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Abstract

To minimize the latency of accessing back-end servers, modern web services often

use in-memory key-value (k-v) stores at the front end to cache frequently accessed

objects. Due to the limited memory capacity, these stores must be configured with

a fixed amount of memory. Consequently, cache replacement is required when the

footprint of the accessed objects exceeds the cache size.

This thesis presents a comprehensive exploration of advanced dynamic memory man-

agement techniques for k-v stores. The first study conducts a detailed analysis of

K-LRU, a random sampling-based replacement policy, proposing a dynamic K con-

figuration scheme to exploit the potential miss ratio gap among various Ks. Experi-

mental results demonstrate a throughput improvement of up to 32.5% over the default

static K setting.

Building on this, the second study extends the exploration of K-LRU to a multi-tenant

k-v store environment, introducing a locality- and latency-aware memory partitioning

scheme. This approach significantly enhances performance, achieving up to a 50.2%

reduction in average access latency and a 262.8% increase in throughput compared

to standard Redis. When compared to a state-of-the-art memory allocation design,

the proposed scheme shows improvements of up to 24.8% in average access latency

xxi



and 61.8% in throughput.

Finally, inspired by emerging Compute Express Link (CXL) memory-sharing tech-

niques, the third study pushes k-v store memory management into a multi-tier mem-

ory environment. This involves designing a software-defined tiered memory manage-

ment architecture on top of a CXL memory-sharing switch. By dynamically iden-

tifying hot application data, efficiently migrating items among memory tiers based

on popularity, and implementing multi-tenant memory partitioning, the proposed

sdTMM system effectively integrates fast local DRAM with slower but larger CXL-

shared memory. Evaluations across various workloads show that, even with 80% of

the fast memory replaced by CXL-shared slow memory, sdTMM maintains an average

performance impact of 13%, with the best-case impact as low as 2.2% compared to

an all-fast memory over-provisioned system.

This research collectively advances the techniques of dynamic memory management,

demonstrating promising performance improvements in k-v stores.
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Chapter 1

Introduction

To reduce the latency of accessing back-end servers, today’s web services widely use

in-memory key-value (k-v) stores at the front end to cache frequently accessed ob-

jects. For large-scale web services, key-value stores like Redis and Memcached are

crucial for ensuring low-latency service when handling massive workloads. Unlike a

dedicated cache that serves a single application, a multi-tenant cache allows multiple

applications to share a single cache instance, with the available memory partitioned

to meet each tenant’s caching requirements. Due to the limited memory size, an

in-memory key-value store needs to be configured with a fixed amount of memory,

making efficient memory utilization essential for optimal system performance.

1



1.1 Motivation and Research Problem

There are two directions for improving cache performance, one is to optimize the

replacement policy under the cache size limit, and the other is to increase the available

memory with the help of emerging low-cost, high-density memory-sharing techniques.

Regarding the first direction, research on hotspot issues indicates that accesses in

real-world commercial k-v stores follow a power-law distribution, with popular keys

dominating the accesses [3]. LAMA’s evaluation of the Facebook ETC workload also

shows high data locality [4]. Thus, LRU (Least Recently Used) is a good choice as it

effectively exploits this locality. However, implementing exact LRU can be costly. In

software caches, prioritizing items according to their last access time typically relies

on linked structures to maintain their order [5], and evictions require list operations,

including pointer updates. These processes introduce both space and computation

overhead. Additionally, each access necessitates locking the LRU list to update the

corresponding LRU priority, further degrading performance [6].

To avoid the expense of ordered data structures and enhance performance, many

existing schemes have adopted random sampling. During eviction, according to a

specified sampling configuration, a small number of K keys are randomly sampled

from all keys in the memory, and the one with the lowest priority is evicted. We

2



term this eviction policy as K-LRU. Ideally, the item evicted from this small random

sample closely approximates the lowest priority item in the entire cache [5]. This

random sampling-based policy is lightweight and shows its flexibility. We observe

that there can exist a significant miss ratio gap between exact LRU and random

sampling-based LRU under different sampling size Ks. In this thesis, we first explore

the configurable random sampling size K to improve single-tenant in-memory cache

performance. Subsequently, we extend our work to a multi-tenant system by develop-

ing a new memory arbitration scheme that guides the memory allocation among the

tenants and dynamically customizes K to better exploit the locality of each individual

tenant.

As research continues to enhance the performance of in-memory k-v stores within

the constraints of local DRAM capacity, web services and applications are expanding

their memory demands and workload volumes in the era of AI training, cloud comput-

ing, and big data. For these k-v stores operating in the cloud, it’s crucial to augment

memory capacity and minimize access latency. Emerging technologies such as non-

volatile memory (NVM) and memory-sharing offer increased capacity and lower costs

per gigabyte, but they also present higher access latencies. Therefore, a multi-tiered

memory system that combines the rapid access of local DRAM with the larger ca-

pacity of slower memory sources (like shared memory from other devices, NVM, and

flash) could potentially optimize both the performance and cost-efficiency of k-v store

deployments.

3



Typically, tiered memory systems can be structured in two main ways. The first

method involves arranging different types of memory vertically, where the fast mem-

ory tier serves as a cache for the slow tiers. In this configuration, the k-v store system

can leverage established cache management policies, with data movement managed by

either dedicated hardware logic or the operating system. The second approach places

the fast and slow memory tiers on the same level within the memory hierarchy. Here,

a middleware software library or specialized memory management software is used

to allocate user data across the memory tiers and handle data migrations. This hor-

izontal arrangement presents more complexities and possibilities for tiered memory

management due to potential limitations in OS-level memory migration tools. How-

ever, this method allows for a more nuanced integration of application-level workload

patterns into the strategies for data placement and movement between the tiers.

Designing an effective tiered memory management system in a multi-tenant environ-

ment involves several challenges. This thesis presents a scheme that addresses key

challenges, including accurately identifying performance-critical data to allocate to

the fast memory tier, effectively partitioning memory across different tenants, op-

timizing the use of both fast and slow memory tiers, and minimizing the overhead

associated with data migration between these tiers. These factors are crucial to main-

taining high performance and efficiency in environments where resources are shared

among multiple users.

4



1.2 Research Contributions

Motivated by the aforementioned directions for performance improvement in k-v

stores, we made the following main contributions in this research.

1. We conduct a detailed analysis of the K-LRU behavior in Redis, identifying

the potential for different miss ratios based on varying K values. We propose

a dynamic configuration scheme, DLRU, that adopts a low-overhead miniature

cache simulator and a cost model to predict miss ratios and optimize perfor-

mance trade-offs. Our experiments show that DLRU can always match the

performance of the best K setting, and improve the overall Redis throughput

over the default K configuration by up to 32.5%.

2. Extending the exploration of K-LRU, we propose kRedis, a multi-tenant mem-

ory partition system, which is guided by merged K-LRU MRCs and is aware of

tenant miss latency. This new memory arbitration scheme dynamically config-

ures the random sampling size K for each individual tenant to adapt to access

pattern changes, exploring the possible miss ratio gap between various K op-

tions. We adopt a new multi-dictionary design to increase the efficiency of ran-

dom sampling for the individual tenants. The performance evaluation shows

that kRedis attains up to a 50.2% lower average access latency, and up to a

5



262.8% higher hit throughput than Redis. When compared to pRedis, a state-

of-the-art design of memory allocation, kRedis yields up to 24.8% and 61.8%

improvements in access latency and throughput, respectively.

3. Inspired by the emerging Compute Express Link (CXL) memory-sharing tech-

niques, we present sdTMM, a software-defined tiered memory management ar-

chitecture. This system integrates fast local DRAM with slower, yet higher-

capacity CXL-shared memory to create an efficient multi-tier memory pool. By

dynamically identifying and placing hot data, efficiently migrating items among

memory tiers based on their popularity, and implementing locality-aware multi-

tenant memory partitioning, sdTMM optimizes memory utilization and main-

tains high performance. Our evaluations show that sdTMM, even with 80%

of the fast memory replaced by CXL-shared slow memory, has an average per-

formance impact of 13%, and the best-case performance impact of only 2.2%

compared to an all-fast memory over-provisioned system.

1.3 Dissertation Organization

The rest of this dissertation is organized as follows.

Chapter 2 reviews the background knowledge and discusses related research work in

key-value stores and tiered memory management.
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Chapter 3 proposes DLRU which explores the configuration of K in K-LRU, to im-

prove the overall k-v system performance. We describe our system design, implemen-

tation, and experimental results.

Chapter 4 presents kRedis, a reference locality- and latency-aware memory partition-

ing scheme, to improve the performance of the in-memory multi-tenant k-v store that

utilizes random sampling-based replacement algorithm. We show that our design

significantly boosts system performance.

Chapter 5 proposes sdTMM, a software-defined tiered memory management scheme

for in-memory k-v stores in the multi-tenant environment. We first present the system

architecture and describe the main feature designs in detail. Then we discuss the

implementation and experimental results.

This dissertation concludes in Chapter 6 with a discussion on the contributions and

directions for future research.
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Chapter 2

Background And Related Work

In this chapter, we briefly introduce techniques that are used or related to our multi-

tenant key-value store system in a tiered memory architecture.

First, we introduce MRC and LRU replacement policy. Second, the random sampling

replacement and K-LRU policy are discussed. Following we illustrate a spatial sam-

pling technique used to lower MRC construction overhead. Then we analyze memory

partition schemes in recent literature. Finally, we review the techniques employed in

tiered memory management.
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2.1 Miss Ratio Curve (MRC)

The Miss Ratio Curve (MRC) is a function mapping from cache sizes to miss ratios,

given the MRC of a workload, one can immediately know the miss ratio for any cache

allocation. Because of its capability in identifying workload locality and pattern

changes, MRC has been a useful tool in cache memory management [4, 7, 8, 9, 10,

11, 12]. Figure 2.1 is an example MRC of MSR Web workload.

Figure 2.1: MSR web MRCs.
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Since accesses in real-world commercial key-value stores show high data locality [3, 4],

the Least Recently Used (LRU) replacement policy becomes a good choice as it can

exploit the locality well. As of today, most studies on efficient MRC construction are

focused on the LRU cache [7, 9, 13, 14, 15].

2.2 Random Sampling Replacement

Exact LRU implementation can be costly. In software caches, prioritizing items ac-

cording to their last-access-time usually relies on linked structures to book-keep their

orderings [5], and item evictions require list operations including pointer updates. All

of these introduce space overhead and computation overhead. In addition, each time

when an item is accessed, the LRU list must be locked to facilitate the update of

corresponding LRU priority, resulting in extra performance degradation [6]. Mem-

cached, another popular key-value store, only maintains the LRU structure at the

slab class level [16].

In addition to the LRU policy, there are several sophisticated replacement policies

such as ARC [17], MultiQueue [18], CACHEUS [19], and the Segment LRU recently

implemented by Memcached [16]. While these algorithms generally perform effec-

tively across various workloads, they share some common drawbacks. Firstly, these

advanced policies necessitate the use of additional sorted data structures to keep
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track of the relative order of objects, requiring the cache to allocate extra time and

resources to maintain this order. Secondly, the data structures employed are typically

quite inflexible; once a replacement policy is established, it becomes challenging to

adjust the rules dynamically due to the inherent characteristics of these structures.

To avoid using expensive ordered-data structures and to improve performance, many

existing schemes have adopted the idea of random sampling: On eviction, the cache

randomly selects a small number of items and then evicts the item with the lowest

priority. Ideally, the evicted item from a set of relatively small random sampled items

could closely approximate the lowest priority in the whole cache [5].

2.2.1 K-LRU Policy

Redis, a widely-used commercial in-memory cache, employs an approximated LRU

policy [20] that simplifies management by only tracking the access time for each

object. During an eviction, it selects the candidate with the oldest access time from

a randomly sampled subset of keys. Experiments have shown that even with a small

sample size, this random sampling-based LRU closely mirrors the performance of

exact LRU. We refer to this method as K-LRU, where K denotes the sampling size.

Additionally, two innovative function-based cache replacement strategies, Hyperbolic

caching for Redis [5] and LHD for Memcached [21], leverage this random sampling
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approach to reduce the significant overhead associated with maintaining a complete

ranking of all objects.

In Redis’ random sampling-based LRU, each time when an eviction is needed, K keys

are randomly sampled from all keys in the memory and added to an eviction pool.

All keys in the eviction pool are sorted by their last access time and the one with the

oldest time is evicted. The default setting of Redis is K = 5. Each time 5 randomly

sampled keys are added to the pool for eviction decision. The number of sampled

keys, K, is configurable but is fixed across Redis execution for the current design.

We run a collection of real-world enterprise server traces from Microsoft Research

Cambridge [22] on Redis to plot the MRCs. Figure 2.1 shows the MRCs of five

different sampling size K for trace web where cache size is represented as the number

of objects. We observe that the MRCs of K-LRU withK = 16 can closely approximate

those of the real LRU. A larger K normally indicates a closer behavior of eviction to

the exact LRU policy, since the more keys are sampled to add into the eviction pool,

the more likely the evicted object is near the least-recently-used side of the exact

LRU list.
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2.2.2 Impacts of Sample Size K

We use a simple trace example to illustrate the impact of sample size K over miss

ratio by choosing three settings of K, where K = 16 simulates the real LRU, K = 2

represents a middle ground, andK = 1 means random eviction. Tables 2.1 to 2.3 show

the cache content and eviction selection for 16-LRU, 2-LRU, and 1-LRU, respectively.

Assume that cache capacity is 5. An evicted key is the one with largest access time

chosen from K sampled keys, which are sorted based on their recent access time from

top to bottom with the most recent item on top in the tables. Under K = 16, every

access is a miss, miss ratio is 100%. Under 2-LRU, there are 9 misses and the miss

ratio is 75%. Under random eviction, i.e., 1-LRU, there are 7 misses and the miss

ratio has decreased to 58%.

This example shows that the trace pattern, cache size, and sample size K of K-LRU

all have impacts on the miss ratio of a key-value cache. As pointed out by Jaleel et

al [23], LRU is not able to explore well the reuse distances that are larger than the

cache size. Note that the reuse distance between an access and its next reuse is the

number of distinct accesses in between. In the sample trace, the reuse distance for all

reuses is 6, which is bigger than the cache size 5. In this case, 16-LRU, which behaves

close to the real LRU, fails to generate any hits. On the other hand, random eviction

leads to most hits. In reality, we can observe a mix of short and long reuse intervals
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in different phases. Based on this observation, we propose an approach to choosing

K dynamically.

2.3 MRC Modeling

2.3.1 Stack Algorithms

Mattson’s Stack Algorithm [24] is a generalized algorithm that models a general class

of replacement policies. A replacement algorithm is called a stack algorithm if such

replacement algorithm satisfies the inclusion property, that is, Bt(C) ⊂ Bt(C + 1),

where Bt(C) is a set of distinct objects in a cache of arbitrary size C at given time t.

The inclusion property of the stack algorithm makes it possible to generate an MRC

in just one pass of the trace. The algorithm models the cache as a stack, and the

stack location i (stack top location = 1), where the referenced object resides, is called

the object’s stack distance (to the stack top). Under the stack model, an MRC can

be calculated based on stack distance distribution (SDH): the miss ratio of a cache

size c is the probability of stack distance greater than c.

Mattson’s stack model [24, 25] was originally designed to simulate a range of replace-

ment algorithms based on the assumption that all cached objects are of a fixed size.

This assumption is suitable for hardware caches where each cache block is uniformly
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sized. However, this fixed-size assumption does not necessarily apply to software

caches. Recent research [26, 27] highlights that objects in in-memory caches can vary

significantly in size, and the distribution of these sizes tends to change dynamically

over time. Furthermore, Pan et al. [28] have shown that miss ratio curves, which are

constructed under the assumption of uniform object sizes, can differ markedly from

actual miss ratios when the workload exhibits a non-uniform size distribution.

Yang et al. [2] present a new probabilistic stack algorithm named KRR which can be

used to accurately model random sampling based-LRU under arbitrary sampling size

K. To handle variable object size in modeling K-LRU policy, Yang et al. propose a

solution to add an additional array structure, sizeArray. Each entry of the sizeArray

maintains a partial accumulation of stack size, specifically, the entry i of the sizeArray

stores the total size of objects from stack top to stack position bi, where b is the base

parameter. Since the length of sizeArray is logarithmically bounded with respect to

KRR stack length, the cost of maintaining the sizeArray is at most O(logM), where

M is the stack size. With aids from sizeArray, they can make better estimations on

byte-level stack distance. It is feasible to construct MRC of a variable object-size

K-LRU cache for any K.
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2.3.2 Spatial Sampling

The problem with the original stack algorithm is that it is very expensive, in both

space and time, to obtain the actual SDH for a long trace because the asymptotic

space/time cost of the stack algorithm is correlated with the number of unique ref-

erences in the workload, which can be very large. Due to the large overhead, it is

impractical to directly use a stack algorithm online. In order to make it suitable

for online usage, the uniformly random spatial sampling described in SHARDS [7]

becomes a widely adopted technique. Instead of feeding entire reference streams

to the stack model, the spatial sampling technique uses the sampling condition

hash(L) mod P < T , with referenced key L, modulus P, and threshold T, to col-

lect only a subset of references. The effective sampling rate is R = T/P . As shown

by Waldspurger et al. [7], for the majority of workloads tested, the sampled subset

has very high statistical similarity compared to the original workload, even with R

= 0.001. The spatial sampling technique can thus significantly reduce the number of

tracked references for online MRC prediction.
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2.4 Memory Partitioning

In real-world cache deployments, one cache instance usually serves multiple tenants,

forming a multi-tenant environment. There are two basic memory partitioning strate-

gies, equal partitioning, and free competition. In equal partitioning, each of the n ten-

ants running simultaneously takes 1/n of the total memory. This strategy seems to be

fair to all tenants. However, due to access pattern change or trace locality difference,

cache performance might deteriorate by offering some tenants more memory than

needed, while others suffer from memory shortage. Free competition, on the other

hand, is a first-come-first-serve policy, all tenants are competing for shared memory.

The memory usage of tenants is decided according to various factors, including access

rate, locality, object size, miss latency, etc. This is the default strategy that Redis

employs. A tenant’s throughput may be significantly affected by some noisy neigh-

bors. To maximize the memory utilization of high-throughput multi-tenant storage

systems, recent studies consider better memory partitioning schemes for applications

based on online MRC construction techniques.

LAMA [4] is a locality-aware slab class level memory allocation for Memcached using

the footprint theory [14] to model slab class trace locality and construct an MRC

for each slab class. LAMA optimizes overall performance for all size classes, either

total miss ratio or average response time. It can also be used in QoS-guaranteed
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applications use cases.

Dynacache [29] targets improving hit rate of web applications, uses a bucketing scheme

to estimate item stack distance in trace profiling, and allocates slab memory of Mem-

cached for tenants.

Cliffhanger [30] employs a hit rate gradient estimation mechanism using shadow queue

structures and incrementally transfers memory resources to the application that would

benefit most from those that benefit the least.

Memshare [31] is a DRAM key-value cache memory partitioning system that opti-

mizes the overall hit rate of applications and allows each application to specify its

own eviction policy. It extends the Cliffhanger model to track a hit gradient for

each application. Memshare abandons slab classes and introduces a segmented in-

memory log to store application items. Varied-size items from different applications

can be allocated the same segment and thus memory reallocation can be at item level.

Memshare reserves a specified minimum amount of memory for each application to

provide performance guarantees, and the remaining memory is allocated to maximize

hit rate.

Both pRedis [32] and mPart [33] adopt AET [34] for online MRC construction and

use dynamic programming algorithms guided by tenant MRCs to allocate memory.
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I-PLRU [35] achieves minimized misses for a multi-flow LRU cache with an insertion-

based pooled LRU paradigm. The cache space is pooled to serve multiple data flows

but organized as a single list. Each tenant data flow is assigned an insertion position

of the list. By configuring the insertion point dynamically, it proves that I-PLRU can

reach the same minimum miss ratio of separated LRU caching. Robinhood [36] re-

purposes existing caches to mitigate backend latency variability. Rather than solely

caching popular data, it dynamically reallocates cache resources from “cache-rich”

backends, which do not significantly impact request tail latency, to the “cache-poor”

backends, thereby increasing hit ratios, reducing backend queries, and easing resource

congestion, which all contribute to improved P99 request latency.

2.5 Tiered Memory Management (TMM)

As semiconductor manufacturing technology continues to advance rapidly, DRAM

memory cells are shrinking to sizes where holding a reliable, detectable charge level

becomes challenging [37]. Additionally, the cost per GB of DRAM is unlikely to

decrease due to limitations in production process miniaturization. Concurrently, the

growing demand for memory presents significant challenges to the total cost of own-

ership in cloud computing environments. A promising strategy to increase memory

capacity while reducing cost is the incorporation of cheaper, slower memory tiers
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for storing infrequently accessed or ’cold’ data. Options for such memory technolo-

gies include fast flash memory [38], phase-change memory [39], Memristor RAM [40],

Spin-transfer Torque RAM [41], and 3D XPoint [42].

In the following sections, we first introduce two broad categories for implementing

TMM. Then we analyze the techniques used in TMM. At the end of this chapter, we

briefly introduce several advancements in TMM.

2.5.1 Hardware-based TMM

Currently, the Linux system lacks efficient support for tiered memory, leading memory

vendors to offer tiered memory solutions at the hardware level [43]. These hardware-

managed memory tiers operate independently of the operating system’s memory man-

agement mechanisms. This approach offers several advantages. Firstly, it eliminates

the need for operating system support, as the hardware autonomously manages the

memory tiers. Secondly, it involves very low overhead; for instance, the Memory Mode

of Intel’s Optane DC manages memory at the granularity of cache lines without the

need to handle page tables or maintain the Translation Lookaside Buffer. However,

this method also presents some limitations. Hardware systems have restricted insight

into the actual memory usage patterns of applications, limiting them to employ-

ing simple, hardware-implementable techniques. For example, Intel’s Optane DC
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Memory Mode essentially uses DRAM as a direct-mapped cache for Non-Volatile

Memory [44].

2.5.2 Software-based TMM

The limitations of hardware-based TMM have spurred the development of software-

based TMM solutions [45, 46, 47]. In these systems, separate ranges of DRAM and

slower memory types are distinctly managed, with a software layer—often the oper-

ating system or a dedicated library—responsible for data placement between DRAM

and slower memory tiers. This software-driven approach provides greater visibility

into how applications utilize memory and can implement more sophisticated man-

agement policies than those possible with hardware solutions. Most contemporary

software-based TMMs leverage enhancements within the operating system, as cur-

rent Linux OS implementations lack efficient mechanisms for migrating data between

memory tiers, apart from traditional swapping to disk methods [48].
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2.5.3 Memory Usage Profiling

Efficient Tiered Memory Management relies on the system’s ability to accurately

identify frequently accessed, or “hot” data and dynamically allocate it to the highest-

performing memory tier available. This process ensures optimal use of faster, more

expensive memory resources by prioritizing data that benefit most from reduced access

times, thereby enhancing overall system performance and efficiency.

Most previous research applies OS-level memory usage tracking, including page ta-

ble scanning, dirty bits, and TLB counting [49, 50, 51, 52]. Other research adopts

hardware-specific profiling techniques, either based on AMD CPU’s IBS and LWP,

Intel CPU’s PEBS [48, 53, 54] or Intel’s PML for Virtual Machines (VM) [55].

However, using those techniques to determine which parts of applications are being

accessed either does not scale with large address spaces (such as terabytes of memory)

or can’t be deployed as hardware transparent.

For cloud applications, particularly in-memory k-v stores like Redis and Memcached,

workloads often exhibit memory footprints with large variants and dynamic access

pattern changes. To effectively manage these, we propose the implementation of

application-level memory usage tracking, and utilize a recency based priority for each

data item to identify and categorize “hot” data. By focusing on application-level
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data item priorities, this approach allows for more effective memory tier allocations,

aligning memory usage more closely with actual application needs and performance

requirements.

2.5.4 Memory Migration Techniques

Memory migration significantly affects system performance, particularly in cloud com-

puting environments with multiple memory tiers. In these systems, substantial data

volumes are often transferred between memory levels due to changes in memory usage

patterns. Migration processes can be managed by the operating system kernel, which

employs a page copy method that locks pages to ensure data consistency. While this

prevents data from being altered during migration, it adversely impacts system perfor-

mance due to the locking mechanism [55, 56, 57]. Additionally, updating Page Table

Entries (PTEs) for moved pages can lead to costly context switches and Translation

Lookaside Buffer (TLB) shootdowns [58, 59]. Alternatively, memory migration can be

handled by a Direct Memory Access (DMA) engine [60], which operates concurrently

with CPU tasks without utilizing CPU resources. However, the DMA operates at a

lower frequency than the CPU and its initialization time is significant.
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2.5.5 Compute Express Link (CXL) Memory Sharing

Compute Express Link (CXL) [61] is an open industry-standard interconnect designed

to facilitate high-bandwidth and low-latency communication between host proces-

sors and various devices, including accelerators, memory buffers, and intelligent I/O

devices. This interconnect is tailored to manage the increasing demands of high-

performance computing tasks. CXL enhances heterogeneous processing and memory

systems, crucial for sectors such as cloud infrastructure, artificial intelligence, ma-

chine learning, and analytics, by integrating coherency and memory semantics with

existing PCIe-based I/O.

Two features of CXL are memory disaggregation and composability [61, 62]. Memory

disaggregation is the ability to distribute memory across different devices, while still

allowing multiple servers to share and maintain coherence. This approach eliminates

the concentration of memory on a single device or server, provides more flexibility in

designing the memory hierarchy and enables the use of different memory technologies

with varying characteristics (e.g., capacity, bandwidth, latency).

Composability refers to the capability to assign disaggregated memory to designated

CPUs or TPUs as needed, which considerably enhances memory utilization. Memory

connected via Compute Express Link (CXL-Memory) is recognized by the system
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as a NUMA node without an associated CPU, possessing unique memory attributes

such as technology, generation, capacity, and bandwidth, distinct from the memory

directly connected to the CPU [63].

CXL 2.0 and CXL 3.0 incorporate switching technology that allows a host to utilize

memory from a pool comprising one or more devices. In CXL 2.0, it’s possible for

hosts to share only the resources, not the contents of the memory, with each memory

region limited to a single coherency domain. On the other hand, CXL 3.0 intro-

duces the capability of memory sharing. This feature enables the coherent sharing of

CXL-attached memory across multiple hosts via hardware coherency. Consequently,

multiple hosts can access the same memory region concurrently, ensuring that all

involved hosts can access the latest data without the need for software-managed co-

ordination.

CXL facilitates byte-addressable memory within a unified physical address space,

allowing for straightforward memory allocation through standard memory alloca-

tion APIs [62, 64]. It offers access at cache-line granularity to connected devices

while maintaining coherency and consistency via the underlying hardware. The

bandwidth of the CPU-CXL interconnect parallels that of cross-socket interconnects

found in dual-socket systems. Additionally, the latency associated with accessing

CXL-Memory is comparable to that experienced with Non-Uniform Memory Access

(NUMA) systems. This similarity to NUMA, coupled with the access semantics akin
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to main memory, makes CXL-Memory a strong contender for the slower tier in data

center memory architectures.

2.5.6 State-of-the-Art TMM Designs

HeMem [48] is a tiered main memory management system designed for non-volatile

memory and big data applications. It uses asynchronous memory access sampling

via CPU events, PEBS, to track memory access patterns, rather than page tables,

enhancing its scalability to manage terabytes of memory efficiently. Asynchronous

memory migration is also applied to minimize CPU overhead. It recognizes that

certain ephemeral data structures do not scale unbounded in size, so they can be

kept in the faster DRAM, rather than managing all data in tiered memory, to lower

management overhead. HeMem considers the asymmetric bandwidth characteristics

of NVM and places write-heavy data in DRAM to mitigate the impact and improve

overall system performance.

vTMM [55] is a specialized tiered memory management system developed for vir-

tualization environments. It aims to tackle the growing memory requirements of

virtual machines and the limitations of conventional DRAM-only memory systems

in terms of capacity and power consumption. The system enhances performance by

automatically migrating pages between fast and slow memory based on their hotness.
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It addresses virtualization challenges such as ensuring performance isolation, mini-

mizing context switching, and supporting resource overcommitment. vTMM utilizes

hardware-assisted page-modification logging (PML) for efficient page tracking and

implements a multi-level queue design to minimize page tracking overhead. Pages

are classified based on a weighted “page-degree” metric, which combines read and

write frequencies to distinguish between hot and cold pages using a bucket-sorting

algorithm. The system performs parallel page migration with minimal access inter-

ruption by leveraging the Page-Modification Logging feature and dynamically parti-

tions memory among concurrently running VMs using a memory pool mechanism to

enhance overall system performance.

TPP [63] presents an operating system-level mechanism that transparently allocates

pages within CXL-enabled tiered memory architectures, which is critical for sup-

porting the growing memory requirements of hyperscale applications. Using a user-

friendly tool named Chameleon in Meta’s server environments, TPP evaluates mem-

ory utilization patterns across a diverse array of datacenter applications. Chameleon

leverages PEBS to monitor hardware-level performance metrics related to memory

usage and produces detailed analyses of memory access patterns, covering both vir-

tual and physical dimensions. The findings indicate that a considerable volume of

memory accesses are to data that remain inactive for extended periods, suggesting

a strategic possibility to relocate these less active pages to slower memory layers.

TPP facilitates the strategic relegation of pages from primary memory to CXL-based
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secondary memory, which accommodates incoming page requests while ensuring that

critical pages currently in slower memory are quickly escalated back to faster primary

memory.

TMTS [65] is a memory tiering management system designed by Google for optimiz-

ing memory access across different tiers seamlessly in large-scale computing environ-

ments. It introduces two crucial metrics at the machine level, named Secondary Tier

Access Ratio (STAR) and Secondary Tier Residency Ratio (STRR), which serve to

harmonize the advanced performance objectives and usage efficiencies across exten-

sive application fleets, and to assess the effectiveness of the memory tiering imple-

mentation. TMTS employs a dual method to differentiate between frequently and

infrequently accessed data, labeling data as “cold” if it hasn’t been accessed within a

predetermined timeframe. This system utilizes a cold age histogram to monitor the

distribution of time intervals between accesses, facilitating the policy engine in recog-

nizing patterns of application access and fine-tuning demotion settings as needed. For

detecting frequently accessed pages, TMTS integrates two complementary methods:

sampling and scanning. It leverages event-triggered sampling focused on last-level

cache miss events to pinpoint recently accessed memory addresses in secondary tier

memory, rapidly pinpointing potential pages for promotion. Additionally, TMTS con-

ducts regular proactive scans of page access bits (A-bits) to identify hot pages that

might not be captured by sampling. To keep the STAR within an optimal range to

minimize the impact on performance outliers, TMTS deploys a flexible policy known
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as secondary tier access directed demotions, which adaptively modifies the demotion

age based on ongoing conditions. The system faces challenges such as the overhead

of address translation, interference issues, and complications related to page size, em-

phasizing the necessity for proactive demotion and swift promotion detection. TMTS

underscores the intricate task of managing memory tiers effectively at a grand scale

and illustrates the importance of adaptive, tiering-aware scheduling and management

of large pages to alleviate performance degradation and minimize access disruptions.

Lee et al. [66] investigate how heterogeneous memory tiering can boost the efficiency

of key-value caches, specifically through a study involving CXL-based memory en-

hancement. They present a CXL 2.0 memory expansion solution, which includes a

prototype CXL memory expander along with the Heterogeneous Memory Software

Development Kit. This solution provides two distinct architectural approaches for

key-value caches: Transparent Tiering and Data Tiering. Transparent Tiering inte-

grates DRAM and CXL memory into a unified tier, maintaining transparency from

the application’s perspective regarding the diverse memory configuration. On the

other hand, Data Tiering is tailored to minimize index latency sensitivity by allocat-

ing metadata and indices to DRAM while placing key-values in CXL memory, or a

combination of both, based on the bandwidth needs of the stored objects.

Pond [64] is a memory pooling system that aims to improve DRAM utilization and re-

duce costs in cloud platforms while meeting performance requirements. It addresses
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a key challenge of memory stranding, where unallocated memory remains despite

all cores being rented. Based on CXL enabled low-latency load/store accessto pooled

memory, the system proposes small-pool designs by pooling memory across 8-16 sock-

ets, which is found sufficient to gain significant benefits. It uses machine learning

models to predict optimal memory allocation for virtual machines (VMs) to resemble

same-NUMA-node memory performance. The authors also demonstrate the practi-

cality and performance of Pond for cloud deployment, highlighting its potential to

provide significant cost savings for large cloud providers.
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Chapter 3

Dynamically Configuring LRU

Replacement Policy in Redis

To reduce latency in accessing backend servers, modern web services use in-memory

k-v stores like Memcached and Redis to cache frequently accessed objects. Due to

limited memory size, these stores must manage cache replacement when the data

footprint exceeds cache capacity. Memcached uses the least recently used (LRU) pol-

icy, while Redis employs K-LRU, an approximated LRU policy, to avoid the overhead

of maintaining LRU lists. We observe that K-LRU closely approximates LRU when

K is large, but different values of K can result in varying miss ratios.

In this chapter, we propose DLRU: Dynamic LRU, which explores the configuration of
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K in K-LRU, in order to improve the overall system performance. DLRU reconfigures

K along with Redis execution. We adopt a scaled-down cache simulator to track the

miss ratios of different Ks on the fly with a low overhead [67]. We develop a cost

model to balance between the benefit of low miss ratio and the overhead of random

selection and sorting of K-LRU. Our experiment results show that DLRU can always

match the performance of the best K, and improve the overall Redis throughput over

the default 5-LRU by up to 32.5%.

3.1 DLRU System Design

As discussed in Section 2.2, Redis sets up K during initialization, and K is fixed

unless a client manually switches it. The eviction process does not require that K

be fixed. So the basic idea of DLRU is simple: reset K automatically on the fly. As

shown in Figure 3.1, we simulate K-LRU under various K. We dedicate one miniature

cache for each K. We use a penalty cost model to pick one that minimizes overall

time latency and reconfigure Redis in real-time. The implementation consists of two

parts residing in server initialization and command dispatcher, respectively. In server

initialization, we set an interval size measured as the number of GET requests. Later,

for every interval, DLRU will decide if a new K needs to be set. We also initialize

the miniature caches in this stage. In the command dispatcher, once a GET key

command is detected, DLRU determines whether to sample such key. If a key is
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Figure 3.1: DLRU overview

sampled, it is fed into every miniature cache. After calculating and comparing the

overall miss penalty for each K, the Redis server.maxmemory samples parameter is

set to be the optimal K with the least predicted penalty.
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3.1.1 Miniature Cache Simulation

In order to make the selection of sample size K, the miss ratio of the corresponding K

must be predicted in real time. We adopt a lightweight scaled-down approximation

technique, the Miniature Cache Simulator, to reduce the overhead of capturing trace

patterns and miss ratio tracking [67]. The miniature cache proposed by Waldspurger

et al. simulates the actual cache by scaling down, by several orders of magnitude,

both the original accesses and the cache size. It can accurately model the behavior

of the original cache with any given eviction policy.

During the processing of an online trace, all references are hashed, and only when the

hash value of a key is less than a threshold, that key of reference is sampled and stored

(cached) into a hash table. Let the T and P be the threshold and modulus. The

sampling condition for any referenced key L is hash(L) mod P < T . The miniature

cache sampling rate is thus R = T/P . This ensures all requests to the same key

will be sampled. The small and spatially hashed samples of the requests show a

statistical similarity against the whole references. Miss ratio can then be extracted

from the miniature cache by counting the number of misses against the total sampled

references. Experiments show that small values of R = 0.01 or even R = 0.001 can

yield very accurate results. Such a low sampling rate implies low time and space

overhead even for a long execution.
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We place a filter in Redis to identify keys that need to be sampled. Modulus P is

set to a power of two, and threshold T is fixed according to a given miniature cache

sampling rate R as T = P ∗ R. In a periodic interval window (default is 5 million

GET requests), a randomly sampled small subset of references are selected to feed

into the miniature caches.

As discussed in Section 2.2, K = 16 and K = 1 represent real LRU and random

eviction, respectively. We add three other settings in between where K = 2, K = 5,

and K = 10. Five independent K-LRU miniature caches, corresponding to K = 1, 2,

5, 10, 16, are fed with this subset of keys at the same time. Although more miniature

caches of different Ks between 1 and 16 could be evaluated, the performance gap

between a small interval of K-settings is not significant. In addition, more miniature

caches will also introduce more simulation overhead.

Each miniature cache first looks up the sampled keys in its own key space, which is

maintained in its own hash table. If the key does not exist, a miss occurs and the key

is cached. A cache replacement using the corresponding K-LRU policy is invoked if

the miniature cache is full. To determine if a miniature cache is full, the currently

used cache size is compared with the maximum cache size. The currently used cache

size is simply the number of items stored in the miniature cache.

The maximum cache size, in terms of the number of objects, is computed using

Eq. 3.1 below, where the average item size is extracted directly from Redis statistic.
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Figure 3.2: Hash table resizing

As the average item size can change across intervals, the Max cSize should adjust

accordingly. As shown in Figure 3.2, all miniature caches are required to adjust their

size after every five million of requests. When the Max cSize shrinks, we simply

remove all overflow items in the miniature cache. Note that since the position of an

item in the miniature cache is randomly determined, the removals of n items from

the tail of the miniature cache are statistically equivalent to randomly removing n

items.

37



Max cSize = server.maxmemory ∗R/average item size (3.1)

Ideally, miniature caches should simulate K-LRU accurately. However, if during an

interval, not enough distinct references are cached, the accuracy is not guaranteed

[67]. We observe that when the actual number of sampled distinct references in a

five million request interval is greater than 256, miniature simulation can deliver

acceptable accuracy, which is also observed in the original work by Waldspurger et

al [7]. In our implementation, we set R to 1/200, i.e., one of every 200 requests is

sampled. This sampling rate works well for most cases. If in any evaluation interval,

less than 256 distinct references are collected, we consider that the miniature cache is

too small to predict a reliable miss rate. In this case, the default K = 5 is configured

for the following interval. Note that 256 is a very small number compared to the total

of five million requests. Only on a few occasions, DLRU will need to go back to the

default.

3.1.2 Miss Latency and Eviction Process Overhead

To estimate the performance impact of misses, we need to know the miss latency. In

this work, the miss latency is defined as the time interval from the miss of a GET

operation in the key-value cache to the completion of a SET operation with the same
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Figure 3.3: Overhead measurement

key sent by the client front end. We measure the miss latency on the fly for each

interval of 5 million references. We track the miss penalties in the previous interval

and use their mean as the miss latency for the DLRU decision in the next interval.

The cache eviction overhead comes from sampling and access-time comparison. The

first one is the operation of randomly sampling the required number of K keys from

all that in memory. The other is the operation of merging with the eviction pool

and finding a key with the largest last access time for eviction. It is challenging to

actually measure this overhead for all K-LRU settings in real time as in any time

interval, only one setting of K can be measured.

In our experiments, we observe a proportional relationship of such overhead between

different settings of K. Let OHK be the mean sampling and comparison overhead

for K-LRU. Figure 3.3 shows OHK for K = 1, 2, 5, 10, 16 for MSR-usr on a fixed-K-

configuration Redis server. The range of each normalized curve is relatively small. In
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other words, if we measure the OHK at a time window, we can estimate other OH ′
Ks

based on the pre-measured proportionality ratios.

3.1.3 DLRU Cost Model

In order to deal with access pattern changes, we divide the reference stream into

fixed-size intervals according to the number of GET requests. In our experiments,

the default interval size is set to 5 million GET accesses. The cost model in this

section estimates the overall miss penalty for K-LRU in the current interval and use

it to guide the choice of K for the next interval.

Let p be the average miss latency, OHK be eviction overhead and MK be the miss

count gathered in the past interval using the miniature model. We estimate PK the

overall miss penalty for K-LRU as follows.

PK = MK ∗ (p+OHK) (3.2)

Our goal is to choose a K with the minimal PK . Then Redis server is reconfigured

with the optimal K for the following interval. Normally, p is orders of magnitude

greater than OHK , so the impact of the latter over the overall miss penalty is trivial.

Selection of K is dominated by the miss counts predicted by the miniature caches.
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Our scheme will choose the K with the smallest miss ratio. However, we observe that,

if the miss counts are very close to each other for different Ks in an interval, OHK

can become a deciding factor for the overall miss penalty. In this case, our scheme

will prefer a smaller K.

3.2 Experimental Evaluation

In order to evaluate the effectiveness of DLRU, we first give a brief description of

the experimental setup. Second, we evaluate the accuracy of the predicted miss

ratio. Third, we compare the performance difference between Redis with default K

and Redis with DLRU. Finally, we discuss both the time and space overhead of our

selection scheme.

3.2.1 Experimental Setup

3.2.1.1 System Configuration

We use two separate machines for evaluation. Machine A is configured with Intel(R)

XEON(R) E5-2620 v4 2.10GHz processor with 20 MB shared LLC and 128 GB of

memory, and the operating system is Ubuntu 16.04.6 LTS with Linux kernel 4.4.0.
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Machine B is configured with Intel(R) Xeon(R) Gold 5118 2.30GHz processor with

34 MB shared LLC and 188 GB of memory and the operating system is Fedora 31

with Linux kernel 5.6.13. All major evaluations are done on machine A, Machine B is

only used in Section 3.2.4. We have implemented DLRU on top of Redis-4.0 [68] with

the default Jemalloc allocator, and use mutilate [69] for request stream generation.

Initially, mutilate converts references in a workload to Redis GET commands, when

Redis returns a miss, Mutilate will immediately follow a SET command. There is

no back-end database in our setup, all KV pairs are generated from the mutilate

client on the fly. With such a setup, the miss latency is simply the total setback time

between mutilate and Redis. Additionally, both Redis and Mutilate are running on

localhost. It yields relatively low access latency when compared to more typical cases

where clients are run on a remote site. In a real system, the miss latency will be much

higher. DLRU will still function as it measures the miss latency on the fly. With

a higher miss latency, DLRU can only perform better as the overall miss penalty is

higher.

3.2.1.2 Workloads

We use the MSR Cambridge storage workloads and their variants in our evalua-

tion [22]. The original MSR suite contains traces from 13 different enterprise data
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center servers. It covers a variety of access patterns, which is sufficient for us to eval-

uate the effectiveness of DLRU. We first evaluate the MSR traces under simplified

conditions with uniform object size, where the object size of each key-value pair is

200 bytes. Next, we use the MSR traces’ original object size to show that DLRU

also improves the performance of Redis under general circumstances. The MSR suite

contains a couple of small traces which only take Redis roughly 10 minutes to process

entire request streams. In order to better visualize the improvement from DLRU,

we repeatedly concatenate the same trace to coin a roughly one-hour-long request

stream. For notation purposes, as an example, src2 10 is generated by concatenat-

ing MSR’s src2 trace 10 times. Lastly, in Section 3.2.3.3, we merge multiple MSR

traces with different access patterns to demonstrate how DLRU selects an optimal K

when the access pattern changes.

3.2.2 Miss ratio

For DLRU to make meaningful decisions, the five miniature caches must correctly

simulate Redis replacement patterns under different Ks. We compare the actual

Redis miss ratio for every 5 million requests with the predicted miss ratio yielded by

the miniature cache with the corresponding K. Figure 3.4 shows the miss ratios over

time for all MSR traces.
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To quantify the accuracy of the predicted miss ratio, we follow the error metric used

in [7], the mean absolute error (MAE). We calculate the MAE for each trace in

Figure 3.4, and the average MAE across all traces is 0.031. We notice that there is an

obvious vertical shift between predicted and actual miss ratio for the workloads with

relatively small working set size such as stg 16. In practice, we find that the shift

is consistent for all Ks and it is not a problem of DLRU decision. We attribute the

shift to the bias introduced by spatial sampling of miniature modeling. Since all five

miniature caches use the same subset of keys from spatial sampling, they are likely

to suffer from the same relative vertical shift.

In Figure 3.5, we use a synthetic workload that contains two separate phases. One

phase is designed with poor temporal reuse, where random evictions are preferable,

and the other phase is designed with high temporal reuse, where evicting the LRU

objects is preferable. Figure 3.5 contains the miss ratio predicted by DLRU and Redis

miss ratio. We also plot miss ratios for both miniature caches with K = 1 and 16

to illustrate that DLRU always selects the optimal K over time. Note that in the

initial phase where the miss ratio of 1-LRU and 16-LRU are roughly the same, DLRU

chooses K = 1 (the choice of DLRU is shown in the square boxes). This is the case

when the eviction overhead decides the K selection as a smaller K implies a lower

overhead (OHK in Eq. 3.2).
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Figure 3.4: Miss ratio prediction accuracy

3.2.3 Overall Throughput

In order to measure the performance gain of our model, we employ throughput as the

evaluation metric. Since all workloads we use are fixed-length traces, throughput is

the ratio of the total number of requests to the overall execution time. In this section,
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Figure 3.5: Miss ratio prediction for a phase-changing workload

we compare DLRU, 1-LRU, and 16-LRU, with Redis default sample size K = 5 (5-

LRU). In practice, the 16-LRU behaves almost identically to the true LRU, and the

1-LRU is basically the random replacement policy. We will demonstrate the benefit

of DLRU that exploits the access pattern of the current request stream on the fly.

3.2.3.1 Uniformly-Sized MSR Workloads

In this set of experiments, we set the item size uniformly to 200 bytes for all MSR

workloads. We divide the 13 MSR workloads into two separate sets, A and B. Set

A includes those MSR workloads that have notable difference in terms of miss ratio
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Figure 3.6: Throughput improvement with respect to 5-LRU for uniform
item size. Set A (best: memory size that yields the largest difference in
terms of miss ratio)

under various Ks (1, 2, 5, 10, 16). Many workloads in set A consist of long-stream re-

peated patterns which are in favor of random replacement when Redis’ max-memory

is smaller than their working set sizes (WSSs). Set B consists of the MSR workloads

that have relatively small differences in terms of miss ratio under various K. Fig-

ure 3.6 and Figure 3.7 show results from 5 representative MSR workloads in set A

and B, respectively. To evaluate the performance of DLRU under different Redis’

max-memory, the Redis max-memory is set to 25%, 50%, and 75% of the working set

size of the evaluated workload. The “best” in Figure 3.6 is the memory size where

there is the largest gap in miss ratio between K = 1 and K = 16.

In set A, compared to the default sample size K=5, DLRU increases throughput by
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as much as 16.3%. DLRU matches or outperforms 5-LRU in all benchmarks and

all max-memory settings. It is worth noting that when max-memory is set to 25%

of WSS, the src1 workload shows favor to random replacement (K = 1). We see

4% and 5.5% improvement for K = 1 and DLRU, respectively. Then we see an 8%

degradation for random replacement when max-memory is set to 50% of WSS. When

the max-memory is set to 50% of WSS, Redis is able to keep all hot items, random

replacement is no longer the favorite choice. DLRU’s auto selection of K is able to

perform the best in both cases.

In set B, as shown in Figure 3.7, the largest improvement by DLRU is 3.7% from prxy,

which is modest compared to the workloads in set A. Set B consists of workloads

that are insensitive to change in K, i.e., all workloads perform mostly the same
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under random replacement or LRU replacement, which results in limited room for

improvement under DLRU. But on the upside, we still see that DLRU increases the

throughput of all workloads by 1%, on average, compared to 5-LRU. In set B, both

random replacement (K = 1) and 16-LRU (K = 16) perform nearly identical to

default K = 5, with a difference of 0.3% and -0.2%, on average, respectively.
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Figure 3.8: Throughput improvement with respect to 5-LRU for nonuni-
form item size

3.2.3.2 Non-Uniformly-Sized MSR Workloads

Next, we evaluate the performance of DLRU under non-uniformly-sized items. Fig-

ure 3.8 shows the results from two representative MSR workloads, where the size of

each item is directly adopted from the original MSR traces. As the increased item

size increases the miss penalty, we observe better improvement in some workloads.

For stg 16, DLRU increases the throughput by 32.5% compared to default K = 5

at the memory size of 75% WSS. In stg 16, the item size distributions are relatively
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stable across DLRU intervals. Our model, which uses average item size for cache sim-

ulation, works well. However, for rsrch 40, the average item size fluctuates across

the request stream, which hurts the miniature cache accuracy. Despite this drawback,

DLRU still shows the best performance at 25% and 75% WSSs, while there is a slight

degradation compared to the default at 50% WSS.

3.2.3.3 Synthetic Two-Phase Workload

We evaluate the performance of the two-phase workload discussed in Section 3.2.2.

Note that the workload consists of phases favoring random replacement and phases

favoring LRU. As shown in Figure 3.5, a static choice of K would fail to make the

best out of both phases. Figure 3.9 shows the improvement from DLRU when Redis’

maxmemory is set to 30% of the WSS. The overall throughput is improved by 6.4%

when compare against default K = 5.
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Figure 3.9: DLRU improvement on a two-phase workload
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3.2.4 Sensitivity

As mentioned in Section 3.1.2, we observe a proportional relationship in the cost of

updating the eviction pool under different settings of K. To verify that such observa-

tion is consistent over different machines, we collect the cost on both machine A and

machine B (See Section 3.2.1.1) with Redis set to various max-memory sizes (10MB -

9GB). Table 3.1 shows the mean constant of proportion ratios with respect to K = 1

and their standard deviation over various max-memory sizes. The standard deviation

is low. The results from both machine A and machine B agree with our observation:

The costs of eviction under different settings of K are relatively proportional.

Table 3.1
Ratio of eviction process cost in Redis under different settings of K

Machine A
K Ratio SD
1 1.00 0.00
2 1.64 0.05
5 2.37 0.06
10 3.18 0.13
16 4.31 0.18

Machine B
K Ratio SD
1 1.00 0.00
2 1.64 0.09
5 2.47 0.14
10 3.37 0.28
16 4.40 0.43
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3.2.5 DLRU Overhead

3.2.5.1 Space Overhead

In our implementation, the space overhead is dominated by the five hash tables, which

are used to simulate cache behavior under various K. When applying a fixed-rate

version of the miniature cache, the size of the hash table will depend on both the

sampling rate R and the average item size. Each item in the hash table, including

auxiliary fields such as the hash handle, consumes 136 bytes. We can estimate the

percentage of memory overhead relative to overall allocated Redis memory as follows:

136 bytes ∗ 5 Tables ∗ R / average size of KV pair. As an example, the stg 16

trace contains 1.6 million unique Key-Value pairs, the average size of each KV pair

is 70KB and we set R = 1/200. In this case, the total additional space overhead

introduced by DLRU is about 0.005% of the overall allocated Redis Memory.

3.2.5.2 Time Overhead

The time overhead of DLRU mostly comes from simulating miniature caches under

various K. The miniature cache technique helps reduce time overhead drastically.

We only sample one request for roughly every 1/R requests (one in every 200 in our
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evaluation). For stg with an average key-value pair size of 70KB, we observe that the

time overhead of DLRU is only 0.027% of total execution time, which is insignificant

compared to the potential gain from DLRU. The time overhead for other workloads

is similarly low.

3.3 Chapter Summary

This chapter presents a new replacement policy, DLRU, for Redis. DLRU is built

upon the existing K-LRU policy. Rather than fixing K across Redis execution, DLRU

chooses an optimal K in every execution interval based on a cost model that esti-

mates the miss penalty. We engineer a dynamic system using a low-overhead cache

simulator. Experimental results demonstrate that it works well for both simplified

and general conditions regarding object size, and can always match the best K per-

formance or outperform a fixed-K system across a range of storage traces. To our

best knowledge, DLRU is the first system to dynamically select a replacement policy

along with key-value cache execution to adapt to the access pattern changes.
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Chapter 4

Memory Partitioning for

Multi-Tenant K-V Store

In this chapter, we focus on the multi-tenant k-v store use case. Multiple appli-

cations/tenants share a single Redis cache instance, where the available memory is

partitioned for each tenant to meet their caching requirements. Since memory space

is limited, maximizing the utilization of the shared memory pool is critical for system

performance. Additionally, the recent research on cache-sharing models that guide

memory allocation among the tenants, including LAMA [4], mPart [33], pRedis [70],

and Memshare [31], are all based on the exact LRU policy. To the best of our knowl-

edge, the memory management for the multi-tenant k-v store that employs K-LRU

still needs to be addressed.
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To address those challenges, we introduce kRedis, a reference locality- and latency-

aware memory partitioning scheme, to improve the performance of the in-memory

multi-tenant key-value cache that utilizes random sampling-based replacement. kRe-

dis guides the memory allocation among the tenants and dynamically customizes

K to better exploit the locality of each individual tenant. Evaluation results over

diverse workloads show that kRedis delivers up to a 50.2% average access latency

reduction, and up to a 262.8% throughput improvement compared to Redis. Further-

more, by comparing with pRedis, a state-of-the-art design of memory allocation in

Redis, kRedis shows up to 24.8% and 61.8% improvements in average access latency

and throughput, respectively.

4.1 kRedis System Design

In existing MRC-guided partitioning designs [4, 33], reference keys are randomly

sampled to construct reuse time histogram, from which an MRC for each application

can be calculated using the footprint model or the AET model [9, 34]. At a specified

interval, a dynamic programming algorithm is invoked to minimize the number of

expected misses based on the constructed MRC. This partitioning scheme is based

on the fact that the MRC of each tenant is fixed, which is true for Memcached

when applying the exact LRU eviction policy. However, for Redis and other caches

that employ K-LRU, the sampling size K’s impact on miss ratio can be significant.
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This means there are multiple MRCs available corresponding to different K for each

application. Therefore, the search space for finding the optimal partition solution

significantly increases.

We introduce a memory partitioning scheme for K-LRU Redis cache named kRedis

assuming that K is configurable on the fly. To reduce the search space, kRedis dy-

namically allocates memory based on a merged MRC from a small set of MRCs of

different Ks. The MRCs of each K-LRU cache for each tenant application are con-

structed online using the KRR model described in Section 2.3.1, and spatial sampling

technique discussed in Section 2.3.2.

4.1.1 Merged MRC

Intuitively we need the MRCs with different Ks for each application, where we can

choose the MRCK that yields the minimum miss ratio at cache size C and record

the corresponding sampling size K. In order to avoid expanding search space, we

simply merge several MRCKs of each tenant into one MRC where only the lowest

miss ratio and respective K at every cache size are recorded. For each tenant, miss

ratio curvesMRCK with differentK are merged into a single miss ratio curvemMRC

as following:
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Figure 4.1: Merge K-LRU MRCs to mMRC.

mMRC(C) = min MRCK(C) (4.1)

Now the optimization problem can be reduced to a partitioning problem with each

tenant having one fixed MRC, mMRC(C). Figure 4.1 shows three K-LRU MRCs of

MSR src1 with K = 1, 5, and 16 merged to one mMRC. The sampling size K is not

shown on mMRC, it is encoded in the data structure of mMRC so that later it can

be used to configure the eviction policy of the corresponding tenant.

4.1.2 Memory Partitioning

Similar to mPart and pRedis [33, 70], a memory partitioning scheme is computed at

the end of each periodic interval window, which is preset as the number of requests

(default is 1 million). At each evaluation interval, for each tenant, we measure its
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average miss latency and access rate, and construct the K-LRU MRCs by spatial-

sampling its requests. We then determine the memory partitioning scheme using

a dynamic programming algorithm. The partitioning is then enforced at the next

interval. Specifically, there are four steps in each evaluation interval.

Step 1: Latency & Access Rate Measurement

We record the cumulative miss latency and the number of cache misses to calculate

the average miss latency p for every application sharing a memory pool. The tenant

access rate a is estimated as the rate of interval time and tenant access count in the

interval window.

Step 2: Merged K-LRU MRC Construction

For each tenant, we construct MRCK for several small Ks on the fly based on spatial

sampling and the variable object size-aware KRR model, then derive the merged

mMRC for each application as discussed in Section 4.1.1.

Step 3: Memory Partitioning Scheme and K Selection

To take the impact of miss latency into account, we estimate interval miss latency Pi

for application i as follows.

58



Pi = mMRCi(Ci) ∗ ai ∗ pi (4.2)

Our goal is to minimize the overall miss latency for a set of N tenant applications in

a Redis cache instance with total memory M .

min
N∑
i=1

Pi =
N∑
i=1

mMRCi(Ci) ∗ ai ∗ pi (4.3)

subject to
N∑
i=1

Ci = M

Inspired by DCAPS [11], kRedis memory partitioning could achieve various opti-

mization targets by adjusting Equation 4.3. For example, the following metric can

be adopted to optimize hit throughput which is defined as the number of GET hits

per access time.

max
N∑
i=1

TPi =
N∑
i=1

(1−mMRCi(Ci)) ∗ ai (4.4)

The optimization problem of Equation 4.3 can be solved using dynamic programming

similar to mPart [33] and pRedis [70].
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At the end of each evaluation interval, we run the memory allocation algorithm pre-

sented in Algorithm 1. We calculate the minimum overall miss latency and record

the memory allocation for each application. The i loop (line 8) and j loop (line 9)

combined find the best latency when the first i tenants are allocated j amount of

memory. The innermost C loop (line 10) enumerates all possible allocations of ten-

ant i subject to the upper bound of memory size j (line 10). The second loop nest

from line 21 to 24 backtracks optimal memory partition recorded in {A}.

The time complexity of such dynamic programming is O(VM2), where V is the num-

ber of applications and M is the size of the memory pool. In real applications, the

memory bound M could be a large value in bytes, but we use configurable larger

granularity G in memory allocation, for instance, 1 MB or 10 MB, according to

the application profiles. Then the time complexity becomes O(V (M/G)2) which is

affordable for online usage.

Step 4: Dynamic Memory Allocation and K Adjustment

Once the memory partitioning scheme is determined, Redis memory should be al-

located for each application accordingly. Inspired by the work of pRedis [70], we

maintain two arrays to book-keep the amount of memory used in each tenant and the

suggested memory allocation by our model. To ensure tenant references are processed

under its appropriate K-LRU eviction policy, we configure the sampling size Ki for

application i according to mMRCi.
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Algorithm 1 Memory Allocation

Require: M ▷ Total cache memory
Require: {V} ▷ Set of tenants
Require: {mMRC} ▷ Set of merged MRC for each tenant
Require: {a} ▷ Set of access rate for each tenant
Require: {p} ▷ Set of average miss latency for each tenant
1: procedure Arbitrate
2: for i ∈ V do
3: for j ← 0 to M do
4: f [i][j]←∞
5: end for
6: end for
7: f [0][0]← 0
8: for i ∈ V do
9: for j ← 0 to M do
10: for C ← 0 to j do
11: missi ← mMRCi(C) ∗ ai
12: latency ← f [i− 1][j − C] +missi ∗ pi
13: if latency < f [i][j] then
14: f [i][j]← latency
15: Target[i][j]← C
16: end if
17: end for
18: end for
19: end for
20: T ←M
21: for i← N ; i→ 1 do
22: Ai ← Target[i][T ]
23: T ← T − Target[i][T ]
24: end for
25: return {A}
26: end procedure

We adjust the tenant memory usage by modifying the Redis eviction process. Ini-

tially, Redis memory size is maintained by the eviction procedure named freeMem-

oryIfNeeded. Each time Redis receives a request, this procedure checks the used

memory against the max-memory setting and free items if needed. In kRedis, we

pick the application in which the used memory is greater than the suggested memory
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for eviction. Thus the tenant space is adjusted on the object level and the pace of

adjustment is dependent on the tenant’s request pattern.

4.1.3 Efficient Random Sampling Eviction Design

The challenge in step 4 of Section 4.1.2 is that from the whole Redis key space, how

can we effectively sample K keys that belong to a specific tenant. pRedis [70] adopts

a bloom filter to determine the tenant belonging of each sampled key in the process

of eviction. However, the bloom filter time overhead can be notable according to our

evaluation. Each time a key is stored in the cache, the bloom filter needs to check if

such key is a new key, then map the key to its tenant in the bloom filter structure. On

evictions, every randomly sampled key must be checked to decide if it belongs to the

memory-overusing tenant. According to our evaluation, when there are 4 tenants,

the key space size of each tenant is about 12 million, and the cache max-memory

is set to 50% of the working set size, the total time used in the eviction process is

about 50 seconds, in which the bloom filter judgment time takes 15 seconds or 30%.

On average, the bloom filter judgment takes 2 µs to identify a key for eviction. If

the number of tenants and key space increase, the bloom filter time overhead in the

K-LRU eviction process will only be larger.

Our solution is to separate key dictionaries for the tenants in Redis. The original
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Redis design uses a single dictionary, where the keys of all the tenants reside, so there

is no ready-made support for multi-tenant memory partitioning in a single Redis

instance. By using multiple dictionaries, the K-LRU eviction is to simply sample

K keys randomly in the desired tenant’s dictionary and the bloom filer is no longer

needed in both setting and eviction processes. In practice, it is trivial to distinguish

tenant keys using the unique client ID embedded in the Redis data structure or other

available parameters such as the source socket id of a request.

The data objects of Redis are stored as dictionary entries in the hash table and

connected by pointers. Our multi-dictionary design only sets up multiple tenant-

wise hash tables pointed by the dictionary header, which has a negligible effect on

the Redis command processing, and the overhead is the metadata of the dictionary

header, which is in a total of 176 bytes per tenant.

4.1.4 Implementation

Unlike the LRU stack, the KRR stack only shifts a small subset of objects on the

stack per stack update. To take advantage of that, we implement the KRR stack as a

simple array, where objects are ordered according to the stack order. When the object

is referenced, we can find it in constant time using a hash table where a hash table

entry holds a pointer to the array location. An object’s stack distance is simply its
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array index. On a stack update, first, we identify all swap positions, then we perform

cyclic swapping on all marked positions. In our implementation, we adopt the spatial

sampling technique described in Section 2.3.2. By default, we use a sampling rate

of R = 0.001, but to ensure the accuracy of spatial sampling using SHARDS [7], a

higher sampling rate of R = 0.01 is applied to workloads with relatively small working

set sizes (less than 8M distinct objects).

For performance evaluation, we implement kRedis on top of Redis-4.0 with the default

Jemalloc allocator. It uses KRR to model K-LRU policy with random sampling size

K of 1, 5, 8, and 16, and chooses the best K on the fly for each tenant. It adopts

the multi-dictionary scheme to accelerate tenant-level K-LRU random sampling and

eviction process. Besides the original Redis as a primary baseline, we use pRedis [32]

as a secondary baseline to evaluate the performance of kRedis in multi-tenant key-

value cache. pRedis is based on the original Redis single-dictionary design and uses

EAET to model exact LRU plus a bloom filter to discriminate key-value’s tenant

belonging. Both Redis and pRedis set K to 5 as default.

4.2 Experimental Evaluation

In order to evaluate the effectiveness of kRedis, we first give a brief description of the

experimental setup and evaluation workloads. Second, we compare the performance
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of Redis, pRedis, and kRedis. Next, we discuss the memory size impact, throughput,

tail latency, and both time and space overhead of our design. Finally, we compare

kRedis with DLRU and discuss the applicable fields of those two schemes.

4.2.1 Experiment Setup

We use two separate machines for our evaluation. Machine A is configured with an

Intel(R) Xeon(R) Gold 5118 2.30GHz processor with 34 MB shared LLC and 188

GB of memory, and the operating system is Fedora 31 with Linux kernel 5.6.15.

Machine B is configured with Intel(R) XEON(R) E5-2620 v4 2.10GHz processor with

20 MB shared LLC and 128 GB of memory, and the operating system is Ubuntu

18.04.6 LTS. All major evaluations are done on machine A, machine B is only used

in Section 4.2.3.3.

A Redis cache server and multiple tenant front-ends are deployed on the local host. We

implement Redis tenant front-end based on Hiredis library [71], which reads references

from an evaluation trace and sends access requests to the Redis server on the fly.

When the Redis server returns a miss, the tenant front-end will immediately follow

a SET command to store the key-value pair into the server. With such a setup, the

miss latency is simply the round-trip setback time between the tenant front-end and

the Redis server. In most of our evaluations, we use various time delays to simulate
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fetching items from the database, providing flexibility and variety in the miss latency

setup to our evaluation. We also set up an evaluation environment with a real remote

and local database to cross-validate the test case with the simulated environment.

When evaluating multi-tenant scenarios, we set up multiple tenant front ends, with

each tenant front end repeatedly sending requests from a workload until the server

terminates.

4.2.2 Workloads

We use two different workloads for our evaluation:

† MSR MSR Cambridge suite [22] is a collection of block-level I/O traces from

36 volumes across 179 disks on 13 different enterprise data center servers in a

Microsoft data center. We evaluate our model on all 13 traces, as well as the

merged “master” MSR workload which is also used in Waldspurger et al [7].

The workloads encompass various applications such as home directories, project

directories, hardware monitoring, firewall/web proxy, source control, web stag-

ing, media services, and more. The 13 workloads’ reference counts range from

1 to 181 million, working set sizes range from 1 to over 1000 GB. More detailed

trace information can be found in [72].

† Twitter Twitter cache traces [26] is a collection of one-week-long cache request
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traces from 54 Twitter’s in-memory caching clusters. We use sub-traces from

Twitter clusters to evaluate our K-LRU model and kRedis performance. Each

sub-trace consists of 100 million requests, detailed information of each workload

including working set size, object size distribution, compulsory miss ratio, etc.

can be found in [26, 73].

4.2.3 Access Latency

The memory allocation objective in Equation 4.3 is to minimize the overall miss

latency or response time, so we use the average of tenants’ mean access latency as

the evaluation metric. The access latency is the wall clock time used by each access.

We use the MSR and Twitter workloads in this evaluation. Redis cache maximum

memory is set to 50% of the total working set size.

The workload sensitivity to the changes in sampling size K is the key to the explo-

ration of the K-LRU miss ratio gap, and it is also the source of potential performance

improvement from pRedis to kRedis. In order to compare the performance between

the two, we first choose the workloads that are sensitive to the change of K and con-

duct case studies on a 4-tenant system. The MRCs of some example workloads are

shown in Figure 4.2. We then stress the system by increasing the number of tenants

to 15 using randomly selected traces from the Twitter suite.
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Figure 4.2: Workloads that are sensitive to the change of K. Miss ratio show

gaps between different Ks at the same cache sizes.

4.2.3.1 4-Tenant Case Study

In this case study, we set up four tenants with MSR web and src2 workloads, rep-

resenting fetching objects from web local-DB, web remote-DB, src2 local-DB, and

src2 remote-DB, respectively. According to the access latency analysis of real Re-

dis traces [32], the remote DB miss latency is typically distributed around 2000 µs.

Therefore the miss latency is configured to 200 µs (local-DB) and 2000 µs (remote-

DB), respectively. As shown in Figure 4.3, when compared to Redis, pRedis reduces

the mean access latency of both web remote and src2 remote at the cost of a slight

increase of the latency with the local-DB ones. And compared to pRedis, kRedis has

further reduced the latency of web remote. Overall, the average access latency im-

provement of kRedis is 17.3% and 14.3% compared to Redis and pRedis, respectively.
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Figure 4.3: Average access latency reduction with 4 tenants loading MSR
workloads.

Furthermore, in order to analyze the contribution of each optimization within kRedis,

including the multi-dictionary design, the KRR model, and dynamic K configuration

based on merged MRC, we use a series of variants to decompose their impact on

performance, results are shown in Figure 4.4. First, pRedis, which considers miss

latency, shows a 3.6% improvement over Redis, contributed by locality- and latency-

aware memory partitioning. Second, we transform pRedis to the multi-dictionary

design, which gains an additional 1.5%. Third, we use varKRR instead of EAET to

model MRC under a fixed K of 5, which is the default setting in Redis and pRedis.

Note that pRedis uses EAET to model exact LRU rather than K-LRU with K = 5,

which could reduce MRC accuracy. With the more accurate KRR model, this variant

of pRedis shows a 10.8% of improvement over Redis. Lastly, kRedis, combining

optimization of KRR, dynamic K configuration, and multi-dictionary design, yields

a 17.3% improvement over Redis. When comparing kRedis to the pRedis variant
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with varKRR and fixed K of 5, the dynamic K configuration contributes a 6.5%

improvement.

Figure 4.4: Impacts of kRedis optimizations on latency for MSR workloads,
compared to Redis baseline.

In Figure 4.3, we observe that compared to pRedis, kRedis has decreased the access

latency of web remote. To dig deeper into the process of dynamic K selection based

on merged MRC, we provide snapshots of web remote K-LRU MRCs constructed by

KRR in two individual intervals. Figure 4.5 (A) shows that in the 11th interval, the

K-LRU MRC with K = 1 yields a lower miss ratio than other Ks at the partitioned

memory of 800 MB, and kRedis sets K to 1 for the tenant. Figure 4.5 (B) shows

that in the 15th interval, the K-LRU MRC with K = 16 shows a lower miss ratio

than other Ks at the partitioned memory of 800 MB, and kRedis sets K to 16 for

the tenant.

In another test case, we use Twitter sub-traces of cluster4.0, cluster29.0, cluster34.0,
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Figure 4.5: K-LRU MRCs of web remote in two evaluation intervals and K
configurations. The periodical evaluation interval size is 1 million requests.

and cluster54.0 to generate references of 4 tenants, with their miss latency configured

to 200 µs, 400 µs, 1000 µs, and 2000 µs, respectively, bringing more variety to the

simulated miss latency. The average access latency improvement of kRedis is 27.0%

and 16.7% compared to Redis and pRedis, respectively. Figure 4.6 summarises the

latency results of pRedis, pRedis variants, and kRedis, compared to Redis baseline.

First, we observe a 12.4% improvement related to locality- and latency-aware memory

allocation. Second, with the multi-dictionary design, the improvement increases to

14.5%, Then equipped with varKRR for K-LRU MRC construction of K fixed to 5, it

shows an 18.2% decrease in latency. Finally, kRedis which employs all optimizations

shows a 27.0% improvement against Redis.
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Figure 4.6: Impacts of kRedis optimizations on latency for Twitter work-
loads, compared to Redis baseline.

4.2.3.2 15-Tenant Case Study

To evaluate the performance of kRedis for a large number of tenants, we increase

the number to 15, adding pressure to MRC construction, the cache partitioning algo-

rithm, and the sampling-based eviction process. Now we assume each Twitter cluster

trace comes from multiple tenants. Each reference of Twitter clusters includes a pa-

rameter named Client-ID which is the anonymous front-end service client who sends

the request. We use this ID modulo 15 to generate a tenant ID. We randomly select 6

traces from Twitter: cluster4.0, cluster17.0, cluster18.0, cluster29.0, cluster44.0, and

cluster52.0. For each workload, we set up the miss latency of each tenant based on the

observed exponential distribution of miss latency of real-world Redis traces [32]: the

miss latency of each tenant is set as 1 µs, 2 µs, 4 µs, 8 µs, 16 µs, ..., 4,096 µs, 8,192 µs

and 16,384 µs, respectively. Figure 4.7 shows the average latency reduction of pRedis

and kRedis, compared with the Redis baseline. kRedis reduces access latency up to
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50.2% against Redis, and improves up to 24.8% when compared to pRedis.

Figure 4.7: Average access latency reduction in Twitter workloads com-
pared to Redis baseline. Tenant accesses are generated by partial references from a workload

distinguished by Client-ID.

4.2.3.3 Real Back-End Database Case Study

In this section, we use two separate machines described in Section 4.2.1 running real

back-end MySQL databases to cross-validate the test case shown in Section 4.2.3.1

with MSR workloads. Both Redis cache server and tenant front-end are running on

Machine A. The web local-DB and src2 local-DB are also running on Machine A,

and the web remote-DB, src2 remote-DB are running on Machine B. Both local and

remote DB are deployed on MySQL Community Server 8.0.33. In this real MySQL
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back-end DB setup, the miss latency of the local DB is distributed around 200 µs, and

that of the remote DB is distributed around 2000 µs. Compared to Redis and pRedis,

the average access latency improvement of kRedis is 17.2% and 13.3%, respectively.

The results show no notable difference between the real back-end database and the

simulated back-end database.

4.2.4 Impact of Memory Size

The max-memory setting of Redis impacts cache performance. Over-provisioned

memory to a cache can lower the miss ratio of cache but at a higher cost on DRAM. In

contrast, over-tight memory provision brings harm to cache performance. Intuitively,

a tighter memory size introduces a higher miss ratio for all tenants, where kRedis

has the potential to dynamically partition memory to meet the space requirement of

tenants that are performance-critical for the optimization target. We evaluate kRedis

performance on different max-memory settings to observe this trend based on the

4-Tenant test case of Twitter workloads in Section 4.2.3.1. The result shows that,

compared to Redis, kRedis improves average access latency by 21.2%, 27.0%, and

49.5% with max-memory as 75%, 50%, and 25% of the working set size, respectively.

The tighter limit on Redis memory brings higher performance improvement of kRedis

against Redis.
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4.2.5 Throughput

As described in Section 4.1.2, kRedis could achieve different optimization targets.

We adopt Equation 4.4 and use the rate of reference hits against system time as the

metric to evaluate throughput. We demonstrate the effect of kRedis with a 4-tenant

case study. The four tenants load MSR workload mds, src2, stg, and web respectively.

Cache max-memory is set to 50% of the working set size. All tenants’ miss latency

is set to 2000 microseconds simulating fetching objects from remote DBs. Table 4.1

shows kRedis improves the average throughput by 262.8% and 61.8% compared to

Redis and pRedis, respectively. The similar setup for the 4-tenant case using 2 web

and 2 src2 workloads shows similar results.

Table 4.1
Throughput (hits/sec) in MSR workloads

mds src2 stg web avg

Redis 1113 1455 2499 1701 1692

pRedis 1474 9839 1949 1920 3795

kRedis 485 22071 1485 515 6139

4.2.6 Tail Latency

kRedis has been proven to improve tenants’ average latency as well as hit through-

put, but we still need to figure out if the statistics tracking and memory allocation
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of kRedis affects references’ latency disproportionally. We evaluate the tail latency

of kRedis in the first 4-tenant case study with MSR workloads discussed in Sec-

tion 4.2.3.1. Table 4.2 shows the results. When comparing kRedis with Redis, there

are no significant differences between the two for tenants with remote DB. However,

since kRedis allocates more memory to the remote ones at the cost of increasing the

miss rate of local ones, kRedis shows higher latency than Redis for the response times

of src2-local.

Table 4.2
Request tail latency (µs)

90th 95th 99th 99.9th

web-remote
Redis 2044 2049 2066 2457
kRedis 2046 2056 2100 2270

src2-remote
Redis 2040 2047 2062 2129
kRedis 2044 2054 2091 2219

web-local
Redis 223 228 241 267
kRedis 224 231 253 307

src2-local
Redis 32 38 51 255
kRedis 44 203 247 284

4.2.7 Time and Space Cost

In this section, we evaluate the time and space overhead of our approach. There are

two sources of time cost: K-LRU MRC modeling with spatial sampling, and hash

table resizing with multi-dictionary design in kRedis. The space cost also comes from

two aspects: the implementation of the KRR stack and the multiple dictionaries.
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First, we discuss time and space costs related to the KRR model. Then we analyze

the overhead of multi-dictionary design.

To measure the efficiency of our KRR model and stack update mechanisms, we com-

pare backward stack update methods (with/without spatial sampling) with the naive

linear stack update method and the simulation/interpolation approach. We simu-

late K-LRU under 25 different cache sizes evenly distributed across its working set

size. For demonstration purpose, we use the first one million references from MSR

src1 trace, and set K = 5. Table 4.3 is a summary of the results. We see that the

backward stack update method shows an 8247 times improvement over the linear

stack update approach. When spatial sampling with R = 0.01 is applied, the running

time is further improved by two more magnitudes. We also observe similar time cost

improvement on other workloads.

Next, we use the merged “master” MSR trace to compare the running time of

KRR+Spatial sampling with the existing LRU MRC approximation technique,

SHARDS. Table 4.4 contains the running time for backward stack update KRR and

SHARDS. The running time of KRR shown in Table 4.4 is the average across different

Ks (1, 2, 4, 8, 16, 32). The average running time for KRR with backward stack update

and SHARDS is very close to the master trace in our test.

With the previous 15-tenant case study in Section 4.2.3.2, for all the 6 evaluated

workloads, the total KRR time overhead including reference tracking and K-LRU
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Table 4.3
Running Time Comparison for Processing One Million MSR src1 Requests

Stack Update Efficiency

Methods Time (Sec)

Simulation 26

Basic Stack 53606

Backward Stack Update 6.5

Backward+Spatial 0.07

Table 4.4
Master Trace Comparison

Merged-MSR Trace, Spatial Sampling Rate = 0.001

Method Backward+Spatial SHARDS

Times (sec) 22.4 19.7

MRC modeling is in the range from 0.57% to 0.66% of total execution time.

The KRR stack is implemented as a simple array with a hash table where an entry of

the hash table holds a pointer to an object location in the array. Then the total space

overhead of the KRR stack is proportional to the total number of objects stored on

the KRR stack. In our implementation, each object consumes 68 bytes including the

hash table and other auxiliary entries. For variable object size-aware KRR, a 4 bytes

field is needed to store the size of each object, the additional sizeArray consumes

negligible space in comparison to the stack. After incorporating spatial sampling,

the overall space overhead is further reduced by sampling rate R. Thus the estimated

percentage of space overhead is 72 bytes * R / average object size. For instance,
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assuming R = 0.001, and the average size of objects is 200 bytes1, then the space

overhead is just 0.036% of the working set size.

In the following, we discuss the time and space overhead of multi-dictionary design

in kRedis. The Redis hash table is capable of resizing itself according to the load

factor. In the process of expansion or contraction of a hash table, Redis performs

rehash operations which bring extra time overhead. In the original Redis, once the

maximum memory is reached, the size of the single hash table is generally stable. But

our multi-dictionary design may bring extra overhead while the size of each tenant’s

key space is changing according to the dynamic memory allocations. To measure the

efficiency of our multi-dictionary design, we profile the time overhead of hash table

resizing and compare it with Redis. We use the Twitter cluster 54.0 workload and

emulate a 16-tenant system as described in Section 4.2.3.2. Redis’ total rehashing

takes 1 second out of 81199 seconds of running time, while kRedis’ total rehashing

takes 9 seconds out of 44474 seconds of running time. The rehashing time cost of

multi-dictionary design is almost negligible as it accounts for only 0.02% of total

running time.

In Redis, all key-values are stored as dict-Entry in the hash table, which is organized

in a dictionary header structure containing type, pointer to hash table, rehash index,

etc. In kRedis’ multi-dictionary design, all space costs of actual key-value pairs are

1Many real in-memory cache workloads have much higher average key-value size [26]
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the same as Redis, the only overhead is the metadata of the dictionary header, which

is in a total of 176 bytes per tenant. Using the same instance in evaluating the space

overhead of the KRR stack, assuming there are 15 tenants, then the space overhead for

processing workload with 100 million distinct objects is just 1.32e-5% of the working

set size.

4.2.8 kRedis vs DLRU

As described in Chapter 3, DLRU is also capable of reducing the overall access latency

of a single-tenant, fixed memory size key-value cache by using miniature cache [67]

to simulate the behavior of various K-LRU caches and explore the potential miss

ratio gap of various sampling size Ks. kRedis can be downgraded to handle a single

tenant, where KRR is applied to identify an optimal K. In this section, we first use

a single-tenant environment to compare kRedis and DLRU. Then we extend DLRU

to construct tenant MRCs in a multi-tenant key-value cache and use those to guide

tenant memory partitioning. We use a multi-tenant test case to discuss the limitations

of DLRU versus kRedis.
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4.2.8.1 Single-Tenant Case Study

In this case study, we set up a fix-memory size Redis instance running a single tenant

loading MSR workload. We use KRR and DLRU to guide the selection of K, respec-

tively. We conduct two tests, using MSR workload src1 and web, respectively. We

choose the Redis memory size as 30% of the workload’s working set size where the

miss ratios of various random sampling Ks show a large gap. The tenant’s miss la-

tency is configured to 2000 µs to represent fetching objects from the remote database.

As shown in Figure 4.8, there is no notable difference in performance between DLRU

and kRedis in the single-tenant use case. This indeed verifies the accuracy of the

KRR model against simulation.

Figure 4.8: Average access latency reduction of DLRU and kRedis with
single tenant loading MSR workload. There is no notable difference between
the two schemes.
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4.2.8.2 Multi-Tenant Case Study

To adopt DLRU for multi-tenant partitioning, we extend DLRU by generating MRCs

through miniature cache simulation and interpolation. For each tenant, a selection

of Ks, and a selection of cache sizes, we use D-LRU miniature cache to find the miss

ratios. We then construct an MRC through interpolation for each K of each tenant,

and use these MRCs to guide partitioning instead of the KRR MRCs. It is worth

noting that interpolation may not be able to capture every inflection point on the

MRC, thus losing accuracy in the constructed MRC.

To compare the extended DLRU against kRedis, we employ the same 15 tenants set

up as the one used in Section 4.2.3.2 with Twitter cluster18.0 workload. In this test

case, for each of the 15 tenants, we set up 20 cache sizes uniformly distributed across

the range of Redis max-memory and provide 4 K options. Therefore, there are a total

of 15 ∗ 20 ∗ 4 = 1200 independent miniature caches in extended DLRU. Compared

to Redis, extended DLRU and kRedis reduce the mean access latency by 45.2% and

50.2%, respectively. The time overhead of extended DLRU and kRedis are similar,

which are 0.73% and 0.66% of total execution time, respectively, but extended DLRU

shows higher space overhead than kRedis, which is 38 times that of kRedis.

It is worth mentioning that in extended DLRU the space and time overhead are

directly associated with the number of cache sizes simulated. In order to obtain more
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accurate K-LRU MRCs, more cache sizes need to be simulated for each tenant. And

in a system with a large number of tenants and a greater cache max-memory size,

the DLRU simulation overhead for the multi-tenant cache using K-LRU can only

be higher. Thus, even though both DLRU and kRedis are efficient for the single-

tenant use case, for multi-tenant memory allocation usage, an efficient one-pass MRC

modeling algorithm such as EAET and KRR is preferred over interpolation.

4.3 Chapter Summary

In this Chapter, we present the design and implementation of kRedis, a lightweight

memory partitioning scheme in multi-tenant key-value cache. Besides the capability of

capturing trace locality and awareness of reference miss latency, it efficiently explores

the potential miss ratio gaps of various sampling sizes in K-LRU. The evaluations

over a variety of workloads show that our multi-tenant memory allocation approach

achieves better performance than Redis and pRedis. The average access latency is

reduced up to 50.2% and 24.8% when compared to Redis and pRedis, respectively. By

adjusting the memory partitioning strategy, we show that the throughput is increased

by 262.8% and 61.8% compared to Redis and pRedis, respectively. We also compare

kRedis with extended DLRU and discuss the suggested application scenarios for the

two.
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Chapter 5

Tiered Memory Management for

Multi-Tenant K-V Store

The increasing demand for memory as the k-v store scales to accommodate larger

workloads, along with rising DRAM costs and challenges in technology scaling, has

made memory a significant infrastructure expense in hyper-scale data centers, thus

optimizing memory utilization becomes crucial for sustaining performance.

To address this challenge, a shift towards multi-tier in-memory k-v stores has risen.

By adopting memory disaggregation architectures, particularly through technologies
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like Compute Express Link (CXL), fast memory such as local DRAM, and high-

density alternatives like NVM and shared memory from other devices can be inte-

grated to construct tiered memory systems. These architectures separate memory

resources into independent pools, interconnected by high-speed protocols like PCI

Express (PCIe), allowing for increased memory utilization and reduced infrastructure

costs through dynamic memory pooling. CXL facilitates a wide array of function-

alities ranging from memory expansion within a single server to cross-node dynamic

memory pooling, presenting a flexible and scalable solution to the rising costs and

demand for memory.

However, the integration of shared slow memories introduces complexities due to

their inherently lower bandwidth and higher latency compared to traditional CPU-

attached DRAM. From an operating system’s perspective, these are seen as CPU-

free NUMA nodes with distinct memory characteristics. This architectural diversity

necessitates efficient memory management strategies that can dynamically classify

and migrate data between fast and slow memory tiers, optimizing for overall system

performance. Despite the potential benefits, current page-level memory management

approaches like HeMem [48], Nimble [46], and TPP [63], do not integrate application-

level workload knowledge, facing challenges in efficiently managing the multi-tier

memory. The need for application-aware memory management is becoming critical,

especially in hyper-scale environments where application demands and access patterns

rapidly evolve.
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This chapter proposes sdTMM, a software-defined tiered memory management

scheme for in-memory k-v stores in the multi-tenant environment.

Production in-memory caching workloads typically follow an approximate Zipfian

popularity distribution, often exhibiting very high skew [26, 27, 74]. This means

that hot items are concentrated in a small set. Consequently, similar to Google

TMTS [65], the primary goal of sdTMM is to replace a portion of the conventional

DRAM primary memory with CXL-shared memory while maintaining performance

comparable to that of an all-DRAM system.

For simplicity, the DRAM of the host where the cache instance resides is called fast

memory / fast tier, and all other memory shared by memory disaggregation techniques

such as CXL interface is called slow memory / slow tier.

We implement a prototype of the sdTMM architecture using Cachelib [75], a pluggable

caching engine. Our evaluations on an emulation hardware platform show promising

results, with 80% of the DRAM memory being substituted with CXL-shared slow

memory, the performance of sdTMM closely approximates that of an all-DRAM sys-

tem. This demonstrates the effectiveness of the multi-tier memory management ap-

proach, where the integration of slower but greater capacity CXL memory with faster

DRAM can maintain high-performance levels. Such findings underscore the potential

of sdTMM to provide a viable alternative to traditional all-DRAM configurations.
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5.1 sdTMM System Design

sdTMM is a software-defined tiered memory management architecture designed to

seamlessly integrate fast local DRAM with slower shared memory. Its memory layers

are transparent to applications and tenants, enabling key-value store applications to

utilize the system without any adaptations. Unlike traditional hardware-based ap-

proaches, sdTMM manages memory at the application item level, providing enhanced

visibility into application memory usage and access pattern changes. This allows for

the implementation of sophisticated policies, including user-tuned item admission

and eviction strategies, as well as fine-grained multi-tenant memory isolation and

allocations. This architecture not only optimizes performance but also increases the

flexibility and efficiency of memory management across diverse application demands.

Figure 5.1 presents a high-level overview of the sdTMM architecture, which is com-

posed of four main components: memory hypervisor, CXL memory-sharing switch,

fast DRAM memory tier, and slow memory tier as facilitated by the CXL memory-

sharing switch. The total memory capacity available for the key-value store instance is

the sum of the capacities from both the fast and slow tier. The fundamental strategy

of sdTMM involves maintaining hot application-level data in the fast memory tier

for optimal performance while relegating less frequently accessed data to the slow

tier. sdTMM continuously monitors the dynamics of access patterns, allowing for the
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migration of data between tiers based on changes in data hotness. While evictions

are predominantly managed within the slow tier, spikes in new item influxes can also

trigger evictions from the fast memory tier. Memory allocation in multi-tenant en-

vironments is restricted to the fast tier, where the local DRAM size is more limited

and provides lower latency and higher bandwidth compared to the slow memory tier,

essential for maintaining superior system performance.

sdTMM

Fast DRAM
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Shared Slow Memory

Memory Usage 
Tracking

Memory 
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Figure 5.1: sdTMM Architecture.

The sdTMM hypervisor consists of five modules performing key functions essential

for optimizing memory management across dual tiers.

The first module, tier memory mapping, involves managing the placement of

application-level data across the memory tiers. In both fast and slow memory tiers,
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application key-value items are directly addressed. This is achieved through a univer-

sal hash table which contains compressed pointers pointing to valid memory alloca-

tions, ensuring that reference access is correctly mapped to the appropriate memory

tier and allocations.

The second module, memory usage tracking, monitors memory usage and collects

statistics of applications for performance analysis, it also confines each tenant’s mem-

ory usage within the partitioned configurations in the multi-tenant environment. This

allows for a more informed assessment of memory distribution and utilization.

The third and fourth modules are workload profiling and memory partitioning. Ide-

ally, in real-time, the hypervisor utilizes spatial sampling to profile tenant workloads,

and constructs MRCs for each tenant on the fly using efficient MRC modeling tech-

niques to guide the partitioning of the fast memory tier. This module is also designed

to accommodate read-in fast tier allocation configurations guided by MRCs generated

by other profilers or constructed offline, enhancing flexibility in memory management

strategies. Details is discussed in Section 5.1.5

The final module in the sdTMM framework is application-level data access tracking

and migration management. Within this context, demotion refers to migrating warm

data from the fast memory tier to the slow memory tier, and promotion involves

moving newly identified hot items in the opposite direction. To facilitate these pro-

cesses, sdTMM employs three types of background workers dedicated to managing
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data promotion, demotion, and proactive eviction. The hypervisor actively monitors

changes in application access patterns, continuously identifying data that may require

promotion or demotion. These workers operate in the background, asynchronously

moving data in batches between the memory tiers as needed. This ensures that the

system can adapt dynamically to varying data access patterns without significant de-

lays or disruptions in performance. The system configuration can be adjusted based

on application characteristics to optimize overall system performance, enhancing ef-

ficient data handling and system responsiveness. Further details on these processes

are outlined in Section 5.1.3 and Section 5.1.4. This adaptive approach ensures that

sdTMM not only meets the current data access demands but also remains efficient

and responsive under changing workload conditions.

The architecture of the sdTMM memory tiers is designed to optimize data manage-

ment and access, structured as follows:

The fast memory tier consists of the following parts:

1. Main Memory Space: This segment stores tenant objects, providing robust and

rapid access services.

2. Free Space: Serving as a logical buffer, this area is reserved for quickly absorbing

new incoming data items set by tenants, and those newly identified hot data

migrated from the slow memory tier.
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The slow memory tier consists of the following parts:

1. Main Memory Space: Similar to the fast tier, this segment stores tenant objects

but serves at a slower access speed.

2. Free Space: Acts as a logical buffer to accommodate batches of warm data

migrated from the fast memory, aiding in efficient tier data transitions.

Together, these components form a cohesive system that dynamically manages data

placement and migration across the memory tiers, balancing performance with effi-

cient resource utilization.

5.1.1 Item Admission and Eviction

The Least Recently Used (LRU) replacement policy has demonstrated robust

performance in capturing workload locality. Numerous modern modeling tech-

niques are designed specifically for LRU, enabling the efficient construction of its

MRC [2, 9, 13, 14, 15, 24, 32]. Consequently, sdTMM adopts LRU as its principal

eviction algorithm. Within the memory tiers, items are approximately ordered by

their last access time, with further discussion on this mechanism in Section 5.1.2

In the sdTMM framework, new items generated by applications, as well as those re-

inserted following cache misses in the look-aside cache mode, are directly admitted
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into the fast memory tier. Once the capacity of the fast memory tier is reached,

evictions are initiated within this tier to accommodate incoming new items, and the

least recently accessed items are evicted. Similarly, when the slow memory tier reaches

its capacity limit, evictions are triggered to make room for the items being migrated

from the fast tier. We name this process as reactive evictions. However, due to the

strategy of proactive memory collection for the duo memory tiers described in 5.1.3,

such reactive evictions are generally infrequent.

Drawing inspiration from the filter queue design in FIFO [74] and aiming to enhance

the efficiency of evictions, our reactive eviction strategy in the fast memory tier

involves directly removing the least recently accessed items from the entire k-v store,

rather than migrating them to the slow memory tier. Studies of production workloads

indicate a prevalence of “one-hit-wonder” items in real-world traces [73, 74]; excluding

these items can boost cache efficiency. Thus, in sdTMM, the fast memory tier serves

a dual purpose: it not only stores data but also acts as a filter cache.

Moreover, if items evicted from the fast tier were moved to an already full slow

memory tier, it would necessitate further evictions within that tier to create space, a

process we term “cascade evictions”. Such cascade evictions complicate and delay the

admission of new items into the system. By opting to remove items entirely during

fast-tier reactive eviction, rather than relocating them within the memory hierar-

chy, we prevent the potential slowdown associated with these additional evictions,
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maintaining a more streamlined and efficient admission and eviction process.

5.1.2 Insertion Point Design

To efficiently filter out one-hit wonders in the fast memory tier, we propose a modi-

fication to the standard LRU insertion policy. Instead of inserting new items at the

head of the LRU list, we suggest positioning these items near the tail of the list.

This strategy allows one-hit wonders to quickly move to the LRU tail and be expelled

from memory sooner, while frequently accessed items, upon subsequent references,

are moved to the head of the LRU list and remain unaffected by this change.

Conversely, when items are demoted from the fast to the slow memory tier, placing

them at the head of the LRU list in the slow tier could inadvertently lead to their

premature promotion back to the fast tier during promotion scans. This would result

in wasteful consumption of the bandwidth between the two tiers—a phenomenon we

term as “ping-pong effect” in item migration.

Drawing inspiration from the Insertion Point (IP) design of Cachelib engine [27],

we adopt differentiated IP positions for the fast and slow memory tiers to tailor our

approach to both expedite the filtering of one-hit wonders and mitigate the ping-pong

effect. Specifically, in sdTMM, the insertion point in the fast memory tier is set at

1/4 size of the LRU list from the tail, and in the slow memory tier, it is positioned
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at the midpoint of the LRU list.

5.1.3 Proactive Memory Collection

As presented in the architecture of sdTMM, both the fast and slow memory tiers in-

clude a free space, reserved to swiftly accommodate new data items for the respective

tier. This free space is proactively maintained through the coordination of demotion

and eviction mechanisms, ensuring that memory is efficiently managed and available

when needed.

Drawing inspiration from Intel’s implementation of the multi-tier Cachelib engine [75],

sdTMM utilizes two configurable thresholds to manage the free space within each

memory tier: the lowMem and highMem thresholds. In the fast memory tier, the

background demotion worker periodically checks the current percentage of free mem-

ory. Should this percentage fall below the lowMem threshold, the worker is activated

to proactively migrate warm items from the fast to the slow memory tier in batches.

This demotion process continues until the percentage of free memory reaches the

highMem threshold, at which point the demotion worker ceases operation. Details of

the demotion mechanism are discussed in Section 5.1.4.3.

Similarly, in the slow memory tier, the background eviction worker monitors the cur-

rent percentage of free memory. If this percentage drops below the lowMem threshold,
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the worker is triggered to begin evicting cold items in batches to free up space. This

eviction process continues until the memory percentage reaches the highMem thresh-

old. Details about this process are presented in Section 5.1.4.4.

In the default configuration of sdTMM, the lowMem and highMem thresholds are set

to 2.0% and 5.0% respectively.

In summary, the proactive memory collection process in sdTMM is characterized by

a directional flow of items: from the fast tier to the slow tier, and from the slow tier

to eviction from the cache. This method ensures that both the fast and slow memory

tiers remain agile and prepared to quickly accept new data items that are destined

to become residents of the respective tiers. This structured flow facilitates efficient

memory management, enabling each tier to adapt swiftly to new data demands and

maintain high performance.

5.1.4 Data Migration

The data migration module in sdTMM actively monitors the “hotness” of items cur-

rently residing within each tier, identifies new hot items, and adjusts their placement

within the memory hierarchy to leverage the advantages of each tier, thereby en-

hancing overall system performance. Specifically, the fast memory tier offers lower

access latency and high bandwidth but has a limited size, whereas the slow memory
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tier presents the opposite characteristics—higher latency and lower bandwidth but

greater capacity.

The core principle of data migration is to dynamically track changes in data item

hotness as influenced by shifts in application access patterns. The goal is to place

hot items in the fast memory tier and move others to the slow memory tier. This

stratified management strategy ensures that the system efficiently utilizes the distinct

properties of each tier to optimize performance.

This migration process is supported by two critical components: the first involves the

identification of item hotness, and the second encompasses the execution of efficient

data demotion and promotion actions. Together, these components facilitate a re-

sponsive and adaptive caching system that can swiftly adjust to changing data access

demands.

5.1.4.1 Item Hotness Identification

In the sdTMM framework, items within both the fast and slow memory tiers are

approximately ordered based on their last access time, adhering to the LRU eviction

policy. Items that have been accessed recently are positioned near the head of the

LRU list, while others gravitate toward the tail.
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Intuitively, one can use an item’s last access time as a direct measure of its “hotness”

to determine promotion eligibility, specifically, by comparing the last access time of

items at the head of the slow tier’s LRU list with those at the tail of the fast tier’s

LRU list, which we named as naive TMM system (naiveTMM). However, this ap-

proach has limitations. For instance, a sequential scan access pattern can undermine

this method. In such scenarios, each item is accessed only once, yet every subse-

quent item’s access time appears more recent than the last, potentially leading to

inappropriate promotions from the slow to the fast tier.

To address this challenge, we introduce reuse time as a supplementary metric for

assessing item hotness. Reuse time is defined as the time difference between an

item’s current access time and previous access time.

In the fast memory tier, upon items’ re-accesses, we employ a rolling window to

maintain statistics on the reuse time, which serves as an index of the residents’ hotness

level. Currently, we use rolling Window Mean Reuse Time as the hotness threshold

for making informed promotion decisions. Conversely, in the slow memory tier, each

item’s reuse time is recorded as metadata upon re-access. Importantly, given that

re-accesses occur more frequently in the fast tier than in the slow tier, we do not

update their reuse time in the metadata for fast-tier items. Instead, we only update

the window statistics, which reduces the overhead associated with accesses in the fast

memory tier. This method ensures a more accurate and efficient determination of
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item hotness, facilitating better management of data migration between tiers.

5.1.4.2 Background Promotion

In sdTMM, we deploy periodic background promotion workers to scan for newly

hot items in the slow memory tier and migrate them to the fast memory tier asyn-

chronously in batches. These workers initiate their search from the head of the LRU

list within the slow tier. They compare each item’s reuse time against the hotness

threshold established for the fast tier. Items exhibiting reuse times shorter than this

threshold are marked and accumulated in a batch.

Once a pre-configured number of candidates has been identified and marked for pro-

motion, the promotion worker coordinates with the memory allocator to secure the

necessary memory space within the fast tier. The marked items are then moved from

the slow tier to the fast tier in organized batches by invoking the standard Linux

memmove library method. Thanks to the proactive memory collection mechanism,

outlined in Section 5.1.3, there is typically a reserve of free space in the fast tier,

ensuring that there is sufficient memory available for the newly promoted items. In

instances where the available space in the fast tier is insufficient to accommodate all

the promoted items, the worker will proactively demote certain items back to the

slow tier to free up the necessary space before proceeding with the promotions.
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5.1.4.3 Background Demotion

The design of the demotion process mirrors that of the promotion scheme, employing

the periodic background demotion worker to facilitate the migration of items from the

fast tier to the slow tier in batches. The demotion worker initiates their process by

scanning from the tail of the fast tier’s LRU list. Once a pre-determined batch number

of items has been selected, the worker coordinates with the memory allocator to secure

the required memory space in the slow tier. The marked items are then moved to

the slow tier using the Linux standard memmove. Although it is uncommon for the

slow tier to lack sufficient memory—due to the proactive memory collection scheme

described earlier—there are instances where available space may be inadequate. In

such cases, the demotion worker takes proactive measures by evicting a necessary

number of items from the tail end of the slow tier’s LRU list. This action ensures

that there is enough space to accommodate the newly demoted items.

5.1.4.4 Background Eviction

We utilize periodic background eviction workers to monitor and maintain the available

free space in the slow memory tier, as detailed in Section 5.1.3. The worker operates

under the guidelines established by the lowMem and highMem thresholds. Similarly

to the demotion process, the background eviction worker scans for candidates from
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the tail of LRU list within the slow memory tier, which are marked and accumulated

in a batch. Once a pre-configured number of items has been designated, the worker

proceeds to evict them from the slow tier, effectively removing them from the entire

k-v store.

5.1.5 Multi-Tenant Memory Partitioning

Similar to the scenario described in Section 4.1, sdTMM is capable of serving multiple

applications with a single cache instance. This architecture allows for isolating each

tenant’s workload, particularly in terms of eviction and memory footprint, ensuring

that memory resources are managed distinctly for each tenant. In sdTMM, the system

enhances the overall cache’s performance by maintaining separate eviction domains

for each tenant. When an application’s dedicated memory space reaches capacity,

sdTMM restricts eviction to that specific tenant’s domain, avoiding interference with

the memory allocated to other tenants. This is particularly beneficial given that the

MRC often varies across different workloads. Using memory partitioning to isolate

these workloads ensures that the performance demands of one application do not

detrimentally impact others.

Unlike kRedis discussed in Secion 4.1, which operates solely with a DRAM memory

tier, sdTMM’s memory architecture integrates both fast DRAM and CXL-shared slow
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memory, yet remains transparent to applications, requiring no adjustments for their

operation on sdTMM.

The process of memory partitioning in sdTMM is akin to that in kRedis presented in

Section 4.1. It involves monitoring each tenant’s workload using the spatial sampling

techniques described in Section 2.3.2, and constructing an MRC for each application

using the KRR algorithm outlined in Section 2.3.1. The partitioning algorithm, pre-

sented in Section 4.1.2, is then applied to determine the optimal memory distribution

among all tenants. sdTMM supports flexible memory management strategies by al-

lowing load allocation configurations guided by MRCs generated by other profilers or

constructed offline.

Following the allocation decisions, the memory usage tracking module actively moni-

tors each tenant’s memory usage. This module coordinates with the memory allocator

to ensure that each tenant’s memory usage remains within the configured limits. Cur-

rently, sdTMM only partitions tenant memory in the fast memory tier, considering

that the fast tier is size-constrained and performance-critical for the whole k-v store

system compared to the slow tier.

Should there be a discrepancy between the current tenant memory distribution and

the latest allocation decisions in the fast tier, sdTMM utilizes background memory re-

sizing workers. These workers adjust each tenant’s memory allocation asynchronously,
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expanding or contracting the allocated memory based on the new partitioning config-

uration to seamlessly manage changes in tenant requirements and workload demands.

5.1.6 Implementation

The memory management for both fast and slow tiers utilizes a slab-based ap-

proach [76]. Within each tier, memory is divided into independent pools to provide

isolation for different tenants’ data.

Each pool consists of distinct allocation classes, where items are logically organized by

size. This organization minimizes fragmentation and facilitates pointer compression

through an index offset in the slab.

A slab is a physically contiguous memory unit of 4 MB. Each slab is assigned to one

allocation class within a particular pool or remains unassigned. Allocation classes

have multiple slabs, which do not need to be physically adjacent.

Memory allocations for application items are made from these slabs. All allocations

within a slab are of a fixed size, determined by the allocation class, and belong to a

single memory pool. The minimum allocation size within a slab is 64 bytes, and the

sizes of allocation classes increase following a geometric sequence.
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Items within an allocation class are organized using an LRU doubly-linked list. Upon

eviction, the least recently used item from that allocation class is removed. Each tier,

pool, and slab class maintains its independent LRU lists.

The memory mapping and caching indexes are implemented using a hash table. Ap-

plication items in both fast and slow memory spaces are directly addressed through

this hash table, which maps keys to compressed pointers that indicate valid mem-

ory allocations. These compressed pointers combine the tier index, slab index, and

allocation index within the slab.

5.2 Experimental Evaluation

To evaluate the effectiveness of sdTMM, we first provide a brief description of the ex-

perimental setup, including hardware and software platform and configurations. Then

we introduce evaluation workloads. Third, we evaluate the performance of sdTMM.

Our primary objective of sdTMM is to replace a fraction of the conventional DRAM

primary memory with CXL-shared slow memory and achieve similar performance to

that of an all-DRAM system (allDRAM). Finally, we discuss the tail latency, time,

and space overhead of our design.
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5.2.1 Hardware Platform

Given the current unavailability of commercial CXL interface hardware, we have opted

to emulate our multi-tiered memory architecture using a Non-UniformMemory Access

(NUMA) architecture for evaluation purposes. The server employed in our study is

equipped with an Intel(R) Xeon(R) Gold 5118 processor, operating at 2.30GHz. It

includes 2 sockets, encompassing 48 logical cores divided into 2 NUMA nodes, each

comprising 24 logical cores. The server has 34 MB of shared Last Level Cache (LLC)

and a total of 188 GB of memory, with each NUMA node having 94 GB of directly

attached memory.

For the deploying of the sdTMM cache instance, we utilized the numactl [77] to bind

the cache process specifically to NUMA node 0. This configuration leverages the

memory directly attached to NUMA node 0 as the fast memory tier while treating

the memory attached to the far-side NUMA node 1 as the slow memory tier. In this

setup, for both small (128 Bytes) and large (1024 Bytes) object sizes, under random

read and write conditions, the slow tier exhibited twice the latency of the fast tier.

Additionally, the bandwidth of the fast tier was found to be 2.4 times greater than

that of the slow tier. This arrangement effectively mirrors the intended behavior of

a CXL-switched environment. Access to the NUMA memory is facilitated through

the Linux standard NUMA memory library APIs, which are invoked to emulate the
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behavior of the CXL switch. The server runs Fedora 38 with the Linux kernel version

6.3.7.

Should commercial CXL memory-sharing hardware become available, we are pre-

pared to migrate and validate the sdTMM architecture in a genuine CXL-enabled

environment,

5.2.2 Software Platform

To rapidly prototype sdTMM architecture, we selected Intel Cachelib [75], a forked

variant of Meta Cachelib [76]. Meta Cachelib is a highly adaptable caching engine

designed to construct and enhance high-performance cache services. It is a thread-

safe, scalable, C++ library that underpins the fundamental caching mechanisms.

Developers leverage Cachelib to explore and prototype new caching heuristics and

frameworks efficiently [27, 74, 78, 79].

Additionally, it includes CacheBench, a benchmarking and stress-testing tool that

evaluates cache designs against industry-standard cache workloads. In our evalua-

tions, we use CacheBench to load workloads and stress our sdTMM system.

Since its initial deployment in 2017, CacheLib has become an integral component of
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more than 70 services at Meta, including the content delivery network (CDN), social-

graph cache, application look-aside cache, and block-storage systems. Intel’s variant

of Cachelib advances this framework by incorporating multi-level caching capabilities,

such as L1 DRAM and L2 CXL shared memory. It also introduces data promotion and

demotion APIs. However, its demotion process bears potential for cascade evictions,

as discussed in Section 5.1.1, and its promotion currently employs naive promotion

approach discussed in Section 5.1.4.1.

5.2.3 Workloads

We use distinct workloads for our evaluation:

† YCSB Yahoo Cloud Serving benchmark [80] is a widely recognized benchmark

that offers a suite of six core workload types. For our analysis, we focus on

Workload C and Workload E from this suite. Workload C is a read-only work-

load that adheres to a Zipfian distribution, which is commonly used to simulate

access patterns in web applications where some items are far more popular

than others. Workload E is a scan-dominant workload characterized by its ini-

tial Zipfian distribution to select the first key in a range, followed by a uniform

distribution to determine the number of objects to scan. For Workload E, we

configure the maximum scan length to equal the number of distinct objects in
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the workload. We use workloads with four different skewness parameters (α

values), specifically 0.5, 0.8, 0.99, and 1.2. And we use uniformed value size of

300 Bytes in all workloads.

† MSR MSR Cambridge suite [22] originates from 13 enterprise data center

servers. The suite captures a variety of applications including home directories,

project directories, hardware monitoring, and web services. The traces vary

significantly, with reference counts ranging from 1 to 181 million and working

set sizes from 1 GB to over 1000 GB. Workload details can be found in [72].

† Twitter Twitter cache traces [26] include a week-long collection of cache request

traces from 54 of Twitter’s in-memory caching clusters. We utilize sub-traces

from these clusters, each consisting of 100 million requests. Detailed information

including working set size, object size distribution, one-hit-wonder ratio, etc.

can be found in [26, 73].

5.2.4 Throughput & Hit Rate

Production in-memory caches typically operate at low miss ratios to ensure high per-

formance [26, 74]. Therefore, in our evaluation, we use the memory over-provisioned

all-DRAM single-tier system (allDRAM) as the baseline, we also include the results

of naiveTMM described in Section 5.1.4.1 as a secondary comparison for illustrative
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purposes.

In sdTMM we assume that the fast tier space is limited, while the memory of the

slow tier is over-provisioned. sdTMM is in look-aside cache mode so that on cache

misses, the CacheBench will immediately setback the missing key-value pairs. We use

get throughput and fast-tier hit rate as the metrics to evaluate system performance.

The evaluations are organized as follows:

1. To determine if sdTMM achieves its design objective of parity performance

with an over-provisioned all-DRAM system, in Section 5.2.4.1 we use randomly

selected workloads from real-world production traces, including the Twitter

suite and MSR suite, for a comprehensive evaluation in a single-tenant system.

2. To assess the performance of sdTMM’s fast-tier memory partitioning, in Sec-

tion 5.2.4.2 we compare the sdTMM MRC-guided partition against free com-

petition and equal partition strategies in a multi-tenant environment.

3. To evaluate sdTMM’s effectiveness in dynamic hot item detection and placement

in memory tiers, we conduct a case study in Section 5.2.4.3 using a synthetic

workload with hot item pattern changes across different phases, investigating

sdTMM’s performance in each phase.

4. Finally, we evaluate sdTMM in more complex scenarios using workloads that

feature phase-changing and multi-tenancy in Section 5.2.4.4.

108



5.2.4.1 Single-Tenant Case Study

In this section, we use randomly selected workloads from real-world production trace

suits, Twitter and MSR, to evaluate sdTMM performance under a single-tenant use

case. The fast-tier memory size is configured as 20% of the working set size. Fig-

ure 5.2 shows the results. The average throughput impact of sdTMM is 13.0%, with

a minimum throughput degradation of 2.2% compared to allDRAM.

We observe that for Twitter cluster44.0, cluster19.0, and MSR src1, the degradation

exceeds 20%. In the case of Twitter cluster44.0 the uniformity in k-v sizes across

two sizes results in only two slab classes in sdTMM. Consequently, there are only

two LRU lists in each memory tier, leading to high costs in the LRU operations,

Figure 5.3 shows the CPU time spent on LRU update operations measured using the

Intel VTune profiler [81]. For Twitter cluster19.0, the alpha value is 0.735, indicating

that frequently accessed items are not concentrated in the key space. The fast-tier

hit rate of sdTMM is 36.13%. Similarly, in the case of MSR src1, the alpha value is

as low as 0.4, and the fast-tier hit rate is 29.21%, this low fast-tier hit rate has a large

impact on throughput.

We also observe significant throughput impacts on naiveTMM for Twitter cluster52.0,

cluster29.0, cluster19.0, cluster4.0, and MSR prxy. This is because, in naiveTMM,

promotion is not regulated by the refined hotness threshold as applied in sdTMM.
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Figure 5.2: Throughput impact in Twitter and MSR workloads compared
to allDRAM.

When the fast-tier free space is insufficient to accommodate the batched promotion

items, this promotion triggers prerequisite demote operations from the fast-tier to

the slow-tier to free up space. This chained item migration negatively affects system

performance. Figures 5.4 illustrate an example of Twitter cluster29.0, showing the

CPU time spent on item movement where demotion is triggered by the promotion

process, as measured by the Intel VTune profiler. This highlights the importance of

identifying the dynamic hotness level in the fast tier and throttling the item promotion
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Figure 5.3: High CPU time spent on LRU updates with sdTMM in Twitter
cluster 44.0.

Figure 5.4: High CPU time spent on chained item movements of
naiveTMM with Twitter cluster 29.0

among memory tiers.

5.2.4.2 Multiple-Tenant Case Study

To evaluate the performance of sdTMM’s fast-tier memory partitioning, we com-

pare three different strategies: MRC-guided partition, free competition, and equal

partition. In the MRC-guided partition strategy, we follow the steps outlined in

Section 5.1.5. For simplicity, tenant MRCs are constructed offline using the KRR
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model [25], and the partitioning algorithm presented in Section 4.1.2 is applied to

calculate memory allocations for each tenant, sdTMM then follows this configura-

tion in the fast tier memory allocations, ensuring isolated memory spaces in the fast

tier. In the equal-partition strategy, sdTMM allocates equal memory for each tenant,

while in the free-competition strategy, tenants compete for fast memory space with-

out constraints. The slow-tier space is over-provisioned to ensure that variations in

the partition strategies impact only the fast-tier,

We first use two tenants, each running a YCSB workload. The Tenant 1 loads YCSB

workload features an alpha value of 0.8, with 100 million references and 10 million

records. The Tenant 2 loads YCSB workload features an alpha value of 1.2, with

the same reference number and record count as Tenant 1. For the three partitioning

strategies applied sdTMM, the fast-tier memory size is set to 50% of the working set

size. Figure 5.5 shows the results. Compared to the allDRAM system, the throughput

degradation of MRC-guided partition, free competition, and equal partition are 4.2%,

5.5%, and 8.0%, respectively. The fast-tier hit rate for allDRAM, MRC-guided parti-

tion, free competition, and equal partition are 92.92%, 80.22%, 78.40%, and 68.56%,

respectively. MRC-guided partition achieves the highest fast-tier hit rate among the

three strategies, resulting in the lowest performance impact.

Next, we increase the number of tenants to four and introduce a noisy neighbor run-

ning a scan pattern workload. In this scenario, the free competition memory partition
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Figure 5.5: Normalized throughput of 2 tenants with fast-tier memory
partitioning in YCSB workloads

strategy may cause issues, as the noisy neighbor will compete for fast-tier memory

without contributing to the hit rate. The first tenant runs a scan workload, while the

other three tenants run YCSB workloads with alpha values of 0.5, 0.99, and 1.2, re-

spectively. The fast-tier memory size is set to 10% of the working set size. Figure 5.6

shows the results. Compared to the all-DRAM system, the throughput impact of

the MRC-guided partition, free competition, and equal partition strategies are 2.3%,

5.0%, and 3.6%, respectively. The fast-tier hit rates for all-DRAM, MRC-guided par-

tition, free competition, and equal partition are 69.55%, 61.48%, 55.76%, and 57.13%,

respectively. The MRC-guided partition demonstrates the best performance, while

free competition performs worse than equal partition due to the presence of the noisy

neighbor.
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Figure 5.6: Normalized throughput of 4 tenants with fast-tier memory
partitioning in YCSB workloads

5.2.4.3 Phase-Changing Case Study

In this case study, we construct a synthetic workload comprising two distinct phases.

Both phases follow a Zipfian distribution with an alpha value of 0.9, and each phase

includes 500 million references, totaling 1000 million accesses. The workload consists

of 50 million distinct objects. In the first phase, hot items are concentrated on keys

with smaller values, meaning keys with smaller values have a higher access probability.

In the second phase, the hot items shift to keys with larger values. Consequently, the

hot item set changes as the phase transitions. Figure 5.7 presents the CDF of access

frequency for all keys throughout the entire trace, illustrating that the hot keys are

distributed at the two ends of the key space.

In sdTMM configuration, the size of the fast memory tier is set to 50% of the working

set size. We use one cache stressor to send the references. In two sets of evaluations,
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Figure 5.7: CDF of access frequency of a synthetic phase-changing work-
load

the value size of all references is uniformly 300 B (small object size) and 4 KB (large

object size), respectively.

Figure 5.8 (a) shows, in small object size, the normalized throughput compared to

the allDRAM single-tier system. With 50% of the local DRAM replaced by slow

memory, sdTMM exhibits a 2.5% performance impact, whereas naiveTMM shows a

26.7% degradation. At the end of phase 1, sdTMM and naiveTMM achieve a fast-

tier hit rate of 90.2% and 87.15%, respectively. At the end of phase 2, which also

marks the end of the entire trace, the fast-tier hit rate of sdTMM, and naiveTMM are

89.76%, and 87.27%, respectively. Throughout the entire trace, sdTMM promoted

only about 1% of the items compared to naiveTMM, yet achieved a higher fast-tier hit

rate. This demonstrates that sdTMM effectively detects and maintains hot objects in
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Figure 5.8: Normalized throughput of synthetic phase-changing workload

the fast tier during phase 1. As the workload transitions to phase 2 and the hot items

shift entirely to large keys in the slow tier, sdTMM successfully detects this change

and migrates the new hot items to the fast tier. Consequently, sdTMM maintains

a fast-tier hit rate close to 90%, outperforming naiveTMM with significantly fewer

promotions.

Figure 5.8 (b) shows the result when references are in large object size, with slightly

decreased performance compared to the result with small object size. sdTMM and

naiveTMM exhibit performance degradation of 7.0% and 24.3%, respectively. This

is attributed to the increased moving bandwidth required for migrating large object-

sized items between memory tiers, which impacts system throughput.
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5.2.4.4 Phase-Changing & Memory Partitioning Case Study

Finally, we evaluate the performance of sdTMM in identifying and migrating hot

items, as well as in partitioning fast-tier memory, using two tenants and phase-

changing YCSB workloads with different alpha values.

Tenant 1 runs a master phase-changing workload with the first 100 million references

from YCSB (alpha = 0.8), followed by a second 100 million references from YCSB

(alpha = 1.2). Tenant 2 runs a master phase-changing workload starting with 100 mil-

lion accesses from YCSB (alpha = 1.2), followed by 100 million accesses from YCSB

(alpha = 0.8). Thus, in this multi-tenant scenario, both tenants run workloads that

feature hot item set phase changes. In the second phase, the MRC-guided fast-tier

memory partitioning decisions will differ from those in phase 1, specifically revers-

ing the tenant memory distribution. sdTMM needs to adjust the tenants’ memory

sizes to achieve the desired allocation changes, supported by the background resizing

worker. The fast-tier memory size for sdTMM is set to 25% of the working set size.

Figure 5.9 shows the results. With 75% of fast DRAM replaced by slow-tier mem-

ory, the throughput degradation compared to the all-DRAM system for MRC-guided

partition, free competition, and equal partition strategies are 4.3%, 7.5%, and 9.8%,

respectively.
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Figure 5.9: Normalized throughput of 2 tenants with phase-changing
YCSB workloads

At the end of phase 1, the fast-tier hit rate of sdTMM with MRC-guided partition

exceeds 80%. At this point, the fast-tier memory partition between Tenant 1 and

Tenant 2 is 0.96 vs. 0.04. As the cache execution transitions into phase 2, the

tenants’ access patterns change. Accordingly, the fast-tier memory partition updates

to 0.04 vs. 0.96 for the two tenants. The background resizing worker detects that

Tenant 1 is overusing memory while Tenant 2 requires more space, prompting it to

gradually shrink Tenant 1’s memory space and expand Tenant 2’s memory space.

At the end of phase 2, the fast-tier hit rate of sdTMM with MRC-guided partition

reaches 77.64%, compared to 94.94%, 73.84%, and 69.37% for all-DRAM, free compe-

tition, and equal partition strategies, respectively. Overall, sdTMMwith MRC-guided

partition demonstrates the lowest performance impact, despite having only 25% of

the working set size in fast DRAM memory.
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5.2.5 Impact of Fast-Tier Memory Size

In this section, we analyze the impact of fast-tier memory size on sdTMM’s perfor-

mance. Specifically, we consider the allocation efficiency for workloads characterized

by a highly skewed distribution of hot items. The fast-tier size should ideally be

just sufficient to hold the hot set, while other items can be placed in slow-tier mem-

ory. This approach avoids wasting limited DRAM resources and allows sdTMM to

dynamically manage item placement as needed.

To demonstrate the impact of fast-tier size, we use a master workload composed of

phase-changing Twitter cluster traces. This master workload concatenates Twitter

cluster52.0 and cluster54.0 traces, both of which exhibit high skewness with alpha

values of 1.6 and 1.2, respectively. Figure 5.10 shows the MRC for these two Twitter

cluster traces.

In the first sdTMM configuration, we set the fast-tier size to 50% of the working set

size, which is large enough to hold the hot items of both Twitter cluster traces. We

compare sdTMM’s performance against sdTMM with only background demotions,

referred to as sdTMM-demotion, where no items are promoted from the slow tier to

the fast tier. From Figure 5.11a, we observe no significant performance difference

between sdTMM and sdTMM-demotion. The performance degradation of the two
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Figure 5.10: MRCs of Twitter Cluster52.0 and Cluster54.0

versions compared to all-DRAM is 2.5% and 3.0%, respectively, with fast-tier hit

rates of 82.55% and 80.62%, respectively. Despite lacking hot item identification and

promotion, sdTMM-demotion shows similar performance due to the large fast-tier

memory size setting.

In the second sdTMM configuration, we set the fast-tier size to 20% of the working

set size, meaning the hot set from both phases cannot fit entirely in the fast tier.

Figure 5.11b shows that the degradation of sdTMM and sdTMM-demotion compared

to all-DRAM is 6.0% and 11.9%, respectively, with fast-tier hit rates of 75.70% and

71.28%, respectively. The hot item identification and promotion in sdTMM contribute

to the increased fast-tier hit rate and throughput.
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Figure 5.11: Normalized throughput of Twitter phase-changing workload

5.2.6 Tail Latency

sdTMM has been shown to have a low impact on system performance, even when

a significant portion of fast DRAM is replaced with shared slow memory. Our next

objective is to determine if item hotness tracking, data migration, fast-tier memory

allocation and re-sizing disproportionately affect system latency.

We evaluate the tail latency of sdTMM using the case discussed in Section 5.2.4.4.

Table 5.1 presents the results for allDRAM, sdTMM, and allSLOW (where all memory

is bound to the shared slow memory). We see that by replacing 75% of fast DRAM

with shared slow memory, its GET and SET latencies are higher than allDRAM but

lower than allSLOW.

This study case includes combined scenarios of phase-changing and dramatic changes
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in fast-tier memory partitioning. At the end of phase 1 and phase 2, sdTMM’s fast-

tier hit rates are 80.03% and 77.64%, respectively, compared to 92% and 94.88% for

allDRAM. The fast-tier hit rate impacts sdTMM’s GET tail latency compared to the

allDRAM system.

Furthermore, at the start of phase 2, the fast-tier memory distribution shifts dra-

matically to an opposite distribution, prompting the memory re-sizer to adjust slab

allocations among tenants. This also affects sdTMM’s SET tail latency.

This shows sdTMM’s disadvantage in tail latency when using a shared slow memory

tier under strict fast-memory size constraints. For latency-sensitive applications, we

recommend either utilizing a larger fast-memory configuration or avoiding deployment

in a multi-tenant environment.

Table 5.1
Tail Latency Measurements

Type 90th 99th 99.9th

GET tail latency (ns)

allDRAM 1046 1963 2834
sdTMM 2069 2806 4109
allSLOW 2464 3459 6190

SET tail latency (ns)

allDRAM 1179 5265 11380
sdTMM 2211 7823 16964
allSLOW 2655 12284 19007
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5.2.7 Space and Time Cost

In this section, we evaluate the time and space overhead of sdTMM. As discussed in

Section 5.1.5, sdTMM memory partitioning can be performed either through online

reference sampling and MRC construction or by following offline memory allocation

decisions. For the case of online profiling and modeling, Section 4.2.7 provided a

detailed measurement of the space and time overhead of tenant MRC modeling with

the KRR model.

Additionally, there is a time and space cost associated with sdTMM related to hot-

ness identification: item reuse time tracking. In the fast memory tier, reuse time is

accumulated for each item re-access within a rolling window, using the mean as the

hotness threshold. Note that we do not record or update an item’s reuse time upon

re-access in fast-tier for efficiency purposes. In the slow memory tier, each item’s reuse

time is recorded along with the last access time in the metadata upon re-access. We

evaluate the running time for three variants of sdTMM against the 400 million YCSB

multi-tenant workloads used in Section 5.2.4.4. The results are shown in Table 5.2.

In the first variant of sdTMM, reuse time is not tracked for either memory tier. The

second variant tracks only the window mean reuse time in the fast memory tier. The

third variant tracks fast-tier window reuse time and updates the item’s reuse time on

each re-access in the slow memory tier. We observe similar time costs in the first two
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sdTMM variants. And the time cost for tracking and updating slow-tier item reuse

time is negligible.

Table 5.2
Running Time Comparison for Processing 400 Million YCSB multi-tenant

Requests

Reuse Time Tracking Efficiency

Methods Time (sec)

No reuse time tracking 448.73

Fast-tier win mean reuse time tracking only 451.67

Fast & slow tier reuse time tracking 452.04

However, we increased the item’s metadata by 4 bytes to store the item’s reuse time

in the LRU list implementation. But this increased space cost only affects items in

the slow memory tier since we do not need to store the reuse time for fast-tier items.

Thus the space overhead of the reuse time tracking is proportional to the number of

objects stored in the slow memory tier. The estimated percentage of space overhead

is 4 bytes * R / average k-v size, where R is the memory size ratio of the slow-tier.

For instance, in the case discussed in Section 5.2.4.4, R = 0.75, and the average size

of k-v items is 324 bytes, then the space overhead is 0.9% of the working set size.
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5.3 Chapter Summary

In this chapter, we present the design and implementation of sdTMM, a software-

defined multi-tier memory management system designed for multi-tenant environ-

ments. sdTMM is capable of detecting application-level item hotness dynamics across

two memory tiers and optimizing item placement with efficient background item mi-

grations. Evaluations across various workloads demonstrate that our approach, even

with 80% of the fast memory replaced by CXL-shared slow memory, incurs an average

performance impact of 13%, with a best-case performance impact as low as 2.2% com-

pared to an all-fast memory over-provisioned system. Comparison against naiveTMM

show that sdTMM achieves a higher fast-tier hit rate with significantly fewer data mi-

grations. Evaluations in multi-tenant environments indicate that sdTMM, equipped

with MRC-guided memory partitioning, outperforms other allocation strategies. We

also assess the overhead and tail latency of our approach and discuss its limitations.
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Chapter 6

Conclusion

In today’s multi-level storage architectures, in-memory k-v stores play a crucial role

in ensuring low-latency system performance. Retrieving objects from a k-v store

system deployed in memory on a front-end server is significantly faster than access-

ing them from a remote back-end server. To optimize system performance, it is

essential to innovate and integrate techniques such as effective cache replacement al-

gorithms, efficient memory allocation in multi-tenant environments, and expanding

memory capacity with support from advanced tiered memory management systems.

This dissertation proposes an integrative scheme to address these challenges, showing

promising results through extensive experimentation. This Chapter summarizes our

contributions and discusses future work.
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6.1 Contributions

Our main contributions are as follows.

1. Dynamic LRU Configuration for Redis (DLRU): We conducted an in-

depth analysis of the K-LRU behavior in Redis, identifying potential variations

in miss ratios based on different K values. By introducing a dynamic configu-

ration scheme for K, which leverages a low-overhead miniature cache simulator

and a cost model, we can predict miss ratios and optimize performance trade-

offs. This dynamic approach enhances Redis throughput by up to 32.5% over

the default static K setting.

2. Locality- and Latency-Aware Memory Partitioning (kRedis): Extend-

ing the exploration of K-LRU, we developed kRedis, which operates in a multi-

tenant k-v store environment. This system includes a locality- and latency-

aware memory partitioning scheme that dynamically allocates memory based

on the specific locality and latency characteristics of each tenant. The evaluation

results show substantial performance improvements, with kRedis reducing av-

erage access latency by up to 50.2% and increasing throughput by up to 262.8%

compared to standard Redis. Additionally, kRedis outperforms a state-of-the-

art memory allocation design, with improvements of up to 24.8% in average
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access latency and 61.8% in throughput.

3. Software-Defined Tiered Memory Management (sdTMM): Drawing on

the capabilities of emerging Compute Express Link (CXL) memory-sharing

technologies, we designed sdTMM, a software-defined tiered memory manage-

ment system. This system integrates fast local DRAM with slower but larger

CXL-shared memory to create an efficient multi-tier memory pool. By dy-

namically identifying and placing hot data, efficiently migrating items among

memory tiers based on their popularity, and implementing locality-aware multi-

tenant memory partitioning, sdTMM optimizes memory utilization while main-

taining high performance. Our evaluations indicate that sdTMM, even with

80% of fast memory replaced by CXL-shared slow memory, incurs an average

performance impact of 13%, and the best-case of only 2.2% compared to an

all-fast memory over-provisioned system.

6.2 Future Work

We plan to conduct an ablation study to evaluate the individual contributions of

optimizations made in the current sdTMM design, including avoidance of cascade

evictions, new promotion threshold, proactive memory collection, and customized in-

sertion points for fast and slow tiers. By systematically disabling each optimization
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and observing the impact on system performance, we aim to understand their indi-

vidual and combined effects. This study will help identify the most effective strategies

and guide future improvements to sdTMM.

Furthermore, we will integrate the random sampling-based LRU eviction policy into

Cachelib and sdTMM, and investigate its benefit against current approximate LRU

implementations, as well as other policies supported in Cachelib.

We will also investigate other random sampling policies using diverse metrics, such

as access frequency and object expiration time, as priority functions. These policies

will be utilized in memory management for broader usage scenarios.

Additionally, future work will explore further optimizations and potential expansions

of these techniques to other areas of memory management and storage systems.
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virtual memory,” IEEE Micro, vol. 36, no. 3, pp. 118–126, 2016.

[60] F. X. Lin and X. Liu, “Memif: Towards programming heterogeneous memory

asynchronously,” SIGARCH Comput. Archit. News, vol. 44, no. 2, p. 369–383,

mar 2016.

[61] C. Consortium. (2023, Jan) Compute express link™: The breakthrough cpu-to-

device interconnect. [Online]. Available: https://www.computeexpresslink.org/

[62] M. Jung, “Hello bytes, bye blocks: Pcie storage meets compute express link for

memory expansion (cxl-ssd),” in Proceedings of the 14th ACM Workshop on Hot

Topics in Storage and File Systems, ser. HotStorage ’22. New York, NY, USA:

Association for Computing Machinery, 2022, p. 45–51.

[63] H. A. Maruf, H. Wang, A. Dhanotia, J. Weiner, N. Agarwal, P. Bhattacharya,

C. Petersen, M. Chowdhury, S. Kanaujia, and P. Chauhan, “Tpp: Transparent

page placement for cxl-enabled tiered-memory,” in Proceedings of the 28th ACM

International Conference on Architectural Support for Programming Languages

and Operating Systems, Volume 3, ser. ASPLOS 2023. New York, NY, USA:

Association for Computing Machinery, 2023, p. 742–755. [Online]. Available:

https://doi.org/10.1145/3582016.3582063

141

https://www.computeexpresslink.org/
https://doi.org/10.1145/3582016.3582063


[64] H. Li, D. S. Berger, L. Hsu, D. Ernst, P. Zardoshti, S. Novakovic, M. Shah, S. Ra-

jadnya, S. Lee, I. Agarwal, M. D. Hill, M. Fontoura, and R. Bianchini, “Pond:

Cxl-based memory pooling systems for cloud platforms,” in Proceedings of the

28th ACM International Conference on Architectural Support for Programming

Languages and Operating Systems, Volume 2, ser. ASPLOS 2023. New York,

NY, USA: Association for Computing Machinery, 2023, p. 574–587.

[65] P. Duraisamy, W. Xu, S. Hare, R. Rajwar, D. Culler, Z. Xu, J. Fan,

C. Kennelly, B. McCloskey, D. Mijailovic, B. Morris, C. Mukherjee, J. Ren,

G. Thelen, P. Turner, C. Villavieja, P. Ranganathan, and A. Vahdat, “Towards

an adaptable systems architecture for memory tiering at warehouse-scale,” in

Proceedings of the 28th ACM International Conference on Architectural Support

for Programming Languages and Operating Systems, Volume 3, ser. ASPLOS

2023. New York, NY, USA: Association for Computing Machinery, 2023, p.

727–741. [Online]. Available: https://doi.org/10.1145/3582016.3582031

[66] K. Lee, S. Kim, J. Lee, D. Moon, R. Kim, H. Kim, H. Ji, Y. Mun, and Y. Joo,

“Improving key-value cache performance with heterogeneous memory tiering: A

case study of cxl-based memory expansion,” IEEE Micro, pp. 1–11, 2024.

[67] C. Waldspurger, T. Saemundsson, I. Ahmad, and N. Park, “Cache modeling and

optimization using miniature simulations,” in 2017 USENIX Annual Technical

Conference (USENIX ATC 17). Santa Clara, CA: USENIX Association, 2017,

pp. 487–498.

142

https://doi.org/10.1145/3582016.3582031


[68] Redis. (2019) Redis 4.0.13. [Online]. Available: http://download.redis.io/

releases/

[69] Mutilate. (2019) Mutilate. [Online]. Available: https://github.com/leverich/

mutilate

[70] C. Pan, Y. Luo, X. Wang, and Z. Wang, “pRedis: Penalty and locality aware

memory allocation in redis,” in Proceedings of the ACM Symposium on Cloud

Computing, ser. SoCC ’19. New York, NY, USA: Association for Computing

Machinery, 2019, p. 193–205.

[71] Redis. (2021) Hiredis. [Online]. Available: https://github.com/redis/hiredis

[72] D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading: Practical

power management for enterprise storage,” ACM Trans. Storage, vol. 4, no. 3,

nov 2008. [Online]. Available: https://doi.org/10.1145/1416944.1416949

[73] Twitter. (2020, Dec.) Twitter cache trace. [Online]. Available: https:

//github.com/twitter/cache-trace

[74] J. Yang, Y. Zhang, Z. Qiu, Y. Yue, and R. Vinayak, “Fifo queues are

all you need for cache eviction,” in Proceedings of the 29th Symposium

on Operating Systems Principles, ser. SOSP ’23. New York, NY, USA:

Association for Computing Machinery, 2023, p. 130–149. [Online]. Available:

https://doi.org/10.1145/3600006.3613147

143

http://download.redis.io/releases/
http://download.redis.io/releases/
https://github.com/leverich/mutilate
https://github.com/leverich/mutilate
https://github.com/redis/hiredis
https://doi.org/10.1145/1416944.1416949
https://github.com/twitter/cache-trace
https://github.com/twitter/cache-trace
https://doi.org/10.1145/3600006.3613147


[75] Intel. (2024, March) Intel multi-tier cachelib. [Online]. Available: https:

//github.com/intel/CacheLib

[76] Meta. (2024, May) Cachelib - pluggable caching engine to build and scale high

performance cache services. [Online]. Available: https://cacheLib.org

[77] S. L. Andi Kleen. (2024, May) numactl. [Online]. Available: https:

//github.com/numactl/numactl

[78] S. McAllister, B. Berg, J. Tutuncu-Macias, J. Yang, S. Gunasekar, J. Lu,

D. S. Berger, N. Beckmann, and G. R. Ganger, “Kangaroo: Caching billions

of tiny objects on flash,” in Proceedings of the ACM SIGOPS 28th Symposium

on Operating Systems Principles, ser. SOSP ’21. New York, NY, USA:

Association for Computing Machinery, 2021, p. 243–262. [Online]. Available:

https://doi.org/10.1145/3477132.3483568

[79] K. Lee, S. Kim, J. Lee, D. Moon, R. Kim, H. Kim, H. Ji, Y. Mun, and Y. Joo,

“Improving key-value cache performance with heterogeneous memory tiering: A

case study of cxl-based memory expansion,” IEEE Micro, pp. 1–11, 2024.

[80] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Bench-

marking cloud serving systems with ycsb,” in Proceedings of the 1st ACM Sym-

posium on Cloud Computing, ser. SoCC ’10. New York, NY, USA: ACM, 2010,

pp. 143–154.

144

https://github.com/intel/CacheLib
https://github.com/intel/CacheLib
https://cacheLib.org
https://github.com/numactl/numactl
https://github.com/numactl/numactl
https://doi.org/10.1145/3477132.3483568


[81] Intel. (2024, May) Intel® vtune™ profiler - find and fix performance

bottlenecks quickly and realize all the value of your hardware. [On-

line]. Available: https://www.intel.com/content/www/us/en/developer/tools/

oneapi/vtune-profiler.html

[82] R. Labs. (2020, May) redis. [Online]. Available: https://redis.io

[83] F. Olken, “Efficient methods for calculating the success function of fixed-space

replacement policies,” Lawrence Berkeley Lab., CA (USA), Tech. Rep., 1981.

[84] A. Lagar-Cavilla, J. Ahn, S. Souhlal, N. Agarwal, R. Burny, S. Butt, J. Chang,

A. Chaugule, N. Deng, J. Shahid, G. Thelen, K. A. Yurtsever, Y. Zhao, and

P. Ranganathan, “Software-defined far memory in warehouse-scale computers,”

in Proceedings of the Twenty-Fourth International Conference on Architectural

Support for Programming Languages and Operating Systems, ser. ASPLOS ’19.

New York, NY, USA: Association for Computing Machinery, 2019, p. 317–330.

[Online]. Available: https://doi.org/10.1145/3297858.3304053

145

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://redis.io
https://doi.org/10.1145/3297858.3304053

	DYNAMIC MEMORY MANAGEMENT FOR KEY-VALUE STORE
	Recommended Citation

	Contents
	List of Figures
	List of Tables
	Preface
	Acknowledgments
	Abstract
	Introduction
	Motivation and Research Problem
	Research Contributions
	Dissertation Organization

	Background And Related Work
	Miss Ratio Curve (MRC)
	Random Sampling Replacement
	K-LRU Policy
	Impacts of Sample Size K

	MRC Modeling
	Stack Algorithms
	Spatial Sampling

	Memory Partitioning
	Tiered Memory Management (TMM)
	Hardware-based TMM
	Software-based TMM
	Memory Usage Profiling
	Memory Migration Techniques
	Compute Express Link (CXL) Memory Sharing
	State-of-the-Art TMM Designs


	Dynamically Configuring LRU Replacement Policy in Redis
	DLRU System Design
	Miniature Cache Simulation
	Miss Latency and Eviction Process Overhead
	DLRU Cost Model

	Experimental Evaluation
	Experimental Setup
	System Configuration
	Workloads

	Miss ratio
	Overall Throughput
	Uniformly-Sized MSR Workloads
	Non-Uniformly-Sized MSR Workloads
	Synthetic Two-Phase Workload

	Sensitivity
	DLRU Overhead
	Space Overhead
	Time Overhead


	Chapter Summary

	Memory Partitioning for Multi-Tenant K-V Store
	kRedis System Design
	Merged MRC
	Memory Partitioning
	Efficient Random Sampling Eviction Design
	Implementation 

	Experimental Evaluation
	Experiment Setup
	Workloads
	Access Latency
	4-Tenant Case Study
	15-Tenant Case Study
	Real Back-End Database Case Study

	Impact of Memory Size
	Throughput
	Tail Latency
	Time and Space Cost
	kRedis vs DLRU
	Single-Tenant Case Study
	Multi-Tenant Case Study


	Chapter Summary

	Tiered Memory Management for Multi-Tenant K-V Store
	sdTMM System Design
	Item Admission and Eviction
	Insertion Point Design
	Proactive Memory Collection
	Data Migration
	Item Hotness Identification
	Background Promotion
	Background Demotion
	Background Eviction

	Multi-Tenant Memory Partitioning
	Implementation

	Experimental Evaluation
	Hardware Platform
	Software Platform
	Workloads
	Throughput & Hit Rate
	Single-Tenant Case Study
	Multiple-Tenant Case Study
	Phase-Changing Case Study
	Phase-Changing & Memory Partitioning Case Study

	Impact of Fast-Tier Memory Size
	Tail Latency
	Space and Time Cost

	Chapter Summary

	Conclusion
	Contributions
	Future Work

	References

