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Abstract 

In this research, I explore the distribution, condition, and carbon stocks of peatlands in 

the Colombian Andes. High mountain peatlands in Colombia, usually found within the 

páramos, face significant ecological challenges. Although Law 1930 (2018) mandates 

sustainable páramo management, it does not prohibit peatland disturbance. Undisturbed 

peatlands act as long-term carbon sinks, but their degradation can convert them into 

greenhouse gas sources. The lack of comprehensive national peatland mapping hampers 

effective environmental management and policy formulation. I aim to create a national-

scale peatland map, assess peatland distribution, quantify degraded pasture peatlands, and 

report preliminary soil carbon stocks. Additionally, I compared classification results at 

subregional, regional, and national scales to determine the optimal approach for mapping 

peatlands across Colombia. Using a combination of extensive ground truthing and remote 

sensing products, I mapped approximately 4.7 million ha. These products are obtained 

from Sentinel-2 multispectral imagery, Sentinel-1 and ALOS PALSAR Synthetic 

Aperture Radar data, and Shuttle Radar Topography Mission data. These were used as 

inputs to a Random Forest machine learning classification algorithm to classify land use 

and land cover into 17 distinct classes, including five peatland classes. Results indicate 

that peatlands occupy 224,848 ha (± 19,244) to 250,306 ha (± 19,100), representing 5.2-

5.73% of the mapped area. Among these, 13-15% are classified as pasture peatlands, 

highlighting significant human disturbance. Despite 51% being within protected areas, 

they often lack adequate protection, leading to substantial greenhouse gas emissions and 

water storage disruption. Scaling up carbon analysis, I estimate that peatlands above 2750 

m may store 366 to 407 Tg of soil carbon. Comparing our three national maps, created by 

combining classification results at different scales, allowed us to identify areas needing 

further ground truthing to improve future national peatland maps. Discrepancies among 

our three maps are primarily located in shallow peat areas or transitional zones between 

peatlands and other land classes. These findings underscore the critical role of peatlands 

and mountain ecosystems in regional carbon storage and emphasize the importance of 

integrating peatlands into conservation and management practices to prevent further 

degradation and mitigate climate change impacts. 
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1 Introduction 

Peatlands cover only 3-4% of the world’s land surface but store one-third of global soil 

carbon, estimated at 450,000 to 650,000 million tons (Mt) (UNEP, 2022). Undisturbed 

peatlands act as long-term net carbon sinks, but degradation can convert them into net 

sources of greenhouse gases (GHG) estimated at over four percent of human-caused 

emissions (UNEP, 2022). However, this estimate is still uncertain since many areas have 

not been mapped for peatlands. Mapping not only reveals the distribution of peatlands, 

but also helps estimate soil carbon stocks and allows evaluation of their potential risk of 

degradation (Chimner et al., 2023; Gutiérrez-Díaz et al., 2020; Hribljan et al., 2015; 

Hribljan et al., 2016). This has led to worldwide initiatives to map peatland (Gumbricht et 

al., 2017; Melton et al., 2022; UNEP, 2022; Xu et al., 2018) reflecting their importance 

for climate change mitigation and conservation efforts of these ecosystems. While global 

peatland mapping efforts have made significant progress, gaps persist due to a range of 

challenges in accurately mapping peatlands. 

The Global Peatland Assessment 2.0 (GPA2) offers the most updated overview of the 

distribution and status of peatlands globally, providing the most comprehensive global 

peatland map to date, the Global Peatland Map 2.0 (GPM2) ) (Greifswald Mire Centre, 

2022; UNEP, 2022). This map has identified 500 million ha of peatlands worldwide, 

predominantly distributed in Asia (33%), North America (32%), Latin America and the 

Caribbean (13%), Europe (12%), and Africa (8%). The Global Peatland Assessment 

highlights that 88% of existing peatlands are conserved. However, if GHG emissions 

from drained and degraded peatlands persist at the current rate until 2100, their impact on 

the global emissions budget will constitute 41% of the emissions needed to keep global 

warming below 1.5°C (UNEP, 2022). This highlights the importance of addressing the 

significant data gaps and challenges in peatland conservation as new peatland mapping 

methods arise. 

The GPM2 along with other global peatland mapping efforts (Gumbricht et al., 2017; 

Melton et al., 2022; UNEP, 2022; Xu et al., 2018) still has numerous data gaps. In many 

countries, peatland areas are underestimated. This is often due to the small size of 

peatlands, incomplete national-scale data, or ineffective classification models in regions 

with unique climate and topographic conditions.  

Specifically, in Latin America and the Caribbean (LAC), mapping effort predominantly 

focuses on larger and lower elevation peatlands. This focus leads to a systemic 

underrepresentation of mountain peatlands, particularly in the northern Andes. For 

instance, the GPM2 estimates that only 2% of peatlands mapped in LAC are located over 

tropical mountain systems (Greifswald Mire Centre, 2022).  Other global studies have 

failed to map any peatlands in the Andes due to model limitations in capturing mountain 

peatlands (Gumbricht et al., 2017; Melton et al., 2022; Xu et al., 2018). However, recent 

regional studies in the northern Andes, covering areas between 250,000-400,000 ha, 

reveal that peatlands might constitute 6.3%-18% of these regions (Battaglia et al., 2024; 

Chimner et al., 2019; Hribljan et al., 2017). This suggests a substantial underestimation of 
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Andean peatland coverage in global assessments, emphasizing the need for more 

dedicated and accurate mapping efforts. 

These peatlands, play a crucial role in the regional carbon budget due to their significant 

peat deposits (Chimner et al., 2023; Cooper et al., 2015; Hribljan et al., 2015; Hribljan et 

al., 2024; Hribljan et al., 2016). The humid climate and unique topography of these areas 

promote peat accumulation, typically occurring within poorly drained valleys and 

geomorphological depressions rather than on mountain slopes (Cooper et al., 2019). 

These peatlands are characterized by dense soils, composed of a mix of mineral 

sediments and organic matter from geologically active basins (Cooper et al., 2019; 

UNEP, 2022).  In some cases, they produce more organic carbon than peatlands at higher 

latitudes and can reach depths of up to 11 m (Cooper et al., 2015; Hribljan et al., 2016). 

Additionally, the high-water retention capacity of Andean peatlands is vital for water 

regulation. They maintain water flow and regulate runoff, adapting to varying rainfall 

intensities and environmental changes (Hofstede et al., 2023; Lazo et al., 2019; Mosquera 

et al., 2015). This function is particularly important for ensuring a consistent water supply 

during both dry and wet periods, safeguarding lower elevation communities from climate 

hazards like El Niño (Galvis et al., 2021; Hofstede et al., 2023). 

Mapping peatlands in the northern Andes presents significant challenges. Accurate 

mapping is difficult because of small size of individual peatlands, high diversity of 

wetland types, and high similarity of vegetation in peatland and non-peatland areas 

(Battaglia et al., 2024; Bourgeau-Chavez et al., 2018; Hribljan et al., 2017). Persistent 

cloud cover and a lack of comprehensive field data also hinder large-scale mapping 

(Bourgeau-Chavez et al., 2018; Hribljan et al., 2017; UNEP, 2022; Xu et al., 2018).  

Despite these challenges, regional efforts in páramos of Ecuador, Colombia (Battaglia et 

al., 2024; Hribljan et al., 2017), as well as the puna of Peru (Chimner et al., 2019) have 

advanced mountain peatland mapping. These mapping efforts used a combination of field 

ground truthing, topographic information, multispectral imaging, and Synthetic Aperture 

Radar (SAR) for their classification. Multispectral imagery is crucial for classifying 

vegetation types, but it faces challenges in distinguishing between wetland and upland 

areas within páramos due to similar vegetation composition. SAR data has been effective 

in mapping wetlands, with both L and C band sensors playing a key role in detecting soil 

moisture and differences in vegetation structure (Bourgeau-Chavez et al., 2015; 

Bourgeau-Chavez et al., 2018). Temporal analysis of SAR imagery allows for comparing 

conditions across wet and dry seasons, distinguishing between peatlands, which have 

stable water tables in both wet and dry seasons, and mineral wetlands or other upland 

areas, which do not (Battaglia et al., 2024). Additionally, a digital elevation model 

(DEM) is employed to obtain topographic data. While elevation data is not used directly 

for classification, it proves useful in generating topographic indexes and slope layers. 

These are particularly valuable in peatland detection, allowing for the differentiation 

between flat terrains, valleys and depressions, and convex surfaces, which is instrumental 

in classifying peatlands. 
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High mountain peatlands in Colombia, located within the páramos—a biome between the 

Andean treeline and the periglacial zone—face significant ecological challenges. 

Although Colombia's Law 1930, enacted in 2018, mandates the sustainable management 

and protection of páramos by restricting activities to low-impact agriculture, it does not 

specifically prohibit peatland disturbance. This oversight leads to substantial greenhouse 

gas emissions and disrupts water storage and supply (Benavides, 2014; Krause et al., 

2021; Planas Clarke et al., 2018; Roucoux et al., 2017). Despite 51% of páramo regions 

being under a category of protection, 15% have undergone significant transformation of 

its natural landscape due to the economic activities of about 80,000 páramo inhabitants 

who rely primarily on grazing, and potato and onion farming (DANE, 2020; Galvis 

Hernández & Ungar Ronderos, 2021; Galvis et al., 2021). These activities often involve 

draining peatlands to simplify water access or utilize organic-rich soils in flatter areas, 

which in turn reduces the agricultural labor required in mountainous terrains. Quantifying 

the extent and degradation of peatlands converted to pasture is crucial for identifying 

priority areas for conservation and restoration. Since these areas can rapidly release 

carbon into the atmosphere, detailed assessments of their size and condition are 

necessary.  

The absence of comprehensive peatland mapping at a national level in Colombia hampers 

effective environmental management and policy formulation. This gap significantly 

affects land use planning, conservation efforts, and climate change mitigation strategies. 

Addressing this need, the main objective of this research is to create a national map to 

evaluate the abundance and distribution of peatlands across the Colombian páramos. 

With this map our goal is to provide insights into the state of peatlands, allowing us to 

estimate the carbon stocks stored in these ecosystems in the Andes and identify which 

peatlands are degraded or at potential risk of degradation. 

In addition to these goals, this study addresses a technical question regarding our 

mapping approach: What differences emerge in peatland classification results and 

distribution when using different spatial extents classification results for our study area, 

and is there a most effective spatial extent for mapping peatlands in Colombia? The 

spatial extent refers to the size of the geographic areas used in combination with the 

corresponding training data when running our classifier. To address this question, we 

generated three maps: National, Regional, and Subregional. The Subregional map 

combines the classification results from independent runs on four subregions of the study 

area. The Regional map merges the results from independent runs on two regions, each 

formed by combining two of the initial subregions. The National map represents the 

classification result from an independent run on the entire study area. 

By addressing these goals, we aim to provide a comprehensive tool that will serve 

policymakers, local authorities, community leaders, land managers, and environmental 

organizations. This tool will facilitate informed decision-making in land management, 

conservation, and restoration efforts in the páramo peatlands, ensuring their protection 

and sustainable management. 



12 

2 Methodology 

2.1 Study Area 

Colombia's high mountain peatlands are found across the páramos, covering the isolated 

Sierra Nevada de Santa Marta and the Eastern, Central, and Western Andean Mountain 

ranges, also known as cordilleras (Figure 1). These cordilleras, branching off from the 

southern Andes near the Ecuador border, are shaped by the subduction of the Nazca Plate 

beneath the South American Plate, a process that, along with volcanic activity, glacier 

movement, and erosion, has created the current landscape. These geological features, 

combined with the páramos' cold, humid climate, create optimal conditions for peatland 

formation. Humid air currents from the oceans and the Amazon, shaped by the 

Intertropical Convergence Zone, deliver abundant rainfall, particularly to windward 

slopes (Hofstede et al., 2003). This results in a gradient of páramo environments, ranging 

from dry to superhumid, with annual precipitation varying from 600 mm to over 4000 

mm (Rangel-Ch, 2000). Such climatic variability, alongside significant daily temperature 

fluctuations, supports the biodiversity and the structure of páramo ecosystems.  

This research was conducted on approximately 4.7 million ha in the northern Andes, 

above an elevation of 2750 masl and extending 30 km beyond Colombia's national 

borders (Figure 1). This geographical selection criteria serves multiple research 

purposes. It includes continuous páramo ecosystems that Colombia shares with 

Venezuela (Páramo de Tamá and La Serranía del Perijá) and Ecuador (Páramo de Chiles 

and the Reserva Ecológica El Ángel), contains all known páramo areas extending down 

to an elevation of 2750, and covers disturbed peatlands which, despite agricultural 

conversion into pastures and croplands, can still be found at elevations above 2 750 m. A 

few isolated small polygons equal to or less than 200 ha were removed from the study 

area, as they predominantly consisted of small ridges or mountain tops, mostly 

characterized by forested or disturbed land cover with no peatlands. Moreover, a portion 

of the Southeastern cordillera (57,400 ha, or 1.2 % of the area above 2750 m) was 

omitted from the analysis owing to the scarcity of cloud-free images and the logistic 

challenges to obtaining field data (Figure 1). 

Building on the delineated study area, this research undertakes a multi-level spatial 

extend classification assessment. Three classification maps are produced at different 

spatial extends levels: Subregional, Regional, and National. The Subregional extent 

divides the area into four specific subregions: the Northeastern Cordillera (NEC), the 

Southeastern Cordillera (SEC), Nariño-Putumayo (NAR), and the combined Central and 

Western Cordilleras (CC_WC) (Figure 1). Intentional overlaps between NEC and SEC, 

as well as NAR and CC_WC, are designed to enhance models by reusing training and 

validation data in these overlapping areas. The Regional extent merges these pairs of 

subregions into two broader areas: NEC_SEC and NAR_CC_WC. Meanwhile, the 

National extent covers the entire study area, including the Sierra Nevada of Santa Marta 

(SNS), where field data collection was precluded by logistical challenges.  
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Figure 1. Study area map. Subregional extents: Northeastern Cordillera (NEC), 

Southeastern Cordillera (SEC), Nariño-Putumayo (NAR), and Central and Western 

Cordilleras (CC_WC). Striped areas show overlaps. Blue colors represents the Eastern 

Cordillera region; beige colors represents the Nariño and Central/Western Cordilleras 

region. The Sierra Nevada de Santa Marta and Perijá regions in the north were included 

in the National extent but had limited analysis due to insufficient ground truth data. 

Green points mark ground truth data collection sites. 
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2.2 Data Collection 

To create the classification maps, it was necessary to have two types of data sources: the 

training and validation polygons for the model, and our predictive variables, which 

consist of a set of images we processed from various remote sensors (Figure 2).  

 

Figure 2. Peatland mapping methods diagram. Integrated mapping methodology, 

utilizing field data, multiple remote sensor images, and the Random Forest Algorithm for 

accurate image classification. 

2.2.1 Training and Validation Polygons 

For the creation of classification maps, a shapefile containing polygons for training and 

validation was produced. These polygons, delineated on the input image stack, were used 

to select pixels that represent sites with accurately known land use and land cover 

(LULC) classes. The dataset comprises 4242 polygons covering the entire study area, 

drawn from diverse sources of georeferenced information that provided specifics on 

location and land cover. Of these, 2240 polygons were drawn using image interpretation 

of high-resolution imagery from Google Earth, Google Street View, or a selected 

combination of Sentinel 2 bands within our image stack, enhancing the interpretation of 

LULC classes. This approach facilitated the identification of various LULC classes as 

shown in Figure 3. However, the reliance on satellite imagery for initial classification 

had limitations, especially in accurately distinguishing mineral wetlands and peatland 

types and refining other LULC classes, which led to the necessity of field verification. 

A total of 2002 polygons were delineated with field verification data obtained from 

multiple sources. Our primary source of field verification consisted of extensive field 

visits conducted from April 2019 to March 2023. Secondary sources included 

interpretation of drone images taken during these field visits, a review of peatland 
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literature offering georeferenced site descriptions, a field database from Ecuadorian 

colleagues involved in peatland mapping (specifically from the Reserva el Angel, which 

borders the páramo of Chiles in Colombia), and personal communications with experts 

possessing firsthand knowledge of peatlands within the study area.  

 

Figure 3. Field data polygons vs high resolution interpretation Polygons. 

2.2.1.1 Primary Field verification methods 

Over the course of three years, our field visits necessitated an adaptable and evolving 

approach to site selection, driven by the unique logistical requirements essential for 

maintaining safe working conditions for our field crew. This study used the approach of 

(Battaglia et al., 2024) where we created a preliminary weakly supervised classification 

in which potential wetland and upland areas were classified using visual analysis of aerial 

and satellite imagery from Google Earth, identifying likely peatland and upland points. 

These points were buffered by 20 m to form training polygons for a Random Forest 

classifier (Breiman, 2001), incorporating remote sensing data and imagery from Landsat 

8 and Sentinel-1 C-band SAR via Google Earth Engine (GEE) to create classified maps 

containing two classes: Potential wetlands and Uplands. Subsequently, potential field 

sites were determined through a random sampling strategy constrained by accessibility 

from roads using an Open Street Maps layer. This approach, designed to overcome 

terrain challenges, prioritized potential wetland areas to ensure a representative sample. 

Additionally, we avoided areas deemed unsafe by local authorities because of political 

unrest or crime.  



16 

After the first round of sampling described above, for each subregion visited, we planned 

field trips to include not only protected areas (National Parks) but also disturbed páramos 

outside of protected areas. We collaborated with park rangers and local guides to identify 

accessible and safe areas that contain diversity of wetlands and could be covered in a 

day's work, regardless of road proximity. We still generated random points as described 

above, but permitted minor field adjustments if the original points were unreachable or 

excessively time consuming to reach, opting for sites with similar apparent LULC 

classes. To ensure a diverse dataset, we conducted a targeted search for disturbed 

peatlands and wetlands outside protected areas. This involved utilizing our preliminary 

classification maps, aerial drone surveys, and consultations with local guides to identify 

potential sites. For navigation and data collection in the field, we utilized the Avenza 

Maps mobile application, which enabled us to use georeferenced maps (created using the 

Imagery Basemap in ArcGIS Pro) to locate these random points accurately. 

At each site, we identified the dominant vegetation and designated a preliminary LULC 

class. We extracted a 40 cm soil core using a side cutting peat corer, segmented it into 10 

cm intervals, and stored them in Zip-lock bags. In peatlands, we recorded additional 

measurements like peat depth, pH, and specific conductivity. We logged all data into the 

Epicollect 5 mobile application. 

We analyzed the soil samples at The Pontificia Universidad Javeriana's Ecosystems and 

Climate Change Lab. First, we dried them at 65 °C for 24 hours to ascertain their dry 

bulk density. We then determined the organic matter (OM) and carbon percentage (C%) 

through loss on ignition (LOI) at 550 °C for 5 hours (Soil Survey Staff, 2014). We 

calculated the proportion of organic matter using the formula: OM = (DW - IW) / DW, 

where DW is the oven-dry weight (g) before ignition, and IW is the weight (g) after 

ignition. Assuming the carbon content of dry mass to be 48% of the incinerated organic 

matter (Benavides, 2014), we estimated the carbon percentage as %C = 0.48 × OM. We 

determined the Bulk Density (g cm-3) (BD) by dividing the total dry weight (TW) (g) of 

each soil sample by the corer's volume (cm³). We determine soil carbon content in Mg 

per hectare for every 10 cm segment with the formula: Carbon content (Mg ha-1) = BD 

(g cm-3) × %C × 10. To obtain the total carbon content for the full 40 cm depth of the soil 

samples, we summed the carbon content results for each 10 cm segments.  

We performed a reclassification of LULC classes based on the carbon content of each 

soil sample, adhering to the specified definition of peatlands. For this study, peatlands are 

defined as organic soils that are saturated and contain more than 12% carbon within the 

first 40 cm of depth. It is essential that the carbon content in the 30-40 cm layer 

consistently exceeds 12% (Soil Survey Staff, 2015). When primary or secondary field 

data sources lacked soil carbon information, we utilized all available resources—

including photographs, vegetation composition, saturation levels, and expert 

consultations—to accurately align each field point with one of our predefined LULC 

classes, as outlined in Table 1.  
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Table 1. Land use and Land cover classes. 

Class level 1  Class level 2  Class level 3  Class description  

Open 

Water  
Open Water Open Water 

Permanently flooded water bodies with no 

dominant emergent or floating vegetation. 

Natural 

Wetland 

Areas 

Peatlands 

Woody/Shrubby 

Peatlands 

Poorly drained areas with organic soils >40 cm 

depth and C >12% in Histosols or 25% in 

Andisols, where woody species dominate (e.g., 

Hypericum spp., Diplostephium spp., Pentacalia 

spp.) and or shrubs (e.g., Chusquea spp.) 

Herbaceous 

Peatlands 

Poorly drained areas with organic soils (>40 cm 

depth and C >12% in Histosols or 25% in 

Andisols), characterized by a matrix dominated 

by herbaceous species. This includes grasses 

(e.g., Calamagrostis spp., Agrostis spp., 

Chusquea spp., Cortaderia spp.), sedges (e.g., 

Carex spp., Richosphera spp.), rushes (e.g., 

Juncus spp., Luzula spp.), ferns (e.g.,Blechnum 

spp.), and herbs (e.g., Geranium spp., Pernettya 

spp., Puya spp.). While shrubs (e.g. 

Diplostephium spp. and Hypericum spp.) may be 

present, they are not the dominant vegetation.  

Cushion 

Peatlands 

 Poorly drained areas with organic soils (>40 cm 

depth and C >12% in Histosols or 25% in 

Andisols), dominated by cushion-forming 

vegetation such as Distichia muscoides and 

Plantago rigida. 

Pasture 

Peatlands 

Poorly drained areas with organic soils (>40 cm 

depth and C >12% in Histosols or 25% in 

Andisols), characterized by a dominance of 

naturalized herbaceous species (e.g. Cenchrus 

clandestinum, Lolium perenne, Anthoxanthum 

odoratum, and Trifolium spp.) These areas may 

also present native species of grasses, sedges, 

ferns, and herbs. Typically, these areas exhibit 

evidence of ditches. 

Sphagnum 

Peatlands 

Poorly drained areas with organic soils (>40 cm 

depth and C >12% in Histosols or 25% in 

Andisols), dominated by Sphagnum spp. mosses. 

Mineral 

Wetlands 

Wet Meadows 

Areas with evidence of saturation and variable 

water table which contain mineral soils (C <12%)  

with less than 40 cm in depth, and may be over 

bedrock. Dominated by herbaceous vegetation 

and/or mosses. 

Woody 

Wetlands 

Areas with evidence of saturation and variable 

water table which contain mineral soils (C <12%)  

with less than 40 cm in depth. Dominated by 

woody species like Escallonia myrtilloides. 
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2.2.2 Remote sensing data 

In our classification strategy, we combined multidate, multi-sensor radar and optical 

imagery with topographic information from a DEM (Table 3), a method proven effective 

for accurately identifying peatlands in the Andes (Battaglia et al., 2024; Bourgeau-

Chavez et al., 2018; Chimner et al., 2019; Hribljan et al., 2017). This approach aims to 

identify variables such as hydrologic regimes, landforms, soil moisture, and vegetation 

composition and structure, enabling us to distinguish between peatland types and other 

wetland or upland classes (Bourgeau-Chavez et al., 2018). We use Sentinel-2 

multispectral imagery to provide the classifier with information on vegetation types. 

However, distinguishing between some upland and wetland LULC classes can be 

challenging due to their similar spectral signatures. To address this, we integrate SAR 

imagery from Sentinel-1 and PALSAR, which supplied additional insights into the 

hydrology and vegetation structure of all LULC classes. Additionally, TPI and slope data, 

Seminatural 

and Natural 

Upland 

Areas 

Natural 

Vegetated 

Upland 

Areas 

Herbaceous 

Uplands 

Areas with non-saturated soils predominantly 

featuring herbaceous species, including grasses 

(e.g., Calamagrostis spp., Agrostis spp., Festuca 

spp.), ferns (e.g., Jamesonia spp.), and herbs 

(e.g., Geranium spp., Pernettya spp., Lupinus 

spp.). Shrubs such as Diplostephium spp. and 

Hypericum spp. may occur but do not dominate 

the landscape. Espeletia spp., when prevalent, are 

classified within this group. 

Forests 

Native Andean and high Andean woody 

vegetation exceeding 6 m in height (e.g. Miconia 

spp., Cedrela spp. Polylepis spp. Quercus spp.) 

Shrublands 

Dominated by native páramo woody vegetation 

shorter than 6 m (e.g., Pentacalia spp., 

Hypericum spp., Diplostephium spp., and Aragoa 

spp.) 

Natural 

Non-

Vegetated 

Surfaces 

Bare 

soil/rock/sand 

Areas with minimal or no vegetation, 

predominantly characterized by rocks, sand, 

gravel pits, or quarries. Gravel roads may appear 

in this category. 

Snow/Glaciers Areas covered with ice or snow. 

Anthropo-

genic Land 

Uses 

Productive 

Territories 

Croplands 

Agricultural lands where crops are cultivated; in 

the páramo regions, potatoes and onions are the 

most common crops. 

Pastures 
Lands dedicated to grazing or cultivating grasses 

for livestock feed 

Forest 

Plantations 

Areas designated for timber production. 

Homogeneous tree plantings of non-native 

species such as Pinus spp. and Eucalyptus spp. 

Urban areas Urban Areas 

Areas with any man-made infrastructure (e.g. 

buildings, roads) that is recognizable from 

satellite images with a spatial resolution of 10m 
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extracted from the SRTM DEM, are crucial for distinguishing between flat terrain, 

valleys, and mountain peaks, playing a key role in the accurate classification of peatlands. 

Table 2. Summary of Remote Sensing Data Sources, Spatial Resolutions, Bands, and 

Availability Periods Used in the Study. 

 

2.2.2.1 Optical Imagery – Sentinel 2 Multispectral Imagery 

We utilized Sentinel-2 surface reflectance data, pre-processed for atmospheric 

corrections, to capture multispectral imagery across the páramo. Sentinel-2's twin 

satellites provide wide coverage at high resolutions, capturing data in 13 spectral bands to 

offer detailed insights with a global revisit frequency of five days. This capability is 

particularly crucial given the challenge of persistent cloud cover in these regions. To 

mitigate cloud interference, a two-step cloud filtering process was executed through 

GEE. We initially filtered images to select those with less than 80% cloud cover, 

followed by the application of a cloud probability mask to further exclude pixels with a 

greater than 10% likelihood of clouds. Additionally, an edge masking function was used 

to eliminate pixels potentially affected by cloud shadows. 

Following cloud masking, we calculated the Normalized Difference Vegetation Index 

(NDVI) from filtered images using the Red and Near-Infrared (NIR) bands. The formula 

NDVI = (NIR - RED) / (NIR + RED) was applied to all filtered and cloud-masked 

Remote Sensor 

Spatial 

Resolution  Bands Date ranges 

Sentinel-1 SAR 

GRD: C- band 
10 m 

Mean and standard 

deviation of VH and 

VV polarizations, for 

wet and dry seasons. 

2015-2022; Dry (D) and Wet (W) seasons 

vary by subregion: 

NEC: D->Dec-Feb; W-> Mar-May 

SEC: D->Dec-Jan; W-> Apr-May 

CC_WC: D->Jan – Feb; W-> Oct - Nov 

NAR: D->Dec-Jan; W-> Apr-May 

SNS: D->Aug; W-> Apr - May 

Sentinel 2- 

Multispectral 

Instrument 

10 m 

(visible/NIR), 

20 m (Red 

Edge/SWIR) 

Blue, Green, Red, Red 

Edge 1-4, NIR, SWIR 

1-2, NDVI 

Jan 2020-Dec 2022 for all subregions 

PALSAR L-

band 
20 m 

Mean, coefficient of 

variance, and standard 

deviation of HH and 

HV polarizations. 

May-Oct, 2006-2011 

Shuttle Radar 

Topography 

Mission 

(SRTM) 

30 m 

Topographic Position 

Index (TPI) for 

neighborhoods of 20 

and 50 pixels, and 

Slope. Bands derived 

from a DEM 

Data from the mission flown Feb 11-22, 

2000 (Farr et al., 2007). 
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images. For each pixel, the median value across the selected period was used for the final 

image composite. This selection was refined through visual assessments to optimize the 

dataset, particularly in cloud-prone areas, by adjusting the date ranges from 2019 to 2023 

for each subregion. However, it is important to note that not all clouds were eliminated 

from the final composite (estimated 0.2% residual cloud cover), introducing some noise 

into the classification process for each subregion. We generated a total of 11 bands, 

shown in Table 2. 

2.2.2.2 Synthetic Aperture Radar – Sentinel 1 (C-band) and ALOS PALSAR (L-band) 

Synthetic Aperture Radar (SAR) imagery, generated by active sensors, can penetrate 

clouds, hence offering detailed imagery under all weather conditions, both day and night. 

In our study, we utilize SAR imagery from Sentinel-1's C-band and ALOS PALSAR's L-

band to accurately map wetlands in páramos. The capability of SAR to penetrate 

vegetation canopies and interact with the ground surface is essential for detecting 

wetlands. These include variations in vegetation, structure, and moisture within both the 

canopy and ground layers. Our methodology allows for the clear differentiation between 

wetland and upland areas, as well as the identification of distinct wetland types, 

distinguished by their unique vegetation structures and hydrological patterns. 

Given the predominance of short vegetation in páramos, the C-band's ability to penetrate 

a sparse or low-stature vegetation canopy and detecting soil moisture offers significant 

advantages. The Sentinel-1 mission, equipped with a dual-polarization C-band SAR 

instrument operating at a wavelength of approximately 5.6 cm, corresponding to a 

frequency of about 5.4 GHz, offers Ground Range Detected (GRD) scenes that are 

processed to yield calibrated and ortho-corrected products. In Google Earth Engine, the 

Sentinel-1 data undergoes preprocessing steps including thermal noise removal, 

radiometric calibration, and terrain correction, to ensure the data accurately reflect 

surface backscatter while accounting for topographical variations. All available Sentinel-

1 images from 2015-2022 were converted from decibels (how GEE stores the images) to 

linear scale allowing for image compositing by obtaining the mean and standard 

deviation for all VV and VH polarization during the driest and wettest months. Although 

the images are not speckle filtered, image compositing effectively serves as temporal 

multi-looking, thus eliminating the need for additional spatial filtering (Battaglia et al., 

2024). Driest and wettest months selection was informed by a decade of precipitation 

data from IDEAM's meteorological stations, all located above 2750 m, to accurately 

reflect the climatic conditions of each subregion (Table 2). As a result, we were able to 

process 8 bands for our classification analysis (Table 2).  

In parallel to the C-band analysis, we utilized L-band SAR imagery from the ALOS 

PALSAR, operating at a longer wavelength of 24 cm. This characteristic enhances its 

ability to penetrate denser biomass, such as shrubby or woody vegetation found in 

páramos and sub-páramos, allowing for more effective discrimination of denser 

vegetation cover types that could also be considered wetlands. High resolution 

Radiometrically Terrain Corrected (RTC) data were downloaded from the NASA Alaska 

Satellite Facility. We selected Fine Beam Dual (FBD) polarization data, focusing on HH 
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and HV polarizations. Given the limited availability of images, we were only able to 

obtain images between the months of May to October (2006 – 2011) which mostly 

correspond to dry season. To mitigate speckle effects, we applied a 5x5 median filter 

before temporal averaging, using Python scripts for preprocessing and analysis. Mean, 

standard deviation and coefficient of variance was calculated for each polarization over 

all available images, resulting in a total of 6 bands (Table 2). 

2.2.2.3 . Topographic Data – Slope and Topographic Position Index 

The Shuttle Radar Topography Mission (SRTM) Version 3 product provides a digital 

elevation model (DEM) at a 1 arc-second (~30 m) resolution, enhanced by void-filling 

with data from ASTER GDEM2, GMTED2010, and NED for improved global coverage. 

Our topographic analysis involved calculating the Slope and the Topographic Position 

Index (TPI) from the SRTM DEM using Google Earth Engine. The Slope layer, which 

indicates the terrain's steepness in degrees, is crucial for identifying potential 

hydrological dynamics. For the TPI, calculated at neighborhoods of 20 and 50 pixels, 

approximately 600 m and 1500 m respectively, we evaluated each cell's elevation relative 

to the average elevation of its surrounding cells. This method assigns positive values to 

cells that are higher than their average surroundings and negative values to those that are 

lower, providing a detailed representation of the landscape. It helps in identifying 

potential wetland areas by delineating elevated and depressed terrains. We ultimately 

obtain three topographic bands from this process. 

2.3 Classification Approach, Accuracy, and Congruency 

assessments 

For the classification approach and accuracy assessment, we integrated multispectral and 

radar data from Sentinel-1, Sentinel-2, and PALSAR, with SRTMGL1-derived 

topographic information into a unified image stack dataset, resampled to a spatial 

resolution of 10 m/pixel. This image stack served as the input for the Random Forest 

(RF) model, leveraging a comprehensive mix of variables to optimize model accuracy. 

Before running any classification, we calculated mean pixel values within our training 

and validation polygons of all the 28 bands of the image stack, carefully excluding 

outliers to minimize classification noise. Excluded outliers predominantly consisted of 

polygons that were drawn over areas affected by optical imagery disturbances, such as 

clouds, shadows, and fog. 

To train the classifier, we used polygons representing approximately 80% of the total 

training polygon area for each class, reserving the remaining 20% for validation 

purposes. This division into training and validation sets was conducted randomly for each 

subregion. However, we retained the same validation and training polygons for both 

Regional and National spatial extent classifications. For these classifications, we merged 

the training and validation polygons of subregions within the same region, and 

subsequently combined all for the National spatial extent classification. This strategy 

allowed for a more robust comparison of outputs across our final three maps. 
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The RF algorithm, selected for its proven effectiveness in wetland mapping (Bourgeau-

Chavez et al., 2017), processes the data through a series of decision trees based on 

random data subsets and training bands, with the final classification based on majority 

voting among the trees (Breiman, 2001). This approach is in line with established 

methodologies that ensure high accuracy in peatland ecosystem classification by utilizing 

RF with a combination of field-verified data and high-resolution imagery (Battaglia et al., 

2024; Bourgeau-Chavez et al., 2015; Bourgeau-Chavez et al., 2018; Bourgeau-Chavez et 

al., 2017; Bourgeau-Chavez et al., 2021; Chimner et al., 2019; Hribljan et al., 2017). We 

included all input variables in our peatland mapping, as past research indicates that 

variable importance rankings for the entire model may not reflect their significance for 

specific classes. Excluding variables deemed of low overall importance could remove 

crucial predictors for particular classes (Bourgeau-Chavez et al., 2021).  

Following the classification with the RF algorithm, we employed ESRI's 'Mosaic to New 

Raster' tool to combined corresponding classified sections of the Subregional and 

Regional maps . At the Subregional level, where overlaps occurred between NEC-SEC 

and CC_WC-NAR, we prioritized classifications from NEC and NAR due to their higher 

accuracy. Three maps for each spatial extent level were then our final product: Sub-

regional (SREG), Regional (REG) and National (NAT), including in the latter an area 

outside the ground-truth subregions from which we had no field data, the Sierra Nevada 

of Santa Marta and Perijá. 

We post-processed these three classification maps to improve their quality and accuracy. 

Using the ESRI’s majority filter, we refined our maps by adjusting each pixel's value to 

reflect the majority class among its eight neighbors, which improved accuracy but 

occasionally removed smaller features. To address misclassifications caused by noise in 

Sentinel-2 imagery, such as clouds, shadows, and spectral distortions, we made several 

targeted corrections: For areas classified as cushion peatlands below 3700 masl, we 

reclassified them by assigning values based on the majority within a 10x10 cell 

neighborhood. Although it is known that cushion peatlands in the country are typically 

found above 4000 masl (Benavides et al., 2023), we selected the 3700 masl limit due to 

field findings of dominant Plantago spp. peatlands around this elevation. We follow a 

similar approach for misclassified Glacier/snow pixels due to cloud pixels, replacing all 

glacier/snow pixels below 4500 (no glaciers found below this elevation in Colombia) and 

reassigned values based on the majority within a 20x20 cell neighborhood. Bare rock and 

urban areas are sometimes misclassified due to spectral similarities rock has with cement. 

Given the unlikelihood of significant human settlements over 4000 masl and the abundant 

bare rocks in periglacial zones, we corrected misclassifications as urban areas at these 

elevations by reclassifying them to bare rock class. Additionally, using the 

OpenStreetMap Road layer for Colombia, we buffered main roads by 3 m and rasterized 

this to 10-meter pixels, replacing these pixels into the map. 

For the validation phase, we specifically chose polygons that had been field-verified to 

ensure the robustness of our assessment process. Both producer's and user's accuracies 

were calculated to evaluate the model's performance (Congalton & Green, 2019). 

Producer's accuracy measures the proportion of correctly identified validation pixels for a 
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given class relative to the actual number of pixels belonging to that class, thereby 

determining the model's efficacy in accurately classifying pixel data. User's accuracy, on 

the other hand, assesses the proportion of correctly classified pixels for a class against the 

total classified as that class, including misclassifications, offering insight into the 

reliability of the model's classification accuracy for identified classes. 

We conducted a peatland congruency analysis to better understand the differences among 

our three final maps. We began by reclassifying peatland types into a single class with 

unique pixel values on each map. This reclassification allowed us to combine the three 

maps and assess overlaps in peatland areas. Using this method, we could easily identify 

areas of congruence across each pair or all three maps, as well as regions where no shared 

peatland classification exists. Following this, we separated areas where peatland 

classification coincided in all three maps. We generated three buffer areas of 1, 3, and 5 

cells, which we used as masks to extract peatland classifications from our original 

congruency map that fall within these buffered zones. This analysis helps us quantify if 

peatland areas classified by only one or two maps are adjacent to peatland areas where all 

three maps coincide. It also allows us to identify specific sectors where there is no 

adjacency, highlighting areas that may require further investigation and ground truthing 

to improve map accuracy. 

2.4 Adjusting Peatland Areas and Scaling Up Peatland C 

stocks 

To estimate the total carbon stocks in peatland classes, we utilized a stratified estimator 

for calculating cover area, following the methodology proposed by Olofsson et al. (2013). 

The area of peatlands determined by pixel counting may significantly differ from the 

actual area due to errors of omission and commission (Hribljan et al., 2017). Although it 

is not feasible to pinpoint the exact locations of these errors, the actual or adjusted area of 

each land cover class can be estimated using the error matrix and the proportion of each 

class in the map (Olofsson et al., 2013). This approach assumes a random, systematic, or 

stratified random sample of ground truth points. Our ground truth samples were collected 

through extensive field visits, primarily from our main field sites, using a stratified 

random sampling method. Additionally, targeted sampling was employed to ensure a 

comprehensive representation of various peatland types and conditions. To estimate total 

peatland carbon stocks, we used the páramos peatland average carbon content per 

hectare, as reported by Hribljan (2024), which includes the total depth of 16 cores 

obtained in the páramos of Ecuador and Colombia. This average carbon content was then 

multiplied by the total adjusted mapped area of each peatland class. 
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3 Results 

3.1 Mapping 

We mapped 17 LULC classes, including five peatland-specific classes— one of which 

identifies disturbed peatlands (pasture peatlands). Other classes include an open water 

class, two mineral wetland types, five semi-natural and natural upland areas, and four 

anthropogenic land use classes. 

To compare differences in spatial extent classification results, we generated three national 

maps: subregional (SREG), regional (REG), and national (NAT). The peatland areas 

(based on pixel counting) for the entire study area on these maps measured 221,825 ha 

(SREG), 215,023 ha (REG), and 187,280 ha (NAT), accounting for 4.8%, 4.7%, and 

4.1% of the total mapped area, respectively (Supplementary material, Table 8). Total 

areas for all classes within the Colombia national border are presented in Table 3. The 

results are presented as ranges representing the minimum and maximum values among 

our three maps. Herbaceous and woody/shrubby peatlands proved to be the most 

extensive peatland classes, representing 40-43% and 39-43% of all peatlands, 

respectively. Pasture peatland areas ranged from 13- 15% of the total peatland area. 

Sphagnum peatlands covered 2-3% of all peatland area. Cushion peatlands represented 

the least extensive peatland class, representing 1% of the total peatland area for all three 

maps. For the areas of all LULC classes, refer to Table 3. 

Pooled peatland producer's, peatland user's, and overall accuracies were consistently high 

across all three maps, with values between 92-94%, 87-88%, and 90-93%, respectively 

(Table 4). Notably, the Wet Meadow and Woody Wetlands classes exhibited lower 

accuracy, with producer's accuracy for Wet Meadows at 43-57% and user's accuracy at 

43-50%. Woody Wetlands' producer's accuracy varied between 17-54% and user's 

accuracy between 12-38%. Although some peatland type producer’s and user’s 

accuracies appear to be low, they mostly are confused with other peatland classes, hence 

the high overall peatland producer’s and user’s accuracies (see confusion matrices in 

Section A in the supplementary material).  

  



 

 

2
5

 

Table 3. Mapped areas within Colombia national borders (based on pixel counting) and adjusted areas (using a stratified 

estimator) with its respective margin error (95% CI) of LULC classes. Small differences in the total area of the maps are due to 

pixel variation at the edges, primarily resulting from resampling pixels (nearest neighbor) when generating the mosaics. We 

included the areas estimated in the Sierra Nevada de Santa Marta (SNS), however we did not calculate the adjusted area 

because we did not had any ground truthing in this region of the country.  

 

LULC Classes

Area 

(ha)

Area 

%

Adjuste Area 

(ha)

Adjusted 

Area (%)

Area 

(ha)

Area 

%

Adjuste Area 

(ha)

Adjusted 

Area (%)

Area 

(ha)

Area 

%

Adjuste Area 

(ha)

Adjusted 

Area (%)

Area 

(ha)

Area 

%

Open Water 19134 0.44% 19337 ± 254 0.44% 19230 0.44% 19823 ± 936 0.45% 18989 0.44% 19216 ± 260 0.44% 1708 0.92%

Woody/Shruby Peatlands 90932 2.08% 99134 ± 7685 2.27% 83877 1.92% 84955 ± 6451 1.95% 79939 1.83% 76952 ± 6547 1.76% 82 0.04%

Herbaceous Peatlands 78491 1.80% 89661 ± 4191 2.05% 85382 1.96% 116800 ± 6615 2.67% 68430 1.57% 103432 ± 5955 2.37% 391 0.21%

Cushion Peatlands 2802 0.06% 5804 ± 1007 0.13% 2623 0.06% 5981 ± 1177 0.14% 2096 0.05% 6080 ± 1568 0.14% 3 0.00%

Wet Meadows 9596 0.22% 9219 ± 1531 0.21% 16486 0.38% 16336 ± 2421 0.37% 12058 0.28% 11215 ± 1663 0.26% 208 0.11%

Pasture Peatlands 30853 0.71% 33080 ± 2232 0.76% 27669 0.63% 33858 ± 2908 0.78% 22520 0.52% 29380 ± 2940 0.67% 99 0.05%

Sphagnum Peatlands 6364 0.15% 9585 ± 1142 0.22% 3898 0.09% 8712 ± 1950 0.20% 4200 0.10% 9005 ± 2233 0.21% 1 0.00%

Woody Wetlands 10662 0.24% 4663 ± 1479 0.11% 13761 0.32% 5168 ± 2334 0.12% 7759 0.18% 4670 ± 2206 0.11% 39 0.02%

Forests 1636449 37.47% 1804309 ± 15412 41.31% 1730408 39.63% 1960164 ± 16885 44.89% 1644405 37.68% 1878286 ± 16859 43.03% 20573 11.12%

Herbaceous Uplands 629659 14.42% 645747 ± 13472 14.79% 639773 14.65% 599672 ± 13842 13.73% 758606 17.38% 690871 ± 16664 15.83% 47493 25.68%

Bare soil/rock/sand 97886 2.24% 115962 ± 3244 2.66% 91863 2.10% 107222 ± 2781 2.46% 95629 2.19% 113020 ± 3131 2.59% 84102 45.47%

Shrublands 847267 19.40% 652175 ± 19410 14.93% 749780 17.17% 547567 ± 18520 12.54% 808723 18.53% 563173 ± 20468 12.90% 26634 14.40%

Snow/glaciers 2964 0.07% 2964 ± 0 0.07% 2967 0.07% 2967 ± 0 0.07% 3068 0.07% 3068 ± 0 0.07% 889 0.48%

Croplands 115516 2.64% 204690 ± 8881 4.69% 143284 3.28% 288294 ± 9925 6.60% 145391 3.33% 317810 ± 11839 7.28% 229 0.12%

Pastures 766519 17.55% 566768 ± 10994 12.98% 732419 16.77% 498178 ± 10808 11.41% 664583 15.23% 444997 ± 9775 10.20% 2356 1.27%

Forest Plantations 12305 0.28% 90781 ± 10217 2.08% 12215 0.28% 57149 ± 6359 1.31% 18035 0.41% 79812 ± 8911 1.83% 125 0.07%

Urban Areas 10124 0.23% 13643 ± 1762 0.31% 11209 0.26% 13998 ± 1823 0.32% 10277 0.24% 13720 ± 1704 0.31% 19 0.01%

Total Peatlands 209442 237264 ± 16258 203449 250306 ± 19100 177185 224848 ± 19244

Percentage of peatlands 4.80% 5.43% 4.66% 5.73% 4.06% 5.15%

Total Area 4367522 4366844 4364707

0.31%

184951

SNS

576

SREG REG NAT
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Table 4. Summarizes the producer's accuracy (PA) and user’s accuracy (UA) for LULC 

classes across the three national maps. 

           SREG____                     REG_____        __NAT_____ 

Class PA UA PA UA PA UA 

Open Water 100% 100% 100% 100% 100% 100% 

Woody/Shrubby Peatlands 83% 73% 68% 62% 66% 58% 

Herbaceous Peatlands 86% 75% 79% 75% 78% 74% 

Cushion Peatlands 89% 98% 92% 99% 90% 100% 

Wet Meadows 54% 48% 48% 43% 57% 50% 

Pasture Peatlands 93% 86% 91% 83% 89% 80% 

Sphagnum Peatlands 87% 94% 86% 89% 85% 90% 

Woody Wetlands 54% 38% 17% 12% 26% 30% 

Forests 92% 97% 90% 97% 89% 97% 

Herbaceous Uplands 88% 87% 88% 78% 89% 74% 

Bare soil/rock/sand 98% 99% 95% 99% 96% 98% 

Shrublands 72% 71% 64% 64% 59% 60% 

Snow/glaciers 100% 100% 100% 100% 100% 100% 

Pastures 93% 98% 86% 96% 83% 93% 

Croplands 95% 73% 90% 66% 86% 65% 

Forest plantations 75% 81% 81% 90% 79% 85% 

Urban areas 95% 96% 96% 89% 95% 92% 

Overall Peatland's Accuracy 94% 87% 92% 88% 92% 88% 

Overall Accuracy 93% 90% 90% 

 

The peatland extent varied significantly with elevation (Figure 4). All peatland classes, 

except for cushions, are found between 2750 and 4500 m, with most peatlands occurring 

between 3250 – 3750 m (62%). Herbaceous and woody/shrubby peatlands are present at 

all elevations, but herbaceous peatlands are more abundant above 3500 m, while 

woody/shrubby peatlands dominate below 3500 m. Cushion peatlands were found above 

3700 m, with Plantago rigida being the most dominant below 4000 m and Distichia 

muscoides above 4000 m. Overall, cushion peatlands are more abundant between 4000 

and 4500 m. Conversely, Sphagnum peatlands are more abundant at lower elevations 

(2750-3000 m) and gradually decrease as elevation increases. 
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Figure 4. Distribution of peatland areas by elevation and area ranges across our three 

national maps. Each bar represents the sum of peatland areas (ha) within specific 

elevation and area ranges (shown in the two columns), categorized by peatland class. Our 

three national maps (SREG, REG, and NAT) are labeled in the rows. 

The combined peatland areas, i.e., locations mapped as peatlands in at least one of the 

three maps, totaled 294,165 ha. Of these, 132,098 ha (45%) were consistently classified 

as peatland by all maps. Nonetheless, when examining the areas adjacent to this 45% 

congruent region, we observed distinct patterns. Specifically, 21%, 36%, and 42% of the 

peatland areas classified by only one or two maps were near the regions where all three 

maps coincided, within distances of 1, 3, and 5 cells respectively (each cell representing 

10 m). This suggests that the discrepancies between the maps are predominantly at the 

edges of the peatlands, indicating a high likelihood of agreement in the location of these 

areas. In other words, 42% of the total peatland areas in the three maps are within 50 m of 
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the regions where all maps are congruent. Many of these zones are likely gradual 

ecotones where transition to shallower peat makes distinguishing peat from other classes 

difficult. The remaining 13% of discrepancies can be attributed to isolated pixels 

classified by each map and the larger areas of pasture peatlands in the NEC subregion 

identified only in the SREG map (Figure 7). 

 

Figure 5. Comparison of peatland distribution across three classification maps: SREG, 

REG, and NAT. Maps in column (A) show an area in Nevados National Park, 

highlighting significant peatland congruency, with SREG regions appearing larger than 

NAT regions upon close inspection. Site (B), located in the department of Boyacá, 

demonstrates discrepancies in peatland classification: the SREG map shows a large area 

of pasture peatlands, while the REG and NAT maps classify the same area as either 

pastures or wet meadows. The maps at the top of both columns show the combined 

peatland area for the three maps, with a Venn diagram on the left illustrating the total 

area percentages of congruency between the three maps. 
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3.2 Soil Carbon Analysis 

Distinct trends in carbon percentage (C%) and bulk density (g/cm³) at depths of 0-40 cm 

are evident across various land cover types (Figure 6). Herbaceous and Sphagnum 

peatlands are combined due to limited primary field data for Sphagnum peatlands. This 

combination is logical as sphagnum peatlands are typically integrated within herbaceous 

peatlands. For all classes, C% generally decreases with depth, with non-peatland classes 

showing a more abrupt decline. Peatlands consistently exhibit the highest C% at all 

depths (e.g., Cushion peatlands: 33% at 0-10 cm to 29.5% at 30-40 cm; Herbaceous 

peatlands: 30.5% at 0-10 cm to 25.1% at 30-40 cm). Additionally, peatlands have low 

bulk densities that increase slightly with depth (e.g., Cushion peatlands: 0.09 g/cm³ at 0-

10 cm to 0.14 g/cm³ at 30-40 cm; Herbaceous peatlands: 0.11 g/cm³ at 0-10 cm to 0.19 

g/cm³ at 30-40 cm). However, within the peatland categories pasture peatlands exhibit 

lower C% and higher BD. This is expected, because drainage leads to mechanical settling 

and exposes peat to oxygen, facilitating microbial decomposition of organic matter. As 

the water table drops in drained peatlands, the peat structure becomes more compact, 

leading to higher BD. This oxidation reduces the carbon storage of these peatlands, 

highlighting the detrimental effects of land-use changes on peatland ecosystems. Other 

classes like mineral wetlands and productive territories display lower C% and higher bulk 

densities.  

 

Figure 6. Bulk density and carbon percentage across different LULC classes at various 

soil depths. 
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4 Discussion 

4.1 Mountain Peatlands of Colombia 

We present the first comprehensive national-scale maps of peatland distribution in 

Colombia's mountain ecosystems (above 2750 m), estimating a total peatland adjusted 

area between 224,848 ha (± 19,244) and 250,306 ha (± 19,100) (Table 3), representing 

5.2-5.73% of the total mapped area within the country (Figure 5). These maps will serve 

as a crucial tool for the research, management, conservation, and restoration of mountain 

peatlands in the country. 

Our maps reveal that 13-15% of all peatland areas have been transformed into pasture 

peatlands, which has significant implications for greenhouse gas emissions and water 

supply for the country. Although 51% of the peatlands from all three maps are located 

within protected areas as defined by the National System of Protected Areas (SINAP), 

peatland disturbances were commonly observed during our field visits within these 

protected areas (Figure 6). We also estimated that 7-8% of all peatlands located in 

protected areas are classified as pasture peatlands. This finding underscores the critical 

need to integrate peatlands into comprehensive management practices. Despite their 

location within protected areas, peatlands are not adequately protected due to a 

widespread lack of knowledge among the public and, more importantly, among land 

managers and decision-makers about the vital ecosystem services peatlands provide, such 

as water storage and carbon stock. 

4.1.1 National Peatland Maps Comparison 

Advantages and disadvantages for each of the three maps created using different spatial 

extents were observed. Smaller spatial extents classifications, benefit from similar 

environmental conditions and vegetation composition. This is because we expect more 

uniformity within these localized areas, which reduces variability in the data. 

Additionally, the overall computing time for classification is faster than processing larger 

regions of our study area. However, in the case of the SREG level approach, merging 

adjacent subregions into a cohesive map is challenging, as differences from independent 

classifications are much more notable at adjacent borders of these subregions. 

Furthermore, limited training and validation data in smaller extents may fail to represent 

some classes, especially those hard to find in the field or interpret with high-resolution 

techniques. Conversely, larger spatial extents cover broader areas, leveraging a more 

extensive range of training data to address gaps but potentially lacking the detail needed 

for capturing local variations and requiring more computational time. 

Discrepancies between the peatland areas of our three maps are predominantly found at 

the edges of the peatlands, indicating that major differences are located within shallow 

peat areas or transitional ecozones between peatlands and other classes. We did not find 

significant differences between the accuracies of the three maps to choose a better map, 

highlighting the individual benefits of using each map for different occasions. While a 

comprehensive and complete database at the subregional extent would be beneficial, our 

approach using different spatial extents allows us to fill gaps and use important 
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information from each map to improve future versions of the national peatland map. For 

example, the SREG map will allow us to locate areas of pasture peatlands not classified 

as such in the other maps, while the NAT map will serve as a tool to identify mineral 

wetlands, considering the lack of mineral wetland field data in our study. For peatland 

assessment in the field, we recommend using the combined peatland area from the three 

maps since there is a better chance of finding peatlands where all three maps are 

congruent without discarding areas that might contain shallow peatland areas or that were 

not classified in one or two of the maps. By comparing these three maps, we can better 

plan further field ground truthing to improve future versions of the national peatland map. 

It is also important to note that the SREG and REG maps will not represent all LULC 

classes due to the lack of field data for some classes in certain subregions. For instance, 

the SREG map lacks classified wet meadows in the CC_WC subregion, woody wetlands 

in the NAR and CC_WC subregions, and cushion peatlands in the SEC subregion 

because no field data for these classes were collected in those subregions. Consequently, 

for the REG map, we won’t find any classified woody wetlands in the CC_WC_NAR 

region. The NAT map, however, included classified areas for all LULC classes across all 

subregions because it combined training data from all subregions. Ideally, each subregion 

should have significant amounts of training data for each class, but this is often difficult 

to achieve in fieldwork.
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Figure 7. Comparison of peatland classification maps using different spatial extent at 

national (NAT), regional (REG), and subregional (SREG) levels for an area in Nariño. 

These maps zoom in on a developed landscape with a matrix of pastures and croplands, 

revealing a relatively large pasture peatland area in the southwest. The maps also 

highlight the urban area of Puerres in the northeast, the Azufral volcano páramo in the 

northwest, and the Páramo de Paja Blanca in the southeast. 

 

Figure 8. Disturbed peatland landscapes, all within protected areas in Colombia. (a) and 

(b) show the Vista Hermosa de Moquentiva Regional Park in Cundinamarca. (a) An 

aerial image of a peatland complex (sphagnum, herbaceous, and shrubby peatlands) with 

unsuccessful drainage ditches, now a research site for monitoring peatland’s greenhouse 

gas emissions and conducting peatland restoration. (b) A closer view of a small ditch 

within the peatland complex. (c) and (d) show the Protected Forest Reserve in Laguna La 

Cocha and Cerro Patascoy. From 1997 to 2001, this area was a military base for the 

armed rebel group FARC. Since their departure, rapid population growth has led to 
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increased interest in draining peatland areas. (c) An aerial image of a disturbed section of 

the largest peatland complex in Colombia. (d) A close-up of peatland areas affected by 

drainage efforts. (e) Shows the Alfombrales area in Los Nevados National Park, where a 

ditch (pointed with the yellow arrow) diverts glacial water, causing severe damage to 

cushion peatlands. (f) Displays the "Ojo de Agua" in Iguaque National Park, where 

peatlands are drained using buried hoses, where water is used mainly for irrigation. Since 

the 1950s, increased population and high-density potato farming have led to extensive 

peatland drainage. 

4.1.2 Comparisons With Existing Maps 

Our mapping effort provides valuable insights when compared with global, national, and 

regional peatland maps. 

4.1.2.1 Global Peatland Map 2.0 

High-resolution mapping is crucial for informing global peatland maps, which often lack 

detailed data on mountain peatlands in the tropics(Gumbricht et al., 2017; Melton et al., 

2022; UNEP, 2022; Xu et al., 2018). The Global Peatland Map 2.0 (GPM2) estimates 

approximately 3.3 million ha of peatlands in Colombia, with 37,500 ha within our study 

area (Greifswald Mire Centre, 2022). By comparing the combined peatland areas from 

our maps with those from the GPM2 map within our study area, we found that only 27% 

of the peatland areas identified by GPM2 align with our mapped peatland areas. This 

discrepancy is primarily due to the significantly larger spatial resolution of the GPM2 

map. The 1 km2 pixel area from the GPM2 is 10,000 times larger than our maps´100 m2 

pixel (Figure 9) reducing their ability to detect smaller peatlands. Although the GPM2 

estimates that only 1% of all peatlands in the country occur above 2750 m, our study 

suggests that 5-6% of the country's peatlands are found above this elevation. 

Additionally, 75-80% of the total area of mapped peatlands have individual sizes under 

100 ha, highlighting the importance of high-resolution mapping for accurately identifying 

mountain peatlands (Figure 4). 

4.1.2.2 National Maps of Colombia 

The 2015 National Wetland Map of Colombia (NWMC) combines geomorphological, 

soil, land cover, hydrographic, and flood frequency data to identify wetlands at a 25-

meter spatial resolution (Flórez-Ayala et al., 2016; Jaramillo Villa et al., 2016). It 

categorizes wetlands based on water presence and environmental traits into the following 

classes: Permanent Open, with visible and continuous water; Permanent Under Canopy, 

where water is ever-present beneath forest cover; Temporal, with fluctuating water levels; 

and Medium and Low Potential, suggesting probable but uncertain wetland conditions. 

Comparing the combined peatland areas from our maps with this map, we found that only 

34.7% of the peatland area falls within its wetland classes, mainly as Low Potential 

wetlands (32.1%) and Temporary Wetlands (2.6%). Additionally, the National Wetland 

Map classifies about 850,000 ha of wetlands in our study area, including open water and 

glaciers as Permanent Open wetlands (Figure 9). In contrast, we estimated (using 

adjusted areas) 240,734 - 271,810 ha of combined mineral wetlands and peatlands, with 

combined areas of open water and glacier/snow classes accounting for 22,284 - 22,790 
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ha. While the NWMC provides a broad estimate of wetland areas, its general 

classifications do not capture the specific types and extents of wetlands needed for 

detailed ecological studies and management of peatlands (Figure 9). The broad 

categories and the integration of various mapping products, with differences in resolution 

and classification criteria, may introduce errors and overestimate wetland areas.  

 

Figure 9. This study's (A) combined peatland area map compared with the (B) Global 

Peatland Map 2 and the (C) National Wetlands Map of Colombia 
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In contrast, the 2018 National Land Cover Map of Colombia (NLCMC), developed at a 

1:100,000 scale using the Corine Land Cover methodology, employs Landsat satellite 

images for visual interpretation and reports a 91% overall accuracy across 54 land cover 

classes, including a peatland class (Castellanos et al., 2021). The classification was 

performed using the Photo-Interprétation Assistée par Ordinateur (PIAO) technique, 

which involves visual interpretation of satellite images on a screen. Although it claims 

100% user’s and producer’s accuracies for the peatland class, the map only reports 11 

peatland polygons totaling 793.3 ha within our study area. Comparing our map to this 

official land cover map, we found that 70% of peatlands are classified as Herbaceous 

uplands, 16% as Pastures, 10% as Shrublands, and 3% as Forests, with the remaining 1% 

in other classes.  

Although this NLCMC map is widely used, it lacks thorough wetland data, mainly 

because Landsat-only imagery is insufficient for mapping wetlands and because of 

inadequate ground truthing to resolve peatland classes. The accuracy assessment for the 

NLCMC involved assigning reference labels to sampling points based on visual 

interpretation, without extensive ground truthing specifically for peatlands. In contrast, 

peatland mapping studies have shown improved results using a multi-date, multi-sensor 

SAR and optical approach, combined with extensive field data (Bourgeau-Chavez et al., 

2018). For example, Hribljan et al. (2017) compared classification accuracies using 

several remote sensor data for mapping alpine peatlands in northern Ecuador. Using 

Landsat-only optical imagery, they achieved an overall accuracy of 86% but had 

moderate errors in distinguishing between peatland classes. When combined with 

Radarsat, PALSAR, and TPI data, the overall accuracy increased to 90%, with most 

individual peatland class accuracies also improving or remaining the same. This 

comparison underscores the limitations of the NLCMC in accurately representing 

peatland areas. Relying solely on visual interpretation and Landsat imagery without 

extensive ground truth data leads to inaccuracies specially for mapping wetlands.  

4.1.2.3 Regional Maps from the Andes 

When comparing our findings with other studies in the Andes, notable differences 

emerge regarding proportions of peatland area with total mapped area. The Ecuadorian 

Andes páramo peatland map estimates peatland coverage at 18% of the total mapped area 

of 271,492 ha above 3,500 m (Hribljan et al., 2017). Similarly, in Peru, the Huascaran 

National Park and its buffer areas in the puna region, covering a total area of 510,200 ha, 

estimate peatlands to cover approximately 6.3%, primarily consisting of cushion 

peatlands at elevations between 3,950 and 4,650 m (Chimner et al., 2019). In Colombia, 

regional peatland maps for the Las Hermosas, Chili-Barragán, and Guanacas-Purace-

Coconucos páramo complexes reported peatland coverage of 40,337 ha, representing 

9.4% of the total mapped area of 429,530 ha (Battaglia et al., 2024). 

Although our study shows that within the entire study area peatlands only cover 4-4.8%, 

we used a lower elevation boundary of 2,750 m compared to other mapping efforts. This 

lower boundary allows us to detect peatlands in azonal páramos (páramos that occur in 

areas influenced by specific local conditions rather than the typical high-altitude 
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environments) and in transformed areas where peatlands might still exist. This approach 

includes large proportions of areas of Andean forests, pastures, and croplands that are not 

considered in other maps. When estimating the total peatland areas from an elevation 

greater than 3,500 m, the peatland percentage increased to 7.7-10.2% of the total area. 

Moreover, pasture peatlands over 3,500 m were account for 14-17% of all peatland 

categories. 

4.1.3 Peatland Mapping Challenges 

Mapping peatlands in the Andes presents several challenges. First, constant cloud cover 

in these mountainous ecosystems makes the acquisition of cloud-free optical images from 

Sentinel-2 difficult. Although we used Google Earth Engine (GEE) to automate the 

selection of the best pixels possible through cloud masking techniques, we still 

encountered several defects in our images, especially in cloud forests and steep valleys. 

Shadows, fog, and clouds introduced noise, affecting classification results. Visual 

inspections of the map suggest that many areas where we detected noise in the optical 

imagery have misclassified forests or shrublands as pastures and some herbaceous 

uplands as croplands. While our focus in these maps is on peatlands, and we consider 

these classes to be accurate, there may be some errors in upland classification classes due 

to these defects in the optical images. 

 

Regarding SAR imagery, emerging technologies will likely improve classification results 

for dense vegetation classes. Our woody wetlands and shrublands classes, which 

currently show lower accuracy, might achieve better results with upcoming freely 

available high-resolution SAR data. The NASA/ISRO NISAR sensor, expected to 

provide global L-band SAR coverage with a twelve-day repeat cycle, and the ALOS 

PALSAR 2, which will soon offer recent and high-resolution data, are promising 

advancements. These sensors will enhance our ability to accurately classify dense 

vegetation and improve overall peatland mapping in the Andes. 

4.2 Peatland soil Carbon storage 

The first 40 cm of carbon percentage (C%) and bulk density (BD) data may not 

accurately reflect the averaged conditions of peatland soils throughout their entire depth. 

Although our study only analyzed soil data up to 40 cm deep, full core analyses of 

mountain peatlands have provided a broader perspective. According to Hribljan (2024), 

high BD (0.2-0.4 g cm-3) and low C% (15.4 – 31.6%) in páramo peatland soils are due to 

their high mineral content, a common characteristic of mountain peatlands. These 

peatlands are often found on mountainsides or valley bottoms, where steep eroding slopes 

can contribute significant alluvial, colluvial, or aeolian sediment, lowering % C and 

increasing BD (Hribljan et al., 2024). Additionally, mountain peatlands in volcanic 

regions receive considerable ash, further increasing the mineral content. 

Peatlands have greater soil depths than any other land cover in the mountains (Chimner et 

al., 2023; Hribljan et al., 2024; Hribljan et al., 2016). The average depth of peatlands in 

the páramos of Colombia and Ecuador is estimated to be 442 cm, with an average total 

peatland carbon of 1628 Mg ha⁻¹ (Hribljan et al., 2024). Scaling up these carbon 
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estimates to the adjusted peatland areas from our national maps (Table 3), we estimated 

that peatland stocks in the mountains of Colombia contain between 366 and 407 Tg of 

carbon, playing a significant role for the total carbon storage in the country. In 

comparison to the total carbon stored in forest biomass across the country, which is 

estimated to be 7145 Tg over 59 million ha (Phillips et al., 2011), mountain peatlands can 

store 16 to 17 times more carbon per hectare in their soils. This translates to peat C 

equivalent to about 5% of national forest biomass C on 0.2% of the land area. This 

highlights the critical implications of draining or transforming peatlands and underscores 

the necessity of developing strategies to mitigate disturbances in these ecosystems.  

It is worth noting that, although peatlands store the most soil C per unit area when 

considering the entire soil column to the base of the peatland, the soil C density of all 

ecosystems that we measured was quite substantial and roughly equivalent when only 

considering the top 40 cm of the soil. According to the Colombia National Report on Soil 

Organic Carbon Sequestration Potential (Araujo-Carrillo, 2021), the Andean region is 

identified as the area with the highest potential to sequester CO2, especially through 

improved management of croplands and grazing lands. Although this study does not 

mention peatlands, it highlights the importance of other Andean land covers, for carbon 

stock and carbon sequestration. They estimate that the Andean region possesses high 

contents of soil organic carbon stocks, often exceeding 100 Mg C ha-1 for soil depth up to 

30 cm. This aligns with our soil carbon stocks result, which for all classes ranged from 

approximately 100 to 200 Mg ha-1 for the first 40 cm of soil depth. These results show 

how valuable mountain ecosystems are for storing and sequestrating carbon and 

underscore the need to adopt management practices, such as water table management, 

peatland restoration, better agricultural practices, and upland reforestation, which can 

enhance the carbon sequestration potential of these vital ecosystems. 



 

38 

5 Conclusion 

This map serves as a critical resource for understanding the extent and distribution of 

peatlands, informing conservation and management practices, and facilitating climate 

change mitigation efforts. Our national peatland map provides essential data for 

policymakers, land managers, and environmental organizations, supporting efforts to 

conserve and restore these critical ecosystems. 

Future work should focus on ground-truthing in identified areas of discrepancy and 

integrating new remote sensing technologies to further refine and improve peatland 

mapping in Colombia. As the climate warms, there is an increasing likelihood that locals 

will seek new water sources from peatlands at higher elevations, further threatening these 

ecosystems. This is particularly concerning given that tropical Andes peatlands contain 

substantial soil carbon deposits that are highly sensitive to temperature changes (Hribljan 

et al., 2024), making them vulnerable to both warming and drainage. 

The national-scale mountain peatland map presented in this study is the first step toward 

understanding peatland distribution. Mapping of peatland extent and condition is a 

critical step in determining the potential for peatland protection and sustainable 

management in Colombia as natural climate solutions that can contribute to climate 

adaptation and mitigation efforts. However, much more needs to be done to comprehend 

the full scope of peatland dynamics and to develop effective management and 

conservation strategies. To inform science-based effective climate policy, it is essential to 

conduct scientific research to determine the potential for adaptation and mitigation 

strategies that can enhance the resilience of these carbon-rich ecosystems to climate 

change.  
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A Supplementary Material 

A.1 Confusion Matrixes 

 

Table 5. National level confusion matrix. 

 

  

Open 

waters

Woody - 

Shrubby 

Peatlands

Herbaceous  

Peatlands

Cushion 

Peatlands

Wet 

Meadows

Pasture 

Peatlands

Sphagnum 

Peatlands

Woody 

Wetlands
Forests

Herbaceous 

Uplands

Bare soil - 

Rocks
Shrublands

Snow - 

Glaciers
Croplands Pastures

Forest 

Plantations

Urban 

Areas

Users 

Acc.

Commission 

Error

Open waters 5002 0 0 0 0 0 0 0 1 0 0 4 0 0 0 0 0 100% 0%

Woody - Shrubby Peatlands 0 551 195 0 6 0 4 2 10 48 2 116 0 0 9 1 0 58% 42%

Herbaceous  Peatlands 2 153 1523 32 18 48 54 16 0 112 0 19 0 67 1 0 0 74% 26%

Cushion Peatlands 0 0 0 488 0 0 0 0 0 0 0 0 0 0 0 0 0 100% 0%

Wet Meadows 0 13 10 0 113 26 0 0 0 38 0 21 0 3 0 0 0 50% 50%

Pasture Peatlands 0 40 12 4 17 991 0 5 8 16 0 20 0 52 69 0 0 80% 20%

Sphagnum Peatlands 0 0 21 0 0 0 398 0 2 0 0 0 0 3 17 0 0 90% 10%

Woody Wetlands 0 5 4 0 0 5 0 9 1 0 0 6 0 0 0 0 0 30% 70%

Forests 1 0 0 0 0 0 0 0 13086 0 0 187 0 5 0 245 0 97% 3%

Herbaceous Uplands 0 45 186 14 9 11 7 0 0 3917 116 240 0 711 14 0 5 74% 26%

Bare soil - Rocks 7 0 0 0 0 0 0 0 0 0 11395 0 0 101 0 0 163 98% 2%

Shrublands 0 31 14 1 0 4 4 3 204 219 0 948 0 69 3 67 2 60% 40%

Snow - Glaciers 0 0 0 0 0 0 0 0 0 0 0 0 3982 0 0 0 0 100% 0%

Croplands 0 0 0 0 25 11 0 0 0 1 48 5 0 6134 333 0 23 93% 7%

Pastures 0 0 0 2 12 20 0 0 1146 29 6 23 0 255 2778 0 4 65% 35%

Forest Plantations 0 0 0 0 0 0 0 0 198 0 0 6 0 0 0 1191 0 85% 15%

Urban Areas 0 0 0 0 0 0 0 0 0 0 283 0 0 0 0 2 3503 92% 8%

Prod. Acc. 100% 66% 78% 90% 57% 89% 85% 26% 89% 89% 96% 59% 100% 83% 86% 79% 95%

Omission Error 0% 34% 22% 10% 44% 11% 15% 74% 11% 11% 4% 41% 0% 17% 14% 21% 5%

Overall Peatlands

92%

88%

90%

Producers Accuracy

Users Accuracy

OveraIl accuracy
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Table 6. Regional level confusion matrix. 

 

  
Open 

waters

Woody - 

Shrubby 

Peatlands

Herbaceous  

Peatlands

Cushion 

Peatlands

Wet 

Meadows

Pasture 

Peatlands

Sphagnum 

Peatlands

Woody 

Wetlands
Forests

Herbaceous 

Uplands

Bare soil - 

Rocks
Shrublands

Snow - 

Glaciers
Croplands Pastures

Forest 

plantations

Urban 

areas

Users 

Acc.

Commission 

Error

Open waters 5002 0 0 0 0 0 0 0 1 0 0 4 0 0 0 0 0 100% 0%

Woody - Shrubby Peatlands 0 569 169 0 6 6 5 1 3 61 0 97 0 0 5 0 0 62% 38%

Herbaceous  Peatlands 2 127 1551 25 23 36 43 9 2 195 0 26 0 21 5 0 0 75% 25%

Cushion Peatlands 0 0 0 497 2 3 0 0 1 0 0 0 0 0 0 0 0 99% 1%

Wet Meadows 0 13 5 0 95 28 0 7 0 40 0 33 0 0 0 0 0 43% 57%

Pasture Peatlands 0 36 20 2 29 1011 1 3 6 18 0 26 0 32 39 1 0 83% 17%

Sphagnum Peatlands 0 1 23 0 0 0 403 0 9 0 0 0 0 0 15 0 0 89% 11%

Woody Wetlands 0 23 0 0 0 0 0 6 0 0 0 13 0 0 0 10 0 12% 88%

Forests 0 4 0 0 0 0 0 5 13228 0 0 169 0 27 0 239 0 97% 3%

Herbaceous Uplands 0 30 163 14 11 0 12 0 0 3845 103 194 0 564 2 0 7 78% 22%

Bare soil - Rocks 7 0 0 0 0 0 0 0 0 0 11281 0 0 40 0 0 115 99% 1%

Shrublands 1 33 31 0 0 5 3 4 238 168 0 1019 0 37 13 28 3 64% 36%

Snow - Glaciers 0 0 0 0 0 0 0 0 0 0 0 0 3982 0 0 0 0 100% 0%

Croplands 0 2 0 0 0 0 0 0 0 22 12 1 0 6346 233 0 21 96% 4%

Pastures 0 0 3 3 34 27 0 0 1029 31 11 12 0 333 2912 0 2 66% 34%

Forest plantations 0 0 0 0 0 0 0 0 139 0 0 1 0 0 0 1226 0 90% 10%

Urban areas 0 0 0 0 0 0 0 0 0 0 443 0 0 0 0 2 3552 89% 11%

Prod. Acc. 100% 68% 79% 92% 48% 91% 86% 17% 90% 88% 95% 64% 100% 86% 90% 81% 96%

Omission Error 0% 32% 21% 8% 53% 9% 14% 83% 10% 12% 5% 36% 0% 14% 10% 19% 4%

92%

Overall Peatlands

Producers Accuracy

88%Users Accuracy

OveraIl accuracy 90%
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Table 7. Subregional level confusion matrix. 

 

  Open 

waters

Woody - 

Shrubby 

Peatlands

Herbaceous  

Peatlands

Cushion 

Peatlands

Wet 

Meadows

Pasture 

Peatlands

Sphagnum 

Peatlands

Woody 

Wetlands
Forests

Herbaceous 

Uplands

Bare soil - 

Rocks
Shrublands

Snow - 

Glaciers
Croplands Pastures

Forest 

Plantations

Urban 

Areas

Users 

Acc.

Commission 

Error

Open waters 5004 0 0 0 0 0 0 0 4 0 3 0 0 0 0 0 0 100% 0%

Woody - Shrubby Peatlands 0 692 113 1 0 8 4 0 1 54 0 63 0 0 4 8 0 73% 27%

Herbaceous  Peatlands 2 56 1683 35 25 32 42 9 2 252 0 47 0 69 5 0 0 75% 25%

Cushion Peatlands 0 0 0 483 0 9 0 0 0 0 0 0 0 0 0 0 0 98% 2%

Wet Meadows 0 2 6 0 107 13 0 7 0 49 0 23 0 18 0 0 0 48% 52%

Pasture Peatlands 0 8 18 12 27 1034 2 0 8 16 0 18 0 0 56 1 0 86% 14%

Sphagnum Peatlands 0 0 15 0 0 1 406 0 0 0 0 0 0 0 10 0 2 94% 6%

Woody Wetlands 0 14 0 0 0 0 0 19 9 0 0 8 0 0 0 0 0 38% 62%

Forests 1 0 0 0 0 0 0 0 13438 0 0 119 0 1 0 284 0 97% 3%

Herbaceous Uplands 0 19 128 10 6 4 12 0 0 3837 113 166 0 92 0 0 5 87% 13%

Bare soil - Rocks 5 0 0 0 0 0 0 0 0 0 11581 0 0 0 0 0 139 99% 1%

Shrublands 0 47 2 0 0 2 0 0 139 139 0 1141 0 32 13 88 2 71% 29%

Snow - Glaciers 0 0 0 0 0 0 0 0 0 0 0 0 3982 0 0 0 0 100% 0%

Croplands 0 0 0 0 25 0 1 0 0 1 10 4 0 6869 79 0 17 98% 2%

Pastures 0 0 0 0 10 13 0 0 756 32 14 6 0 319 3057 0 4 73% 27%

Forest Plantations 0 0 0 0 0 0 0 0 265 0 0 0 0 0 0 1123 0 81% 19%

Urban Areas 0 0 0 0 0 0 0 0 34 0 129 0 0 0 0 2 3531 96% 4%

Prod. Acc. 100% 83% 86% 89% 54% 93% 87% 54% 92% 88% 98% 72% 100% 93% 95% 75% 95%

Omission Error 0% 17% 14% 11% 47% 7% 13% 46% 8% 12% 2% 28% 0% 7% 5% 25% 5%

94%

Overall Peatlands

Users Accuracy

OveraIl accuracy 93%

87%

Producers Accuracy
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A.2 LULC areas in Colombia, protected areas and above 3500 m of elevation. 

Table 8. LULC areas (based in pixel counting) for the entire study area including 30km buffer area from Colombia national borders. 

           SREG                     REG_____        __NAT____      SNS___ 

Class 

Area 

(ha) 
Area % 

Area 

(ha) 
Area % Area (ha) Area % Area (ha) Area % 

Open Water 19426 0.42% 19545 0.43% 19252 0.42% 1718 0.84% 

Woody/Shrubby Peatlands 93433 2.04% 86014 1.88% 80839 1.77% 100 0.05% 

Herbaceous Peatlands 86227 1.88% 92716 2.02% 75628 1.65% 1068 0.52% 

Cushion Peatlands 2924 0.06% 2810 0.06% 2245 0.05% 3 0.00% 

Wet Meadows 10004 0.22% 16922 0.37% 12559 0.27% 324 0.16% 

Pasture Peatlands 32786 0.72% 29488 0.64% 24283 0.53% 101 0.05% 

Sphagnum Peatlands 6455 0.14% 3995 0.09% 4285 0.09% 1 0.00% 

Woody Wetlands 10737 0.23% 14078 0.31% 8146 0.18% 41 0.02% 

Forests 1694605 36.98% 1800057 39.29% 1714276 37.43% 26232 12.90% 

Herbaceous Uplands 662427 14.46% 671414 14.65% 791756 17.29% 52708 25.91% 

Bare_soil/rock/sands 99513 2.17% 92818 2.03% 96735 2.11% 84714 41.65% 

Shrublands 892680 19.48% 786066 17.16% 842811 18.40% 32624 16.04% 

Snow/glaciers 2964 0.06% 2967 0.06% 3068 0.07% 889 0.44% 

Croplands 128619 2.81% 155754 3.40% 158005 3.45% 272 0.13% 

Pastures 815453 17.80% 781723 17.06% 715366 15.62% 2386 1.17% 

Forest plantations 12684 0.28% 12551 0.27% 18879 0.41% 209 0.10% 

Urban Areas 11453 0.25% 12796 0.28% 11430 0.25% 20 0.01% 

Total Peatlands 221825 215023 187280 1272 

Percentage of peatlands 4.84% 4.69% 4.09% 0.63% 

Total Area 4582388 4581712 4579563 203409 
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Table 9. LULC areas (based in pixel counting) within protected areas in Colombia. 

           SREG                     REG_____        __NAT____      SNS___ 

Class 

Area 

(ha) 
Area % 

Area 

(ha) 
Area % 

Area 

(ha) 
Area % 

Area 

(ha) 
Area % 

Open Water 10251 0.61% 10270 0.61% 10294 0.61% 1703 0.93% 

Woody/Shrubby 

Peatlands 52161 3.11% 50758 3.02% 48589 2.89% 80 0.04% 

Herbaceous Peatlands 42138 2.51% 43134 2.57% 32648 1.94% 356 0.17% 

Cushion Peatlands 2084 0.12% 1964 0.12% 1719 0.10% 3 0.00% 

Wet Meadows 3860 0.23% 6231 0.37% 5187 0.31% 197 0.10% 

Pasture Peatlands 8471 0.50% 6874 0.41% 5864 0.35% 99 0.05% 

Sphagnum Peatlands 1725 0.10% 1114 0.07% 1175 0.07% 1 0.00% 

Woody Wetlands 2842 0.17% 3164 0.19% 1900 0.11% 39 0.02% 

Forests 694103 41.32% 714351 42.53% 689792 41.09% 20221 9.94% 

Herbaceous Uplands 323762 19.27% 329843 19.64% 374156 22.29% 46585 22.90% 

Bare soil/rock/sand 73847 4.40% 72414 4.31% 72308 4.31% 84009 41.30% 

Shrublands 339248 20.19% 314074 18.70% 319738 19.04% 25852 12.71% 

Snow/glaciers 2964 0.18% 2967 0.18% 3068 0.18% 889 0.44% 

Croplands 18302 1.09% 23092 1.37% 19857 1.18% 227 0.11% 

Pastures 97073 5.78% 92920 5.53% 83008 4.94% 2326 1.14% 

Forest plantations 6047 0.36% 5691 0.34% 8567 0.51% 119 0.06% 

Urban areas 985 0.06% 885 0.05% 997 0.06% 18 0.01% 

Total Peatlands 106578 103843 89996 538 

Percentage of peatlands 6.34% 6.18% 5.36% 0.29% 

Total Area 1679862 1679746 1678868 182721 
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Table 10. LULC areas (based in pixel counting) above 3500 m of elevation in Colombia. 

 

 

 

 

 

 

           SREG                     REG_____        __NAT____ 

Class 

Area 

(ha) 
Area % 

Area 

(ha) 
Area % 

Area 

(ha) 
Area % 

Open Waters 4081 0.24% 4058 0.24% 4071 0.24% 

Woody/Shrubby Peatlands 38276 2.28% 35967 2.14% 31475 1.87% 

Herbaceous Peatlands 49248 2.93% 46796 2.79% 37109 2.21% 

Cushion Peatlands 2802 0.17% 2623 0.16% 2096 0.12% 

Wet Meadows 5700 0.34% 10110 0.60% 7319 0.44% 

Pasture Peatlands 18612 1.11% 15320 0.91% 11335 0.68% 

Sphagnum Peatlands 735 0.04% 599 0.04% 635 0.04% 

Woody Wetlands 1048 0.06% 1960 0.12% 870 0.05% 

Forests 76205 4.54% 73922 4.40% 70930 4.22% 

Herbaceous Uplands 472648 28.14% 480860 28.63% 530985 31.63% 

Bare soil/rock/sand 82149 4.89% 80567 4.80% 80440 4.79% 

Shrublands 240176 14.30% 238159 14.18% 225535 13.43% 

Snow/glaciers 2963 0.18% 2967 0.18% 3068 0.18% 

Croplands 10707 0.64% 8612 0.51% 7038 0.42% 

Pastures 65622 3.91% 68377 4.07% 56705 3.38% 

Forest Plantations 613 0.04% 728 0.04% 2006 0.12% 

Urban Areas 451 0.03% 412 0.02% 418 0.02% 

Total Peatlands 109673 101304 82650 

Percentage of peatlands 10.23% 9.45% 7.71% 

Total Area 1072036 1072036 1072036 
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A.3 Soil Carbon lab analysis results 

Table 11. Avereged C% and bulk density per 10 cm subsamples segments. 

 

LULC class 

C% 

0-

10cm 

BD  0-

10cm 

C% 10-

20cm 

BD  10-

20cm 

C% 20-

30cm 

BD  20-

30cm 

C% 30-

40cm 

BD  

30-

40cm 

Cushion Peatlands 33.0 0.09 32.5 0.11 32.1 0.13 29.5 0.14 

Herbaceous/Sphagnum Peatlands 30.5 0.11 28.9 0.15 26.4 0.17 25.1 0.19 

Pasture Peatlands 27.6 0.16 24.3 0.25 22.3 0.27 20.8 0.29 

Woody/Shrubby Peatlands 30.8 0.11 29.0 0.15 28.6 0.17 26.3 0.18 

Wet Meadows 12.5 0.36 7.9 0.41 4.3 0.44 2.4 0.30 

Woody Wetlands 16.0 0.26 11.8 0.34 8.4 0.53 5.7 0.46 

Forests 23.3 0.20 16.4 0.26 12.0 0.28 9.0 0.28 

Herbaceous Uplands 19.7 0.31 15.2 0.35 11.6 0.30 8.1 0.24 

Shrublands 18.9 0.27 14.0 0.33 10.8 0.27 8.2 0.24 

Croplands 13.0 0.47 11.8 0.46 10.3 0.48 6.0 0.48 

Forest Plantations 17.4 0.38 13.3 0.36 9.5 0.24 7.1 0.21 

Pastures 14.9 0.41 11.6 0.50 8.8 0.42 4.8 0.30 
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Table 12. Summary of total carbon for the top 40 cm stocks and adjusted areas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Woody/Shrubby Peatlands 99134 ± 7685 14.91 84955 ± 6451 12.78 76952 ± 6547 11.57
Herbaceous/Sphagnum Peatlands 99246 ± 5333 13.86 125512 ± 8565 17.53 112437 ± 8188 15.71
Cushion Peatlands 5804 ± 1007 0.68 5981 ± 1177 0.70 6080 ± 1568 0.71
Wet Meadows 9219 ± 1531 0.98 16336 ± 2421 1.74 11215 ± 1663 1.20
Pasture Peatlands 33080 ± 2232 5.95 33858 ± 2908 6.09 29380 ± 2940 5.29
Woody Wetlands 4663 ± 1479 0.64 5168 ± 2334 0.71 4670 ± 2206 0.65
Forests 1804309 ± 15412 262.88 1960164 ± 16885 285.59 1878286 ± 16859 273.66
Herbaceous Uplands 645747 ± 13472 108.40 599672 ± 13842 100.66 690871 ± 16664 115.97
Shrublands 652175 ± 19410 95.59 547567 ± 18520 80.26 563173 ± 20468 82.55
Pastures 566768 ± 10994 97.28 498178 ± 10808 85.51 444997 ± 9775 76.38
Croplands 115516 ± 8881 40.81 288294 ± 9925 57.48 317810 ± 11839 63.36
Forest Plantations 90781 ± 10217 14.64 57149 ± 6359 9.22 79812 ± 8911 12.87

Total soil C stock for 40cm depth 656.64 658.28 659.92

Total Carbon 
Stock (Tg)    

(40cm soil depth)

___________SREG______________ ______________REG_______________ _______________NAT________________

LULC class
Adjusted Area 

(ha)

Total Carbon 
Stock (Tg)     

(40cm soil depth)

Adjusted Area 
(ha)

Total Carbon 
Stock (Tg)     

(40cm soil depth)

Adjusted Area 
(ha)



 

 

5
0

 

 

Table 13. Averaged Carbon stocks (Mg ha-1) for the 40 cm soil depth. 

 

LULC class 
Averaged Carbon stocks (Mg ha-1) 

for 40 cm soil depth 

Woody/Shrubby Peatlands 150.4 ± 5.5 
Herbaceous/Sphagnum Peatlands 139.7 ± 4.7 
Cushion Peatlands 117 ± 11.1 
Wet Meadows 106.7 ± 7.3 
Pasture Peatlands 180 ± 12.1 
Woody Wetlands 138.1 ± 11.8 
Forests 145.7 ± 8 
Herbaceous Uplands 167.9 ± 4.4 
Shrublands 146.6 ± 6 
Pastures 171.6 ± 8.2 
Croplands 199.4 ± 28.5 
Forest Plantations 161.3 ± 28.9 
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