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Abstract 
Rare earth elements (REEs) have gained significant global importance due to their critical 
role in supporting the transition towards reduced carbon emissions through industrial 
applications. REEs serve as essential raw materials for various critical components in 
modern infrastructure, defense systems, and technological advancements. Geochemical 
and geophysical data are pivotal in assessing the potential of REEs. Geochemical data 
provide direct insights into the elemental composition of rocks and soils, offering 
valuable information on the potential presence and dispersion of REEs. However, the 
complex geological processes that influence the distribution of REEs often exhibit 
intricate spatial patterns that may not be fully captured by geochemical data alone. 
Geophysical data, such as gravity and magnetic data, offer indirect but complementary 
insights into subsurface geological structures and mineral potential. The integration of 
geochemical, gravity, and magnetic data can aid in identifying exploration targets with 
increased confidence levels. While each data source individually provides valuable 
information, their combination allows for the identification of areas where multiple 
anomalies coincide, indicating a higher likelihood of mineralization. This approach helps 
reduce exploration uncertainties by prioritizing targets that exhibit consistent 
characteristics across various datasets, thereby enhancing the chances of discovering 
economically viable REE reserves. 

This study aims to investigate the geochemical anomalies of REEs in Central Upper 
Michigan by employing geostatistics and fractal analysis to integrate geochemical, 
gravity, and magnetic data to quantify and map REEs anomalies. Both the heavy and 
light REEs (HREEs and LREEs) were mapped, integrating with gravity and magnetic 
data using a multivariate geostatistical method called cokriging. Cokriging utilized the 
spatial correlation and cross-correlation among these data types to provide more 
insightful predictions compared to solely relying on the geochemical dataset. Fractal 
modeling, which has proven to be a powerful tool in geological mapping for anomalous 
deposits, was utilized in this study. By leveraging the fractal characteristics of mineral 
deposit dispersion and the related geochemical trends, this approach was able to identify 
potential exploration zones. The concentration-Area (C-A) log-log plots of the HREEs 
and LREEs were generated, and their thresholds were subsequently identified using the 
segmented linear method. The fundamental premise of C-A fractal modeling is based on 
the observation that mineralization processes frequently result in patterns of element 
concentrations that exhibit fractal characteristics. These patterns can be analyzed to 
distinguish between the baseline (typical levels found in the earth's crust) and anomalies 
(elevated concentrations indicative of mineral deposits). Results from this study clearly 
show the anomaly distributions of both the HREEs and LREEs across the study area. 
Combining geochemical information with additional datasets results in a more thorough 
comprehension of subsurface circumstances, which is essential for precise anomaly 
mapping. The collaboration of these datasets enables a strong analysis, ultimately leading 
to a more dependable identification of possible mineral deposits and geological 
characteristics. 
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1 Introduction 
Rare earth elements (REEs) were initially identified in the year 1787 by Karl Axel 
Arrhenius, a Swedish Army Lieutenant, who retrieved the dark mineral ytterbite 
(subsequently renamed gadolinite) from a mine containing feldspar and quartz situated 
near the village of Ytterby, Sweden (Weeks and Leicester, 1968). REEs are a group of 17 
chemically similar elements found in the periodic table. This category consists of the 15 
lanthanides, which range from lanthanum (La) at atomic number 57 to lutetium (Lu) at 
atomic number 71, as well as scandium (Sc) and yttrium (Y). These two elements are 
included due to their presence in the same mineral matrices and comparable chemical 
behaviors. Despite being termed "rare earth," these elements are quite abundant in the 
Earth's crust, with cerium, for example, being more plentiful than copper. Nevertheless, 
the main challenge lies not in their abundance but in their scattered distribution, making it 
economically and technically challenging to concentrate and extract them. REEs, 
previously a little-known category of metals, has gained global importance due to their 
role in industrial uses that support a worldwide shift towards lower carbon emissions. The 
high-tech sector is projected to see ongoing expansion, driving the need for REE, 
especially in technologies aimed at reducing carbon output. These elements are essential 
for producing advanced magnets and are key components in a variety of popular 
electronics and certain military uses. REE compounds are known for their high melting 
and boiling points, rendering them crucial and irreplaceable in numerous electronic, 
optical, magnetic, and catalytic applications (African Natural Resources Centre [ANRC], 
2021). 

Initially, the integration of diverse data sources enables a more exhaustive comprehension 
of geological processes and mineralization mechanisms. Geochemical data furnish direct 
insights into the elemental composition of rocks and soils, thereby shedding light on the 
potential existence and dispersion of REEs. Nevertheless, the geological processes 
governing REE distribution often manifest intricate spatial patterns that may not be 
completely captured by geochemical data in isolation. Conversely, gravity and magnetic 
data supply indirect yet supplementary insights into subsurface geological structures and 
mineral deposits. Through the synthesis of these datasets, scholars can corroborate 
interpretations and enhance geological frameworks, culminating in a more robust grasp of 
REEs distribution patterns. Moreover, the integration of geochemical, gravity, and 
magnetic data facilitates the delineation of exploration targets with heightened levels of 
confidence. Although each data source in isolation offers valuable insights, their 
amalgamation enables the pinpointing of regions where multiple anomalies intersect, 
suggesting a greater probability of mineralization. This method mitigates exploration 
uncertainties by prioritizing targets that demonstrate consistent characteristics across 
diverse datasets, thereby enhancing the likelihood of discovering economically feasible 
REEs reserves. 

Additionally, the originality of this study is evident in its deviation from the conventional 
dependence solely on magnetic data for mapping REEs deposits. While magnetic surveys 
are widely utilized in mineral prospecting due to their sensitivity to magnetic minerals 
linked to REEs -rich formations, they do have constraints, especially in regions with 
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intricate geological conditions or where magnetic anomalies are faint or equivocal. By 
integrating geochemical data, which directly reflect the elemental composition of rocks 
and soils, alongside gravity and magnetic data, researchers can overcome these 
limitations and achieve a more holistic understanding of REE distribution. This 
methodological innovation offers several advantages over conventional approaches. 
Firstly, it enhances the accuracy and resolution of REEs exploration maps by 
incorporating multiple lines of evidence. Secondly, it improves the efficiency of 
exploration campaigns by focusing efforts on targets with the highest potential for 
mineralization. Finally, it contributes to a more sustainable and environmentally 
responsible approach to mineral exploration by reducing the need for extensive drilling 
and fieldwork through targeted prospectivity mapping. 

1.1 Occurrence of rare earth elements 
In the natural environment, REEs do not occur in their pure metallic form like gold, 
copper, and silver due to their high reactivity. Instead, they are commonly found 
collectively in various mineral ores as either minor or major components. While REE can 
be present in a variety of minerals such as silicates, carbonates, oxides, and phosphates, 
they do not easily integrate into most mineral structures and are restricted to specific 
geological settings. Bastnaesite, monazite, loparite, and ion-adsorption clays in lateritic 
deposits are the primary sources of economically viable REEs minerals (Balaram, 2019).  

REEs are typically found in rock-forming minerals in the form of trivalent cations within 
various compounds such as carbonates, oxides, phosphates, and silicates (Mason and 
Moore, 1982). Carbonatites, distinctive igneous formations, represent the predominant 
reservoir for light REEs (LREEs), whereas bastnäsite deposits in mountainous regions 
encompass both LREEs and heavy REEs (HREE). Monazite sands, identified in alluvial 
deposits, exhibit high concentrations of thorium and REEs. Xenotime deposits, albeit less 
prevalent, serve as a crucial reservoir of HREE (Chen, Honghui, Bai, & Jiang, 2017). 

1.2 Classification of rare earth elements 
REEs are commonly classified into light and heavy groups, with scandium unclassified 
(Henderson, 1996). The classification of REEs into LREEs and HREEs is determined by 
their atomic weights and unique magnetic, electrical, and optical characteristics, which 
influence their specific functionalities and economic significance. LREEs, such as 
lanthanum, cerium, and praseodymium, are more prevalent in the Earth's crust and 
therefore less costly compared to their heavier counterparts. LREEs consist of lanthanum 
(La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium 
(Sm), europium (Eu), and gadolinium (Gd), which are renowned for their larger ionic 
radii. In contrast, HREEs comprise elements starting from terbium (Tb), dysprosium 
(Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu), in 
addition to yttrium (Y), known for their smaller ionic radii and often higher economic 
value because of their rarity and specific applications in technology and industry. These 
elements are primarily employed in industrial applications like petroleum refining, glass 
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production, and ceramics manufacturing, where their attributes contribute to enhanced 
efficiency and performance (Rudnick and Gao, 2003).  

1.3 Importance of rare earth elements 
According to the United States Geological Survey (USGS) news release "Going Critical," 
(American Geosciences Institute, n.d.)  "REE are necessary components of more than 200 
products across a wide range of applications, especially high-tech consumer products, 
such as cellular telephones, computer hard drives, electric and hybrid vehicles, and flat-
screen monitors and televisions. Significant defense applications include electronic 
displays, guidance systems, lasers, and radar and sonar systems. Although the amount of 
REEs used in a product may not be a significant part of that product by weight, value, or 
volume, the REE can be necessary for the device to function. For example, magnets made 
of REEs often represent only a small fraction of the total weight, but without them, the 
spindle motors and voice coils of desktops and laptops would not be possible”. 

REEs are characterized by their outstanding electronic, optical, and magnetic properties, 
which render them indispensable in various applications. Electronically, they play a 
crucial role in the production of high-tech devices by enhancing battery life and 
electronic display colors. Optically, elements like europium and terbium are utilized to 
create vivid colors on the screens of smartphones and televisions. Magnetically, REEs 
such as neodymium are essential in manufacturing high-strength permanent magnets used 
in wind turbines, electric vehicle motors, and different computer hardware. These 
properties are not only distinctive but also cannot be substituted with current technology, 
emphasizing the significance of REEs in the advancement of modern technology and the 
promotion of renewable energy and more efficient electronic devices. Their extensive use 
in critical and strategic technologies makes ensuring a reliable supply of REEs a matter of 
both economic and national security concern for numerous nations, driving efforts to 
discover more sustainable and less geopolitically vulnerable sources. The occurrence of 
REEs has predominantly been derived from bedrock and regolith-based ion-adsorption 
deposits (IADs) formed because of the weathering process of igneous rocks (Borst et al., 
2020). 

The significance of REEs in modern technology and industry is profound because of their 
distinct characteristics, which render them essential in a wide range of applications. 
Within the realm of consumer electronics, REEs are crucial for manufacturing high-
performance magnets, batteries, and alloys necessary for the functionality of computers, 
smartphones, and other digital devices. For instance, europium and terbium are essential 
for creating vivid screens on smartphones, while neodymium magnets improve the audio 
quality of headphones and speakers. In the field of sustainable technology and energy, 
REEs like neodymium and dysprosium are employed in the production of strong magnets 
vital for wind turbines and electric vehicles, playing a critical role in the shift towards 
renewable energy sources that are crucial for mitigating carbon emissions and addressing 
climate change. Electric vehicles were formerly considered a luxury that was out of reach 
for many due to high costs, but the pressing global imperative to diminish carbon 
emissions has transformed EVs into a necessity. This shift is poised to gradually supplant 
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traditional internal combustion engine (ICE) vehicles and those dependent on fossil fuels. 
The adoption of electric vehicles is expected to surge in the upcoming two decades as 
they emerge as the primary feasible option to displace fossil fuel-powered vehicles. 
Consequently, this transition in technology alone will propel REE demand to unparalleled 
heights. The surge in EV utilization will lead to a fresh surge in demand for rare earth 
elements, particularly Neodymium (Nd) and Dysprosium (Dy), given their prevalent use 
in electric vehicle motor magnets and batteries (ANRC, 2021). 

The defense and aerospace industries also heavily rely on REEs for the development of 
advanced weaponry and equipment, such as precision-guided munitions, night-vision 
goggles, and sophisticated communication systems; REEs aid in the downsizing of 
electronic devices, enhancing their efficiency and dependability. Moreover, in the 
healthcare sector, gadolinium is pivotal in magnetic resonance imaging (MRI) for 
improved imaging precision, and other REEs are utilized in the creation of medications 
for cancer treatment and surgical tools, highlighting their importance not only in cutting-
edge technologies but also in essential healthcare solutions (King, n.d.). Furthermore, 
LREEs play a vital role in the manufacturing of automotive catalytic converters, serving 
as catalysts to reduce harmful emissions. On the contrary, HREEs, including elements 
like europium, terbium, and dysprosium, are present in lower quantities and are utilized 
in more specialized and high-value sectors. These heavier elements are crucial for the 
development of robust permanent magnets essential for high-performance motors, 
advanced electronics, and critical military equipment. The scarcity and specialized uses 
of HREEs result in their high demand, rendering them valuable and strategically 
significant in global markets. This differentiation not only emphasizes the varied 
industrial applications of REEs but also stresses the strategic importance of effectively 
managing their supply chains, considering the differing abundance and essential roles of 
these crucial minerals. 

The United States Geological Survey (USGS) news release "Going Critical" also posited 
that in 1993, a significant portion of global REEs production was distributed among 
various countries. Specifically, China, the United States, Australia, Malaysia, and India 
accounted for different percentages of production. Over time, however, the dominance of 
China in the global REEs market increased significantly. By 2011, China had a 
staggering 97 percent share of world production, reflecting a substantial shift in the 
industry. The Chinese government's interventions, such as altering production and export 
quotas, played a crucial role in shaping the dynamics of the REEs market during this 
period. Furthermore, restrictions were imposed on the export activities of Chinese and 
Sino-foreign joint-venture companies, further consolidating China's position as a key 
player in the global REEs market. 

At present, more than 95% of the global REEs are extracted from two categories of ore 
deposits located in China (Humphries, 2010, Long et al., 2010). The primary deposit, 
Bayan Obo, which is recognized as the largest REE deposit, constitutes a high-grade, 
igneous-related carbonatite deposit responsible for contributing 80% of the world's Light 
Rare Earth Elements (LREEs) (U.S. Geological Survey, 2011, Kynicky et al., 2012, 
Verplanck et al., 2014). Nonetheless, typical of this deposit type, it exhibits low levels of 
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HREEs. Conversely, the ion-adsorption clay-type deposits situated in South China, 
although relatively small and low in grade, dominate the HREE market due to their 
significant enrichment in HREEs and the efficient extraction and processing methods 
employed, resulting in minimal costs (Long et al., 2010, Kynicky et al., 2012). According 
to Emsbo et al. (2014), sedimentary phosphate deposits may also play a crucial role in 
solving the global REEs crisis, suggesting an alternative source that might supplement 
the existing supply from traditional mining methods. 

1.4 Exploration of rare earth elements 
Exploration for HREEs and LREEs utilizes a range of methodologies, such as geological 
mapping, geochemical analysis, remote sensing, geophysical surveys, and drilling, with 
the aim of identifying geological formations and deposits enriched in REEs (Booysen et 
al., 2019). Researchers are presently involved in various research avenues for HREEs and 
LREEs exploration and prospectivity mapping (Khalajmasoumi et al., 2017). 
Geochemical surveys entail extensive examination of soil, rock, and water samples to 
determine areas with elevated REEs concentrations (Rodríguez Alfaro et al., 2017). 
Remote sensing methods, such as hyperspectral imaging and satellite imagery analysis, 
are employed to identify surface mineralogy linked to REEs deposits, enabling efficient 
mapping of extensive regions (Bedini, 2017). Geophysical surveys, including magnetic 
and electromagnetic techniques, aid in identifying subsurface geological structures that 
may contain REEs deposits, providing crucial data for prospectivity mapping 
(Farahbakhsh et al., 2023). Furthermore, advancements in analytical techniques like mass 
spectrometry and X-ray fluorescence allow for more precise and effective analysis of 
REEs levels in geological specimens (Balaram, 2023). 

However, several constraints impede REEs exploration endeavors. The intricate nature of 
geological processes responsible for REEs concentration poses difficulties in accurately 
predicting their distribution, particularly for prospectivity mapping (Dushyantha & 
Madhubhashani, 2020). Additionally, the substantial financial investments and access to 
remote or politically sensitive areas required for REEs exploration and prospectivity 
mapping can be restrictive for numerous researchers and companies. Environmental 
apprehensions regarding the extraction and processing of REEs ores, encompassing 
habitat degradation and pollution, present significant obstacles that necessitate attention. 
Moreover, market fluctuations driven by technological advancements, economic factors, 
and geopolitical dynamics can impact investment decisions and the feasibility of 
exploration projects. Nonetheless, continuous research and progress in exploration 
techniques offer encouraging prospects for the identification and sustainable extraction of 
HREEs and LREEs. These endeavors ensure the ongoing contribution of REEs to 
technological advancements and economic growth while addressing environmental and 
economic challenges.  
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Figure 1. 1 Periodic table highlighting rare earth elements (Jenkins, Musgrove, & White, 
2023). 
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2 Geology of rare earth elements 
According to the Virginia Department of Energy (n.d.), most REEs are abundant in the 
earth's crust, although they are rarely found in their pure metal form. Lanthanum, for 
example, has an average concentration of 31 parts per million (ppm) in the Earth's crust, 
slightly higher than copper at 28 ppm (Rudnick and Gao, 2003). On the other hand, 
thulium, the least abundant naturally occurring rare earth element, has an average 
concentration of 0.30 ppm, still significantly higher than silver at 0.053 ppm. The 
relatively large size and charge balance properties of rare earth elements in magmatic 
systems generally prevent their incorporation into common rock-forming minerals such 
as feldspars, quartz, amphiboles, and micas. As a result, rare earth elements tend to 
accumulate in rocks formed by magmas that have undergone significant fractionation. 
These rocks include alkaline and silicic igneous complexes, pegmatites, felsic volcanics, 
and carbonatites. Due to their similar ionic sizes, thorium and uranium are often found in 
association with rare earth elements. Additionally, high-temperature hydrothermal fluids, 
particularly those rich in chlorine, fluorine, and lithium, can also transport rare earth 
elements. Economically viable deposits of rare earth elements are typically located in 
magmatic systems, magmatic magnetite-hematite, or iron oxide-copper-gold (IOCG) 
deposits, heavy mineral placers, and chemical weathering zones within ion-adsorption 
clay deposits (USGS, 2020). 

The formation and distribution of REEs in geogenic settings are influenced by intricate 
geochemical and geological processes, with their concentration and extraction linked to 
their presence in specific rock types. Particularly, primary magmatic activities play a 
crucial role in concentrating REEs in distinct igneous rocks like carbonatites and 
peralkaline formations. Carbonatites, which are uncommon igneous rocks mainly 
composed of carbonate minerals, act as primary hosts for REEs. These rocks signify 
highly evolved magmatic events, where volatile-rich magma aids in the solubility and 
mobility of REEs, leading to their precipitation within carbonate-rich matrices. Another 
important host for REEs is peralkaline igneous rocks, characterized by an excess of 
alkalis compared to aluminum. These rocks form in environments where partial melting 
of the Earth's mantle or extreme magma differentiation results in the enrichment of 
alkalis and REEs. This geochemical setting favors the development of REEs -rich 
minerals like eudialyte in nepheline syenites or xenotime in granites. Furthermore, 
hydrothermal processes contribute to the secondary concentration of REEs in veins or by 
altering host rocks such as quartz-rich rocks, carbonates, and phosphates. Heat-mobilized 
hydrothermal fluids dissolve and transport REEs, depositing them in mineralized veins 
within host rocks. This mechanism leads to the creation of REE-rich minerals like 
bastnäsite, monazite, and xenotime embedded in hydrothermally altered rocks. 

In sedimentary contexts, placer deposits act as secondary concentrators of REEs, forming 
in river and beach sands where water's sorting action concentrates heavy and chemically 
resistant minerals. REE-bearing minerals such as monazite, xenotime, and allanite are 
present in these deposits, having been eroded from their primary sources and transported 
by water. In tropical and subtropical climates, weathering processes contribute to the 
development of lateritic and ion-adsorption clay deposits. Intense chemical weathering 
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enhances the leaching of non- REEs minerals from rocks, enriching the soil with REEs. 
These REEs bind to clay minerals in the soil, forming ion-adsorption deposits rich in 
HREEs. These deposits are significant due to their relatively straightforward and cost-
effective extraction methods. 

2.1 Geology settings of the area 
In the regions of central Upper Michigan and Northeastern Wisconsin, REEs can be 
found within a geological context characterized by ancient Precambrian rocks that are 
part of the Canadian Shield. This area is renowned for its intricate geological past, 
featuring rock formations that date back over one billion years, such as granites, 
rhyolites, and basalts, as well as metamorphic rocks like gneiss and schist, which serve as 
indicators of the region's dynamic tectonic history. The mineral composition of the region 
indicates the potential presence of REEs deposits in conjunction with alkaline igneous 
complexes and occurrences of carbonatite. Central Upper Michigan, with its rich 
geological history and diversity, presents a significant potential for the occurrence of 
REEs deposits. The geological characteristics of Northeastern Wisconsin, situated within 
the Superior Upland of the Great Lakes area, consist of ancient Precambrian crystalline 
rocks overlain by Paleozoic sedimentary layers. These foundational rocks, which are 
primarily granitic and volcanic in nature, establish the underlying structure of the region. 
Above these, sedimentary rocks deposited in shallow seas during the Paleozoic era are 
present, such as dolostones, limestones, and sandstones. Additionally, the landscape is 
marked by glacial deposits from the most recent Ice Age, which have a significant impact 
on soil composition and surface geology, contributing to a varied geological framework. 
The geological history of the Central Upper Peninsula of Michigan is intricate and varied, 
spanning billions of years and influenced by ancient geological events, glacial activities, 
and ongoing processes. The provided summary combines insights from the document 
with additional pertinent geological information. 

This area, rich in geologic history and mineral resources, is of significant interest due to 
its potential for REEs. The geological landscape is predominantly shaped by Precambrian 
rocks, showcasing ancient volcanic and sedimentary processes as well as banded iron 
formations (BIFs) that reflect the region's history of iron ore extraction. BIFs consist of 
layers of iron-rich minerals and chert, serving as a crucial source of iron ore historically. 
The Central Upper Peninsula is underlain by Precambrian rocks, part of North America's 
ancient geological core, including various igneous and metamorphic types like granites, 
gneisses, and volcanic formations. Notably, the Marquette Trough, a significant 
geological feature resulting from the Penokean Orogeny during the mid-Precambrian era, 
is a key aspect of the region's geology. BIFs, containing iron-rich minerals interspersed 
with chert and other sedimentary rocks, provide clues about past oceanic conditions. 
These formations, extensively mined for iron ore, have contributed to the area's economic 
progress. Given the complex geological past of the Central Upper Peninsula and its 
diverse rock formations, there is potential for REEs under the right geologic 
circumstances. Further exploration of this potential could be worthwhile, especially 
considering the rising demand for REEs in the advanced technology and sustainable 
energy sectors. Exploration approaches might entail thorough geophysical and 
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geochemical surveys, building on existing knowledge of the region's geological structure 
to pinpoint areas with promising REEs mineralization prospects. 

 

Figure 1. 2 Bedrock Geology map of the central Upper Peninsula, Michigan. 

One of the historical investigations into REEs in the studied area was carried out in the 
Goodrich Quartzite, situated in Marquette County, Michigan, as documented in a 1987 
study by B.K. Parker. The geologic map of the central upper Peninsula with different 
geologic units is shown in Figure 1.2. The exploration involved the analysis of ten 
samples from radioactive outcrops and glacial boulders in the Palmer Area, providing 
valuable insights into the geology and mineral potential of Michigan's central Upper 
Peninsula. The Palmer Area, located approximately 20 miles southwest of Marquette, 
exhibits Precambrian terrains containing Archean granites, lower Proterozoic 
metasediments, and metavolcanics. This region is characterized by the Marquette 
syncline and its structural complexities. The research specifically focused on the 
Goodrich Quartzite within this geological context, particularly examining its REEs, 
thorium (Th), and uranium (U) content, which displayed a strong correlation across the 
sampled region (Parker, 1987). Sampling primarily took place in areas with elevated 
radioactivity levels, targeting sections of the quartzite enriched in monazite, the primary 
REEs -associated mineral in the area. Chip samples weighing 0.5-1 kilogram each were 
collected from various locations, underscoring the limited representativeness of these 
samples concerning the broader outcrop areas. Neutron activation analysis was conducted 
on these samples to identify the presence and concentrations of REEs, Th, U, as well as 
elements like scandium (Sc) and gold (Au) (Parker, 1987). Examination of the quartzite's 
petrography indicated a composition mainly composed of angular to sub-rounded quartz 
with minor microcline, often altered to sericite and chlorite. Monazite, a significant 
inclusion, was found both within the matrix and as inclusions in quartz grains, 
underscoring its importance in the area's geochemistry. Geochemical assessments showed 
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a strong correlation among REEs in the samples, suggesting a consistent monazite 
composition throughout the sampled area.  

The REEs patterns demonstrated enrichment in lighter REEs and distinct negative 
anomalies in europium (Eu), with minor anomalies in other elements (Parker, 1987). The 
comprehensive exploration and analysis of the Goodrich Quartzite emphasizes the 
substantial potential for REE extraction in the Central Upper Peninsula of Michigan. The 
results indicate the feasibility of resource exploitation, given the uniform mineral 
composition and the correlation among economically vital elements such as REEs and 
thorium. Parker's study lays the groundwork for further exploration and potentially the 
establishment of mining activities in the region, capitalizing on the unique geological 
characteristics of the Marquette syncline and its related formations. 
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3 Data and Methodology 

3.1 Data 
In the investigation and mapping of REEs, the combination of geochemical information 
and geophysical measurements presents a comprehensive approach to pinpointing 
abnormal areas of interest. Geochemical data play a fundamental role in this research 
process by providing accurate details on the concentrations and distribution patterns of 
heavy and light REEs throughout the surveyed area. Being primary data, they offer direct 
proof of the existence and levels of REEs enrichment, which are essential for assessing 
the economic viability of the studied region. In addition to the insights from 
geochemistry, gravity and magnetic surveys serve as supplementary sources of data. 
These geophysical techniques enable the interpretation of subsurface variations in density 
and magnetization that may not be readily apparent through geochemical analysis alone. 
Gravity data help in uncovering fluctuations in mass or density that could be linked to 
REEs -bearing minerals or host rocks, while magnetic data can disclose the presence of 
mineral phases or geological characteristics with distinctive magnetic properties that 
could impact the localization of REEs. 

3.1.1 Geochemistry and gravity data 
There were 57 geochemical data points used in this study as shown in Figure 1.3 and a 
total of 1536 gravity stations were obtained within the time frame of 2016 to 2019 in the 
central upper peninsula of Michigan and Northeastern Wisconsin as shown in      igure 
1.4 below. 

 

Figure 1. 3 Map of geochemistry data points in study area. 
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Figure 1. 4 Map of gravity data points in study area. 

3.1.2 Magnetic data 
According to the United States Geological Survey (2018), the airborne magnetic total-
field survey was conducted in Northern Michigan to acquire high-quality geophysical 
data. Data collection was carried out utilizing two aircraft equipped with advanced 
geophysical tools, such as a cesium-vapor magnetometer for precise magnetic 
measurements. The survey spanned several months and covered a total of 38,474 line-
kilometers of data. The flights adhered to a specific flight plan with precise line spacings 
and altitude requirements to optimize data quality as shown in Table 1.1. Apart from 
magnetic readings, the data collection process also involved synchronized recordings of 
positional, altimetry, and atmospheric data to facilitate comprehensive data analysis. 
During preprocessing, stringent quality control measures were implemented to ensure 
data integrity, involving the synchronization of data acquisition systems with GPS time 
for accurate geo-referencing of the magnetic data. Advanced onboard systems enabled 
real-time monitoring and adjustments, allowing for immediate responses to any data 
acquisition issues. Subsequently, the data underwent a re-projection process, transitioning 
from their initial WGS 1984 format to a standardized coordinate system known as the 
North American datum of 1983. 
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 Traverse Lines Tie Lines Total 

Spacing 150 m 1,500 m  

Heading North-South East-West  

Total Line-km 34,911 km 3,563 km 38,474 km 

Table 1. 1 Line spacing for the magnetic survey (United States Geological Survey 
[USGS], 2018). 

The processing of magnetic data from the aerial survey involved a sequence of 
sophisticated corrections to refine the raw data and minimize errors. The first correction, 
the Partial IGRF Correction, aligned the magnetic data with the expected values of the 
International Geomagnetic Reference Field between the flight surface and the drape 
surface. Subsequently, a Diurnal Correction was applied to address daily fluctuations in 
the Earth's magnetic field, separating geological anomalies from these variations. 
Intersection Leveling ensured consistency across intersecting flight lines through 
statistical analysis and adjustment.  Furthermore, Taylor Correction compensated for 
altitude deviations from the planned flight path to maintain data accuracy over diverse 
terrain. Lastly, Micro-Leveling was utilized to fine-tune the data by eliminating small-
scale variations and enhancing the smoothness of the magnetic data presentation. These 
corrections played a crucial role in minimizing the impact of environmental, 
instrumental, and operational factors that could potentially distort the magnetic data. The 
processed data underwent a final round of quality controls, including gridding and 
detailed analysis, to validate the accuracy of the magnetic data in representing subsurface 
geological characteristics (United States Geological Survey [USGS], 2018). The total 
magnetic field data is shown below in Figure 1.5 and the integration of the primary data, 
the geochemical and the secondary data sources, gravity, and magnetic data, is also 
shown in Figure 1.6. 
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Figure 1. 5 Map of magnetic field data in study area. 

 

 

Figure 1. 6 Map of combined data in study area. 

3.1.3 Data pre-processing and resampling 
The geochemical and gravity point data and the magnetic raster data were loaded, and 
pre-processing was carried out. All data were geo-referenced. All null values from the 
raster data. The nearest neighbor resampling technique was utilized for adjusting the cell 



15 

sizes and spatial resolution of the raster files and it is an efficient approach. With nearest 
neighbor resampling, every pixel in the resulting raster is assigned the value of the 
nearest pixel from the initial raster, determined by the geometric center of each output 
pixel. The data analysis further checks for missing values, conversion of raster data to 
points and vice versa, checking the distribution pattern which shows some level of 
correlation between the datasets. The mosaic to new raster tool was eventually used to 
merge the magnetic raster data.  

3.2 Methodology 
At the heart of the methodology lies the application of spatial continuity modeling to 
analyze the spatial correlations of LREEs and HREEs concentrations in geochemical 
data. This is integrated with gravity and magnetic datasets through coring, a multivariate 
geostatistical technique facilitating the integration of secondary data sources with primary 
geochemical data. This integration offers a more detailed prediction of HREEs and 
LREEs distribution by leveraging spatial correlations across different data types. 
Subsequently, fractal analysis is used to examine the complexity and scaling behavior of 
the geochemical, gravity, and magnetic datasets, unveiling anomaly distribution patterns 
that may highlight zones of higher REEs enrichment. 
 
The results phase combines findings from geochemical data with gravity and magnetic 
anomalies to pinpoint potential hotspots for HREEs and LREEs mineralization. The 
conclusion synthesizes insights gained from this integrated approach, underscoring the 
improved predictive power and accuracy that contributes to anomaly mapping and 
exploration. By incorporating geophysical datasets, the methodology not only enhances 
the geochemical perspective but also offers a comprehensive three-dimensional 
understanding of the geological environment, advancing the exploration process towards 
new frontiers of efficiency and effectiveness. 

3.3 Spatial continuity modeling 
In this study, the methodology relies heavily on spatial continuity modeling, which is 
fundamental for accurately characterizing and predicting the HREEs and LREEs 
anomalies. The initial step involves creating variograms, essential tools for evaluating the 
level and extent of spatial correlation in our primary geochemical and secondary data 
sources. To account for anisotropic conditions, where variability depends on direction, 
our analysis includes variogram maps to depict semi-variance in various directions, 
offering a holistic perspective of the spatial arrangement. This analysis uncovers 
directional relationships and inconsistencies within the data sets, crucial for grasping the 
intricate geological factors influencing the distribution of REEs. The spatial models based 
on variograms are then fine-tuned and verified using cross-validation techniques to 
ensure their reliability. Once we establish dependable models of spatial continuity, we 
implement cokriging, a multivariate geostatistical approach. 
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3.4 Co-kriging 
Co-kriging is a complex geostatistical method utilized to estimate the values of a main 
variable at locations where data is lacking by incorporating both the main variable and 
one or more secondary variables that exhibit a correlation with it. This technique proves 
advantageous when there is limited data available for the main variable but an abundance 
of data for the secondary variable(s), thus leading to an enhancement in the accuracy of 
estimation. Various forms of co-kriging, such as simple, ordinary, and universal co-
kriging, are tailored to suit the specific characteristics of the data and the inherent spatial 
patterns. The core idea behind co-kriging is that the supplementary information from the 
co-variable can improve the estimation (prediction) of the target variable by exploiting 
the cross-correlation between the variables. This process assumes that the regionalized 
variables have a multivariate spatial cross-correlation as well as a univariate spatial 
autocorrelation. 

The co-kriging general equation can be written as: 

𝑧଴
∗ = ෍  

௡

௜ୀଵ

𝜆௜𝑧௜ + ෍  

௡

௝ୀଵ

𝛽ଵ௝𝑦ଵ௝ + ෍  

௡

௞ୀଵ

𝛽ଶ௞𝑦ଶ௞ 

Where:  

Z0
* (s0) is the estimated value at the target location. 

𝜆௜  are the weights for the primary variable at known locations 𝑧𝑖. 

β1j are the weights for the first secondary variable at known locations 𝑦1𝑗. 

β2k are the weights for the second secondary variable at known locations 𝑦2𝑘. 

n is the number of known data points used in the estimation for each variable. 

The weights λ and µ are determined such that the estimation error variance is minimized, 
subject to the condition that the estimator is unbiased. This is typically done by solving a 
system of linear equations derived from the variogram or covariance functions of the 
primary and secondary data. This system includes direct variograms for each variable and 
cross-variograms (or covariograms) between each pair of variables. Co-kriging was 
employed in this study, and this involves utilizing the spatial correlation between dense 
gravity and magnetic data and sparse geochemical measurements to calculate 
geochemical values at unsampled locations. This approach capitalizes on the extensive 
coverage of gravity and magnetic surveys to enhance the interpolation of geochemical 
parameters, under the assumption that these data categories exhibit spatial correlation. 
The process includes constructing variograms and cross-variograms, fitting a suitable 
model to these data, and then using the model to estimate the primary variable across the 
area of interest. 
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In this study, a simple co-kriging approach was utilized. The main variable of interest is 
Z1, and both autocorrelation for Z1 and cross-correlations between Z1 and all other 
variable types are used to make better predictions. LREEs and HREEs are the main 
variables while the gravity and magnetic data are the secondary variables. Each 𝑍𝑖(𝑠) 
variable exhibits a distinctive autocorrelation pattern outlined by its variogram or 
semivariogram, which characterizes the spatial correlation of 𝑍𝑖(𝑠) with itself at varying 
lags. Additionally, there exist interrelationships between the primary and secondary 
variables, captured by cross-variograms or cross-semivariograms, which quantify the way 
one variable changes in relation to variations in another across different lags. 
Mathematically, the equation would be as shown below: 

𝑧୐ୖ୉୉ 
∗ (s0) = ෍  
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where 

𝑧୐ୖ୉୉ 
∗  (s0) is the predicted value of LREEs at the unsampled location s0. 

𝜆௜  are the weights assigned to the observed values of LREEs at sampled locations si based 
on their spatial correlation with s0. 

𝑧୐ୖ୉୉  (si) are the observed values of LREEs at location si   

λj, λk, λl are the weights for the observed values of the secondary variables HREEs, CBA, 
and MRESLVLD, respectively. 

𝑧ୌୖ୉୉  (sj),  𝑧େ୆୅ (sk), and 𝑧୑ୖ୉ୗ୐୚୐ୈ (sl) are the observed values of the secondary 
variables of HREEs, CBA, and MRESLVLD at location sj, sk, and sl, respectively. 

n, m, o, and p are the numbers of observed values for LREEs, HREEs, CBA, and 
MRESLVLD that are being considered in the estimation process, respectively. 

3.5 Concentration-area (C-A) fractal model analysis 
The C-A fractal model is a quantitative technique commonly utilized in the fields of 
geochemistry and mineral exploration for the purpose of examining and interpreting 
spatial distributions of geochemical element concentrations within a specified area. The 
foundation of the C-A fractal model lies in the recognition that mineralization processes 
frequently give rise to patterns of element concentrations that demonstrate fractal 
characteristics. These patterns can be scrutinized to differentiate between the baseline 
(typical levels found in the earth's crust) and anomalies (elevated concentrations 
suggestive of mineral deposits). Fractal models were used to compute the thresholds of 
HREEs and LREEs. The log plots were generated and used to establish the thresholds. 
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The concentration maps showing the concentration of HREEs and LREEs were created 
by plotting their concentration values (C) against the area of cells (A). In addition, the 
log-log plots of C-A were generated for HREEs and LREEs concentration to calculate the 
specific thresholds. Finally, a classification map was generated to identify geochemical 
anomalies of HREEs and LREEs. 

In this study, the calculation of the minimum 'min_est' and maximum 'max_est' estimated 
values for the predicted variable 'var1.pred' from the raster dataframe 'raster_df' is 
conducted. A sequence ranging from the minimum to the maximum estimated value with 
an interval of 0.01 is established for the purpose of thresholding the predicted values. 
Subsequently, within a loop, each threshold in 'grd_inter' is examined by the script to 
determine the predicted values surpassing the current threshold, counting them, and 
storing the count as 'num_pix'. This tally is then recorded alongside the threshold value in 
a matrix 'grade'. Lastly, a log-log plot illustrating the thresholds against their 
corresponding counts is generated. The identification of thresholds was carried out using 
the segmented linear regression (SLR) approach, employing a maximum of 20 
breakpoints. The code systematically fits segmented linear regression models with an 
increasing number of breakpoints to the log-transformed data, halting when no significant 
enhancement in model fit is observed, and consequently determining the most suitable 
number of breakpoints. A linear model is applied to the data, and the segmented () 
function is utilized to fit a segmented linear model, potentially pinpointing a breakpoint 
where the linear relationship shifts. Following the loop execution, the value of 'i' at which 
the loop terminated indicates the optimal number of breakpoints considered based on the 
enhancement of R-squared. A test involving various interval values revealed that 0.01 
yielded the best outcomes in this study, resulting in the generation of 11 breakpoints 
which is about 10 thresholds. Furthermore, a plot of the calculated data and fitted data 
was generated and various classification maps were also generated. 
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4 Results 

4.1 Spatial continuity modeling 

4.1.1 Light rare earth elements (LREEs) 

The results of the analysis on the concentration of LREEs are depicted through an 
empirical semi-variogram that shows an initial rise in semivariance values, starting from 
close to zero and stabilizing after reaching a distance of 0.06 units as shown in Figure 1.7 
and this pattern indicates the presence of spatial autocorrelation in LREEs concentrations 
within this specific range. Cases of anisotropy were also investigated to check if the data 
exhibit some form of directional variability. Some forms of weak anisotropy were 
detected in the data. For example, in Figure 1.8, a plot of 4 directions (0, 45, 90, 145) was 
plotted and we see a case of weak anisotropy in the 0-degree direction especially with 
increasing distances where semivariance values are notably elevated. This indicates a 
more pronounced spatial variability in that specific direction. Conversely, at shorter 
distances, semivariance values for angles 45, 90, and 145 are closely clustered, 
demonstrating significant overlap and suggesting a more isotropic behavior along these 
directions as seen in Figure 1.9 and while the differentiation between semivariance values 
for various directions is less pronounced, the observed variation, especially for direction 
0, implies directional disparities in the spatial data, with the most prominent anisotropy 
observed over long distances.  

Through cross-validation, the comparison between predicted and actual values reveals an 
average prediction error of 4.599, with residuals ranging from -144.317 to 502.632. 
Figure 1.10 Despite this wide range, the central tendency of the residuals indicates no 
bias in the model's predictive accuracy. These empirical results underscore the model's 
capability to estimate LREEs concentrations reliably, while also pointing out areas for 
enhancement, especially in predicting higher concentration levels where notable 
discrepancies were observed.  

 

Figure 1. 7 Experimental semi-variogram of LREEs. 
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Figure 1. 8 Directional variogram of LREEs. 

 

Figure 1. 9 Directional variogram plot of LREEs. 
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Figure 1. 10 Coefficient of variation plot of LREEs. 

residual 

Min. -144.317 

Ist Qu. -46.499 

Median -12.740 

Mean 4.599 

3rd Qu. 43.464 

Max. 502.632 

Table 1. 2 Coefficient of variation statistics of LREEs. 

The LREEs interpolated map in Figure 1.11 shows the spatial variation of the 
concentration of LREEs across the study area. Regions exhibiting the most elevated 
levels of Light Rare Earth Elements (LREEs) are depicted by more intense hues, notably 
situated in the lower right section of the visual representation (signifying the uppermost 
range of 343.162 - 461.95). Conversely, regions with the least concentrations are 
illustrated in paler shades, for instance, in the upper left corner (indicating the lowermost 
range of 12.317 - 52.683). 
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Figure 1. 11 Interpolated map of LREEs. 

4.1.2 Heavy rare earth elements (HREEs) 

The results of the analysis of HREEs show a semivariance pattern that bears some 
semblance with the LREEs. Figure 1.12 shows the empirical semivariogram plot with an 
initial sharp increase, indicating a strong spatial relationship at shorter distances. This 
rapid rise implies that concentrations of HREEs vary more noticeably when samples are 
taken in proximity, a common trait in mineral deposits where areas of high concentration 
can be found. As the distance between samples increases, the semivariance values start to 
level off, indicating a decrease in the spatial correlation among samples. This 
stabilization in the variogram, referred to as the sill, seems to occur at approximately 0.06 
units of distance, beyond which the variation between sample points does not notably 
increase. This indicates a maximum limit to the spatial impact, after which samples do 
not exhibit a strong spatial connection. The trend seen in the experimental variogram 
remains consistent across directional variograms examined, with directional variograms 
at 0, 45, 90, and 135 degrees all displaying similar behavioral patterns. This isotropy 
demonstrates that the spatial correlation of HREEs concentrations is not greatly 
influenced by the measurement direction. The scatter plot from cross-validation, which 
compares estimated and observed values, lacks a clear trend, suggesting the possibility 
for enhancing the model's predictive accuracy. Residual analysis indicates a consistent 
average close to zero, indicating a model without bias. 
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Figure 1. 12 Experimental semi-variogram of HREEs. 

 

Figure 1. 13 Coefficient of variation plot of HREEs. 

In conclusion, the HREEs does exhibit spatial continuity within a specific range, beyond 
which sample values are not strongly correlated. This insight can inform further 
geochemical analysis and exploration endeavors, where refining sampling strategies to 
focus within distances showing the strongest spatial correlations can enhance resource 
estimation. This interpolation map displays a spatial analysis of concentration levels of 
HREEs in the study area. The legend's color gradient corresponds to the values of HREEs 
concentration with the dark blue sections depicted on the map signifying the areas with 
the most significant accumulations of HREEs, implying promising locations for 
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additional examination or investigation. In contrast, the paler, yellow areas denote lower 
concentrations of HREEs. This map serves as a crucial instrument for pinpointing 
geological areas of interest pertaining to the distribution of HREEs. 

residual 

Min. -59.1120 

Ist Qu. -14.4523 

Median -7.6776 

Mean -0.3893 

3rd Qu. 14.0353 

Max. 70.1633 

Table 1. 3 Coefficient of variation statistics of HREEs. 

 

Figure 1. 14 Interpolated map of HREEs. 

4.1.3 Gravity data 

The semi-variogram plot of the gravity data indicates a consistent lack of an initial 
variance jump as seen in Figure 1.15, which suggests the absence of a nugget effect and 
supports the reliability of measurements. The gradual increase in semi-variance as 
distance grows demonstrates a common spatial autocorrelation pattern, indicating that 
nearby locations exhibit similar gravity values.  
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Figure 1. 15 Experimental semi-variogram of gravity data. 

4.1.4 Magnetic data 

The magnetic data variogram plot shown in Figure 1.16 illustrates a positive relationship 
between data variability and distance. It initiates with a nonzero "nugget," indicating 
unexplained variability at very short distances or potential measurement errors. As 
semivariance values increase, they reach a "sill," which signifies the point where data 
correlation ceases. The distance at which this plateau occurs, referred to as the "range," 
determines the spatial correlation extent. Beyond this range, data points no longer impact 
each other's values significantly, suggesting spatial lack of correlation at greater 
distances. The curve's shape resembles that of a spherical model. 

 

Figure 1. 16 Experimental semi-variogram of magnetic data. 
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4.2 Cross variograms 
Figure 1.17 shows a cross-variogram which demonstrates the spatial connection between 
LREEs and HREEs, showing a positive correlation at shorter distances that decreases as 
distance increases. This indicates a level of spatial interdependence between the two 
elements in the research area. In Figure 1.18, the cross-variogram plot shows the 
association between LREEs and gravity data, uncovering a weaker correlation in 
comparison to the LREEs and HREEs relationship. The variogram exhibits a less 
prominent pattern, implying a reduced spatial relationship between LREEs distribution 
and gravity anomalies. 

 

Figure 1. 17 Cross variogram of LREEs and HREEs. 

 

Figure 1. 18 Cross variogram of LREEs and Gravity data. 
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4.3 Cross validation 
In the co-kriging semi-variogram model for the LREEs shown below, the blue curve, 
which represents the measured values fits with the predicted values reasonably well as 
shown in Figure 1.19. The minimal mean error suggests the absence of a notable 
systematic bias. The distribution plot of residuals indicates potential variability not 
accounted for by the model, potentially stemming from outliers or unrepresented spatial 
patterns. 

 

Figure 1. 19 Co-kriging measured and predicted values of LREEs. 
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Figure 1. 20 Co-kriging error plot of LREEs. 

The error plot for the LREEs, gravity, and magnetic data cross-validation shown below as 
Figure 1.20 reveals a significant dispersion of residuals compared to observed values, 
indicating variability in the predictive capability of the model. The concentration of data 
points around the zero line suggests that numerous predictions closely match actual 
values, yet there is noticeable dispersion, indicating instances of both over and 
underestimation. The cross-validation results of the cokriging model reveal a minor 
overestimation bias and a mean standardized error close to zero, indicating an accurate 
distribution of errors. The model exhibits a strong fit, with the standardized RMS being 
nearly one, and an RMS error of around 5.07. This suggests a reasonably good fit for the 
model, especially given the intricacies of geological data, showcasing dependable 
predictions when incorporating LREEs alongside gravity and magnetic data. 
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Summary statistics 

Mean -0.6515 

RMS 5.0745 

Mean Standardized -0.0390 

RMS Standardized 0.2004 

Average Standard Error 19.6152 

Table 1. 4 Cross-validation residual statistics of LREEs. 

The result of the cross validation of the co-kriging model involving HREEs and the 
secondary variables are also shown below in Figures 1.21 and 1.22. The cross-validation 
results for the co-kriging of HREE data with gravity and magnetic data illustrate the 
model's predictive performance. The density plot indicates a notable correspondence 
between the measured and predicted values, with a trend that shows fluctuation patterns 
aligning in most regions. This suggests that the model can capture the variations in HREE 
concentrations to some extent. The error plot displays a widespread distribution of errors 
around zero, which is indicative of a lack of systematic bias in the predictions. However, 
the presence of outliers, especially those with higher errors, points to certain predictions 
that significantly differ from the observed values. The regression line across the error 
plot, relatively flat, also supports the notion of a minimal bias across the prediction range.  
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Figure 1. 21 Co-kriging measured and predicted values of HREEs. 
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Figure 1. 22 Co-kriging error plot of HREEs. 

Summary statistics 

Mean -0.0083 

RMS 0.5834 

Mean Standardized -0.0086 

RMS Standardized 2.1195 

Average Standard Error 0.2938 

Table 1. 5 Cross-validation residual statistics of HREEs. 
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4.4 Fractal modeling 
The concentration values plotted against area is depicted by the red line on this graph. 
The green lines are the identified breakpoints that segregate distinct populations within 
the dataset. The (C-A) log-log plots for LREEs and HREEs are both shown below as 
Figure 1.23 and 1.24 and the LREEs plot is characterized by a trend in which the initial 
log-concentration values show a high magnitude (e.g., between 2 to 4 on the logarithmic 
scale), resulting in a sharp rise on the left side of the graph. This pattern indicates an 
accumulation of LREEs in specific areas that significantly differ from the standard crustal 
abundance, identifying them as geochemical anomalies. As the log scale distance 
increases (approaching 0 or negative values), the semivariance values stabilize, implying 
that most locations exhibit lower LREEs concentrations, aligning with the typical 
background levels found in the Earth's crust. 

 

Figure 1. 23 C-A log-log plot for LREEs. 

In the context of the HREE plot, if a similar trend to that observed in the LREEs is 
identified, characterized by elevated initial log-concentration values (potentially ranging 
from 1 to 3 on the logarithmic scale), this signifies notable enrichment of HREEs regions. 
The point of inflection, where the plot starts to level off (which may occur at a log-
distance value of approximately 0 to 1), marks the boundary between abnormal 
concentrations and the broader, lower baseline levels. A gentler initial incline in 
comparison to the LREE could indicate a lesser concentration of HREEs or a distinct 
spatial distribution influenced by geological factors. In both scenarios, the inflection 
point or 'elbow' plays a critical role by indicating a shift from high-grade ore zones to 
more scattered, lower-grade areas, with the steepness of the curve offering insights into 
the extent and scope of the anomalies. The specific thresholds at which the curve alters 
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provide pivotal benchmarks for defining the demarcation between abnormal and 
background concentrations within the surveyed area. 

 

Figure 1. 24 C-A log-log plot for HREEs. 

The distribution of LREEs displays a sharp initial incline, indicating elevated 
concentrations in specific areas, suggesting notable geochemical irregularities related to 
LREEs. After this steep rise, the graph plateaus, illustrating a swift decline in LREEs 
levels across most sites, in accordance with a typical distribution pattern observed in the 
Earth's crust. The depiction of HREEs in the second graph closely resembles the LREEs 
trend, featuring a steep initial segment that highlights the presence of high concentrations 
of HREEs in some regions. This segment then transitions into a flat phase, signifying a 
decrease in anomalies and a broad reduction in abundance at higher locations. Both 
illustrations imply that only a limited number of sites exhibit elevated levels of LREEs 
and HREEs, making them potentially valuable for mineral exploration, while most 
locations show significantly lower concentrations. The geochemical QQ plots shown as 
Figures 1.25 and 1.26 validate a consistent distribution pattern for both LREEs and 
HREEs, characterized by notable irregularities followed by a multitude of sites with 
background levels of rare earth elements. 
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Figure 1. 25 QQ plot for LREEs. 

 

Figure 1. 26 QQ plot for HREEs. 

The steepness of the slope on the right side implies a substantial alteration in area with 
minor concentration variations, a common sign of high anomaly concentrations in a limited 
area – corresponding to the red regions on the classification map. Taken collectively, the 
QQ and C-A plots suggest the presence of at least one notable geochemical anomaly in the 
examined region that may necessitate further investigation. This anomaly is characterized 
by a high abundance of LREEs, as indicated by the class 10 categorization on the map and 
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the corresponding threshold on the C-A plot. The existence of such a notable anomaly 
could hint at underlying mineralogical processes that have enriched this region with 
LREEs. There are 10 thresholds identified for the LREEs based on (C-A) log-log plots of 
the combined data  

 

Figure 1. 27 Classification map of LREEs. 

The classification map displays the spatial distribution of LREEs concentrations in parts 
per million (ppm) within a specified geographic region. Shown in Figure 1.27 is the 
classification map of LREEs, and the color gradient spans from blue to red, indicating 
escalating levels of LREEs concentrations. Blue regions denote the background areas 
with the lowest LREEs concentrations (class 2.5 and below), while green to yellow 
regions imply moderate anomalies (class 5 to 7.5). Red zones highlight the most 
substantial anomalies (class 10), which may potentially indicate the presence of 
mineralization. Similarly, for the HREEs, the distribution of anomalies on the anomaly 
map implies a non-homogeneous spread, where concentrations are probably impacted by 
the geological structures and processes beneath. The anomaly map in Figure 1.28 
illustrates the existence of specific areas with notably elevated levels of HREEs, notably 
in the southwest region. It demonstrates a noticeable contrast between regions presenting 
a greater likelihood for economic mineral deposits (identified by red and orange zones) 
and those with lower potential (highlighted by yellow and green zones). Areas with 
concentration levels between 53.172-71.573 ppm have very high anomalies.  
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Figure 1. 28 Classification map of HREEs. 

HREEs distributions were mapped using only the geochemical data on one hand and with 
geophysical data (gravity and magnetic) on the other hand as supplementary information 
sources. Below is the comparison of the various maps generated. Figures 1.29 and 1.30 
show the classification maps of LREEs with and without the gravity and magnetic data. 
When supplementary geophysical data are not used, the geochemical map shows an 
unusual geochemical signature of HREEs, mostly in the southern sector of the area under 
study. A chromatic gradient is utilized to quantitatively depict this anomaly, wherein the 
red color corresponds to the highest concentrations. It is indicative of geochemical halos 
resulting from secondary enrichment, weathering, hydrothermal alteration, and fluid 
migration that the geochemical distribution displays a zonal gradation of concentration 
levels. Similarly, Figures 1.29 and 1.30 highlight the difference in the classification maps 
of HREEs using only geochemical data and when integrated with gravity and magnetic 
data.  
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Figure 1. 29 Classification maps of LREEs using geochemical data. 

 

Figure 1. 30 Classification maps of LREEs using geochemical data with geophysical 
data. 

Conversely, in the combined map shown in Figures 1.31 and 1.32 integrating gravity and 
magnetic data with geochemical information reveals a more precise and concentrated 
layout of high HREEs concentration zones. The inclusion of gravity data aids in 
comprehending variations in subsurface density, often linked to mineral deposits, while 
magnetic data can signal the presence of magnetic minerals frequently associated with 
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specific types of HREEs mineralization. The map anomalies are more distinctly defined, 
indicating that incorporating gravity and magnetic data provides enhanced clarity regarding 
the presence of dense, mineral-laden formations below the Earth's surface. In summation, 
the consolidated map, which includes geochemical, gravity, and magnetic data, presents a 
more sharpened and potentially accurate representation of the subsurface concentrations of 
HREEs, guiding exploratory initiatives to the zones with the highest potential for 
economical mineral extraction. 

 

Figure 1. 31 Classification map of HREEs using geochemical data. 

 

Figure 1. 32 Classification map of HREEs using geochemical data with geophysical data. 
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5 Conclusion 
Based on the findings obtained through analysis of the C–A fractal model and the log-log 
plots of gravity, magnetic, and geochemical data, notable concentration anomalies of 
HREEs fall within the range of 53.172-71.573 ppm, while for LREEs, the range is from 
260.3 to 461.9. The study highlights the effectiveness of utilizing a multidisciplinary 
geoscientific approach to enhance the accuracy and resolution of anomaly mapping of 
LREEs and HREEs. Empirical findings indicate that merging geochemical profiles with 
geophysical data, particularly gravity and magnetic surveys, significantly improves the 
identification of subsurface mineralized zones. This combined method helps overcome 
the limitations of using isolated geochemical data, which mainly reflect surface mineral 
occurrences and can be altered by weathering processes. Utilizing gravity measurements 
adds a crucial aspect to this integrated approach by aiding in identifying density 
differences that point to ore bodies beneath the Earth's surface. Magnetic data 
complements this by outlining anomalies related to the magnetic characteristics of 
geological formations, often linked to mineralization. By merging these datasets, more 
precise and geologically coherent anomaly patterns can be identified compared to using 
single-discipline exploration methods. 

Through leveraging the strengths of each geoscientific technique, the study demonstrates 
that the composite data model offers a more precise spatial depiction of potential LREEs 
and HREEs deposits. The resulting anomaly maps show improved clarity and specificity, 
enabling a more targeted exploration approach. Furthermore, this integrated model 
provides insights into the three-dimensional layout of anomalies, enhancing the 
understanding of the region's geological framework. 

In conclusion, the empirical data from this study supports the use of an integrated 
approach as a best practice in the search for economically viable concentrations of 
LREEs and HREEs. The integration of geochemical, gravity, and magnetic data not only 
enhances the direct identification of anomalies but also enriches the geological 
interpretation of the subsurface context, crucial for prioritizing exploration targets. The 
study's results advocate for this comprehensive methodology to become a standard 
procedure in mineral exploration, ensuring a more efficient allocation of exploration 
resources and optimized prospectivity evaluations. 
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