simulator Changes . 48

4.2.1 Root-Coordinator Algorithm 49

4.2.2 Time Scaling . 50

5 Validation . 55

5.1 Exect Benchmark . 57

5.1.1 Algorithm . 57

vi

5.1.2 Setup . 60

5.1.3 Results . 60

5.1.3.1 t-Testing . 64

5.1.3.2 Analysis of Variation 65

5.2 Cyclictest Benchmark . 67

5.2.1 Setup . 69

5.2.2 Results . 70

6 Related Work . 73

6.1 Hardware-Assisted Simulation . 73

6.2 Virtualized Time . 74

6.3 Time Dilation . 75

6.4 Resource Dedication . 76

7 Future Work & Conclusion . 79

7.1 Support for Multiple VCPUs . 79

7.1.1 The Interrupt Problem . 80

7.1.2 The Host Scheduler Problem 82

7.2 Distributed VTDEVS Simulation 85

7.3 Conclusion . 86

References . 87

vii

List of Figures

2.1 A simplified example of TSC synchronization for a VM with two VC-

PUs. 21

2.2 Hierarchy of the DEVS simulation algorithm 27

3.1 The structure of a VTDEVS system 32

3.2 Advancing the total state of a VTDEVS model 34

5.1 Histograms of exect results . 61

(a) 1µs . 61

(b) 10µs . 61

(c) 100µs . 61

(d) 1ms . 61

(e) 1s . 61

(f) 2s . 61

5.2 Latency . 67

7.1 Interrupt error . 80

7.2 Over-execution error . 82

ix

7.3 Under-execution error . 84

x

List of Tables

5.1 Mean of exect results . 62

5.2 Standard deviations of exect results 63

5.3 Coefficient of variance of exect results 63

5.4 t-testing p-values (rounded) . 64

5.5 Allocation of Variation . 65

5.6 Cyclictest latency measurements (µs) 70

xi

Acknowledgments

I would like to acknowledge and thank the teams present at both ARiA (Applied

Research in Acoustics LLC) and MTRI (Michigan Tech Research Institute), who

have worked diligently on this project with me.

xiii

List of Abbreviations

DEVS Discrete Event System Specification

KVM Kernel Virtual Machine

MSR Model Specific Register

TSC Timestamp Counter

VCPU Virtual CPU

VM Virtual Machine

VMCS Virtual Machine Control Structure

VMM Virtual Machine Manager

VMX Virtual Machine Extensions

VTDEVS Virtual Time Discrete Event System Specification

xv

Abstract

When simulating a system that includes some software component, simulation authors

are faced with the problem of how to appropriately model the software within the

simulation. While many formal methods for modeling software exist, in some contexts

these may not be appropriate or viable for a given simulation. Instead, simulation

authors may model a computer within the simulation, and run the software in question

“as is” on the modeled machine. In this work, we introduce a theoretical framework

to allow for the use of hardware virtualization technologies as a hardware accelerator

for CPU models in Discrete Event System Specification (DEVS) simulations. In

addition, we cover the pragmatic issues with existing hypervisors that make them

unfit for use in a simulation context, and provide a modification to Linux’s Kernel

Virtual Machine (KVM) hypervisor that would allow for this hypervisor to be used

in a simulation context. Finally, we validate our new simulation via experiment with

two separate benchmarks.

xvii

Chapter 1

Introduction

In this thesis, we introduce a theoretical framework for using virtualization as a hard-

ware accelerator for executing code in a discrete event simulation. Specifically, we

propose an extension of the Discrete Event System Specification (DEVS) [1], called

the Virtual Time Driven Discrete Event System Specification (VTDEVS), which al-

lows for the use of a virtual CPU (VCPU) to drive forward the progression of sim-

ulation time. The goal of this is to allow for the efficient execution of guest code

when modeling software as-is (that is, running the software in the simulation, rather

than formally modeling the software as a simulation component). In addition, this

thesis covers the pragmatic issues of implementing virtual machines into a simulation

environment, and provides a modification to Linux’s Kernel Virtual Machine (KVM)

that allows for the hypervisor to be used in a simulation context. Lastly, we present

1

empirical experimental evidence that this system allows for a simulated CPU to exe-

cute code in a simulation time context in a way that is comparable to how a physical

CPU executes code in a physical time context.

The organization of this thesis is as follows. First, we introduce the problem of how

to model software in a simulation, and what use case this approach is appropriate

for. Second, we go over background information necessary to understand the details

of theory and implementation, including an introduction to virtualization and timing

hardware, as well as a brief introduction to DEVS. Third, we detail the theoretical

component of this thesis, the VTDEVS extension to DEVS. Fourth, the implemen-

tation of the theoretical system is done via a modification to KVM, and used in a

preexisting computer model. Fifth, we discuss the capabilities of this implementation

through the experimental results of a micro-benchmark. Sixth, we cover related work

in the broader area of using virtualization in simulation contexts. Lastly, we conclude

by discussing future work that could stem for our results.

1.1 Problem

Simulations that must model some software component face a difficult challenge.

Ideally, the software being scrutinized in the simulation would be modeled already,

and it would simply be the case of plugging in the extant model of the software into the

2

simulation. However, this is not always feasible. Models aren’t immediately available

for many pieces of software, and developing these models in-and-of themselves takes

time and effort. Further, any updates to the software itself may then require a rewrite

of the software model.

Ideally, it would be great if we had a plug and play solution that would allow for the

software to be run in the simulation as-is, without need for any dedicated software

model. Instead of modeling the software itself, a simulation could model the computer

the software runs on, and “run” the software on the simulated computer as needed

in the simulation. This produces a lot of work upfront in the work that is required

to produce a complete model of a computer; however, given such a model, it would

be trivial to change the software running on the simulated system itself.

If this approach is taken, then there raises the issue of modeling the CPU. It is clear

that this is one of the most important components of a computer model, being the

part that runs the software we are attempting to model in the simulation. However,

it is not clear how to approach modeling this component. While in some simulation

contexts there may be trivial solutions, if we shift our focus onto DEVS simulations

we run into a few issues.

Discrete event simulations do not rely on any real notion of time. That is to say, the

advancement of simulation state is completely detached from the passage of physical

time. Rather, the driving force of a discrete event simulation is the titular event.

3

That does not imply that the simulation has no concept of time, instead time is

driven forward by the events generated in the simulation, rather than vice versa. The

time perceived by the simulation is called simulation time.

Take, for example, a DEVS simulation (the exact definition of a DEVS simulation

is discussed in section 2.3). The model in a DEVS simulation knows when the next

event is scheduled to occur, and it is the simulator algorithm’s task to advance the

simulation state (and thus the simulation time) to that next event; if the event had

not existed, then time would not have advanced forward. The great benefit of this

approach is that it allows for the computation of the simulation to be completely

unrestrained by physical time. A simulation may skip ahead far forward in time with

very little actual compute time. Alternatively, if a simulation is incredibly complex,

a simulator may spend a significant amount of compute time to simulate a relatively

small amount of simulation time.

In a DEVS simulation, the simulation must know when the next event for each com-

ponent of the simulation is going to occur. For example, when the CPU issues an

out instruction to a certain port an event is produced, and this event may trigger the

external transition function of another component in the simulation. The simulation

is aware of some CPU events ahead of time, for example, it may know that an inter-

rupt is scheduled to fire 2 milliseconds from the current simulation time. However,

the general problem of knowing when the next event will occur during execution is

4

undecidable.

Aside from this event scheduling problem, several important implementation problems

persist. Foremost is the interaction between the simulation and the simulated CPU.

How should the simulation know the state of the simulated CPU, and vice versa?

In the case of a DEVS simulation, where the simulator knows when the next event

is set to occur, how does the simulation tell the simulated CPU to also proceed to

that next event time? Similarly, if the VCPU produces an event unbeknownst to the

simulation, how ought the simulation handle this event? Sadly, more thought must

be put into the interaction of these two systems than simply “plugging it in”.

The next issue is the actual implementation of the CPU in the model. Ideally, we

would like for the simulation to be perfectly representative of the modeled system. If

we wished to model the CPU to the best of our abilities, we may look towards the

extremely granular models offered by microarchitecture simulators like simplescalar

[2]. Similarly, tools and languages exist that allow for the creation of these cycle-by-

cycle microarchitecture simulators, such as UPFAST with ADL [3]. The drawback

of these simulators is that they are extremely slow. Similar speed concerns extend

(albeit to a lesser extent) to simple CPU emulators like Bochs [4]. Virtualization,

which allows VCPUs to execute guest code at near-native speeds, presents itself as a

promising alternative.

The current methods of timekeeping available in many hypervisors make them unfit

5

to be used as the hypervisor for a hardware-accelerated CPU simulation. The reason

for this is a matter of priorities. Hypervisors are typically designed to be used in

a virtualization context, which has very different timing priorities compared to a

simulation context, as such the developers of these hypervisors provide tools that

conform to the virtualization use case.

In a virtualization context, it is generally desired that a guest perceive wall clock

time. Wall clock time refers to the physical passage of time in the real world, that is,

“the time a clock on the wall would show.” There are many reasons this behavior is

generally seen as beneficial for a virtual machine. For example, if a virtual machine

wishes to use some network protocols on a physical network, it needs to have a correct

view of wall clock time, or else these protocols may not work. Think of a DNS record

with a set time-to-live. If a virtual machine with an incorrect view of wall clock time

handles such a record, it may kill the record early, or perhaps allow an expired record

to live longer than desired.

However, in a DEVS simulation context, wall clock time is irrelevant. This is be-

cause simulation time advances independently of wall clock time. If simulation time

advances one second, we wish for the modeled computer to perceive a second has

passed, regardless of how much time it actually took the simulator to calculate that

simulation time slice.

Despite this, there is demand to use these hypervisors as accelerators in simulations.

6

KVM is no different from other hypervisors, there are several deficiencies with its

current implementation that prevent its use in some simulation contexts. These

deficiencies have been illustrated in [5]. Put simply, there exist two major hurdles

that prevent KVM from being used in a simulation context.

First, the host does not have complete control over the value of the Time Stamp

Counter (TSC) that is presented to the guest. The default behavior of the TSC

has been described in section 2.2.2. While the host can set a TSC value, this value

increments on its own accord relative to the advancement of the host’s TSC. If the

simulation sets a TSC value while the VCPU is paused and the host is in control,

there is no guarantee that when the guest is resumed and eventually queries the value

of the TSC that (A) the TSC is the same value as what the simulation set it to some

time prior and (B) that value set is still a valid view of simulated time.

Second, there is no efficient or easy way to schedule, measure, or interrupt the exe-

cution of the VCPU in KVM. This leaves simulation developers relying upon thread

time and sending thread signals to measure and manage the execution of a VCPU.

On the part of measurement, thread time is not an accurate account of how long a

VCPU had actually been executing guest code. This is because the thread time takes

into account both time spent in host user space (for example, setting up the VCPU

to run with the KVM RUN ioctl) and time spent in the host kernel. On the part of

managing VCPU execution, signals are processed at the leisure of the Linux kernel,

7

and there is no guarantee that it will deliver these to the recipient thread in a timely

manner. This can result in a VCPU being scheduled for much longer than desired.

1.2 Limitations

There is no such thing as a “one size fits all” simulation, of course, and this limitation

holds true for the approach given in this thesis. When modeling a system and running

a simulation on a model, a modeler must make choices and compromises in what to

model and what to abstract. These choices depend on what the goal of running the

simulation is, what knowledge are we, as simulation runners, seeking to divine. Such

compromises must be made in simulations that involve computers and software.

Take, for example, researchers and designers of CPU microarchitectures. When these

researchers run simulations of a microarchitecture on a benchmark program, they

are interested in having an extremely accurate picture of how the CPU behaves.

They wish to know about every cache miss, every branch prediction, et cetera. A

cycle by cycle simulation of a CPU is thus apt for this problem, as it will make

clear the behaviors the researcher wishes to observe. However, such simulations are

excruciatingly slow in the context of many other simulation use cases.

8

Contrast this to the approach of creating a bespoke software model, where the hard-

ware is mostly (if not entirely) abstracted away. Many languages exist for creating

formal models of software, such as PROMELA [6] and Alloy [7], as well as allowing a

modeler to specify requirements the software must satisfy. These languages typically

come with a model checker that allows a model developer to see if the model as speci-

fied satisfies the requirements. Model checkers and the modeling languages associated

to them are incredibly powerful tools with strong theoretical backings that allow de-

velopers to easily reason about their software. Similar models can be constructed

for DEVS simulations. Maintaining a model of a piece of software can be a massive

commitment, however, particularly if said software is complex in functionality. This

potentially creates a parallel stream of development, where changes to the software

may require a change to the model, which takes time and effort. Such a parallel

development stream may be unfavorable for software in active development, which

may be constantly changing, thus requiring constant model changes. Alternatively,

the software being modeled may not be open source, or poorly documented, thus

requiring some reverse engineering to actually understand the semantic properties of

the software, which is a whole other Herculean task.

9

1.3 An Example Use Case

To tackle the problem of congestion on freeways through a city, the city decides

to implement a system which limits how often vehicles can enter the freeway via

on-ramps. This system will monitor congestion via cameras and other sensors, and

send this data to a central computer, which then determines via some algorithm how

many cars to let onto the freeway. Before implementing this system, the city decides

to create a simulation of the new system, and run empirical experiments to see if the

new system will actually decrease congestion. This simulation thus has two parts, a

physical part that models the traffic seen on the freeway, and a software part that

models the decisions taken by the algorithm. Let us ignore the details of implementing

the model of the freeway’s traffic, and instead focus on the modeling of the second

part, the software that makes the decisions. Ideally, the modeler would be able to

look at the software making the decision and abstract it into some formal software

model that can then be used as-is in the system’s simulation. However, there may be

several issues with this. Perhaps the software is a black box that the modeler cannot

open to create an accurate model, maybe because the algorithm is proprietary, or

that it uses some machine learning techniques that cannot easily be reasoned about.

Alternatively, it may be that software is under active development, and any model

the modeler develops would swiftly become obsolete, thus requiring a rewrite of the

model. Whatever the reason may be, modeling the software formally is infeasible.

10

With this restriction, the modeler is left with the option to model the computer in

the simulation, and run the software on the modeled computer. This allows for the

software to be tested in the simulation, without needing to worry about modeling

the software itself. Now, the modeler need only worry about modeling the computer.

Part of modeling the computer is modeling the CPU, which executes the actual code

of the software. Depending on the requirements of the simulation, for example how

accurate the simulation must be, the modeler has many possible routes for imple-

menting the CPU model. To maximize the accuracy of the simulation, the modeler

may decide to make use of a preexisting CPU cycle-by-cycle simulation, such as those

used in microarchitecture research. The great accuracy of these CPU microarchitec-

ture simulators comes with the trade-off of computational complexity, which results

in an extremely slow simulation. The modeler may come to the conclusion that this

drawback is unacceptable, and that a quicker simulation is worth a loss in accuracy.

This is where virtualization becomes an attractive option for modeling the CPU. If

the central computer that is making the traffic decisions is of the same architecture

as the computer the simulation is running on, the simulation machine can make use

of virtualization hardware to run simulated code at native speeds.

The scenario above has all the qualities that make it amenable to the approach

suggested in this thesis. First, the simulation contains some software part. This

point is important, as a simulation without a software component need not go through

this trouble in the first place. Second, this software part cannot easily be modeled

11

formally. If the software were easily modeled, then it may be more beneficial to model

the software directly, and use the model as a component in the simulation. A piece of

software may be difficult to model because it is a black box of some sort, or the nature

of the software’s development cycle makes it difficult to keep a model in parity with

the actual software itself. Third, the simulation allows for some margin of error when

it comes to the simulation of the software. A simulation may be this way because

the software being modeled is non-critical, or if the software is not the main focus of

what is being investigated by the simulation runners. Given all these qualities, we

may then proceed with the method of software simulation proposed in this thesis.

12

Chapter 2

Background

A review of several virtualization concepts, simulation concepts, and hardware fea-

tures are merited before discussing the problem at hand.

2.1 Hardware Features

This project relies upon the use of several specific hardware features unique to some

x86 processors.

13

2.1.1 Time Stamp Counter

The PC platform has a wide variety of time keeping mechanisms. Many of these

mechanisms date back to the original IBM PC itself. These include, but are not

limited to, the Programmable Interval Timer (PIT), the Advanced Programmable

Interrupt Controller (APIC) timer, and the High Precision Event Timer (HPET).

However, the most commonly used primary timing mechanism available on most

modern x86 CPUs is the Time Stamp Counter (TSC) [8].

The TSC is a Model Specific Register (MSR) present on most modern x86 CPU mi-

croarchitectures. In practice, the TSC (MSR index 0x10) is an unsigned 64-bit integer

that increments at a certain rate. Given that the TSC is a Model Specific Register,

the fine details of its behavior are very specific to a given microarchitecture. The rate

at which the TSC increases may differ from one CPU to another, depending on the

microarchitecture. For example, on older microarchitectures, the TSC increased at a

rate determined by the CPU clock speed, however modern microarchitectures tend

to have the TSC increment at a constant rate divorced from the CPU clock [9].

There are a very limited number of ways that a user can interact with the TSC.

These are limited to a few specific instructions and auxiliary MSRs. Perhaps the

most basic interaction is reading directly from and writing directly to the MSR itself.

14

Reading can be performed using the rdtsc, rdtscp, and rdmsr instructions. These

instructions populate the edx:eax registers with the value of the TSC (or, in the

case of rdmsr, the MSR indicated by the value of the ecx register) at the time they

are executed. The rdtscp instruction differs from the rdtsc instruction, in that it

also populates the ecx register with a value to represent which specific CPU core

the instruction was executed from (set by the TSC AUX MSR). Writing is done solely

through the wrmsr instruction. One may also use the rdmsr and wrmsr instructions to

read from and write to a number of auxiliary TSC MSRs. First among the auxiliary

MSRs is the TSC ADJUST MSR, which is used to increase or decrease the TSC by

the value written to it. The TSC ADJUST MSR is also updated whenever the TSC

is written to directly, holding the difference between the new and old TSC value.

The TSC DEADLINE MSR is used as a timer. When the TSC has passed the value

written to the TSC DEADLINE MSR, an interrupt is triggered. Finally, there is the

tpause instruction, which causes the CPU to sleep (as though in a halted state) until

the TSC has surpassed the value specified in the operands (or some other interrupt

occurs) [10].

It should be noted that each core of the CPU has its own TSC value. Thus, if the

TSC is modified on one core of the CPU, the other cores will remain unaffected [11].

However, in most cases, an operating system works to keep each core’s TSC in sync

with every other core.

15

2.2 Virtualization Basics

Virtualization refers to the execution of a computer system, referred to as the guest,

within another computer system, called the host. A hypervisor is a process on the

host that provides virtualization to one or many guests. In some cases the hypervisor

is the base layer of the host, with its main purpose being to provide an environment

for virtualization. Alternatively, a hypervisor can be built on top of a traditional

operating system, such as Linux, and merely be a process running on said operating

system. These are known as type-1 and type-2 hypervisors, respectively.

Typically, virtualization is supported by the hardware of the host computer system,

usually built into the microarchitecture of the CPU. This is sometimes referred to

as hardware-assisted virtualization. On the x86 platform, hardware-assisted virtual-

ization is supported by Intel’s Virtual Machine Extensions (VMX) [12], and AMD’s

Secure Virtual Machine (SVM) [13]. Hardware-assisted virtualization is one of the

primary factors that allows for the efficient execution of guest code in virtual ma-

chines, as executing guest code via hardware will be quicker than having to execute

guest code via an emulator.

The Linux operating system supplies its own type-2 hypervisor module that allows

for user space applications (called virtual machine managers) to take advantage of

16

hardware-assisted virtualization. This module is called the Kernel-based Virtual Ma-

chine (KVM). Being a module of the kernel, KVM executes in kernel space. User

space can interact with KVM through a set of ioctl-based system calls [14]. KVM

supports both VMX and SVM for hardware-assisted virtualization on x86 systems.

The virtual machine manager (VMM) is another layer on the virtualization stack.

While there are several differing definitions of what exactly a VMM is, in this paper

we use the term to refer to the user space process using a hypervisor to run some

virtual code. KVM is a hypervisor, while QEMU (which may use KVM) is a VMM,

as an example.

2.2.1 VMX Preemption Timer

The VMX preemption timer is a 32 bit register that ticks down after each change of

a given digit of the host’s TSC while the guest is running. The timer is set by writing

to the VMX PREEMPTION TIMER VALUE field of the Virtual Machine Control Structure

(VMCS, shared memory with the hypervisor that specifies VCPU behavior), and the

digit of the TSC that is tracked is defined by bits 4:0 of the VMX MISC MSR [15] [12].

The digit that the VMX timer keeps track of is dependant on hardware implementa-

tion, and cannot be changed by the user. When the VMX preemption timer reaches

0, an interrupt is triggered that forces VMX to exit guest execution and return to

17

the hypervisor. VMX exits with the reason EXIT REASON PREEMPTION TIMER, which

is then handled by the kernel before guest reentry.

2.2.2 Virtualized Timekeeping

Many computer systems rely on some notion of the passage of time. Naturally, this

requirement extends to those systems running in a virtualized environment. Thus, it

is the onus of the hypervisor to provide guest operating systems with some method

to tell the time.

There are many ways to approach this problem. Typically, a hypervisor will try to

provide a guest with as accurate a view of wall clock time as possible. That is to say,

a second for the guest is equal to a second of wall clock time. Such an approach is

beneficial for most virtualization use cases. If you are running a Microsoft Windows

guest on a Linux host, for example, it is generally desirable that the guest and the

host both perceive the same time.

Both Intel and AMD [13] provide support for the virtualization of timekeeping meth-

ods in hardware. One way that this is done is via hardware pass-through of the TSC.

Here we will focus on how this is implemented on Intel chips. When the guest queries

the value of the TSC in some way, say via the rdtsc instruction, rather than simply

providing the value of the physical register, it will provide a modified value. This

18

modified value is calculated in hardware by offsetting and scaling the value of the

physical register by some value defined in the VCPU’s VMCS, a structure in memory

that controls several features of a VCPU [16]. The modified virtual TSC (vTSC) that

is delivered to the VCPU is defined by the following equation:

vTSC = TSC× s+ o

where o is an unsigned 64-bit integer defined in the TSC-offset field of the VCPU’s

VMCS, and s is a 64 bit fixed point with 48 bits for the fractional part defined in

the TSC-multiplier field of the VMCS [12]. KVM has built in support for this

hardware TSC pass-through feature, and abstracts it automatically for user space

virtual machine managers that make use of KVM. By default, KVM does not scale

the value of the TSC, and as such, the default value of s is 1. However, KVM does

offset the value of the vTSC in order to present the VCPU with its own view of time

relative to creation. As such, on creation of the VCPU o = −TSC, unless another

VCPU has already been created for the VM, in which case the extant VCPU’s offset

will be used so as to synchronize the view of the TSC between the VCPUs.

19

2.2.3 Synchronization

As mentioned in the previous section 2.2.2, there exists an offset and scale for each

VCPU. While this is consistent with the fact that the TSC on physical hardware is

local to each logical processor, it can make synchronizing TSC values across VCPUs

difficult. Presumably in order to make the lives of VM developers easier, the KVM

developers added a way of synchronizing any particular VCPU’s TSC with a VM-wide

TSC.

This synchronization procedure is done in the kvm synchronize tsc function within

the kernel. Each VCPU has a pointer to an external kvm struct. This kvm struct

is where the VM-wide TSC is stored. KVM stores a “generation” counter for each

VCPU’s TSC, and the VM-wide TSC (both represented by a scaling value and offset

from the physical TSC). If any two VCPUs are on the same generation, then they

are synchronized. When a write to a VCPU’s TSC is done by the host (and only the

host), KVM will calculate the time delta between the new and the old time. If the

time delta is less than a second, or if the value written to the TSC is 0, KVM will

interpret the write as a request to synchronize the VCPU’s TSC with the VM-wide

TSC. As such, the VCPU’s TSC offset and scaling value are set to the VM-wide TSC

offset and scaling value. Otherwise, if the TSC delta is more than a second, that new

TSC value is written to the VCPU’s TSC (really the VCPU’s TSC offset is changed),

20

Host TSC VM TSC V1 TSC V2 TSC
Value Value Offset Value Offset Value Offset
1000 0 -1000 0 -1000 0 -1000

Some time passes.
1100 100 -1000 100 -1000 100 -1000

VCPU1’s TSC is written to with a large delta by the host.
1100 100 -1000 200 -900 100 -1000

Because the time delta was large, the VM’s TSC updates.
1100 200 -900 200 -900 100 -1000

Some time passes.
1200 300 -900 300 -900 200 -1000

VCPU2’s TSC is written to with a small delta by the host.
1200 300 -900 300 -900 210 -990

However, this is interpreted to be a request to synchronize.
1200 300 -900 300 -900 300 -900

Figure 2.1: A simplified example of TSC synchronization for a VM with
two VCPUs.

as well as the VM-wide TSC, creating a new TSC generation. An example of this

can be found in figure 2.1.

2.3 Discrete Event System Specification

Discrete Event System Specification (DEVS) is a formalism, among many others, for

the modeling and simulation of systems. Ziegler et al’̇s literature on modeling and

simulation is a good point of reference for the details of the specification [1]. Here

we present a slight alteration to the classical DEVS system, known as Parallel DEVS

21

[17]. A parallel DEVS model is defined by the octuple:

M = ⟨X,S, Y, δint, δext, δconf, λ, ta⟩

where,

† X is a set of input events,

† S is a set of sequential states for the model,

† Y is a set of output events,

† δint : S → S is the internal event transition function,

† δext : Q×Xb → S is the external event transition function (where Xb is a “bag”

of 0 or more input events, which can be thought of as a collection of events),

† δconf : S ×Xb → S is the confluent event transition function,

† λ : S → Y b is the output function, and

† ta : S → T ∪ {∞} is the time advance function.

Two sets in the above definition remain unaccounted, Q and T . Time is an implicit

component of a DEVS model, and it is represented using the set T . This set is called

the time base. Model designers are given much leeway in their choice of time base for

a model, as there are only a few requirements. Firstly, the set used for the time base

22

must be a total ordering. That is, there must be some ordering operation, <, that

for any a, b, c ∈ T is:

1. transitive, (a < b ∧ b < c)→ a < c;

2. irreflexive, a��< a;

3. antisymmetric, (a < b ∧ a ̸= b)→ b��< a;

4. and total, (a < b) ∨ (b < a) ∨ (a = b).

Secondly, the set must be an Abelian group. For some operation, +, there is an

identity element, 0, such that ∀a ∈ T, a + 0 = a. Similarly, each element in the set

has an inverse element: ∀a ∈ T,∃−a ∈ T, a + −a = 0. The operation must also be

order preserving, where ∀a, b, c ∈ T, a < b→ a+ c < b+ c.

With the requirements of the T set put forward, one can easily see how these require-

ments conform to how we perceive time. Finding a set that satisfy these requirements

is not difficult. Common choices are the set of real numbers, R, and the set of inte-

gers, Z. However, one can think of a number of alternative sets. The only meaningful

differentiation between these sets is whether they are continuous or discrete. A time

base isomorphic to R creates a continuous time base, and an time base isomorphic to

Z produces a discrete time base.

23

The set Q is the set of total states, and is a subset of S × T .

Q = {(s, e) : s ∈ S ∧ 0 ≤ e ≤ ta(s)}

We can think of this set as a set of intermediate states, where s is a sequential state,

and e is the elapsed time that the model has spent in that state. This set is only

relevant when an external event triggers the δext function.

This definition of a DEVS model is not the classical definition, but rather a common

extension to classical DEVS called Parallel DEVS. This extension defines the δconf

function, the confluent transition function. It is entirely possible that a model could

experience an external and internal event at the same time. This extension gives the

modeler explicit control over how a model should handle this edge case [17].

Notably, the DEVS formalism is closed under composition. One may compose several

atomic DEVS models (that is, as described earlier in this section) together to create

a new composite DEVS model. Further, composite models may be composed with

other composite or atomic models to create a new composite model.

24

2.3.1 DEVS Simulation

A DEVS model in and of itself is a purely static thing, it does not change state by

its own means. That is to say, a model defines the structure and the mechanics of a

given system; however, it does not reveal any dynamic behavior. Rather, it is the task

of the simulation algorithm to change the state of the model (in accordance to the

model’s definition), thus revealing the dynamic behaviors we may wish to observe. It

is good to think of these as two distinct but symbiotic elements of a greater whole.

Just as a recipe and ingredients produce nothing without the hands of the chef, a

model reveals little without the mechanical actions of the simulation algorithm.

At a high level, the simulation algorithm is simple, the simulation advances to the

soonest next event scheduled by any of the components, which it is aware of via

the components’ ta function. The component with the next event is then updated

(based off its δint function). In this update, however, the component may produce any

number of output events (from the λ function), destined for some other components

in the model. These recipient components are then updated in accordance to the

event generated and the time elapsed since they had last updated, through the δext

function. At this point, the simulation time is advanced to the time of that soonest

event, and the cycle is repeated.

25

A simplified example of a DEVS simulation would do well to illustrate the high-level

actions of the algorithm. Let Alice and Bob be components of a DEVS simulation,

and let the current simulation time be Monday. Alice knows her current state, she is

currently at work, and she knows the time of her next event, which is on Saturday.

Bob similarly knows his current state, he is in class. Bob’s next event is scheduled

for Tuesday. The simulation thus advances to Tuesday, and Bob’s δint function is

called. Bob’s event was to call Alice and invite her to the Hockey game on Friday.

This updates Bob’s internal state, but also produces a new event destined for Alice.

After being produced, the event is immediately sent to Alice, as a parameter to her

δext function, along with the time that has elapsed since her last event. When this

function executes, Alice’s internal state is updated, and thus her next event time is

updated to Friday, when she will be going to the game.

Structurally, the DEVS simulation algorithm is a bit more complicated. The simu-

lation is the composition of 3 different classes of algorithms, atomic simulation algo-

rithms, coordinator algorithms, and a root-coordinator algorithm. These three classes

of algorithms are organized in a tree structure, and communicate via message passing.

Atomic simulation algorithms are, as the name alludes, responsible for advancing the

state of atomic DEVS components. Each atomic component has a single atomic sim-

ulation algorithm associated to it. The atomic simulation algorithm directly modifies

the component’s state according to the model and any incoming messages sent by the

26

Figure 2.2: Hierarchy of the DEVS simulation algorithm

component’s parent. For example, if the component is in state s ∈ S and receives

a message from its parent of the form (∗, t) (t being the time the component is to

advance to, and ∗ representing that this time is the next internal event), the atomic

algorithm will update the component’s state to δint(s) and return the message (λ(s), t)

to the parent. In a DEVS model, each component is aware of only a few basic things.

For example, it knows what its current state is (from the set S), and it knows when

its next internal event will occur (based off the ta function). However, a component is

not aware of when it may receive an external event, this algorithm relies on its parent

27

Algorithm 1 DEVS root-coordinator

tnc :: T ▷ Next event time of child, tnc = ta(c)
t0 :: T ▷ Initial time

t← t0 ▷ Initialize time
send (i, t) to c ▷ Send initialization message to child
t← tnc

loop
send (∗, t) to c ▷ Advance to the next internal event
t← tnc

end loop

component to send it external events when they appear (via the (x, t) message).

Similarly, coordinator simulation algorithms are associated to composite components.

These coordinators do not directly modify the state of any given atomic component.

Rather, coordinators are primarily responsible for forwarding messages between their

parent node and their child nodes, or from one child node to one of its siblings.

Last of these classes of simulation algorithms is the root-coordinator simulation algo-

rithm. Found at the root of the simulation hierarchy tree, this algorithm is responsible

for issuing the messages that drive the simulation forward. This algorithm has only

one direct child node, be it a coordinator or atomic simulation algorithm. The work-

ings of the root-coordinator algorithm are simple. Pseudocode of the algorithm can

be found in Algorithm 1, as defined in [1].

There are 4 classes of messages used in the simulation algorithm. First are messages

of the form (i, t) (i in this context signifies that this is an initialization message, it

28

does not hold any data). This message class is the initialization message, sent by a

parent to its children at the start of a simulation, to reset the children’s states to their

initial state. Second are messages of the form (∗, t). This message class tells a child

to advance to its next internal event. Third are messages of the form (x, t). This

message class tells its children to advance a certain amount of time and to handle

any external event in x ∈ Xb. Lastly, there are messages of the form (y, t). Messages

of this form are the only messages transmitted from a child component to its parent,

being used to inform the parent component of any output events y ∈ Y b generated

during the execution of an internal event.

29

Chapter 3

VTDEVS

3.1 Definition

We created an extension to the DEVS standard, called Virtual Time Driven Discrete

Event System Specification, or VTDEVS. The structure of a component model in a

VTDEVS system is a nonuple, similar to Parallel DEVS as described in section 2.3:

M = ⟨X,S, Y, δint, δext, δconf, λ, ta, V ⟩

where the new symbol V represents a set of VCPUs associated to a component. In

this thesis we only consider models where |V | ≤ 1. See section 7.1 for a discussion on

the difficulties of integrating multiple VCPUs into a simulation.

31

Figure 3.1: The structure of a VTDEVS system

VTDEVS introduces a VCPU to the DEVS model. This VCPU is used to model the

state of the CPU in the modeled computer. Figure 3.1 shows the intended structure

of a model that uses a VTDEVS component.

In this model, the CPU in a modeled computer is modeled as a VTDEVS component,

where other components are modeled using the traditional Parallel DEVS specifica-

tion. Because VTDEVS maintains all the typical functionality of a normal Parallel

DEVS component, a VTDEVS component may be used in a “mixed” DEVS model.

That is, a normal DEVS parent interacts with the VTDEVS child in the same way

it would interact with a normal DEVS child.

There are implications for what is actually meant by the “state” of a VTDEVS com-

ponent. The VTDEVS component now has two de facto components that comprise

its state - it’s classical DEVS state (some s ∈ S), and the state of the VCPU (its

32

registers, memory, configuration, et cetera). These two parts have influence over each

other. The classical DEVS part could result in some state change in the VCPU, for

example, changing the value of some register upon receiving an external event, or

vice versa, the VCPU could execute the hlt instruction, which would change the

VTDEVS component’s classical state (changing to a not-running state).

3.1.1 Simulation Algorithm

When one looks at the static model described in VTDEVS, it is very similar to

a normal Parallel DEVS model. Statically, very little has changed; however, the

introduction of a VCPU has consequences for the DEVS simulation algorithm.

To understand why this is an issue, we first must recall the nature of the DEVS simu-

lation algorithm. By the structure of a DEVS model, the DEVS simulator algorithm

has perfect knowledge of when the next event will occur in the simulation. Such per-

fect knowledge is bestowed upon the simulator by the ta function of the model being

emulated, as well as having knowledge of when it will inject its own external events

into the model. To understand this, let us look at an example. Say we have a DEVS

model M , and we are simulating it using the normal DEVS simulation algorithm.

The current time in the simulation is t = 500. M is in state s, and M ’s time advance

function, ta, reports that the next internal event is scheduled for time t = 600. We

33

Figure 3.2: Advancing the total state of a VTDEVS model

will assume for now the simulation also has no external events it wishes to inject

into the simulation. Given this information, we know that nothing of interest can

possibly happen until time t = 600. As such, there is no reason to update the model

to an intermediate state between now and its next scheduled event. It is possible to

update the model to an intermediate state between t = 500 and t = 600, but nothing

is gained from this, as the model is still in sequential state s if we were to do this.

The introduction of code execution breaks this perfect knowledge of when the next

event will occur. This is due to the undecidable nature of code execution, as discussed

34

before in section 1.1. If we have some simulation with a VTDEVS component at time

t = 500, with the next event at time t = 600, we can’t simply skip ahead to that time,

due to the VTDEVS model’s imperfect knowledge of its own state. Recall that the

VTDEVS component has two de facto states, the classical state sCPU and the VCPU’s

state. The component has perfect knowledge of the classical state, and as such when

the next state transition will occur based solely off this classical state. But, the de

facto state of the VTDEVS component also includes the state of the VCPU, which

the component does not have complete knowledge of. If we say ta(sCPU) = 100, this

assumes that the VCPU will not experience some event in those 100 microseconds

that results in a state change for the component, for example if it were to issue an IO

instruction. As such, to advance the state of the VTDEVS component forward any

given amount, we need to execute the VCPU in tandem for that amount of time, in

order to catch any unexpected state changes caused as a side effect of code execution.

Given this, the execution of the VCPU needs to be integrated into the DEVS simula-

tion algorithm somewhere. At first glance, this would seem a trivial choice, the atomic

simulation algorithm for the CPU component should be responsible for executing the

VCPU (that is, when the CPU is told to advance its state, it will execute the VCPU

before actually advancing), this does not work due to the lazy nature of the classi-

cal DEVS simulation algorithm. In a DEVS simulation, a component’s state is only

updated when it is needed, as updating a classical component to a partial state for

no reason produces no interesting results and is wasted compute. However, the same

35

cannot be said for a simulation with a VTDEVS component. For sake of an example:

take a model with two components, a CPU VTDEVS component and an OTHER

classical component. Say ta(sCPU) = 2000, and ta(sOTHER) = 1000. As such,

the simulation algorithm tells OTHER to advance to the next internal transition,

s′OTHER = δint(sOTHER). Let us also assume λ(s′OTHER) = ∅ and ta(s′OTHER) = 3000.

As such, there is no reason to do a partial state transition for the CPU component,

and as such the VCPU is not executed at all. Now, when the simulation goes to exe-

cute the next event, which in this case is the CPU’s event, it will tell the CPU model

to advance to its next internal state. In doing so, the CPU model will try to execute

the VCPU for 2000 microseconds. However, let’s say the VCPU was interrupted af-

ter only 500 microseconds of execution, changing the classical state of the VTDEVS

component, and forcing a new output event x targeting OTHER. Here we see the

issue, CPU is now in state s′CPU at t = 500, with an output event for OTHER. As

such, OTHER should transition to the new state δext((sOTHER, 500), {x}), however

OTHER is not in that state, it is in the state s′OTHER in the future at t = 1000.

To avoid this aforementioned problem, the solution is simple, we move the execution

of the VCPU (and thus the updating of the associated VTDEVS component’s non-

classical state) to the root-coordinator algorithm. In a classical DEVS simulation

algorithm, the state of a component is managed completely by the component itself.

That is to say, the atomic model tracks the value of its current state s ∈ S, and this s

is only updated by the model itself when it receives a message from its parent telling

36

Algorithm 2 VTDEVS root-coordinator

tnc :: T ▷ Next event time of child, tnc = ta(c)
t0 :: T ▷ Initial time
V :: V CPU
Execute :: V CPU × T → P (X)× T

t← t0 ▷ Initialize time
send (i, t) to c ▷ Initialize model
loop

x← ∅
e← tnc − t ▷ e is time to next event
if V is not halted then

(x, e)← Execute(V, e) ▷ Execute V for e time
end if
if x ̸= ∅ ∨ t+ e < tnc then ▷ We were interrupted early

send (x, t+ e) to c ▷ Move the simulation forward partially
t← t+ e

else ▷ V executed without interrupt, or was halted
send (∗, tnc) to c ▷ Advance to the next internal event
t← tnc

end if
end loop

it to do so. Moving the execution of the VCPU to the root-coordinator destroys

this presumption. Now, when the root coordinator wishes to advance the simulation

forward any amount, it must first execute the VCPU for that given amount of time.

The full algorithm can be seen in Algorithm 2.

If the VCPU is in a halted state (a state where it need not execute code), then the

VTDEVS component acts in the same way as a normal Parallel DEVS component,

and the simulation algorithm may advance without executing the VCPU. Thus, the

simulation at that point has perfect knowledge of next events again, and may move

forward at full speed, without unexpected events occurring from code execution.

37

Chapter 4

Implementation

Having covered the theoretical basis of this thesis, we may move on to the practical

implementation. There are two distinct parts to implementing this system in a way

that can be used and tested. The first part consists of preparing the hypervisor to

be used in a simulation context. This part discusses modifications made to the Linux

kernel’s KVM module in order for it to be used as an accelerator in a VTDEVS

simulation. The second part of the implementation moves from kernel space back to

user space, where the simulation lives. Here, we discuss the practical implementation

of the VTDEVS root-coordinator algorithm in a pre-existing DEVS simulation. We

also discuss changes made to make use of the new kernel features.

39

4.1 Kernel Changes

As introduced in chapter 1, off-the-shelf virtualization technologies aren’t fit to be

used in a DEVS simulation context. Our KVM modifications have two primary

purposes. The first is TSC isolation, and the second is VCPU management.

4.1.1 TSC Isolation

The aim of TSC isolation is to remove a guest’s ability to perceive time on its own,

and to be able to substitute this view of wall clock time with some arbitrary value.

When we have gained the ability to do this, we can convince the guest to perceive

time in any arbitrary way, notably we can present the guest simulation time.

To illustrate our goals in this, let us look at an analogy. Imagine a prisoner locked

in a cell. If the prisoner has access to a clock, he can always tell what the time is, he

need simply look at the clock. Let us say that the warden of this terrible prison is

particularly cruel, and wishes to play with the prisoner’s sense of time. Thus, in this

imaginary prison there are no clocks, windows, or any other method of telling time

available to the prisoner. The only method the prisoner can tell the time is if he goes

to the door of his cell and asks the guard what time it is. In this way, the prisoner’s

40

sense of time is captive to whatever the guard tells him. The prisoner might query

the guard about the time at 2 AM, yet the guard informs the prisoner that it is 6 AM.

At 3 AM the prisoner may again query the guard, and this time the guard responds

that it is half past 6 AM. In this way, regardless of the time that had actually passed,

the prisoner blindly accepts that only 30 minutes had passed between his two queries.

We, as the simulation runners, are the guard, and the guest is the prisoner. If we

provide our guest with only methods of time keeping that conform to simulation time,

the guest will accept that as the actual time.

To achieve this, we need to remove any external source of time that we, the simulation,

do not have direct control of. For most time keeping mechanisms this is quite trivial,

due to the nature of virtualization. Mechanisms like the APIC and HPET can simply

not be presented to the guest, this can be done by modifying the CPUID presented

to the guest to indicate that these chips do not exist on the machine. The PIT is also

a trivial case as, being a chip separate from the CPU, it is not virtualized at all, and

as such must be emulated in software for a guest to have access to its features. This

is typically done in KVM by using the module’s built in PIT emulator, created using

the KVM CREATE PIT2 ioctl. However, we model the PIT directly as a pure DEVS

component under the larger computer model, as such there is no need for KVM to

emulate the device. Because our PIT device is modeled directly within the simulation,

it is inherently beholden to simulation time.

41

This leaves us with the TSC. While it would be trivial to simply disable the TSC

(for example, via the CPUID method previously mentioned), this leaves the guest

operating system without one of the most reliable timekeeping mechanisms available

to it. A better approach is to have a fine and arbitrary control over the way the TSC

is presented to the guest. If this can be done, then the TSC can be presented to the

guest in a way that conforms to simulation time.

Luckily, there exists hardware features that allow hypervisor developers to do just

this. Referring back to section 2.1.1, we can see that there are a very limited number

of ways in which a program can query the value of the TSC. Two of these methods,

the TSC DEADLINE MSR and the tpause instruction, reveal the value of the TSC in

an indirect way. Neither of these functionalities are particularly important to the

execution of Linux guests, so in the project we simply disable these capabilities in the

CPUID. This leaves the two main ways of querying the value of the TSC, the rdmsr

instruction and the rdtsc instruction.

4.1.1.1 rdmsr Capture

KVM already provides an interface for capturing execution of the rdmsr and wrmsr

instructions via the KVM X86 SET MSR FILTER ioctl. This ioctl allows a host to choose

what course of action the hypervisor should take upon the execution of a given MSR.

Before using this ioctl, we need to enable user space MSR handling by enabling

42

KVM’s KVM CAP X86 USER SPACE MSR capacity. Specifically, in this capacity we set

the KVM MSR EXIT REASON FILTER to 1, to indicate that filtered MSRs should be redi-

rected as an exit to user space in order to be handled by the VMM (that is, the

simulation). [18]

A filter for both reads and writes is set on the TSC’s MSR index (0x10). This forces

the hypervisor to exit to user space with the exit reason KVM EXIT X86 RDMSR or

KVM EXIT X86 WRMSR, depending on the instruction that was executed. When an exit

to user space occurs, depending on the type of exit, the user space application can

supply KVM with instructions on what should be done in kernel space to handle the

exact exit condition. This communication between kernel space and user space occurs

in the shared kvm run structure. For rdmsr and wrmsr exits, the msr field structure

in kvm run is used to supply (in the case of a read instruction) what value should

be populated in the VCPU’s edx:eax register, or (in the case of a write instruction)

what the VCPU attempted to write to the MSR.

For capturing reads of the TSC using this rdmsr instruction, we simply populate the

edx:eax registers with the simulation time at the moment of the instruction’s execu-

tion. In more complicated simulations, we can supply the registers with a modified

version of simulation time. Simulation time can be scaled and offset, similar to what

is described in section 2.2.2.

43

4.1.1.2 rdtsc Capture

Of our modifications to the KVM module, the ability to capture and redirect guest

execution of the rdtsc instruction to the host is the most important. This allows us

to provide the guest with any arbitrary TSC value we wish, via the most common

method by which the TSC is queried.

Implementation is quite straightforward. First, VMX’s rdtsc capture feature must be

enabled. This is done by setting the 12th bit of the VMCS’s VM-Execution Controls

field to 1, this being the “rdtsc exiting” bit. This is done in a handler for a new

capacity added to KVM to facilitate this, KVM CAP X86 RDTSC EXITING.

When the aforementioned bit has been set, VMX will exit upon the execution of

the rdtsc instruction with the EXIT REASON RDTSC exit reason. In KVM we add

a handler for this exit that forces an exit to user space. This new KVM exit,

KVM EXIT X86 RDTSC, informs the user space VMM that the rdtsc instruction has

been executed. Upon this exit occurring, it is the responsibility of userspace to pop-

ulate the msr.data field of the kvm run structure associated to the VCPU with the

TSC value the VMM wishes to provide to the guest. When the guest returns from

the exit, the value written by the VMM is populated into the the VCPU’s edx:eax

register.

44

4.1.2 VCPU Management

Our modifications relating to VCPU management revolve around being able to sched-

ule and interrupt the VCPU accurately. In addition, our modifications aim at pro-

viding us with a reasonably accurate account of guest execution time.

Issues arise when we reply upon simply using Linux thread time for management of

how long a VCPU runs. Firstly, this makes us completely beholden to the whims of

the Linux Scheduler. Secondly, we limit ourselves to relying upon pthread signals as

our primary method of manually interrupting a guest. These signals are delivered

to the guest whenever the kernel gets around to it, which may not be in any timely

manner.

4.1.2.1 VMX Preemption Timer

The primary mechanism we use for scheduling and interrupting the VCPU is the

VMX preemption timer. To achieve our scheduling goals, we make several changes

to how the preemption timer is used within KVM. The goal of these changes is to

provide the user space VMM (in our case the DEVS simulation), with the ability to

directly control the value of the VMX preemption timer.

45

In unmodified KVM, the preemption timer has two primary purposes. First, the

VMX preemption timer is used by KVM to immediately force an exit upon starting

the VCPU. Second, the VMX preemption timer is used to emulate the TSC DEADLINE

MSR. To make full use of the VMX preemption timer, we need to be able to disable

these two functionalities, in order to make the timer always available to the user

space program. Starting with the latter is incredibly simple, the emulation of the

TSC DEADLINE MSR is disabled by default on the creation of a VCPU, to enable

it one must first enable the KVM CAP TSC DEADLINE TIMER capacity. In addition, the

VCPU’s CPUID is masked to disable the TSC DEADLINEMSR by default, and one must

enable it by setting the 24th bit of the ecx register on CPUID leaf 1 to 1 [12]. The

TSC DEADLINE MSR emulation feature can thus simply be disabled by never enabling

the KVM CAP TSC DEADLINE TIMER capacity. In the case of the former functionality,

the use of the VMX preemption timer to force an immediate exit upon entering VMX,

the kernel must be modified to resort to using the generic immediate exit functionality

for KVM. This is done by chaining the request immediate exit function pointer to

point to the generic implementation function kvm request immediate exit.

VMX by default resets the value of the VMX preemption timer upon guest exit. This

functionality is undesirable for our use case. Being able to query the value of the

VMX preemption timer at the time of the last exit allows us to calculate how long

the guest actually executed for. We, as the VMM that set the value of the VMX

preemption timer, know the value the timer started at, if we have the value of the

46

timer at the last exit, we can take the difference between these two values, and know

exactly how long the guest has executed for since our last write to the timer. If this

value is automatically reset by VMX upon guest exit, we cannot find this difference,

which hinders our ability to know how long the guest actually executed. To prevent

this from occurring, we set the 22nd bit of the VM-Exit Controls field of the VMCS

to 1, the “Save VMX-preemption timer value” bit.

From here, it is simple to add new behavior to trigger an exit to user space upon

a EXIT REASON PREEMPTION TIMER VMX exit. For the kernel modifications, a new

KVM exit, KVM EXIT X86 PREEMPTION TIMER, is triggered upon the expiration of the

VMX preemption timer. This exit has no required action on the part of the user

space VMM, rather its usage is simply to indicate to the VMM that the timer had

actually expired.

In addition to the KVM exit, user space must be provided with a means of querying

and modifying the value of the VMX preemption timer. As such, two new VCPU

ioctls were added. The first is the KVM X86 SET PREEMPTION TIMER ioctl, which takes

as input a 32bit integer value, and directly writes this value into the VMX preemption

timer field of the VMCS. The second is the KVM X86 GET PREEMPTION TIMER ioctl,

which directly returns the value of the VMCS’s VMX preemption timer field.

47

4.2 Simulator Changes

The other side of implementation is the simulation part, without which we cannot

test our theoretical VTDEVS specification, nor our kernel modifications. Rather

than producing a wholly new simulation that makes use of DEVS, we chose to base

our implementation off a piece of extant software, described in [5]. This simulation

(which from here on will be referred to as the DEVS simulator, or the unmodified

simulator), provides a simple computer model. It makes use of unmodified KVM to

model the CPU. To provide time to the guest, since KVM cannot provide access to

the TSC, the simulated computer relies upon a modeled PIT as its clock source. The

unmodified simulator attempts to manage VCPU execution by working in time slices.

The VCPU is scheduled to execute for a given time slice, with all events occurring

during that time slice being injected into the simulation at the end of the time slice.

To manage the execution of these time slices, the unmodified simulator uses Linux’s

CLOCK MONOTONIC to measure how long the guest has been running, and uses pthread

signals to interrupt the VCPU when the time slice has expired.

48

4.2.1 Root-Coordinator Algorithm

In order to produce the desired timing logic, the modified root-coordinator algorithm

seen in Algorithm 2 needed to be implemented in our computer simulation. The

implementation of the algorithm is similar to the pseudocode given. Primarily, the

main implementation details are concerning the hardware mechanisms used to actu-

ally implement parts of the algorithm.

The Execute subroutine in the pseudocode is responsible for advancing the state

of the VCPU. Implementing this function in the simulation is quite simple. The

simulation already knows the time of the next event (tnc), as well as the current time

of the simulation (t). Here we find the time to the next event by taking the difference

tnc− t. We then scale this simulation time value into a VMX timer value, this scaling

value is explained in section 4.2.2. This VMX timer value we can write directly to

the appropriate VMCS field using the new KVM X86 SET PREEMPTION TIMER ioctl. At

this point, the VMX timer has been set to the desired amount of time we wish the

VCPU to run for. We can thus trigger the execution of guest code using the KVM RUN

ioctl. This ioctl must eventually return to user space. Because we have the VMX

timer saved upon VMX exit, we know we don’t need to worry about time spent in

kernel space but not spent executing guest code. As such, when the ioctl returns, we

can query the value of the VMX preemption timer. The difference between the set

49

timer value and the ending timer value reveals the amount of time the VCPU ran for

in terms of VMX preemption timer ticks. We reverse the scaling process to convert

this preemption timer value back into a simulation time value, which is thus the

amount of time we must advance the simulation forward. If the KVM exit reason was

KVM EXIT X86 PREEMPTION TIMER, then we know that the VCPU was able to execute

for the entire duration of time to the next simulation event without being interrupted

in a way that would require a change of the simulation’s classical state. As such,

the VTDEVS root-coordinator can advance the simulation forward to the next event

time as normal, like the classical root-coordinator. Otherwise, if the VCPU exited

with some other KVM exit reason, such as performing MMIO, then there may be

some classical-state altering action that needs to occur. In this case, the VCPU will

generate and return an event, as well as the amount of time (in simulation ticks)

that it had actually executed for. The root-coordinator then advances the simulation

time forward by the amount of time returned by the VCPU, as well as injects the

generated event into the simulation.

4.2.2 Time Scaling

One practical issue to overcome is the fact that the value of a simulation tick is

different from that of a VMX preemption timer tick. Every DEVS simulation has

some time base, as described in section 2.3. While in some simulations this time base

50

may be abstract, in our simulation it is very much a representation of the passage of

physical time. In this simulation, we use the unsigned long integers as our time base,

and we define a single increment in this discrete time base to represent the passage

of one microsecond of physical time. We call the number of simulation ticks in a

simulated second the simulation tick frequency, which in this case is the number of

microseconds in a second, or one million.

If the next event is 1000 simulation ticks (or one millisecond) in the future, then we

need to execute the VCPU for one millisecond. As discussed in section 4.1.2.1, we can

do this by using the VMX preemption timer. However, we can’t simply write 1000

into the VMX preemption timer field of the VMCS because the VMX preemption

timer has a different frequency. Per section 2.2.1, the VMX preemption timer ticks

at a frequency relative to the TSC’s frequency (specifically by inspecting a certain

bit of the TSC). The TSC itself has some frequency determined by the hardware.

In converting a simulation time value to a value VMX timer can understand, we have

to go through several steps. First, we must multiply the simulation time value by the

number of TSC ticks per microsecond (or whatever the simulation time frequency is),

resulting in the number of TSC ticks the simulation time represents. From here we

divide this value by the number of TSC ticks per VMX preemption time tick, to get

the number of VMX ticks the simulation time represents, which may be written to

the VMX preemption timer field.

51

There are 3 scaling coefficients present in our simulation:

1. The VMX preemption timer tick to TSC tick scale, p.

2. The TSC tick to simulation tick scale, t.

3. The simulated CPU scale, c.

Two of these, p and t, are determined by the hardware running the simulation. p is a

scaling value introduced by the nature of the VMX preemption timer. As described

in section 2.2.1, the VMX preemption timer is designed to tick down every time a

certain digit in the TSC is flipped. The particular digit being watched by VMX is

defined in the VMX MISC MSR; this value is CPU-specific, and cannot be changed by

the user. In this way, our VMX timer is scaled by some power of 2 to the TSC. We

thus need to read this value and account for this scaling difference in our simulation.

Modern CPUs, those with a constant TSC, have a set TSC tick speed. The speed of

the TSC, in kHz, is calculated by Linux at boot up. This TSC rate is readable from

within the kernel, being the tsc freq khz variable. Unfortunately, this value is not

exposed to user space in the unmodified kernel. Third-party kernel modules exist to

expose this value to user space [19], which can be used to retrieve this value for use

in the simulation.

The last of the scaling values is the simulated CPU scale. CPU scaling is done to make

52

the CPU faster or slower to the simulation. For example, a CPU scale of 2 means

that if the CPU was told to run for 100 microseconds of simulation time, the CPU

will actually execute for 200 microseconds, yet only perceive that 100 microseconds

have passed. In this way, the computer thinks it has done 200 microseconds of work

in 100 microseconds of time, thus perceiving the CPU as being twice as fast as it

actually is. Similarly, a CPU scale of 0.5 will have the simulated computer believe

that the CPU is twice as slow as it actually is.

53

Chapter 5

Validation

In this chapter, we evaluate the validity of our implementation via the use of two

different benchmarks. We execute both of these benchmarks over three different

systems, a DEVS simulation that does not use VTDEVS (as described in section

4.2), our VTDEVS simulation, and hardware (as a control to compare to). The two

benchmarks used in this evaluation are exect and Cyclictest. The former is a micro

benchmark created specifically for this thesis, and the latter is an industry standard

benchmark for evaluating the latency of Linux systems.

An explanation of “validity” in this context is warranted. In this paper, we are

currently only interested in the correctness of the simulation, rather than the perfor-

mance of the simulation. We take for granted that a simulation using virtualization

55

to execute code will run faster than the same simulation using emulation or a proper

CPU simulation. We find this to be a reasonable assumption. Rather than comparing

the amount of time it takes to execute a simulation, we are attempting to compare

how close a simulation is in dynamic behavior to the real system being modeled.

Validation of a simulation is done via experiment. The modeled system and the

physical system are given the same inputs, and produce some outputs. The outputs

of these systems may then be processed and compared to each other. Simulation error

is the difference between the outputs of the modeled and physical system. If the error

measured is beneath some threshold, the tolerance level, we say that the simulation

has had its validity confirmed [1]. Validation is not a proof of correctness for the whole

modeled system with all possible inputs, rather it is a judgment of “good enough”

for some context. For our validation tests, we perform this form of experiment.

Our inputs are the benchmarks themselves, and our outputs we are comparing are

the results of these benchmarks. However, rather than setting a discrete tolerance

level for simulation error, we are simply comparing the two alternatives (a DEVS

simulation versus a VTDEVS simulation) to each other.

56

5.1 Exect Benchmark

The first benchmark we have used to evaluate our implementation is the exect

(“execute for t ime”) synthetic benchmark. This benchmark was created specifically

to evaluate this project. Mechanically, this benchmark is incredibly simple, it mea-

sures the number of iterations of a loop that can be performed in a set amount of

time. The idea being that we may use this count as a measure of the amount of work

that can be done in a set period of time. The variance of this value over multiple

runs will indicate how correlated the execution of code is in the system (either real or

modeled) to the passage of time (either simulation time or wall clock time). We can

then compare the value of both the mean and variance in the number of iterations

performed for all three systems.

5.1.1 Algorithm

First, let us introduce the mechanism of the test. The test is composed of two threads,

a timer thread and a counter thread, each having elementary tasks. The counter

thread spawns the (later described) timer thread, then simply moves to a while loop

that repeatedly increments an unsigned long. This unsigned long represents the

number of loop iterations that have been completed. The while loop terminates when

57

a Boolean shared between the two threads is set to true. When the wait timer thread is

spawned by the guest, it has two simple tasks. First, it sleeps for a designated amount

of time, using the POSIX nanosleep function (which is based off the Linux kernel’s

CLOCK MONOTONIC), with the sleep time being defined by the user in the command line

arguments. After waking up from sleep, the timer thread sets the shared Boolean to

true, consequently stopping the counter thread’s while loop. At this point, the timer

thread has done its job, allowing us to destroy it. Finally, the counter thread prints

the number of loops executed to standard out (where it may be redirected to a file

for future analysis). This process is repeated a number of times, defined by the user

in the program’s command line arguments.

A short defense of this test may be necessary. Synthetic workload benchmarks such

as this are not necessarily the greatest choice of workload when doing performance

analysis on a system. Exect’s workload does not perform any IO, it does not make any

system calls, and it only uses a negligible amount of memory. It simply iterates a loop

that consists of a handful of instructions. These factors would make this workload a

rather poor choice when analyzing the performance of two separate systems.

However, consider that in this project we are not comparing the performance of

different systems, rather we are comparing the association of code execution to the

perceived passage of time. We are not asking “Which of these systems is the fastest?”

Rather, we ask “How consistent are these systems in the amount of work they can

58

do in a second?”, and “How similar is this to how a physical system would execute

the code?” For this question, the simplistic workload is a benefit, as it should help

minimize variance between runs caused by issues like cache, IO, et cetera. We are

merely concerned with how many instructions it can retire in a set amount of time,

and how much that changes between runs. Of course, a certain amount of variation

between runs is expected, due to things outside the program’s fine control, such as

the scheduler. Anything beyond this, however, could be attributed to the system’s

ability to control and manage its own execution of code. A poorly managed system

will have a much greater observed variance, while a more tightly managed system

should have a variance similar to that of a physical system.

Because (in case of our emulator) the perceived guest time is simulation time, we

are using this test to evaluate the correlation of the execution of code to the passage

of simulation time. Testing hardware, where there is not any simulation time, gives

us a good baseline of what we would ideally see in a “perfect” simulation, that is a

simulation without simulation error. Of course, the results of hardware testing will

inherently differ from our simulation in some ways. The physical CPU will not have

to worry about a hypervisor destroying its cache, for example, it also has to deal with

physical devices, rather than simulated devices.

59

5.1.2 Setup

This test was performed on a machine equipped with an Intel i7-12700H and 30 GB of

memory. The operating system used across tests is Ubuntu Server 20.04, using kernel

version 5.4.161, with the real-time patch rt67-rc1. Tests performed in the simulators

use a computer model with 1 VCPU core and 4 GB of memory. Hardware tests

limited the number of cores available to the operating system using the maxcpus=1

boot parameter. Shorter wait tests (that is, those with less than a second wait) were

repeated 9000 times. Longer wait tests (one and two second waits) were repeated

1000 times. The binary was compiled with gcc version 9.4.0.

5.1.3 Results

Histograms for the results of each experiment can be found in figure 5.1. The x-axis

represents the number of iterations of the counter loop exect was able to execute

prior to being interrupted. The y-axis represents how many instances of the exect

experiment result in this number of iterations. In these histograms, the green line

shows the results for tests on hardware, orange for the VTDEVS simulation, and blue

for the DEVS simulation. There are a few interesting qualitative results to be seen

in these histograms.

60

(a) 1µs (b) 10µs

(c) 100µs (d) 1ms

(e) 1s (f) 2s

Figure 5.1: Histograms of exect results

61

First, and most apparent, is that the hardware results for wait times less than 1 second

are multi-modal. However, in each of these modes there is very little local variation.

These modes remain in roughly the same location for waits less than one million

nanoseconds (one millisecond). This suggests that while hardware is quite precise

in its association of compute time to the passage of time, it is inaccurate and has

several bins that it tends to fall into. The reasons for this could boil down to simply

an inherent limitation in this type of benchmark, or perhaps a limit to the consistency

of the Linux scheduler at such short timeframes. Notably, both simulations fail to

emulate this strongly multi-modal behavior, with all simulator histograms being near-

Gaussian in shape.

Second, the results for wait times less than one million nanoseconds are all very

similar. This can also be seen in the mean and standard deviations of the results,

seen in table 5.2. We believe this to be due to the inherent latency of the timers in

the test. See the discussion of Cyclictest, section 5.2, for more information on this

latency.

Hardware DEVS VTDEVS

1µs 2 665 836 3 034 796 2 469 244
10µs 2 648 697 3 020 495 2 588 235
100µs 2 648 248 3 064 045 2 610 089
1ms 5 033 898 3 036 105 5 198 443
1s 629 264 022 741 220 640 633 527 054
2s 1 256 601 143 1 476 547 580 1 241 445 708

Table 5.1
Mean of exect results

62

Hardware DEVS VTDEVS

1µs 262 860 231 331 106 871
10µs 257 666 223 951 110 687
100µs 247 378 233 448 111 354
1ms 648 832 238 254 197 136
1s 2 498 648 17 372 072 10 410 657
2s 4 585 299 38 064 135 19 202 032

Table 5.2
Standard deviations of exect results

Hardware DEVS VTDEVS

1µs 0.0986 0.0762 0.0432
10µs 0.0972 0.0741 0.0427
100µs 0.0934 0.0761 0.0426
1ms 0.1288 0.0784 0.0379
1s 0.0039 0.0234 0.0164
2s 0.0036 0.0257 0.0154

Table 5.3
Coefficient of variance of exect results

The mean iteration counts of each test is listed in table 5.1. Consulting this statistic

reveals some insights. Here we see that the mean iteration count for VTDEVS is

much closer to the mean observed in hardware compared to the DEVS simulation.

The DEVS simulation is observed to consistently run more iterations than both DEVS

and VTDEVS, except for wait times of 1 millisecond, where the DEVS iteration count

is far below the other two.

Table 5.2 and table 5.3 list the standard deviation and coefficient of variance (standard

deviation divided by mean), respectively. Here we see that VTDEVS outperforms

63

DEVS in every test, having a consistently lower distribution. However, DEVS does

have a much closer standard deviation to hardware in the sub-one millisecond tests,

and neither being particularly close to hardware in the one millisecond test. This is

due to the multi-modal nature of the hardware results at these low wait time values.

5.1.3.1 t-Testing

In order to assess the accuracy of the systems, we first perform several simple t-tests

to find if the differences in test results are statistically significant. To accomplish this,

we perform 3 t-tests between the 3 systems, hardware against the DEVS simulation,

hardware against the VTDEVS simulation, and the VTDEVS simulation against the

DEVS simulation. We do these three t-tests over all the experiments we perform.

The t-tests all result in a near-zero p value, as seen in table 5.4. As such, we may con-

clude that the observed average iteration count is (statistically) significantly different

between the three systems.

Comparison p-value

HW vs. DEVS 0.0
HW vs. VTDEVS 0.0
VTDEVS vs. DEVS 0.0

Table 5.4
t-testing p-values (rounded)

64

Factor Error

1µs 54.05 45.95
10µs 41.45 58.55
100µs 43.53 56.47
1ms 73.93 23.07
1s 77.35 22.65
2s 82.17 17.83

Table 5.5
Allocation of Variation

5.1.3.2 Analysis of Variation

In a perfect system, one without error, we would expect for the exect test to result

in the same number of iterations performed in a given wait time. Pragmatically,

however, such a perfect system is not possible. There are many sources of error that

lead to the variation of the gathered results. A small amount of this variation is

inherent to the hardware the test is being performed on, for example, the speed of

the CPU at a given moment, or whether the program was cached. Timer accuracy,

that is the latency of timers, is another source of error to consider. Finally, there

is the scheduler as the source of error. The iterator thread is not guaranteed to be

scheduled for the entirety of the timer’s duration. Indeed, since multiple processes

are sharing a single core, there is ample opportunity for the thread to be descheduled,

as such the thread will have less of an opportunity to increment the counter.

In a single factor experiment, we find the grand mean of all observed results. The

65

variation over all observations is either explained (that is, from differences in the

systems we are measuring themselves), or unexplained (that is error, as listed in the

prior paragraph). We can then find the allocation of variation, which indicates what

percentage of variation is explained and unexplained in an experiment. Explained

variation is called variation due to factor, and unexplained variation is variation

due to experimental error. A high percentage variation due to factor indicates that

the experiment is mostly measuring actual differences between the subject systems.

Conversely, a high percentage due to error indicates that an experiment is mostly

measuring noise from error inherent to the systems. The allocation of variation can

be found in table 5.5.

Here we find that the allocation of variation due to error is quite high in the short

sleep tests (less than one millisecond sleeps). This seems to show a lower bound for

the utility of this benchmark, as in these tests we are mostly measuring the “random”

noise of the systems from their sources of error.

This confirms the validity of the higher wait value (≥1ms) results. Thus, we may

confirm the validity of the VTDEVS simulation in this context. We may extend

this to say that, with some amount of error, the VTDEVS simulator is capable of

executing a consistent amount of code similar to hardware in a given amount of time

greater than a millisecond.

66

Figure 5.2: Latency

5.2 Cyclictest Benchmark

The Cyclictest benchmark is a part of the rt-tests suite of benchmarks. These bench-

marks are developed by the real-time Linux kernel community for measuring the

performance of real-time Linux systems in various metrics. Cyclictest, in particular,

measures the latency of a real-time Linux system. Latency is defined as the differ-

ence between when something was intended to be handled, and when it was actually

handled. Figure 5.2 provides an illustration of latency.

In this context, latency is in reference to the wake-up time of a thread. Cyclictest

works via spawning two (or more) separate threads. One thread is a master non-

real time thread that runs the experiment. The other threads are real-time threads

where the experiment is performed. The real-time threads are put to sleep, and

scheduled to wake up after a set interval of time (defined by the user) using an alarm.

67

The difference between when this alarm was set for and when it is awoken is the

measured latency of the system. Cyclictest repeats this process for several iterations

(again, set by the user), and reports the minimum, maximum, and average latency

(in nanoseconds) [20].

An explanation of the rationale behind this choice of benchmark would be beneficial.

Real time operating systems (RTOSs) seek to provide a predictable execution envi-

ronment for the processes running on them. Interrupts should trigger exactly when

they are scheduled to trigger, and code should run for exactly as long as expected,

with little room for error. This trait is amenable to safety-critical and timing-critical

systems. There are multiple methods RTOSs go about providing this sort of ex-

ecution environment, such as allowing all processes (including the kernel itself) to

be preempted, or attempting to minimize the nondeterministic nature of the process

scheduler, for two examples. These strict timing requirements suggest that this would

be an apt choice of benchmark for our system. That is, the simulated machine should

have a similar latency to the physical machine, which would show an aptitude for this

use case.

This benchmark is incredibly similar (mechanically) to the previously covered bespoke

exect benchmark. However, the two are measuring something very different. Exect

is concerned with the consistency of how much work can be done in a given amount

of time, whereas Cyclictest is concerned with how consistently the OS can handle a

68

timer. These two measurements are related, but not equivalent. We can imagine a

system that has a consistently poor latency, but that poor latency allows it to perform

a very consistent amount of work. Alternatively, we may imagine a system that has

little to no latency, but the ways it achieves this results in an inconsistent amount of

work for that given time.

5.2.1 Setup

As with exect, this test was performed on a laptop equipped with a Intel i7-12700H

and 30 GB of memory, running Ubuntu Server 20.04 with kernel version 5.4.161 and

real-time patch rt67-rc1. The instances of the VTDEVS and DEVS models were

limited to 4 GB of memory with 1 VCPU, while hardware was limited to one core

with the maxcpus=1 boot parameter. In addition to hardware and the simulators,

we ran Cyclictest on a normal VirtualBox VM with the same setup. Cyclictest was

configured to execute for 100000 iterations with a timer interval of 1000 microseconds

(one millisecond), with test threads set to thread priority 90. No additional load was

placed on the systems beyond the normal processes running on Ubuntu and the test

itself.

69

Minimum Average Maximum

Hardware 0 0 4
VTDEVS 3 40 40
DEVS 0 0 2

VirtualBox 3 4281 706 933

Table 5.6
Cyclictest latency measurements (µs)

5.2.2 Results

The summary results for these experiments are given in table 5.6. This table lists

the minimum, maximum, and average latency as reported by Cyclictest. In these

results we see that hardware has almost no observed latency, with an average latency

of 0 microseconds, and a maximum latency of 4 microseconds. The DEVS simulation

measured an average latency of 0 microseconds as well, with an even lower maximum

latency of 2 microseconds. VTDEVS has an overall worse minimum, maximum, and

average over the prior two.

VirtualBox, which is not a simulation, but rather a normal virtualization tool, has by

far the worst average and maximum latency, with an average latency of 4 milliseconds,

far beyond what would typically be deemed acceptable. This test was included to

illustrate how unmanaged virtualization, which doesn’t provide any notion of virtual

or simulation time, is unfit for a simulation use case.

70

Shifting focus to the other results, it is clear that the VTDEVS implementation

has the worst statistics of the three by a not unreasonable amount. While a 40

microsecond average latency is not terrible by any means, it is much larger than what

is seen on hardware. This calls into question the validity of the VTDEVS simulation

in this context. We may conclude that there is a notable amount of simulation error

present in guest latency for the VTDEVS simulator. The reason why this latency

is present in the VTDEVS implementation but not present in the DEVS simulation

needs further investigation.

71

Chapter 6

Related Work

6.1 Hardware-Assisted Simulation

A plethora of prior work exists in the area of virtualization accelerated simulation, al-

lowing for the execution of code within a simulation at near-native speeds [21][22][23].

This extant group of prior work seeks to use virtualization in a simulation context

in order to model computers (or even networks of computers), either due to the con-

venience of virtualization as an existing computer model [23], or for the speed at

which virtual machines may execute code compared to traditional simulations [22].

In this thesis, we use virtualization to achieve the latter of these goals, as a hardware

accelerator for execution of code. However, as discussed prior in section 1.1, there

73

are many problems inherent to virtualization, such as sharing cache with the host, as

well as the difficulty of scheduling VCPUs, that make this approach difficult. Despite

this, the topic of virtualization assisted simulation has already been well explored,

and there already exists many off-the-shelf solutions for this approach. An example

of this is QBox [21], which integrates the Quick Emulator (QEMU) into the SystemC

discrete event simulator. However, several problems arise when attempting to make

QEMU beholden to simulation time. Primarily, this has to do with how QEMU

handles events for it’s emulated hardware internally. QEMU places a time to live

on events destined for emulated hardware that is kept in check with wall clock time.

Thus, situations may arise where events are not properly delivered to emulated hard-

ware. Alternatively, events arrive too early (in terms of simulation time) to emulated

hardware, as QEMU (being a virtualization platform) is attempting to work in real

time [5].

6.2 Virtualized Time

The concept of virtual time driven simulation, as described in this thesis, is not

new. It has been described before by [24], and has been used in simulation contexts

[25], to much success. However, this solution relies upon the modification of the Xen

hypervisor, and particularly Xen’s scheduler. For this, it relies upon Xen’s accounting

of domain time for determining when and for how long to schedule a VCPU core. We

74

should be able to get a more accurate accounting of domain time using the TSC, and

should be able to get a more precise control of VCPU scheduling by using the VMX

preemption timer. Xen being a Type-1 hypervisor may also be a drawback for some

use cases, for example, consider the situation that this simulation will be executed

on a developer’s workbench, this would require that their main working environment

be just another guest of the Xen hypervisor. Further, there is little prior work in

introducing virtual time driven simulation to DEVS simulations specifically.

6.3 Time Dilation

Another common approach towards using virtual machines in a simulation context

is the use of time-dilated virtual machines [26][27][28]. This approach scales the

advancement of wall clock time to trick the VM into perceiving itself as having a

slower or faster CPU than the one it is actually executing on. The amount by which

the passage of time is scaled is called the time dilation factor. For example, we may

use a time dilation factor of 2 to make the VM perceive itself as having a CPU half

the speed it actually does. Time dilation has found its use in simulation contexts,

particularly in the testing of physical networks, as well as the simulation of networks.

Time dilation has the benefit of being simple, and having the potential of working

with real-world components. For example, in [26] the authors modify the Linux kernel

75

to provide Linux Containers a dilated view of wall clock time. These time dilated

containers interact with physical components in a network, however the time dilation

results in the computer perceiving the network as being faster or slower than it is in

reality, allowing for an accurate model of the network at different speeds. In [27], the

authors provide a similar view of dilated time to virtualized guests, however in this

case, the modifications have been made to the Xen Hypervisor.

Time dilation differs inherently from our approach. In time dilated systems, the

guest’s view of time is still inherently linked to the passage of wall clock time, it

is simply that said view of time is scaled by the time dilation factor. This works

well for some use cases, for example when a simulated system needs to operate and

interact with real-world devices. However, in the context of a complete simulation of

systems, where a simulated guest need not interact with the physical world, then any

connection to wall clock time is undesirable. Some work has gone into time dilation

to try to avoid this problem by using an adaptive time dilation factor, an example of

this can be found in [28].

6.4 Resource Dedication

One of the most common solutions used to improve the fidelity of code execution

time is by dedicating CPU cores to the virtual machine. In this method, every VCPU

76

core in the virtual machine is assigned to some specific hardware CPU thread. This

solution removes some problems introduced by the unpredictable nature of the Linux

scheduler. Any given thread dedicated to the VCPU will spend much of its time

executing guest code. When this is done, we can simply use the vTSC as is, with

a reasonable assumption that the passage of guest time is highly proportional to

the execution of guest code. Resource dedication is a pretty standard feature for

most virtual machine managers. QEMU is capable of assigning a VCPU to a given

processor via libvirt [29][30]. An example of this can be found in [31], which seeks to

provide an adequate environment for the virtualization of real-time operating system.

However, this does not dedicate the physical thread to solely executing guest code,

there are still times in which virtual TSC is still ticking (as physical time is still

ticking), but guest code is not being executed. For example, when the guest exists

execution is returned to the host kernel. In the time it takes to handle that exit

condition, guest time is still advancing, but no guest code is being executed. Thus,

it is more of a band-aid solution for our specific use case.

This solution also has another, more practical, problem. It requires that for each

VCPU, there is a CPU thread to dedicate to it. This requirement makes the solutions

impractical. Take a situation where we are simulating a computer system with more

cores than we have physically on the machine we are running the simulation on.

Imagine we are running a simulation with many computing systems that add up to

77

have more cores than we have physically. These use cases are prohibited due to the

solution’s inability to over dedicate computing resources. It may simply be a developer

is running this simulation on her workbench, and does not wish to dedicate a large

amount of her processing power to the simulation, reasonably wishing to multitask

while the simulation is executing.

78

Chapter 7

Future Work & Conclusion

7.1 Support for Multiple VCPUs

VTDEVS, as described in this paper, is limited to one VCPU core. This, however,

is not a practical limitation for multiple reasons. First among these is that multicore

computing has become common place, and a considerable amount of software may

require multiple cores to run properly. As such, the simulation must be able to support

simulating multicore systems if it wishes to model such software. Second is the fact

that a simulation could model two separate computing systems at once. For example,

think of a simple satellite, with a computer on the satellite controlling local hardware,

and a ground station computer that issues commands to the satellite computer. Even

79

if both these computers could be modeled with single core processors, VTDEVS (as

described) could not handle such a model, as, in total, there would still be multiple

VCPUs.

7.1.1 The Interrupt Problem

Let us, for the moment, ignore the host OS’s scheduler. We will assume that we can

at any instant tell all the VCPUs in our simulation to start executing in harmony

with one another, as though we have just fired the starting pistol at the beginning of

a race. Let us look at the example in figure 7.1. In this example the simulation has

two VCPUs, both at simulation time t = S, with the next event being at time t = E.

Thus, the simulation schedules the VCPUs to run to t = E, and using our magic

scheduler we can do this perfectly. However, at point t = I, VCPU0 encounters

an interrupt that generates a simulation event. This event, when handled by the

VCPU1

VCPU0

S I N E

Simulation Error

CPU0

CPU1

Figure 7.1: Interrupt error

80

simulation, ends up moving the next event time forward to t = N . Thus, to prevent

the VCPUs from over-executing guest code past what the simulation has allotted,

they should only be run to t = N . In the scenario we have given in figure 7.1, the

simulator is lazy, and when VCPU0 is interrupted it simply allows VCPU1 to continue

executing to the originally scheduled point t = E. However, this means that when

the simulation is updated, and the next event time is moved to t = N , VCPU1 has

over-executed by E −N ticks.

The best way to avoid this type of error is to configure the system that when a

VCPU is interrupted with an event that may update the state of the simulation, all

other VCPUs are interrupted as well. If we could stop VCPU1 the moment VCPU0

is interrupted at t = I, this error would not have occurred. Sadly, we are limited

by the mechanism present to us. There seemingly isn’t any way to instantly have

all the other VCPU stop executing whenever we want. Instead, we are reliant on

thread signals or some other measure to interrupt the VCPUs. These will inherently

have some latency to them, thus leaving interrupt errors as a possibility, although a

mitigated one.

81

CPU0

CPU1

VCPU0

VCPU1

t=600

t=200

I

t=200

VCPU1

Figure 7.2: Over-execution error

7.1.2 The Host Scheduler Problem

The next, and perhaps most difficult problem, stems from the host operating system’s

process scheduler. In essence, there are two basic types of error that can occur due

to the host scheduler. These are over-execution and under-execution error.

Over-execution error is when a VCPU generates an event that occurs in the past

for another VCPU. An example of over-execution error is shown in figure 7.2. In

this example, let us assume that the simulation has two VCPUs, and that it has

determined the next event to be at time t = 1000, as such it schedules both VCPUs

to execute for 1000 ticks. From this point onward, the actual execution of the VCPUs

is at the whims of the host scheduler. The scheduler happens to schedule VCPU0

for 600 ticks of time, and as such, to that CPU it has perceived simulation time as

82

having advanced 600 ticks. However, in this same amount of time the host scheduler

has only executed VCPU1 for 200 ticks of time. After both of these blocks of execution

occur, the scheduler reschedules VCPU1 to continue executing. Another 200 ticks of

execution pass, and VCPU1 is interrupted in a way that generates a simulation event.

Because this event could change the state of the model, we need to have it handled

immediately. However, there is no clear way that the simulation should handle this.

If the simulation uses VCPU1’s time, then the event will have already occurred in

the past for VCPU0. If the simulation uses VCPU0’s time, then the event will have

occurred late to VCPU1. If the simulation simply advances VCPU1’s clock to meet

VCPU0’s, then time would have passed without any execution occurring (breaking our

association of execution time with simulation time). Similarly, if the simulation rolls

back VCPU0’s clock to meet VCPU1’s, we will have over executed for the simulation

time we are setting. The observant reader will notice that the error in figure 7.1 is

also a case of over-execution error.

The second type of error is under-execution error. This error occurs when an event is

generated by one VCPU at a time that has not yet occurred for another VCPU, that

is the other VCPU has under-executed at the time the event is generated. An example

of this is seen in figure 7.3. The setup to this example is similar to that seen in the

previous example, the simulation has two VCPUs, and they have both been scheduled

to execute for 1000 ticks. In this scenario, however, the host’s scheduler happens to

prioritize the execution of VCPU0 before VCPU1. After 600 ticks of execution time,

83

CPU0

CPU1

VCPU0 VCPU0

VCPU1

t=300 t=400

t=200

I

Figure 7.3: Under-execution error

VCPU0 is interrupted that generates a simulation event. Again, this event must then

be handled by the simulation, as it may update the state of the model. However,

in this time, VCPU1 has only executed for 200 ticks. We find ourselves in a similar

situation to before, however, in this case the “incorrect” VCPU is in the past. Unlike

the previous situation, there appears to be a trivial solution. Because VCPU1 is in

the past by 500 ticks, simply schedule VCPU1 to run for another 500 ticks to catch

up to VCPU0. Consider that if we do this, in the time it takes to execute those 500

ticks, VCPU1 could possibly encounter an interrupt that generates an event of its

own, which would turn this into an over-execution error.

The problems of over- and under-execution error are exacerbated as the number of

VCPUs introduced into the simulation grows. As the number of processes fighting

over a limited supply of physical cores upon which to execute increases, the likelihood

of an out-of-order interrupt increases, just due to the nature of only a small number

84

of VCPU cores being able to execute at a given time. A further complication is that

the complexity of the simulation increases as the number of VCPU cores increases as

well, a simulation with 5 VCPU cores needs at least 5 seconds worth of compute time

to advance the simulation forward 1 second. As such, it is incredibly important that

a solution for handling multiple VCPUs scales well enough to handle these issue.

7.2 Distributed VTDEVS Simulation

DEVS lends itself very well to being distributed over multiple systems. DEVS simula-

tion nodes, as seen in section 2.3, need only communicate by passing simple messages

with their parent and direct child. It is thus possible for multiple computers in a

network to distribute the execution of a DEVS simulation. This allows for large and

complex models, which if simulated on a single computer may constrain resources,

to be run over a network of computers [1]. The main theoretical issue that must

be solved prior to proper distributed VTDEVS is the aforementioned support for

multiple VCPUs. From there, one must also solve several non-trivial implementation

issues. How would distributed VCPUs share virtual memory? How do you handle

the possibility of the computers running the distributed simulation having different

CPU microarchitectures?

85

7.3 Conclusion

Modeling and simulation are, in some ways, an art. The simulation author is faced

with trying to balance several conflicting goals while creating the simulation. Ac-

curacy and granularity, abstraction and performance; these goals contrast and may

conflict with each other. Thus, it is necessary that the simulation writer make deci-

sions on what is valued in the simulation, and what is not. This dilemma extends to

simulations that include software as a component. If the simulation author eschews

the abstraction of the formal software model approach for the fine granularity of the

computer model approach, then we would expect that there should be some corre-

sponding deficit in the performance or accuracy of the model. For this problem, we

introduce VTDEVS. VTDEVS, in this situation, prioritizes performance over accu-

racy, foregoing the computational cost of a formal model of a CPU for the performance

of hardware virtualization. In practice, in order for simulations to take advantage of

the VTDEVS formalism, we also needed to retrofit an existing hypervisor, KVM, to

allow for the fine control of VCPU execution and presentation of time, which would

minimize the loss of accuracy from using virtualization. Finally, we validate an exam-

ple model to test our VTDEVS approach, where we show that the VTDEVS approach

is reasonably accurate in regards to real world behavior for two benchmarks.

86

References

[1] Zeigler, B. P.; Muzy, A.; Kofman, E. Theory of Modeling and Simulation; Aca-

demic Press, third edition ed., 2019.

[2] SimpleScalar. SimpleScalar. https://pages.cs.wisc.edu/~mscalar/

simplescalar.html, Last Accessed: 2024-07-10.

[3] Onder, S.; Gupta, R. In Proceedings of the 1998 International Conference on

Computer Languages (Cat. No.98CB36225), pages 80–89, 1998.

[4] Bochs IA-32 Emulator Project. Bochs. https://bochs.sourceforge.io/, Last

Accessed: 2024-07-10.

[5] Nutaro, J. J. Time managed virtualization for simulating systems of systems

Technical report, Oak Ridge National Laboratory, 2021.

[6] Spin. Spin. https://spinroot.com/spin/whatispin.html, Last Accessed:

2024-07-10.

[7] Alloy. Alloy. http://alloytools.org/, Last Accessed: 2024-07-10.

87

https://pages.cs.wisc.edu/~mscalar/simplescalar.html
https://pages.cs.wisc.edu/~mscalar/simplescalar.html
https://bochs.sourceforge.io/
https://spinroot.com/spin/whatispin.html
http://alloytools.org/

[8] Amsden, Z. Timekeeping virtualization for x86-based architectures Technical

report, Red Hat.

[9] Intel 64 and ia-32 architectures software developer’s manual volume 3b: System

programming guide, part 2. Intel.

[10] Intel 64 and ia-32 architectures software developer’s manual volume 2 (2a, 2b,

2c, & 2d): Instruction set reference, a-z. Intel.

[11] Intel 64 and ia-32 architectures software developer’s manual volume 4: Model-

specific registers. Intel.

[12] Intel 64 and ia-32 architectures software developer’s manual volume 3c: System

programming guide, part 3. Intel.

[13] Amd64 architecture programmer’s manual volume 2: System programming.

AMD.

[14] The Definitive KVM (Kernel-based Virtual Machine) API Documenta-

tion. Linux. https://docs.kernel.org/virt/kvm/api.html, Last Accessed:

2024-07-10.

[15] Intel 64 and ia-32 architectures software developer’s manual volume 3a: System

programming guide, part 1. Intel.

[16] Intel. Timestamp-Counter Scaling for Virtualization White Paper Technical re-

port, Intel.

88

https://docs.kernel.org/virt/kvm/api.html

[17] Chow, A. C. H.; Zeigler, B. P. In Proceedings of Winter Simulation Conference,

pages 716–722, 1994.

[18] KVM-specific MSRs. Costa, G. https://docs.kernel.org/virt/kvm/x86/

msr.html, Last Accessed: 2024-07-10.

[19] A tsc freq khz driver for everyone. Trail of Bits. https://github.com/

trailofbits/tsc_freq_khz, Last Accessed: 2024-07-10.

[20] Cyclic Test. The Linux Foundation. https://wiki.linuxfoundation.org/

realtime/documentation/howto/tools/cyclictest/start, Last Accessed:

2024-07-10.

[21] Delbergue, G.; Burton, M.; Konrad, F.; Le Gal, B.; Jego, C. In 8th Euro-

pean Congress on Embedded Real Time Software and Systems (ERTS 2016),

TOULOUSE, France, 2016.

[22] Falcon, A.; Faraboschi, P.; Ortega, D. In 2007 IEEE International Symposium

on Performance Analysis of Systems & Software, pages 72–83, 2007.

[23] Rösch, D.; Nicolai, S.; Bretschneider, P. In 2021 6th International Conference

on Smart and Sustainable Technologies (SpliTech), pages 1–6, 2021.

[24] Yoginath, S. B.; Perumalla, K. S.; Henz, B. J. In 2012 IEEE 20th International

Symposium on Modeling, Analysis and Simulation of Computer and Telecommu-

nication Systems, pages 68–77, 2012.

89

https://docs.kernel.org/virt/kvm/x86/msr.html
https://docs.kernel.org/virt/kvm/x86/msr.html
https://github.com/trailofbits/tsc_freq_khz
https://github.com/trailofbits/tsc_freq_khz
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start

[25] Yoginath, S. B.; Perumalla, K. S.; Henz, B. J. The Journal of Defense Modeling

and Simulation 2015, 12(4), 439–456.

[26] Lamps, J.; Nicol, D. M.; Caesar, M. In Proceedings of the 2nd ACM SIGSIM

Conference on Principles of Advanced Discrete Simulation, SIGSIM PADS ’14,

page 179–186, New York, NY, USA, 2014. Association for Computing Machinery.

[27] Gupta, D.; Yocum, K.; McNett, M.; Snoeren, A. C.; Vahdat, A.; Voelker, G. M.

In 3rd Symposium on Networked Systems Design & Implementation (NSDI 06),

San Jose, CA, 2006. USENIX Association.

[28] Lee, H. W.; Thuente, D.; Sichitiu, M. L. In Proceedings of the 2nd ACM SIGSIM

Conference on Principles of Advanced Discrete Simulation, SIGSIM PADS ’14,

page 167–178, New York, NY, USA, 2014. Association for Computing Machinery.

[29] libvirt. libvirt. https://libvirt.org/, Last Accessed: 2024-07-10.

[30] Configuring Real-Time Compute. Red Hat. https://access.redhat.com/

documentation/en-us/red_hat_openstack_platform/13/html/instances_

and_images_guide/realtime-compute, Last Accessed: 2024-07-10.

[31] Scordino, C.; Savino, I. M.; Cuomo, L.; Miccio, L.; Tagliavini, A.; Bertogna, M.;

Solieri, M. In 2020 25th IEEE International Conference on Emerging Technolo-

gies and Factory Automation (ETFA), Vol. 1, pages 353–360, 2020.

90

https://libvirt.org/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/instances_and_images_guide/realtime-compute
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/instances_and_images_guide/realtime-compute
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/instances_and_images_guide/realtime-compute

[32] KVM PVclock. Red Hat. https://www.linux-kvm.org/page/KVMClock, Last

Accessed: 2024-07-10.

[33] Clocks and Timers. Linux. https://docs.kernel.org/virt/hyperv/clocks.

html, Last Accessed: 2024-07-10.

[34] Kong, X.; Kong, X. CSAE 2021, October(5), 1–5.

[35] Zhang, J.; Chen, K.; Zuo, B.; Ma, R.; Dong, Y.; Guan, H. In 5th Interna-

tional Conference on Computer Sciences and Convergence Information Technol-

ogy, pages 421–426, 2010.

[36] Garćıa-Valls, M.; Cucinotta, T.; Lu, C. Journal of Systems Architecture 2014,

60(9), 726–740.

91

https://www.linux-kvm.org/page/KVMClock
https://docs.kernel.org/virt/hyperv/clocks.html
https://docs.kernel.org/virt/hyperv/clocks.html

	A Virtual Time Driven Simulator for DEVS Models
	Recommended Citation

	Contents
	List of Figures
	List of Tables
	Acknowledgments
	List of Abbreviations
	Abstract
	Introduction
	Problem
	Limitations
	An Example Use Case

	Background
	Hardware Features
	Time Stamp Counter

	Virtualization Basics
	VMX Preemption Timer
	Virtualized Timekeeping
	Synchronization

	Discrete Event System Specification
	DEVS Simulation

	VTDEVS
	Definition
	Simulation Algorithm

	Implementation
	Kernel Changes
	TSC Isolation
	rdmsr Capture
	rdtsc Capture

	VCPU Management
	VMX Preemption Timer

	Simulator Changes
	Root-Coordinator Algorithm
	Time Scaling

	Validation
	Exect Benchmark
	Algorithm
	Setup
	Results
	t-Testing
	Analysis of Variation

	Cyclictest Benchmark
	Setup
	Results

	Related Work
	Hardware-Assisted Simulation
	Virtualized Time
	Time Dilation
	Resource Dedication

	Future Work & Conclusion
	Support for Multiple VCPUs
	The Interrupt Problem
	The Host Scheduler Problem

	Distributed VTDEVS Simulation
	Conclusion

	References

