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Abstract

Due to the unpredictable nature of large bodies of water, wave energy can be a difficult

renewable resource to rely on. One way to make Wave Energy Converters (WECs)

more efficient is to apply a control strategy. In many control solutions, it is assumed

that the wave excitation force is known into the future. In many instances, especially

with complex waveforms, this is simply not the case. Simulation studies have shown

the promise of wave force prediction using neural networks. This study demonstrates

this experimentally and aims to characterize the important factors when designing

such a network. Several wave elevation measurement factors are considered, including:

quantity, their location relative to the buoy, and their configuration. The relationship

between forecast horizon and the number of measurement backvalues is also evaluated

along with both the wave form complexity and the performance impact of including

instantaneous buoy acceleration. A 14.2 cm buoy, constrained to vertical motion, was

subjected to 30, 60 second tests using regular and irregular waves in a wave tank.

For each test its vertical motion was recorded along with an array of twelve upstream

and downstream wave elevation measurements. Neural networks were trained using

subsets of the data to examine the effect of the factors mentioned above on predic-

tion performance. The results showed that upstream measurements were the most

important, where the distance between the measurement and the buoy is critical. A

diamond-shaped configuration of elevation measurements performed nearly the same

xvii



asusingalltwelvemeasurementsillustratingtheimportancemeasurementtopology.

Itwasalsofoundthatthenumberofpastmeasurementsusedhadasignificantimpact

onperformance.Specifically,performancewasbestwhentheratiooftheprediction

horizontimetothenumberofbackvalueswasone.1gaugefarupstream,2gauges

immediatelyupstream,and1gaugetotherearperformedjustaswellasafullset

of12gauges.Includingaccelerationasaninputappearedtolowertheerrorofmost

ofthesecasesaswell.Itwasdiscoveredthataratiooftheforecasthorizontothe

numberofbackvaluesallowsthenetworktoperformitsbestasthisratioisnearor

lessthan1.Furthertestingisrequiredtoobtainamorecompleteviewoftheimpact

ofwaveformcomplexityontheresultsofthenetwork.
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Chapter 1

Introduction

Wave energy is a widely abundant form of renewable energy, as the planet’s surface

comprises mainly oceans and seas. With the help of modern technology, the energy

from these perpetual waves can be harnessed and converted to electrical energy using

devices known as Wave Energy Converters (WECs). Though these devices have been

explored for centuries, significant improvements must be made before wave energy can

become a steadfast approach in the renewable energy industry. One of the challenges

that they must operate and prove reliable in unpredictable and sometimes violent sea

conditions. Therefore, WECs must operate under some form of control strategy for

both efficiency and self-preservation. This is to ensure reliability and to maximize

energy extraction during even less-than-ideal conditions.
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Suchastrategycouldbeusedwheneverthesurroundingwaveconditionsarereason-

ableandsafefordeviceoperation.Thismeansthatsolongasthewavesareviable

forenergyextractionandapowershutdownmodeisnotengaged,thisresonance-

encouragingcontrolstrategywillbeactive.Thiswillprovetobeofgreatervaluein

anincrediblyroughwavefield,asitcanoftenbemoredifficultforWECstoreach

resonanceinsuchintensewaves.Duringexceedinglyroughconditions,manyofthese

devicesevengointoasafetyshutdownmodewhereenergycollectionisnolonger

prioritized,andpreservationofthedeviceistheobjective.

1.1Motivation

AfrequentobstaclewhenusingWECcontrolstrategiesisthatsomecomputation-

allyexpensivequantitiesmustbeknown.Forexample,atechniquesuchasModel

PredictiveControl(MPC)requirespredicted,futureexcitationforcesexperiencedby

theWECfloat(alsocalledthebuoy).Thisexcitationforcecanbeconsideredthe

resultingverticalforcefromtheheavingwatercolumnbelowtheWECduetothe

waves.

Withanaccurateforecastoftheexcitationforce,thecontrolresponsecanbecom-

putedinrealtimetoeitherapplyordrawenergyfromtheWEC’sgenerator/actuator,
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called the power take-off (PTO). This timed withdrawal and deposit of energy be-

tween storage and the generator will allow the system to reach resonance as often as

possible to maximize energy extraction over time.

1.2 Point Absorber Introduction

Though there are a variety of WEC architectures, this study considers only the heav-

ing point-absorber type illustrated in Figure 1.1. These devices are designed to har-

ness energy from the changing water pressure beneath the WEC’s buoy, though some

inevitable side-loading is generally tolerated. When a relative velocity ż occurs be-

tween the buoy and its bottom support, power can be generated from its PTO. The

extracted energy is the integral of power given by Eq. 1.1

E = −
∫ t

0

ż Fpto dt (1.1)

where Fpto is the PTO force. When ż and Fpto are of the same sign, the PTO is doing

work on the buoy and consumes energy. When their signs are opposite, work is being

done on the PTO by the buoy and energy is produced. Thus, E represents positive

extraction of energy.

The resulting energy over time can either be sent directly to a load, stored as energy

3



Figure1.1:PointabsorberWECshowingthebuoyandpowertakeoff
(PTO).

withinabattery,oritcanbereturnedtothePTOsystemtoaccommodateacontrol

strategy.Thispowerrelationshipremainsthesameinbothcircumstancesofextract-

ingenergy,andformomentswhereaforceisbeingappliedtothesystemandenergy

iswithdrawn.

1.3LiteratureReview

Manyresearchersoftenproceedundertheassumptionthatexcitationforceisalready

known,asitisoftenbeyondthescopeofthestudy[2].Oneexampleofthisassumption

isdemonstratedinaWECstudybyGenestandRingwood[3]whereapseudospectral

optimalcontrolstrategyisexploredandcomparedtoanMPCstrategy.

Unfortunately,accurate,model-basedestimationofexcitationforcesiselusiveandcan

4



be computationally expensive [4]. It has also been shown that even in linear response

cases a considerable amount of error is accumulated using a model-based approach

when wave amplitudes become excessive, since current models assume amplitudes of

buoy motion are small. This is problematic when WECs are most productive in large

amplitudes of motion.

Another limitation of current methods is the fact that most of these models solely

use information collected at the site of the WEC rather than upstream wave data

[2]. For a reliable real-time control implementation, the estimation of excitation force

should include information of the incoming wave field instead of relying on wave

measurements at the buoy. Without considering the incoming wave field, the control

strategy will have very little data on what change to expect and how to reasonably

cope for maximized energy extraction.

This widespread expectation of such a complicated process has led to an area of

research surrounding the modeling, measurement, and prediction of wave excitation

forces. Along with differential equation models, other methods to evaluate excitation

forces have been explored as well.

Without the capability of measuring the force directly in an experimental setting,

some studies have modeled excitation force with an augmented Kalman filter and

a damped harmonic oscillator with variable frequency and damping coefficients to

produce reasonable estimates [5]. However, these studies admit that there was still

5



errorintroducedduetomodeluncertainty.Modelerrorwasmostevidentamong

nonlinearcases,whichonlyallowedthesystemtoperformatabout90%ofthedesired

efficiency.

Inrecentstudies,moreattentionhasbeengiventomachinelearningtechniquesin

thesearchforabettersolution.Thishasbeendonewithsimulatedexcitationforces

usingthesurroundingwavefieldelevationmeasurementsasinputs[6].Thestudy

conductedbyMahmoodiet.al.foundthataNonlinearAutoregressive(NAR)net-

worksuccessfullyforecastedsuchforceswithsimulateddata,andevenoutperformed

competitornetworks,suchasLongShort-TermMemory(LSTM)andGroupMethod

ofDataHandling(GMDH)networksintermsofbothspeedandaccuracy.

1.4Contribution

Theapproachdescribedhereissimilartothatof[6]wherearecurrentneuralnetwork

wasusedtoestimatesimulatedbuoymotion.Therearetwosignficantdifferences.

First,thisstudyfocusesonwaveforceprediction.ItwillbeshowninSection2.2

thatthisisequivalenttopredictingbuoyaccelerationwhichissimilartothebuoy

displacementfocusof[6].Second,thisworkshowstheviabilityoftheapproach

experimentallyinsteadofthroughsimulationaloneaswasdonein[6].Thishasmany

sideresultssuchasshowingtheimportanceofthelocationandgeometryofwave

6



elevation measurements. For example, it was found that a triangular group of three

wave elevation measurements performed similarly to an array of 12. In addition it

was found that wave gauges behind the buoy, subjected to strong reflections and

radiation, were not necessary. Instead, only measurements in front of the buoy, from

the perspective of the incident wave heading, were required. These results would be

extremely difficult to uncover with simulations, short of using computational fluid

dyanmics (CFD) solvers.

7





Chapter 2

Point Absorber Modeling and

Force Prediction

To form a control strategy, a mathematical model of the WEC is often helpful. The

model described below considers all forces affecting the WEC’s motion from the sur-

rounding wavefield and if present, a control force from the PTO. WECs behave dif-

ferently depending on the amplitude and complexity of the imposing wavefield and

often need to be described with one of two different models. When a WEC expe-

riences small amplitude oscillations it follows a linear model, while greater motions

require a nonlinear modeling approach. After summarizing a typical point absorber

model, the problem of predicting wave forces is converted into predicting acceleration

when the buoy’s added mass is known.

9



2.1PointAbsorberModel

Thegeneraldifferentialequationmodelofapointabsorberisthesumoftheforces

onthebuoyfromthewavefieldandaPTOforce,FptoshowninEq.2.1

mζ̈=Ffk,st(ζ,η)+Ffk.dy(ζ,η)+Fd(η)+Fr(ζ̇)+Fpto(2.1)

wheremisthebuoymass,ζistheverticalbuoydisplacementandηisthewave

elevationrelativetothestillwaterline.Afewoftheseforcesarequitesimpleto

calculateandmeasuresuchasthebuoyweight,Fg,andFpto.ThePTOforceis

generallyknownasthisistheforcecommandedbythecontrolstrategy.Theproduct

ofFptoandζ̈istheworkratedonetoorbytheWEC.Ifthisproductisnegative,

thenworkisbeingdoneontheWECbythewaves.Incontrast,ifthesignispositive,

thentheWECisdoingworkonthewater.TheobjectiveofaWECcontrolstrategy

istomaximizetheworkdonebythewater.Thismaycomeattheexpenseofsmall

amountsofenergy,butthereturnsfromthisactioncanbefargreaterthanthisloss.

ThehydrostaticFroude-Krylovforce,Ffk,st(ζ,η),isthedifferencebetweentheforce

fromgravityandtheArchimedesforcefromstaticpressureontheWECfloat,ρgV

whereρisthewaterdensity,Vthedisplacedvolumeandgthegravityacceleration

[4].Becausethebuoy’sshape,andmasspropertiesareknown,theexpressionis

10



simple to calculate for small waves, yet may be nonlinear due to the buoy’s geometry.

In general, it’s a nonlinear function of η and ζ.

The dynamic Froude-Krylov force, Ffk,dy(ζ, η) captures the force due to the vary-

ing pressure distribution on the buoy’s wetted surface due to waves passing by it.

Giorgi and Ringwood developed a strategy for creating a closed form expression for

axisymmetric buoys, including a sphere. They further concluded that for a sphere

experiencing small motion, its effect is negligible [4].

The diffraction force, Fd(η), represents interfering forces on the buoy when the wave

field is forced to encounter an obstacle, in this case, the buoy itself. Such an obstacle

will encourage wave propagation and could increase disturbances to the system. If the

incident wavelength is large with respect to the buoy diameter, then the diffraction

force is considered negligible.

The radiation force Fr(ζ̇) of Eq. 2.2 is due to transfer between the buoy’s kinetic

energy and the water. This is the same force that causes a ripple effect radiating

outward from a pebble when dropped into a still pond. The linear form of the

radiation force has two terms: one being a function of velocity ζ̇ and the other a

function of acceleration ζ̈.

Fr (ζ) = −ā∞ζ̈ −
∫ ∞

0

hr (τ) ζ̇ (t− τ) dτ (2.2)

11



whereā∞istheconstantaddedmassandhr(τ)istheradiationimpulseresponse

function.Bothtermsdependonthebuoy’sshapeanditsdraftlineandarewell

known.AnarticlefromHavelockshowedanalyticallythatforasphere,ā∞isequal

toone-halfofthephysicalmassoftheobjectwhenthedraftlineislocatedatthe

geometriccenter[7].Thisaddedmassvarieswhenthedraftlineofthesphereis

nolongerlocatedatthegeometriccenter,butplentyoftechniquesexisttofindthis

value.

BysubstitutingEq.2.2intoEq.2.1,theWECdifferentialequationmodelcanbe

writtenas:

(m+ā∞)ζ̈=Ffk,st(ζ)+Ffk,dyn(η,ζ)+Fd(ζ)−∫∞

0

hr(τ)ζ̇(t−τ)dτ+Fpto

=Fw(η,ζ,ζ̇)

(2.3)

whereFwwillbetermedthetotalforce.Thereasonforincludingtheexpressionfor

theradiationforce,istoshowtheimpactoftheeffectivemass,m+ā∞.It’simportant

tonotethatEq.2.3issubjecttomanyassumptions,includingsmallmotion.Though

approximate,theformofthemodel,indicatedbyageneraldependenceofFwonη,

ζandζ̇,isassumedtobecorrect.

12



2.2 Force Prediction

This work uses accumulated data of buoy motion and wave elevation to predict the

total wave force, Fw at some future time, t1, or Fw(t + t1). In this case, it is unnec-

essary to distinguish each individual force on the buoy which means the model can

be described in much simpler terms. Under the assumption that the added mass is

known, the problem can be transformed into a direct estimation of the buoy acceler-

ation, ζ̈ rather than the total wave force Fw. Solving Eq. 2.3 for acceleration, we get

Eq. 2.4.

ζ̈ =
Fw

(m+ ā∞)
(2.4)

One approach to estimating Fw(t + t1) would be to use present and back values of

ζ̈ to extrapolate forward in time, and then compute Fw using m and ā∞. However,

the the excitation of the buoy due to unknown, future waves is completely ignored

and would lead to signficant errors for any but small t1 values. The neural network

introduced in Chatper 3 will be trained to predict ζ̈(t+ t1) for t1 seconds in advance

over a broad range of η and ζ conditions, explicitly considering the excitation from

waves.

To achieve predictive capability, strategically placed upstream wave elevation mea-

surements could provide the network additional information about the forces that
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aresoontoacceleratethebuoy.Aninstantaneoussnapshotofthesemeasurements,

includingthebuoy’sinstantaneousaccelerationwillbegiventothenetworkastrain-

ingdata.Formostcases,thisinputwillneedtoincludeaseriesofmultipleback

valuesforeachmeasurementtoproperlyprovideenoughinfotmationforthenetwork

toobservethechangingtrendsinthebuoy’sresponse.Theconfigurationofinputs

willbedescribedwhentheinputandtargetarediscussed.

Wavespeedwillalsobeconsideredfortheexperimentalsetup.Thewavespeedhelps

determinethetimeittakesforawavetotravelfromthewavegaugestothebuoy.

Thisishelpfulbecauseitcanprovideinsightonwhatthewaveelevationmaybejust

momentsaheadatthesiteofthebuoy.

Forasinglefrequency,regularwaveitswavelengthλ,periodTandwaterdepth,h

arerelatedthroughthedispersionequation

λ=
gT

2

2π
tanh(2πh

λ

)(2.5)

anditswavespeedisc=
λ
T.Ifthewaterisdeepcomparedtothewavelength,or

h
λ>>1,thenthewavelengthcanbeapproximatedasshowninEq.2.6.

λ≈
gT

2

2π
(2.6)
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and the wave speed can be approximated as

c ≈ gT

2π
(2.7)

It will be shown later that wave speed is an important factor to determine the number

of back values needed to estimate future buoy acceleration.

Since a buoy’s motion also produces its own waves, it’s likely that several wave ele-

vation measurements are needed in the vicinity of the buoy. When considering gauge

location placements, upstream data is thought to provide more information about the

changing wave forces to come and downstream measurements are thought to provide

more insight to the buoy’s own waves that result from its oscillation. It is assumed

that some combination of these locations will prove to be better than others.

In the subsequent sections, a solution is proposed to use a neural network to learn

the behavior of a passive heaving sphere, Fpto = 0, given a variety of incoming wave

conditions. The intention is to train a network to make predictions about future buoy

acceleration so that model predictive control (MPC) strategies may be used that rely

on knowledge of future wave forces. Under active control, Fpto ̸= 0 however, since

when implementing MPC, Fpto is known for some time into the future the component

of ζ̈ associated with Fw can be combined with the acceleration prediction during the
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controlsolutionprocess.Forexample,let’sdefineFnetas

Fnet=(m+ā∞)ζ̈=Fw+Fpto(2.8)

whereweassumethatFptoisknownintothefutureaspartoftheMPCsolution

processandwealsoknowthepredictedζ̈.Thenthewaveforcecanbepredictedas

Fw=(m+ā∞)ζ̈−Fpto(2.9)
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Chapter 3

Neural Network Acceleration

Prediction

After a brief introduction to neural networks, including the inputs and outputs used

for acceleration prediction, the experimental setup is described that was used to

acquire training and testing data.

3.1 Neural Network Introduction

Consider the neural network illustration of Figure 3.1 showing the input, hidden and

output layers. The input layer, as the name implies, contains the input data, also
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calledthepredictors.Determiningthenumberandquantitiestouseaspredictorsis

asignificantaspectofneuralnetworkdesignandshouldcorrelatetotheoutputs,con-

tainedintheoutputlayer.Thein-betweenhiddenlayer(s)arewheretheprocessing

happens,asinformationflowsfromonelayertothenext.

Figure3.1:Thebasicarchitectureofaneuralnetwork,whereweightsand
biasesareappliedtoeachneuron.

TheoutputofeachneuroniscalculatedasshowninEq.3.1andpassedontobecome

theinputtothenexthiddenlayer,ortheoutput.

yk=f(m∑
j=0

wkjxj+bk)(3.1)

Theinputprovidedfromthepreviousneuroninlayerj,isdenotedxjandwk,jisthe

weightfromlayerjtok.Thebiasisdenotedbk,andykistheoutputatthekth
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neuron. The activation function, f , operates on the linear combination of xj and bk

and is selected based on the problem. Creating an appropriate activation function

is another aspect of the neural network design process and can range from linear to

nonlinear. The terms ‘predicting series’ and ‘input series’ will be used interchangeably

to represent the independent inputs of the problem. Using this predicting series, the

network should aim to match the ‘Target Series’ as closely as possible, which is made

of the dependent variable data that the network would be trained to predict. Neural

networks sometimes use a series of back values that can be defined by the user to allow

the network access only to the most relevant and recent information both in training

with the target series, and in operation where only the predicting series is involved.

These back values allow the network only to see the most recent information and to

hopefully spot changing trends. Both the target and predicting series will be combined

into one comprehensive input, and the result will be divided for both training and

testing purposes. For training, the target series is used to establish the weights

and biases necessary for the network to make accurate predictions. The network

determines these weights and biases to achieve a minimal overall error between the

target series and network response. When testing, only the predicting series is given

to the network, and the weights and biases determined from training can remain

intact during operation. In this situation, the target series may be used to determine

the accuracy of the network output.

For buoy acceleration prediction, the inputs consist of available wave elevation and
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buoyacceleration.Buoyaccelerationwillalwaysbethecurrentandpreviouslymea-

suredvalues.Incontrast,thewaveelevationoptionsarenumerouswithvariationsin

location,andnumber.Manycombinationsoftheseinputswillbeexploredandused

tocompareneuralnetworkperformance.Oneofthecontributionsofthisworkwas

thediscoverythatasmallnumberofgaugesinatraingularformationyieldedsimilar

resultstoalargegridofgauges.Buoyaccelerationprediction,ataspecifiedhorizon

t1,isthesingleresponsevariable.

Theactoftraininganeuralnetworkisthecalucationoftheweightsandbiases

suchthattheneuralnetworkoutputmatchestheresponsesofthetrainingdataset.

Thisisaccomplisehdusingnumericaloptimizationandhassimilaritiestosystem

identificationofparametersindifferentialequationmodels.

3.2TrainingDataAcquisitionandProcessing

Afterabriefintroductionofthewavetank,theexperimentalsetupisdescribedalong

withthewavefieldsusedtotrainthenetwork.
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3.2.1 MTU Wave

Michigan Tech’s Wave Tank Laboratory, MTUWave, hosts an 8,000-gallon freshwater

wave tank designed by Edinburgh Designs. The tank is three meters wide, ten meters

long, and one meter deep, with a maximum wave height, trough-to-peak distance, of

0.25 meters. For ease of access to any part of the tank, there is an overhead bridge

that may be positioned as desired. On one end of the tank, there are eight position

and force controlled paddles that are used for generating waves. These paddles are

vertical at rest, but can rotate about their bottom hinge by ±40 degrees, with the

ability to create a wide range of wave scenarios from 0.5 to 2.0 Hz. Since the paddels

are both position and force controlled, they can provide damping to help the tank

achieve steady state after the paddles stop moving making it possible to collect many

waveform measurements back-to-back with minimal settling time in between.

There will always be some amount of reflection and wave interaction with the tank

itself. There is a limited amount of time from the beginning of wave propagation until

wave reflections from the walls of the tank can significantly disturb the true waveform

shape, about 20 to 40 seconds. To reduce this effect and prolong the window of

disturbance-free data collection, the opposite end of the tank has an energy-absorbing

”beach”. These reflections will be greatly reduced, but never absent, and therefore

must be considered during neural network training. The beach in this tank is a steel
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Figure3.2:TheMichiganTechwavetankperformingasimulation.

structurewithadurablepolyethylenepanelingthatisboltedtotheframe.This

energy-absorbingqualityisduetotheangleandcurvatureofthebeach,whichis

specificallydesignedaccordingtotheoperationalwaterdepthofthistank.

3.2.1.1WaveGauges

TwelveEdinburghDesignsresistivewavegauges,showninFigure3.3,wereusedto

measurewaveelevation.Theyconsistoftwoprobesthatdipintothewater.As

thewaveelevationchanges,theproberesistancechangesandisextractedfromthe
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excitation voltage using a bridge signal conditioner. After a four-point calibration,

the gauges provide an output voltage proportional to the wave elevation with ±1 mm

uncertainty.

Figure 3.3: An Edinburgh Designs resistive wave gauge [1].

3.2.1.2 Qualisys Motion Tracking System

MTU Wave is equipped with eleven, 180 frame per second, infrared motion-tracking

cameras as part of the Qualisys system and was used to calculate buoy acceleration.

The cameras are suspended on beams above the tank, where the location of reflective

markers can be tracked with ±2 mm uncertainty, depending on the quality of the

system’s calibration and location of the markers. Preparing the Qualisys acquisition

23



system,QualisysTrackManager,foratestrequiresasignificantamountofcustomiza-

tion.Forexample,software”regionmasking”mustbeperformedforeachcamerato

reduceunwantedreflectionsbyblockingoutadesignatedareafromthefieldofview.

Therearedrawbackstotheover-useofthisfeature,asitcancausealargeareato

beundetectable,limitingthetrackingworkspace.Inadditiontomasking,thereare

otherfeaturesthatcanmakethemarkersandreflectionsmore,orlessvisiblesuch

astheimageintensity.Thiscanallowformuchcleanerdatacollection,asstrategic

modificationofthesesettingswillhelpdeterminethethresholdforwhatisseenasa

‘marker’andwhatissimplyastrayreflectiontobeignored.

3.2.1.3DataAcquisitionandSynchronization

TheQualisysmotiontrackingsystemandtheEdinburghDesignswavegaugeshave

separateloggingsystems.Onehurdlethatneededtobeaddressedwasthesynchro-

nizationofmeasurementsfrombothQualisysandEdinburghDesignsinstrumenta-

tion.BecausetheWindowsoperatingsystemthatgovernstheEdinburghDesigns

softwaredoesnotworkinreal-timewhileQualisyssoftwaredoes,itwasnecessary

touseacommoncontrolsystemtoexecutetheinitiationofmeasurementsandpad-

dlestart/stopcommands.ThedigitalI/OofadSPACEMicroLabBoxwasusedto

communicatebetweensystemswithacustomdSPACEControlDeskapplication.

ThedSPACEMicroLabBoxwasprogrammedtoreceiveasignalfromtheEdinburgh
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Designs interface box, indicating that the paddles had started and wave elevation was

being measured. When this event occurred, the dSPACE box sent a digital output,

one millisecond later, to the cameras’ controller to trigger the recording of data in

Qualisys Track Manager. This ensured that the buoy position and wave elevation

data were properly aligned. For this study, data was captured at 128Hz from all the

logging devices. For ease of processing, the data was downsampled to 20Hz.

3.2.1.4 Wave Design Software

The Edinburgh Designs Njord Wave Sysnthesis application was used to aid wave

field design for the tests performed to produce the training data, each 60 seconds in

duration. After specifying a wave field’s frequency content, the paddle commands are

generated and saved to a file, allowing experiment repeats to be performed reliably

simply by executing the save paddle command file.

3.2.2 Experimental Setup

The experiments made to collect training data used 12 wave gauges and a spheri-

cal buoy with a through hole, illustrated in Figure 3.4. The buoy’s properties are

summarized in Table 3.1. To restrict the buoy from horizontal motion and to allow

free vertical motion, a rod was placed through its center hole and mounted to the
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overheadbridge.Becauseboththerodandsurfaceofthebuoywerequitesmooth,

andthethroughholehad5mmofclearance,thefrictionwasconsiderednegligible.

Droptestswereperformedandthebuoyresponseontherodwasnearlyidenticalto

theresponsewithouttherod.

Figure3.4:Theyellowbuoyhasa1inchthrough-holethatcanallowitto
becomeconstrainedtoitspositioninthehorizontalplanewiththehelpof
averticalrod.

Wavegauges(shownasbluedotsinFigure3.5)wereplacedaroundthebuoy(gray

circle),andwerenumberedbothindivduallyandbygroup.Eachwavegaugegroup

wasattachedtothesamemountingbeam,andthereforetheincomingwaveshit

eachgaugeinthegroupatapproximatelythesametime.Thelayoutwasdesigned
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Table 3.1
Buoy properties.

Property Value

Radius, cm 14.20
Mass, kg 2.72
Added Mass, kg 1.14
Draft, cm 9.00

Figure 3.5: The buoy is at (0,0) with the wave direction from left-to-right.
Wave gauge locations and vertical groups are shown as smaller circles.

to permit exploration of both near and far wave elevation measurements. It was

anticipated that the groups nearest to the buoy (groups 2 and 3) would be helpful in

determining the buoy response, while the gauges further upstream would extend the

prediction horizon. The gauges in group 4 were downstream of the buoy to measure
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wavereflections.Thiswasimportantsincethetestswereperformedinafinite-domain

tank,withwavereflectionspresent.Thepreciselocationsofthesegaugescanbefound

inAppendixB.

FourmarkerswereplacedatthetopofthebuoyandtrackedbytheQualisyssystem.

Theinitiallocationofthebuoyinthetankwascalibratedunderstill-waterconditions.

Similarly,markerswereplacedatopthewavegaugemountinglocationstocalibrate

theirlocationsrelativetothebuoytowithinabout2mm.

Becauseinfraredcamerasrelyontrackingthereflectivemarkers,anyotherreflective

surfacewithinviewposesathreattotheaccuracyanddetectionofmarkertracking.

Tocombatthisissue,physicalmaskswerepostedoverunwantedreflections.Software

maskswerealsoappliedusingtheQualisysTrackingManagementapplication.

3.2.3TrainingDataTests

Avarietyofwaveswereexploredfornetworktestingandtraining.Thesewaveforms

varyinnumberoffrequencies,amplitudesandspeeds.Itwasthoughtthatbypro-

vidingamixtureofbothsimpleandcomplexwaveforms,theneuralnetworkwould

beabletoaccuratelypredictbuoybehavioroverabroadspectrumofsituations.
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Ten waveforms were designed, summarized in Table 3.2, using the Njord Wave Syn-

thesis application with frequencies ranging from 0.4 to 1.0 Hz and significant wave

heights from 0.13 m to 0.24 m. Nine waves were irregular, with n frequency compo-

nents, and one was regular. Since irregular waves cannot be characterized by a single

amplitude, period or speed, the 1/3 significant values of height, H1/3, period, T1/3,

wavelength, λ1/3 and speed, c1/3 are provided. The Speed column shows a relative

description of wave propogation speed as S (slow), M (medium) and F (fast). There

is more information about these waveforms in Appendix A.

Table 3.2
Wave field characteristics for the training data tests.

# n Frequencies, Hz, H1/3, m T1/3, s λ1/3, m c1/3, m/s Speed

1 5 0.50 0.70, 0.80, 0.90, 1.00 0.30 1.29 2.58 2.01 S
2 5 0.20, 0.55, 0.75, 0.80, 0.85 0.15 1.30 2.64 2.03 S
3 3 0.50, 0.70, 1.00 0.24 1.42 3.16 2.22 S
4 4 0.20, 0.55, 0.80, 1.00 0.15 1.61 4.06 2.52 M
5 4 0.40, 0.60, 0.75, 1.00 0.20 1.64 4.21 2.56 M
6 2 0.50, 0.60 0.24 1.78 4.95 2.78 M
7 3 0.40, 0.50, 0.86 0.17 2.17 7.35 3.39 F
8 1 0.45 0.18 2.22 7.71 3.47 F
9 3 0.40 0.50, 0.90 0.19 2.23 7.79 3.49 F
10 2 0.40, 1.00 0.13 2.26 8.00 3.54 F

Thirty tests were performed where the ten waves of Table 3.2 were each repeated three

times. Due to being incredibly identical, only 1 of each type were used, resulting in

the selection of these 10 waveforms. Buoy position and 12 wave gauges were recorded

during each 60 second experiment using the synchronization method described in

section 3.2.1.3. Acceleration was calculated from buoy position data using a 4th
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order,low-pass,Butterworthfilter,witha1.59Hz(10rad/s)cutofffrequencyalong

witha∆z/∆tderivative.

AsamplesetofdataisshowninFigure3.6,demonstratingbothafiltered,and

unfilteredbuoyresponseforwaveform1.

Figure3.6:Sampledatasetfromtestwavenumber1,showingfilteredand
unfilteredbuoyaccelerationandposition.
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Chapter 4

Neural Network Training and

Results

As described earlier, there are several aspects in designing the neural network ac-

celeration predictor, including the inputs (location and number of wave gauges), the

number of hidden layers, and the number of accessible backvalues. It should be noted

that using too many hidden layers may result in overfitting since each hidden layer

introduces more free variables that must be found during the training process. For

the tests belonging to this study, only 2 hidden layers will be used. In addition, the

tests from sections 4.1 - 4.5 will be performed for a forecast horizon tH of 1 second

and 5 backvalues.
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Oneoftheobjectivesofthisworkwastounderstandifafinegridofwaveelevations

isrequiredforaccurateaccelerationprediction.Naturally,therewillbesomecom-

binationofgaugeinputs,andnetworksettings(forecasthorizonandthenumberof

backvalues)thatwillproduceamoresuccessfullytrainednetworkthanothers.To

determinewhichaspectsaremosthelpful,variouscaseswereevaluatedwithdifferent

combinationsoftheseinputsandnetworksettingstodesignanaccelerationpredictor.

Theresultingnetworkperformancefromapplyingthesepredictorswillbecompared

acrosscasestodeterminetheimpactofeachaspect.Forallthefollowingtestcases,

themetricusedtoquantifynetworkperformancewastheaveragerootmeansquare

ofmeasuredandpredictedaccelerationatthehorizontimetH.Theseperformance

metricswillbeusedincomparisontooneanothertogatherconclusionsaboutwhat

shouldbeconsideredwhendesigninganeuralnetworkaccelerationpredictor.Wewill

calleachaspecta’factorofinterest’,andthesefactorswillbeexploredinthetest

casesdescribedinthissection.

Thefactorsofinterestconsideredwere:

1.Theeffectofupstreamanddownstreamwavegauges

2.Thedistanceofwavegaugestothebuoyrelativetothewavespeed

3.Wavegaugetopology,e.g.triangularversusaline

4.Thequantityofwavegauges

5.Theeffectofusingthebuoy’sinstantaneousacceleration,ζ̈,intheinputset
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6. The relationship between forecast horizon, NH , and the number of back values

NB.

7. The network accuracy relative to the complexity of the waveform

For each of these factors, several test sets were created to explore its effect. A neural

network was trained for each case using seven of the ten training data sets. The re-

maining three cases were used to evaluate performance. The intention is to determine

the influence of the factor, so that there is a better understanding of how to design a

measurement set for acceleration prediction.

Due to the optimizing nature of a neural network, the results from running a test case

more than once will be similar, but not identical. This is because the optimization

scheme is searching for the ideal values for weights and biases to reproduce the target,

and therefore could find multiple valid solutions. These tests were performed multiple

times to ensure that a representative sample was used to discuss and evaluate the

factor of interest.

4.1 Up and Downstream Wave Gauge Locations

Three cases, described in Table 4.1 and illustrated in Figure 4.1, were created to

understand the impact of upstream and downstream wave elevation measurements
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onaccelerationprediction.Afteradescriptionofthereasoningbehindthecases,the

resultsoftrainedneuralnetworksareprovided.

4.1.1CaseDescriptions

Upstreamwavegaugesarethefirsttoexperienceanychangesinwaveelevationthat

wouldtranslateintoachangeinbuoyacceleration.Incontrast,downstreammeasure-

mentsreceiveinformationafterthewavehasalreadypassedbythebuoy.Becauseof

thisinteraction,theremaybeminordisurbancesinthewavefieldthatcouldprovide

informationabouthowthebuoy’sself-madewaveshavealteredthewavefieldbe-

tweentheupstreamanddownstreamgaugemeasurements.Inaddition,downstream

measurementswerealsoanticipatedtohaveimportantinformationfromreflected

waves.Byincludingbothupstreamanddownstreammeasurements,afullviewof

thewavefieldisavailabletotheaccelerationpredictor.

ConsiderthethreecasesdescribedinTable4.1andvisualizedinFigure4.1.Cases

AandBconsistofsixgaugeseach,whereAincludestheupstreamgaugegroups1

and2,andBusesthedownstreamgaugesingroups3and4ofFigure3.5.CaseC

usesall12wavegaugesandisassumedtoprovidethebestperformance.

Table4.2showsthesubsetofthreewaves,fromTable3.2,usedtoexploreupstream

versusdownstreammeasurementlocation.Thewaveswereselectedbasedontheir
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Table 4.1
Cases used to evaluate the effect of downstream and upstream wave gauge

location on acceleration prediction.

Case Gauge #s, Location Purpose

A 1-6 Upstream Upstream/Downstream Effect
B 7-12 Downstream Upstream/Downstream Effect
C 1-12 All To test the full set

Figure 4.1: Illustration of the wave gauges used for the cases described in
Table 4.1 where waves propogate from left-to-right.

speeds - slow, medium and fast, and will be used again in Sections 4.2 through 4.5.

To evaluate the three gauge location cases of Table 4.1 for each of the three waves of

Table 4.2, nine neural networks were trained, whose performance is described below.
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Table4.2
WavesfromTable3.2thatareusedtoexplorethefactorsofSections4.1

throughSection4.5basedonwavespeed.

Waveform#c1/3,m/sClassification

12.01S
52.78M
103.54F

4.1.2Results

TheresultsoftheninenetworksareshowninFigure4.2.Interestingly,CaseA,

performedsimilarlyto,andevenslightlyexceededtheperformanceofcaseCdespite

onlyhavingsixgaugesupstreamfromthebuoy.Thisindicatesthatperhapsdown-

streamgaugesarenotasimportanttoincludeforanaccelerationpredictor,andcould

perhapsevenintroduceadditionalerrortothenetworkresults.CaseB,includingsix

downstreamgauges,resultedinsignificanterror,andcouldnottrackthetargetaccel-

erationdata.Thisconfirmsthehypothesisthatupstreamgaugesaremorevaluable

inaforecastingsettingthandownstreamgauges,regardlessofwavespeed.Thisis

nottoinsinuatethatdownstreamgaugesareirrelevant;theireffectwillbefurther

exploredinthesubsequentsections.

Figure4.2isthefirstofmanysubsequentplotsofusingtherootmeansquareerror

metrictoevaluatepredictionperformance.Tohelpprovideinsightintotherela-

tionshipbetweentheRMSEvalueandpredictionperformance,considertheresults
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Figure 4.2: Acceleration prediction performance comparison of upstream
gauges (Case A), downstream gauges (Case B) and all gauges (Case C).

of Figures 4.3 through 4.5. Each figure contains an overlay of the measured and

network-predicted buoy acceleration one second into the future using wave field one.

From Figure 4.2 the RMSE metrics are about 0.14, 0.55 and 0.15 for these cases (A

through C, respectively). The RMSE is greatly affected when there is a mismatch in

frequency content and phase as illustrated by Figure 4.4. In a rather subjective way

we can see that RMSE < 0.2 yields a reasonable match while RMSE > 0.5 results in

a poor prediction.
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Figure4.3:Comparisonofmeasuredandnetwork-predictedacceleration
forwaveform5andtestCaseA,andtheassociatederror.
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Figure 4.4: Comparison of measured and network-predicted acceleration
for waveform 5 and test Case B, and the associated error.
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Figure4.5:Comparisonofmeasuredandnetwork-predictedacceleration
forwaveform5andtestCaseC,andtheassociatederror.
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4.2 Wave Gauge Location and Wave Speed

Eight cases, described in Table 4.3 and illustrated in Figure 4.6, were created to

understand the impact of wave gauge location and wave speed on acceleration pre-

diction. These cases include single wave gauges, as well as lines of wave gauges at

different distances from the buoy. After a description of the reasoning behind the

cases, the results of trained neural networks are provided.

The placement of the gauges relative to wave speed may also prove to impact the ideal

number of back values the network should be given. If a waveform has a very low

frequency (large wavelength), it may need a longer snapshot to capture the trends

in the changing measurements. Conversely, a higher frequency (small wavelength)

might only need a brief number of back values to capture the waveform. This effect

is explored in more depth later in section 4.6.

4.2.1 Case Descriptions

Depending on the speed of the incoming wave, gauge placement may serve to be

important in making accurate predictions. For example, for a wave with a much higher

speed, it may be reasonable to want a measurement quite a bit further upstream to
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havemoretimebeforethewavereachesthebuoy.Thisaddeddistancemayalsoallow

forgreaterforecasthorizonsforslowerwaveforms.Therefore,theeffectofwavespeed

willbeconsideredusingthesamewaveformtestcasesusedpreviously,shownintable

4.2.

TheeightcasesofTable4.3aredividedintosingleandmultiplewavegaugecategories,

CasesD-GandH-Krespectively,andareillustratedinFigure4.6.

Table4.3
Casesusedtoevaluatetheeffectofgaugeproximitytothebuoyandtheir

number

asillustratedinFigure4.6.

Case#Gauge#s,Location

D2FarUpstream
E5CloseUpstream
F8CloseDownstream
G11FarDownstream
H1-3FarUpstream
I4-6CloseUpstream
J7-9CloseDownstream
K10-12FarDownstream

CasesE,F,I,andJusegaugesclosethebuoyandareexpectedtocontainmore

informationregardingradiationthanthegaugesfartherfromthebuoy,D,G,H,and

K.Thecaseswithdownstreamgauges,F,G,J,andKareexpectedtocontainbeach

reflectionsandwillprovideinsightintotheimportanceofusingthisinformationin

accelerationprediction.

Thepurposeofthesetestcasesaretoexaminetheindividualcontributionsofeach
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Figure 4.6: Illustration of the wave gauges used for the cases described in
Table 4.3 where waves propogate from left-to-right.

gauge group to network accuracy. Each group consists of three wave gauges, but the

effect of using only a single gauge from the same group will also be investigated. In

section 4.4, gauge quantity will be explored, and these tests will be re-used to compare

the performance from a single, versus triple wave gauge predictor.

4.2.2 Results

One trend demonstrated by the results, as shown in Figure 4.7 was that wave speed

has less of an impact on performance than gauge placement. The group that the

input gauges belong to reflects in the RMSE regardless of wave speed.
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Figure4.7:TheresultingRMSEforcasesDthroughKfromTable4.3,
demonstratingasignificantfavorabilityofGaugeGroup1.

Thecasesbelongingtogroup1,(caseD,andcaseH)hadthelowestRMSEofall

cases,indicatingahighernetworkperformance.Thedownstreamcases,andthecases

fromgroup2performedatcomparablelevelstooneanother.Inthecasesconsisting
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of gauges from group 2, (case E, and Case I), poor network performance can likely

be attributed to the lack of distance between the measurement and the buoy, which

provides very little warning before the wave arrives at the site of the buoy.

As expected from the results of the upstream/downstream test cases, the cases con-

sisting of downstream gauges, (F, G, J and K) did not perform well. This is due to

the measurements being taken behind the buoy; only to receive information after the

buoy has already responded to the incoming wave.

Another noteworthy observation on this plot is that the triple-gauge test cases often

performed better than their respective single-gauge cases. This can be seen as the

dotted(single-gauge) and dashed(triple-gauge) lines of the same color. This trend is

less prominent for groups 2, 3 and 4, but is quite noticeable in the cases belonging to

group 1. This provides insight to the future gauge quantity tests, and will be revisited

in section 4.4.

4.3 Wave Gauge Topology

Nine cases, described in Table 4.4 and illustrated in Figure 4.6, were created to under-

stand the impact of wave gauge shape on acceleration prediction. After a description
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oftheshapes,theresultsoftrainedneuralnetworksareprovidedalongwithasum-

maryoftheimportantfactors.

4.3.1CaseDescriptions

Theshapesinvestigatedincludetrianglesofdifferenttypes,size,andorientation.A

diamondpatternandtwostraightlinecaseswerealsoconsidered.InTable4.4the

”Sourrounded”locationmeansthatthebouywasinsidethesetofwavegauges.The

sizedesignationsof”Small”and”Large”forthetraingleshapesarerelativetothe

othershapesinthatcategory.

Table4.4
Casesusedtoevaluatetheeffectofwavegaugetopologyonacceleration

predictionwithabbreviations:T=traingle,D=diamond,L=line.

Case#Gauge#s,ShapeSizeLocationDirection

L5,7,9TSmallSuroundedForward-Facing
M2,7,9TLargeSuroundedForward-Facing
N2,4,6TSmallUpstreamForward-Facing
O4,6,8TSmallSuroundedBackward-Facing
P4,6,11TLargeSuroundedBackward-Facing
Q1,3,5TSmallUpstreamBackward-Facing
R2,4,6,8DN/ASouroundedN/A
S2,5LN/AUpstreamN/A
T2,5,8,11LN/ASouroundedN/A

Oneimportantdetailaboutthistestsetisthatwhile6ofthesecaseshadaccess

onlyto3gaugemeasurements,3ofthemhadaccesstoaslightlydifferentnumberof
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Figure 4.8: Illustration of the wave gauges used for the cases described in
Table 4.4.

gauges. This will be considered when observing the results, as there may be a slight

change in bias toward these cases. These cases will be re-examined in a different light

later in Section 4.4 when gauge quantity is discussed. For this section, the pattern of

the gauge layout is what will be prioritized when finding the network performance.

4.3.2 Results

There were visible distinctions between high, moderate, and low performing cases.

The results for the topology cases described in Table 4.4 are shown in Figure 4.9.

Red = Upstream; Blue = Surrounded; Green = Large Shape;
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Figure4.9:TheresultingRMSEfromthegaugeTopologyCasesintable
4.4,wherethediamondcaseappearstobepreferred.

SolidLines=Forward-FacingTriangle;DashedLines=BackwardFacingTriangle;

DottedLine=DiamondShape;Dash-DottedLine=StraightLineFormation.

Foreachblackdot,aneuralnetworkwastrainedandtheperformanceevaluated.

48



Examining each color will show each case as either upstream, a surrounding layout,

or an augmented shape. Solid lines indicate the shape is a forward facing triangle,

and the dashed lines indicate backward facing triangles. Similarly, a dotted line is

coincident with a diamond pattern, (including 4 gauges), and the dash-dotted line is

indicative of a straight line formation (either 2, or 4 gauges).

The red lines on figure 4.9 indicate upstream data, regardless of shape. All 3 upstream

test cases were among the top performers, as expected from the previous results

section. The ’Large’ shaped cases, (case M and P: the large triangle shapes) were

not as consistent. Case M performed in the moderate range, while case P was the

worst case of all. Using conclusions from the previous sections, it is likely that case

M outperformed case P by virtue of having even only a single gauge in group 1.

This demonstrates the benefit of having gauges at a further distance, as the lower

performing case P even has two gauges upstream of the buoy, only at a much closer

range. Therefore, it can be concluded that using fewer gauges at a far distance

upstream is more beneficial than using multiple gauges closer to the buoy.

The blue lines indicate a formation that surrounds the site of the buoy, using both

upstream and downstream gauges. Among those is the highest performing case: case

R. This was the diamond case with 4 gauges. However, the next-best performing

case to the diamond shape is the 2-gauge straight line upstream formation. This

demonstrates a priority of gauge placement over gauge quantity once again, however,
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aclearbenefittoanincreasednumberofgaugesintheaccelerationpredictoris

observed.Thiswillbeverifiedinthesubsequentsection.

4.4WaveGaugeQuantity

Anothercriticalfactortoconsideristhequantityofgauges;specifically,tofindif

therearediminishingreturnsfromaddingmoregaugemeasurementsasinputs.It

hasbeenshownintheprevioussectionsthatahighernumberofgaugesisoften

associatedwithincreasedperformance.Itisoftenrecommendedtouseasignificant

amountofdataduringthetrainingofanetwork,andtherefore,havingmoreinputs

ingeneralmayprovetobemorehelpfulforpredictingbuoymotion.Thisportion

ofthestudyisdedicatedtodeterminingwhetherfewergaugescanbeusedwitha

similarsuccessrate.Thiswillbedoneusingselectionsfromtheprevioustestcases

toobservethedirectrelationshipbetweengaugequantityandnetworkperformance.

Itisanticipatedthatmoregaugesincludedintheaccelerationpredictorwillprovide

abetterresult.
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4.4.1 Case Descriptions

Using the previous test cases and sorting them via gauge quantity, only the previously

top performing case of each quantity will be considered. Table 4.5 sorts these previous

cases based on the number of gauges they include.

Table 4.5
Cases used to evaluate the effect of including more, or less input gauges.

# Gauges Case Shape

1 D Group 1 (Single)
2 S Straight Line (Ahead)
3 H Group 1
4 R Diamond
6 A Groups 1 and 2
12 C All Gauges

The same waveforms from table 4.2 will be also be used for this section.

4.4.2 Results

Figure 4.10 demonstrates the RMSE of these cases, observing gauge quantity only.

This set of cases provided a different result than previously anticipated. The top

performing case continued to be case R, the diamond shape. This case only has four

gauges, which indicates that gauge quantity is still less important than arrangement
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Figure4.10:TheresultingRMSEfromthegaugequantitycasesintable
4.5.

andplacement.Thecasesthatwereanticipatedtosucceedcameincloselybehind,

includingcaseC(12gauges)andA(6gauges).
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Although gauge quantity has proven to be of less value than placement, it should not

be overlooked. Case D consists of a single gauge from group 1. Regardless of using a

critically placed gauge in the front row, the lack of measurements is detrimental to the

network performance. Cases S and H include 2 and 3 gauges of high-value placement,

yet they still fail to meet the standard set by cases R, A and C. This observation

indicates that although gauge placement may be more critical than gauge quantity,

at least 4 well-placed gauges may need to be used in the predictor to promote a

higher-performing network.

4.5 Acceleration as a Network Input

In many applications, acceleration can be easily measured and is readily available. If

this is the case, it could help the network tremendously during operation to receive

real-time measurements of buoy acceleration to predict buoy acceleration tH seconds

into the future. To observe the benefit of streaming current acceleration data as an

additional input, the top performing cases will be re-visited to also include accelera-

tion(t) as an input. It is likely that by providing the target in real time, the network

response can be greatly improved.

53



4.5.1CaseDescriptions

Usingthesamecasesfromprevioussection,thesetestcaseswillnowbeinvestigated

bothwith,andwithoutaccelerationasanadditionalinputtoquantifynetworkper-

formance.Itisanticipatedthateventhelowerperformingcaseswillsignificantly

improveinnetworkperformancewhenallowedtostreamcurrentaccelerationmea-

surements.

Table4.6
Casesusedtoexploretheeffectofincludingcurrentacceleration
measurementsasanetworkinput,sortedbygaugequantity.

Case#GaugesIncludingζ̈

D1Da

S2Sa

H3Ha

R4Ra

A6Aa

C12Ca

4.5.2Results

TheresultsshowninFigure4.11demonstrateaconditionalrelationshipbetweenthe

inclusionofaccelerationandtheperformanceofthenetwork.Inthefigure,thecases

ofthesametype(with,orwithoutacceleration)areincludedaslinesofthesamecolor.

Solidlinesindicatecaseswithoutacceleration,anddashedlinesindicatecasesthat
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do include acceleration in the predictor. Figure 4.11 shows evidence that including

Figure 4.11: The resulting RMSE from re-running the gauge quantity
cases, including those with the added accleration input in table 4.6.

acceleration can help in most cases, most noteably the cases with less gauges, such

as cases D, H and R. These cases appeared to halve the error that occurred in gauge-

only form. As the number of gauges increases, such as in case A where there are 6

gauges included in the acceleration predictor, and case C that includes 12 gauges,

the returns diminish, and could even harm the performance. Case C demonstrates

a case where the performance was routinely worsened upon including acceleration as

an input. For most cases, the inclusion of acceleration in real-time could be added
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toasetofgaugestoimproveperformance.Accelerationcouldalsobeaddedinthe

eventthatnotmanygaugesareavailable,anditsinclusionmightmakeupforthis

lossofinformation.

4.6TheNumberofBackvaluesandtheForecast

Horizon

Whenhandlingneuralnetworks,itisoftennecessarytouseseveralbackvaluesto

allowthenetworkaccessonlytothemostrelevantinformation.Thenumberofback

valuesNBisdirectlyrelatedtothedurationoftimetBthatthenetworkcanaccess

tomakeanestimation.tBistheproductofthenumberofbackvaluesandthetime

step∆tbetweenmeasurements.

tB=NB∆t

TheforecasthorizontHistheamountoftimeinthefuturethatthenetworkisbeing

trainedtopredict.NHisthenumberoftimestepsintothefuturethenetworkwill

betrainedtopredict.

tH=NH∆t
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4.6.1 Case Descriptions

To determine how the number of back values and forecast horizon may be related,

networks will be trained based on different ratios for NH

NB
. If this ratio is near 1, it

is anticipated that the trained network will perform its best. If this ratio is greater

than 1, then there is a longer forecast horizon than duration of back values given to

the network for a prediction. If this ratio is less than 1, then that means there is an

excess of back values and a brief forecast horizon. It is hypothesized that for cases

with a ratio that is far greater than 1, the network will perform poorly as it is being

asked to make predictions further out than what is provided to make the prediction.

Shown below in Table 4.7 are the test cases that will be performed to quantify this

metric.

To provide a more diverse representation of waveforms, a new test set will be used

for this section, shown in Table 4.9. These waveforms still have slow, medium and

fast classifications, but will be used to provide a different sample set.

4.6.2 Results

Both of the test sets from Table 4.7 and Table 4.8 provide an indication that the

ratio between the forecast horizon and number of backvalues is indeed relevant to
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Table4.7
Parametersthatwillbemodifiedtoanalyzenetworkperformancewitha

NH
NBthatisgreaterthan1.

NHtH,(sec)NB
NH

NB

50.2551
100.5052
150.7553
201.0054
251.2555
301.5056
351.7557
402.0058
452.2559
502.50510
552.75511
603.00512
653.25513
703.50514
753.75515
804.00516

networkperformance.

Table4.7demonstratedtheresultingRMSEwhen
NH

NBisgreaterthan1.Thisdemon-

stratestheperformanceastheforecasthorizonNHexceedsthenumberofbackvalues

NB.Asanticipated,theperformanceas
NH

NBgrowsgreaterthan1onlygetsworse.

Thisisbecausetherearemoreforecasthorizontime-stepsthanbackvaluesforthose

scenarios.

Inaddition,wavespeeddidprovetobeafactorindeterminingtheRMSEforeach

case.Waveform2istheslowest,andasaresult,itappearstohavethelowesterror.
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Table 4.8
Parameters that will be modified to analyze network performance given a

NH
NB

ratio that is less than 1.

NH tH NB
NH

NB

10 0.5 1 0.1
10 0.5 2 0.2
10 0.5 3 0.3
10 0.5 4 0.4
10 0.5 5 0.5
10 0.5 6 0.6
10 0.5 7 0.7
10 0.5 8 0.8
10 0.5 9 0.9
10 0.5 10 1.0

Table 4.9
The new waveform test set that will be used for this portion of the study.

Waveform # c1/3, m/s Classification

2 2.03 S
4 2.52 M
7 3.39 F

This error increases with the speed of the incoming wave, as waveforms 4 and 7 prove

to have a substantially higher error. This phenomenon is also concurrent with the

results in Figure 4.12.

Figure 4.13 demonstrates how the results are consistent when the ratio is less than 1.

This is likely due to the fact that there are always more back values than indices in

the forecast horizon, so an adequate amount of information is always available for any

given prediction on the forecast horizon. Slower waveforms demonstrate less error,
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Figure4.12:TheresultingRMSEfromusingthedataintable4.7

whereasfasterwaveformsdemonstratemoreerror.

Theseresultsdemonstratethefactthatincreasedwavespeedsdohaveanimpact

onnetworkperformance.Theseresultsalsosuggestthattheidealratioforforecast

horizontothenumberofbackvalues
NH

NBissomewherenear,orbelow1.
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Figure 4.13: Illustration of the wave gauges used for the cases described
in Table 4.8

4.7 Waveform Complexity

As mentioned previously, depending on the composite number of frequencies used

to make a waveform, it is anticipated that those waveforms with higher numbers

of dominant frequencies will be harder for the network to track. For example, for
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asingle-frequencywaveform,itissimpletobeabletopredictwhatthevaluemay

beatagivenpointintimeusingamathematicalapproach.Whentherearemany

dominantfrequenciesandanoffsetbyaphaseshift,waveformpatternscansuddenly

becomemoredifficulttoanticipate,especiallyforlargemotion.Itishopedthatthe

networkwillbeabletotrackbuoymotionbothforsimpleandcomplexwaveforms

whengivenareasonabletrainingset.Byextensivelytraininganeuralnetworkfor

avarietyofwaveforms,itmightbepossibletoavoidtheneedforexpensivetradi-

tionalcomputationalmethodsandfindonesolutionformanywaveforms,whilealso

providingamoreaccurateestimation.

Liketheothertestcases,thisaspectwillbeobservedbyrankingtheaverageroot

meansquareerrorofthenetworkperformance.Inthefollowingsection,thefigures

willgiveinsightonhowthenetworkrespondstotestingon‘simple’ormore‘complex’

data.

4.7.1CaseDescriptions

Forthisfactor,waveformswith1,to5dominantfrequencieswereconsidered.Table

4.10showswhichwaveformswereselectedforthispurpose.Becausethealgorithm

hasbeenbuilttouse7waveformsasatrainingsetand3waveformsforthetestset

toprovideenoughdataforthepredictor,these5testswillcomefromvarioustrained
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Table 4.10
Waveforms used to evaluate network performance when tested on

waveforms of varying complexity.

n Waveform #

1 8
2 10
3 3
4 5
5 2

networks.

These test sets were trained for a forecast horizon of 1 second, and 20 backvalues, for

a NH

NB
ratio of 1, as deemed appropriate in the preceeding section.

4.7.2 Results

The results based on wave complexity are shown in Figure 4.14 Upon performing this

test, one thing became evident; as the number of waveforms increase, the error seems

to be reduced contrary to what was expected. This could be attributed to the lack of

additional single-frequency waveforms beyond waveform 8 used for this test. When

this waveform is used for testing, it cannot also be used for training, and thus the

network had not yet been exposed to this kind of wave. This poor performance may

be improved if more simple waveforms were introduced to the training set.
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Anotherobservationisthateachtestcaseperformedwithinasimilarrange.Case

Cthatincludedall12gaugesappearedtobeapoorperformerwhencomparedto

theothers,untilmorecomplexwaveformsweretested.CasesRaandDaperformed

similarlytooneanother,regardlessofcaseDahavingonlyasinglegaugefromrow1.

Thisshowsthatwiththeappropriatenumberofbackvalues,itispossibletoachieve

afairlyuniformresponseregardlessofthenumberofgaugesusedandthecomplexity

oftheincomingwaveform.

Itisexpectedthatifmorecomplexwaveformsaretested,theerrorwilleventually

plateau,andprovideconsistentresults,hopefullyinfavorofalowererror.Ulti-

mately,thiswillonlybediscoveredinanextendedstudywhereagreaterdiversityof

waveformsareused,includingmorethanjustasingleregularwave.
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Figure 4.14: Illustration of the the cases described in Table 4.10 suggesting
improvement when tested on a higher number of frequencies.
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Chapter 5

Conclusions

This chapter contains the summary of the findings of this work as well as a conclusion

and possible future work.

5.1 Summary

The intention of this work was to characterize the factors that influence the success

of an accleration predictor. These factors included the effect of upstream and down-

stream measurements, gauge placement relative to wave speed, the layout and shape

of the gauges, the quantity of gauges, the effect of including acceleration as an input,

and the effect of testing on more, or less complex waveforms.
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5.2Conclusions

Throughtheinvestigationofthesefactors,itwasevidentthattherewasapreference

fortheuseofgaugesfurtherupstream.Asaresultthedownstreamgauges,especially

whenusedalone,providedsignificanterror.Downstreamgaugesaremosteffectively

usedinconjunctionwithupstreamgaugestogetacompleteviewofthewavetank.

Whenusingwavegaugesaspartoftheaccelerationpredictor,itisrecommended

touseaminimalamountinthedownstreamregion,perhapsonlyasinglegauge,

astoomanycanprovidemisleadinginformationtothenetwork.Duetothenature

ofupstreamgauges,andhowtheyobservethewaveelevationbeforeitreachesthe

buoy,upstreamgaugesarerecommendedtobethefirstlineofdefenseforthistype

ofproblem.

Thefindingsinrelationtowavespeedandgaugeplacementseemedtovalidatethe

findingsfromtheupstreamanddownstreamcases.Upstreamgauges,regardlessof

wavespeed,stillprovedtobemoreeffectiveatpredictingfuturebuoyacceleration.

Similarly,gaugesthatweretooclosetothebuoyperformedjustaspoorlyasthe

gaugesfromthedownstreamregion.Thisreaffirmsourrecommemendationofthe

useofgaugessignificantlyupstreamfromthebuoytopredictacceleration.

Inregardtogaugelayoutandtopology,thelargestfactorappearedtobewhether
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or not there was at least one gauge in the furthest upstream row. However, the

most successful shape appeared to be the diamond shape, likely due to being a fully-

surrounding shape, and including one gauge far upstream, two gauges immediately

upstream, and one gauge in the rear.

The quantity of wave gauges for the acceleration predictor was anticipated to be one

of the largest factors. However, it appears that similar, if not better results can

come from more strategic placement of gauges, rather than sheer quantity. This was

evident as the diamond case with 4 gauges surpassed the case with all 12 gauges. It

is our recommendation that when designing the accleration predictor and choosing

the network inputs, a surrounding shape that includes gauges far upstream is used.

The findings of this study indicate that a full fine-grid of wave gauges is not required.

It appears that a similar level of performance can be achieved with fewer gauges, so

long as they are properly placed.

The effect of using the buoy’s instantaneous acceleration seemed to behave as ex-

pected. When including this measurement in the accleration predictor, most cases

seemed to improve. However, this effect was more substantial in cases where there

are only a few gauges, such as in single-gauge cases. When including accleration in

the acceleration predictor, more information about the buoy’s behavior is provided,

and thus similar results can be achieved as compared to cases with a higher number
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ofgauges.Itisrecommendedthatifonlyafewgaugesarepresentintheacceler-

ationpredictorthatanadditionalinputofinstantaneousbuoyaccelerationisused

toachieveasimilarresulttoafinegridofgauges.Thiscouldperhapsmakethe

experiemntalsetupeasier,cheaper,andalsomoreaccurate.Oneconsiderationabout

includingbuoyaccelerationwasthatitappearedtomakethecasewithahigher

numberofwavegaugesdecreaseinperformance.Therefore,accelerationshouldbe

usedtoenhancecaseswithonlyafewgauges,insteadofbeingaddedtoafinegrid

ofgauges.

Therelationshipbetweenforecasthorizonandthenumberofbackvaluesseemedto

behaveasexpected.Whendeterminingthenumberofbackvaluesnecessary,the

largestaspecttoconsiderappearedtobetheforecasthorizon.Itisrecommended

thataratiocloseto
NH

NB=1isused.Whenthisratioexceeded1,theerrorgrew

substantially,andsimilarly,whenthisratiowaslessthan1,theerroralsogrew.To

achieveanacceptableperformancefromthenetwork,itisimportanttoprovidethe

propernumberofbackvaluesrelativetotheforecasthorizon.

Wavecomplexityprovedtobelessimpactfulthananticipated.Infact,waveforms

withahighernumberofdominantfrequenciesperformedbetterthanthosewith

fewerfrequencies.Thiscouldbeduetothelackofsufficientsingleanddoublefre-

quencywaveformsthatwerecreatedforthisstudy.Becausetherewasonlyone
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single-frequency waveform included in this study, it could only either be used in test-

ing or in training. Therefore, this study demonstrated poor performance for this

case.

5.3 Future Work

For future work and further exploration of this subject, perhaps a gauge group even

further upstream may prove to be beneficial to the acceleration predictor. Gauge dis-

tance relative to the buoy in this study seemed to improve the acceleration predictor

substantially, however, it could be important to determine if there are diminishing

returns, or even destructive qualities of including gauges too far upstream.

It is also recommended that future work includes a higher number of waveforms with

sufficient diversity in complexity to determine the true cause for poor performance

on single-frequency waveforms.
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Appendix A

Collection of Waveforms

Shown in Table A.1 is the composition of each of the 10 waveforms used for this

study. These waveforms were created from a composition of one or multiple sine

waves of various frequencies and amplitudes. Some of these waveforms also have a

phase shift applied. The entries for each waveform are listed in ascending order based

on the composite frequencies. The amplitudes and phase shift information is listed

in the same respective order.

This section also provides a visual representation of each waveform. These waveforms

are shown in A.1 through A.10. For all of these figures, the upper plot demonstrates

wave elevation measurements from the centermost gauge in group 1 (furthest up-

stream group), and the bottom plot shows the corresponding buoy position response.
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TableA.1
Waveformcompositioningreaterdetail,asgeneratedfromEdinburgh

DesignsWaveSynthesisSoftware.

#Frequencies,Hz,Amplitudes,mPhaseShift,rad

10.500.70,0.80,0.90,1.000.05,0.05,0.05,0.05,0.050,2,0.6,0,0
20.20,0.55,0.75,0.80,0.850.0175,0.025,0.03,0.035,0.0150,4,0,3,1.25
30.50,0.70,1.000.05,0.075,0.050,2,1
40.20,0.55,0.80,1.000.02,0.03,0.04,0.020,4,3,1
50.40,0.60,0.75,1.000.03,0.05,0.04,0.020,3.60,0,3
60.50,0.600.05,0.0750,2.80
70.40,0.50,0.860.035,0.05,0.020.20,2.5,2
80.450.090
90.400.50,0.900.04,0.05,0.041.50,0,1.50
100.40,1.000.05,0.020,1.50

FigureA.1:Waveelevationandbuoyresponseforwaveform1.
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Figure A.2: Wave elevation and buoy response for waveform 2.
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FigureA.3:Waveelevationandbuoyresponseforwaveform3.
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Figure A.4: Wave elevation and buoy response for waveform 4.
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FigureA.5:Waveelevationandbuoyresponseforwaveform5.
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Figure A.6: Wave elevation and buoy response for waveform 6.
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FigureA.7:Waveelevationandbuoyresponseforwaveform7.
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Figure A.8: Wave elevation and buoy response for waveform 8.
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FigureA.9:Waveelevationandbuoyresponseforwaveform9.
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Figure A.10: Wave elevation and buoy response for waveform 10.
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AppendixB

GaugePosition

Forthisstudy,thegaugeswereplacedaroundthebuoyandaredescribedrelativeto

thebuoy.Thismeansthebuoyexistsonlyattheorigin(0,0).FigureB.1demon-

stratesthecoordinatesystemforthisstudy.Thex-directionisinthedirectionthat

thewavestravel,andthey-directionisacrossthetank.Thecorrespondingmathe-

maticalsignstothesedirectionsaredisplayedonthefigure.

DisplayedinTableB.1arethespecificcoordinatesforeachwavegauge.
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Figure B.1: Coordinate system relative to the buoy.

Table B.1
Gauge locations relative to the buoy at the origin (0,0).

# x, m y, m

1 -2.21 -0.86
2 -2.16 0.06
3 -2.11 0.97
4 -0.48 -0.91
5 -0.48 0.04
6 -0.48 0.96
7 0.75 -1.02
8 0.77 0.14
9 0.78 0.97
10 1.66 -1.03
11 1.68 0.02
12 1.70 1.00
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