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Abstract

The demand for autonomous vehicles (AVs) is rising across both military and civil-

ian sectors. These unmanned systems offer numerous advantages, such as improved

efficiency, safety, and adaptability. Addressing this demand requires the development

of resilient and versatile autonomous vehicles crucial for the transport and reconnais-

sance markets.

The sensory perception of autonomous vehicles of any kind is paramount to their

ability to navigate and localize in their environment. Factors such as sensor noise,

erroneous readings, and deliberate attacks should all be considered when developing

a robust autonomous system. This work aims to quantify the degradation of sensor

data which causes mapping algorithms to fail and properly localize.

In this thesis, we explore five different simulated LIDAR perturbation models and

their effects on mapping indoor and outdoor locations. The noise models are cate-

gorized into two types: fake and real point returns. A similarity metric is utilized

to quantify the degradation of the resulting point clouds. An advantage of this ap-

proach, over implementing perturbations in physical environments, is the ability to

test challenging or impractical perturbations on a simulated system.

Our findings confirm that increased levels of noise correlate with elevated errors in

xi



mapping. We discuss the process of cascading failures and the additional overlaid

topography that is produced. We also discovered that certain types of sensor noise

affect indoor mapping more than outdoor, particularly when the noise is localized.

In future research, we plan to investigate methods to physically implement the noise

models employed in this study and to develop strategies for mitigating their impact

on autonomous navigation.
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1 Introduction

Autonomous vehicles perform localization, mapping, and navigation tasks using mul-

tiple different types of sensors: LIDAR, radar, cameras, inertial sensors, and odometry

are among the most used. Depth sensors are among the most important as they not

only inform the system of potential obstacles, but also provide information about the

world used for localization and mapping. Localization is the task of determining one’s

position within an environment, mapping creates a record of the objects and navi-

gable paths within an environment. In unknown environments, autonomous systems

must often perform simultaneous localization and mapping (SLAM), which will be

discussed further in this paper. We will investigate the effects of sensor perturbations

on SLAM in indoor environments, as well as unstructured, outdoor environments.

Depth measurements can be acquired in different ways [3], but are predominantly

measured by active sensors, such as LIDAR, radar, laser-ranging, or passive ranging

sensors, such as RGB-D cameras, which use sequences of images or multiple cameras

(stereo-imaging). Machine learning approaches have also been proposed [4, 5, 6],

which typically estimate depth from images collected from cameras [7]. These sensors

can also be combined to provide more robust performance across different sensing

scenarios—say rain, fog, or snow—or to simply improve the overall estimate by sensor

fusion [8, 9, 10]. In this paper, we will focus on the use of LIDAR, with the experiments
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we perform using a Velodyne VLP-16 LIDAR: a common LIDAR used in autonomous

vehicles.

Sensor perturbations or degradation can have a significant effect on the performance

of autonomous systems. Perturbations can take many forms: environmental causes

such as fog or dust, human causes such a bright lights or reflective signage, and

adversarial attacks such as patches or patterns, to name a few.

The literature abounds in work discussing perturbations on autonomy sensors and

mitigation strategies for developing more robust systems. Two good surveys on the

subject include the works by Thing and Wu [11], and Pham and Xiong [12]. A more

general review of adversarial attacks on AI and mitigation strategies is the work by

Qiu et al. [13], which is an important general concern as most current state-of-the-

art autonomy approaches are data-driven, i.e., they rely on machine learning. In a

previous paper [14], we focused on the effects of perturbations on ROS-implemented

mapping algorithms in an indoor environment, specifically investigating Gmapping

[15, 16] and HectorSLAM [17].
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1.1 Related Work

The experiments presented in this paper are meant to be a fundamental treatment of

how sensor perturbations or degradation affect autonomy in an unstructured, large-

scale outdoor environment, specifically focusing on ROS-based SLAM. Numerous

works have looked at the practical implications of erroneous sensor measurements in

autonomous systems [18, 19, 20, 21, 22, 23, 24, 25, 26]. We now expand more on the

relevant works to this paper.

Shin et al. [20] explored saturation effects on LIDAR by directing 905nm lasers of

varying power levels toward a target LIDAR. Their experiments showed that various

attack strategies with these lasers can lead to either erroneous LIDAR returns or to

blind spots in the resulting point cloud. The erroneous returns could either add noise

to the point cloud or “ghost” objects (i.e. objects that are not actually there); the

blind spots could eliminate or disguise actual objects. This work underscores the

fact that perception sensors, particularly LIDAR, are susceptible to various modes of

noise other than “standard” measurement uncertainty, which demonstrates the need

for the robust processing in the an autonomous agent’s perception software.

Pekaric et al. [27] exploit vulnerabilities within ROS and Gazebo, specifically within
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the MAVlink protocol, that demonstrate the potential for spoofing and jamming at-

tacks. One such attack exploits LIDAR, and the framework is provided for malicious

attacks to manipulate the object avoidance algorithm through injected LIDAR signals

that then allows for the target to be controlled. This work is demonstrated in simu-

lation and underscores the need for real-world experiments to further understand the

impact that these attacks have on the performance and enhancement of autonomous

systems.

Wang et al. [28] investigated malicious LIDAR-based deceptions using a limited num-

ber of injected artificial points. It is demonstrated that only 20 points are required to

spoof an object detection algorithm into detecting a fake car with an 89% success rate.

This work underscores the vulnerability that exists within LIDAR-based 3D object

detectors and how susceptible they can be to spoofing without proper precautions.

Jin et al. [29] further explored physical attacks against commercial LIDAR systems

by injecting malicious laser signals into the sensor on an autonomous vehicle. It

demonstrated that the manipulation of point clouds can result in spoofed 3D objects

by either generating artificial objects or hiding objects in the physical world. This

work shows how the noise models used in the following study translate into potential

real-world disturbances and emphasizes the need for robust countermeasures.

Cao et al. [30] explore methods of mitigating malicious LIDAR spoofing attacks,

which are detailed in the previously referenced studies. Object detection algorithms
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can prevent spoofing by treating ignored patterns as invariant physical features. This

work first implements LIDAR attacks that achieve an 80% success rate, which is then

mitigated to 5.5% through the implementation of sequential fusion views. This work

emphasizes the benefit that can be provided by robust algorithm design and the need

for further experimental testing.

Yang et al. [31] implement a novel 3D LIDAR-SLAM algorithm that is designed for

optimal performance in degraded scenarios. Compared with several other popular

LIDAR-SLAM algorithms, the presented algorithm quantitatively and qualitatively

achieves better performance regarding state estimation, real-time performance, and

mapping accuracy when ablations are applied to the sensor input. This work high-

lights the potential benefits that can be achieved when accounting for less-than-ideal

sensor inputs.
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2 Perturbation Models

The sensor perturbation models investigated here are designed to explore the behav-

ior of autonomy in the face of sensor malfunctions or degradation. These models

are crucial for testing the resilience and adaptability of autonomous systems when

dealing with imperfect sensor data. Our research includes an expanded focus on 3D

noise, adding a new dimension to the perturbations that can affect depth images

and point clouds. This advancement allows for a more realistic simulation of sensor

errors in environments that require three-dimensional spatial understanding. Tables

2-4 contain the parameters we used in our experiments, showing the minimum and

maximum values used and the step used across that range. These parameter values

were chosen to illustrate well the transition of good mapping performance to poor

mapping performance. Figure 2.1 shows some example point clouds contaminated by

these models.

There are two types of models: (a) fake point returns, and (b) position-altered real

point returns. In this updated approach, (a) fake point returns are added to or sub-

tracted from the measured laser scan or point cloud data in three dimensions. This

method simulates physical objects that either erroneously appear in or are missing

from the sensor’s field of view, thus testing the system’s ability to cope with unex-

pected or missing data in a 3D space. The (b) real point returns in the laser scan
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or point cloud are altered, reflecting changes in the 3D position of points. This can

simulate scenarios where the accurate position of objects is distorted due to sen-

sor inaccuracies, affecting the system’s spatial understanding and decision-making

processes. The ‘Clouds Grid’ noise model generates several point returns spatially

clustered together to simulate clouds or blobs in the laser scan. This is implemented

by first generating a 2D grid of independent (spatially-uncorrelated) noise centered

on the robot, then filtering the noise with a 2D Gaussian filter, yielding spatially-

correlated noise. Finally, we compare the values of this noise against a threshold and

delete point returns below this level. Due to the nature of the Clouds Grid model it

was not formatted to a 3D space.

Table 1
Sensor Perturbation Models

Model Type* Description Parameters
Clouds Grid (Figure 2.1a) A Spatially-correlated noise added in a

square around robot
{width, threshold,
no. points}

Snow (Figure 2.1b) B Spurious points sampled from a uni-
form distribution inside a cube cen-
tered on a robot

{no. points,}

Snow Local (Figure 2.1c) A Spurious points drawn from a normal
distribution with mean located rela-
tive to robot frame (i.e., a “swarm of
mosquitoes”)

{no. points, mean,
variance}

Modify Point Cloud (Figure 2.1e) B Uniform-distributed noise added to
all points in measured point cloud

{width of distribu-
tion (cm)}

Modify Point Cloud Local (Figure 2.1f) B Uniform-distributed noise added to
measured points within a radius
around robot

{radius (m), width
of distribution
(cm)}

*Model type indicates: (A) points added to measured point cloud, or (B) measured point cloud is altered.
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(a) Clouds Grid (b) Snow

(c) Snow Local (d) Modify Point Cloud

(e) Modify Point Cloud Local

Figure 2.1: Examples of sensor perturbation models applied to a sample
frame from the experiment arena. Red points indicate measured point cloud;
black points indicate current map boundaries.
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Table 2
Parameters Used in EERC Experiment

Model Var.* Range Other Parameters
Clouds Grid no. points [200, 480] width = 20m,

threshold = 98
Snow no. points [200, 1,600]

Snow Local no. points [200, 1,600] mean = (-2m, 0m),
volume = 6m3

Modify Point Cloud width (cm) [4, 60]
Modify Point Cloud Local width (cm) [5, 110] radius = 5m

Table 3
Parameters Used in Fisher Experiment

Model Var.* Range Other Parameters
Clouds Grid no. points [240, 520] width = 20m,

threshold = 98
Snow no. points [100, 1,500]

Snow Local no. points [100, 1,500] mean = (-2m, 0m),
volume = 6m3

Modify Point Cloud width (cm) [5, 75]
Modify Point Cloud Local width (cm) [25, 375] radius = 30m

∗Indicates perturbation model parameter that is varied in experiment.

Table 4
Parameters Used in Figure 8 Experiment

Model Var.* Range Other Parameters
Clouds Grid no. points [280, 560] width = 20m,

threshold = 98
Snow no. points [800, 2,200]

Snow Local no. points [1000, 2,400] mean = (-2m, 0m),
volume = 6m3

Modify Point Cloud width (cm) [5, 210]
Modify Point Cloud Local width (cm) [25, 375] radius = 35m

∗Indicates perturbation model parameter that is varied in experiment.
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3 Autonomy Approach

The autonomy algorithm that was applied for this work is HDL Graph SLAM, pro-

posed by Koide et al. [32]. HDL Graph SLAM is an open-source ROS package that

uses 3D LIDAR to produce a real-time 6 degree-of-freedom (DOF) localization esti-

mate along with a simultaneous map. The algorithm can also support other sensor

measurement constraints, such as inertial measurement unit (IMU), and GPS. In this

work, we utilized 3D LIDAR, and an onboard IMU in our mapping solution.

The work of Koide et al. presents a robust system that leverages 3D LIDAR technol-

ogy for addressing SLAM problems by combining two phases: i) offline environment

mapping and ii) online sensor pose estimation. In the offline phase, a detailed 3D

map of the area is generated using Graph SLAM which incorporates the ground plane

constraints for indoor settings and GPS for outdoor environments to compensate for

accumulated rotation errors from scan matching. In the pre-mapped environment,

the system updates its position by merging the normal distributions transform (NDT)

scan matching algorithm with a prediction of its angular velocity, processed via an

unscented Kalman filter (UKF).

HDL Graph SLAM incorporates a loop detection algorithm similar to the work by
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Nelson [33]. This involves the identification of loop candidates by analyzing transla-

tion distance and trajectory length between nodes. Nodes represent elements from the

mapping process, signifying discrete sensor poses or landmark positions that the sys-

tem has encountered. By handling the connection of these nodes that is derived from

sensor data, such as LIDAR scans and GPS measurements, the system constructs a

graph. The graph is then optimized to minimize discrepancies between observed and

predicted state.

In indoor settings, where the ground is uniformly flat, the ground plane detection

ensures that the pose estimate graph reflects a consistent plane. Conversely, outdoor

environments, where the ground is not flat, the algorithm can utilize GPS-based

positioning. GPS data provides an external reference that associates to each pose

node, allowing for adjustments in elevation.
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4 Robotics Platform

To collect data for the experiment, a versatile robotics platform for the various sensors

was required. Initially experiments were conducted using a RoverRobotics Rover Zero

3, shown in Figure 4.1. This platform was used previously for experiments using a

2D LIDAR scanner [2]. However, challenges arose when attempting to integrate

additional sensors, prompting the selection of a different platform.

Figure 4.1: RoverRobotics Rover Zero 3 2WD

The chosen robotics platform was developed by the US Army Combat Capabilities

Development Command (DEVCOM) for use in research of small unmanned ground

vehicles. The robot, shown in Figure [34], is called the GVR-BOT [34]. It serves as

a modular platform for integrating various sensors and actuators. The robot features

a robust chassis containing an ARM CPU, a network switch, wheel encoders, and an

IMU.
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Figure 4.2: NVIDIA Jetson AGX Orin embedded computer

For this application an additional processing computer was included to sufficiently

collect the real-time data from the sensors. The NVIDIA Jetson AGX Orin in Figure

4.2 was selected and mounted externally using 3D printed fixtures. Further network-

ing equipment was included for Ethernet communication between the companion

computer, GVR-BOT, and the 3D LIDAR.

Two primary sensors were integrated into the GVR-BOT’s platform for this experi-

ment: the Velodyne VLP-16 3D LIDAR and the Phidgets 3/3/3 IMU. These sensors,

as well as odometry from the wheel encoders, are essential for the selected SLAM

algorithm.

The Velodyne VLP-16 3D LIDAR sensor was chosen for its ability to provide high-

resolution 3D scans of the robot’s surroundings. This sensor enables the GVR-BOT to

13



Figure 4.3: GVR-BOT robotic platform

create detailed maps of its environment, crucial for navigation and obstacle avoidance.

Additionally, a Phidgets 3/3/3 IMU was included in the sensor suite. While the

GVR-BOT does come equipped with its own IMU, the external Phidgets IMU was

integrated for redundancy and simplified integration within our ROS environment.

This redundancy ensures robustness in orientation and motion sensing, critical for

proper localization.
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5 Experiment

The experiments performed were designed to quantify the effect of LIDAR sensor

perturbations on the ability of an autonomous ground vehicle to localize and map an

indoor scenario, shown in Figure 5.1, as well as two large-scale outdoor spaces, shown

in Figures 5.2 and 5.3. The indoor location serves as a baseline for ideal mapping

with well-defined walls and flat terrain. The outdoor locations were captured on a

college campus and provide diverse surroundings analogous to a low density urban

environment. All locations included light pedestrian traffic.

To compile a sufficient dataset, ROS bags of sensor data were collected as the robot

was manually piloted through predefined courses. Multiple runs were made utilizing

the same route, totalling up to 5 bags for each location. The bags contain data from

the 3D LIDAR, IMU, and odometry from the onboard wheel encoders.

(a) EERC Ground Truth (b) EERC Satellite image

Figure 5.1: Image (a) shows the ground truth LIDAR scan of the EERC in-
door scenario. Image (b) is the satellite image of the same location (EERC).

15



(a) Fisher Hall Building Ground Truth (b) Fisher Hall Building Satellite image

Figure 5.2: Image (a) shows the ground truth LIDAR scan, courtesy of
the MTU Geospatial Research Facility (GRF), collected with a handheld
GeoSLAM LiDAR. Image (b) is an aerial view of the same location.

(a) Figure 8 Ground Truth (b) Figure 8 Satellite Image

Figure 5.3: Image (a) shows the unperturbed map produced by HDL Graph
SLAM of the Figure 8 scenario. Image (b) is an aerial view of the same
location.

For each location, HDL Graph SLAM is used to generate point clouds without sensor

perturbations. This initial step is crucial as it establishes a baseline reference point

against which subsequent degraded point clouds are compared and evaluated. These
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point clouds provide an accurate reflection of the physical environment, capturing

distinct features, obstacles, and layouts.

Each of the perturbation models is then applied to the sensor data to quantify their

effect on the map generation. The resulting “noisy” point clouds were then compared

to the reference using the iterative closest point (ICP) algorithm [35]. On each itera-

tion, the ICP algorithm attempts to register the source point cloud to the reference

by transforming the source to minimize the error between them. Error is defined

as the sum of squared differences for each point in the point clouds; a higher error

corresponds with a larger difference between them. Error will be used as the metric

to quantify the degradation of the resulting map produced for each noise model.

Since error is not required to be calculated in real-time, processing time is relatively

abundant. More iterations of ICP will result in a more accurate registration to best

quantify the degradation of the point cloud. The criteria for stopping iterations is set

as a threshold of the difference in error between successive iterations. The threshold

we use in this experiment is 0.001.

The main limitation of ICP in this case is its slow convergence time for the large

number of points in our experiments. The point clouds reach upwards of 4 million

points each, resulting in trillions of comparisons. This proves intractable with a pool

of over 3,000 point clouds. In order to reduce the processing time from around 30

minutes per pair, the point clouds were decimated to 10,000 points each. Points are
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uniform randomly selected from the measured clouds for removal. In our testing, the

error produced in comparing the decimated maps and the original maps followed the

same trends.

In some experiments we observed failed ICP registration at lower perturbation levels.

Running the mapping process over multiple runs ideally mitigates these ‘outliers.’

Furthermore, we attempted to optimize the hyperparameters of the ICP algorithm to

prevent such occurences, including the step size and convergence threshold. However,

we are aware that outliers still could occur and may be present in our data. We now

turn to the experiment results and discussion thereof.
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6 Results & Discussion

Following the processing of sensor data with added perturbations, we collected the

resulting point clouds and quantified the error for each perturbation model. The

outcomes of our experiments, measuring the ICP error versus perturbation level for

each model and scenario, are presented in Figures 6.4-6.6. These figures indicate the

mean at each perturbation level with an × symbol, and the error bars indicate the

maximum and minimum values. These results provide an overview of the impact

of perturbation types and levels on the ability for HDL Graph SLAM to produce a

coherent point cloud.

Overall, the results show noticeable point cloud degradation as the perturbation sever-

ity is increased. Moreover, the data highlights a substantial increase in the deviation

of ICP error for experiments at higher perturbation levels. This trend highlights the

sensitivity of the system to perturbations, particularly at higher severity, where HDL

Graph SLAM fails to produce an acceptable map. An example of the degradation of

maps proportional to perturbation level is show in Figures 6.1-6.3, which illustrate

the effects of the Snow perturbation model.

For the Clouds Grid models, we observed high similarity of the perturbed map to the

reference even at a considerable number of points added. Only a few outliers register
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(a) EERC Add Snow - 500 (b) EERC Add Snow - 700 (c) EERC Add Snow - 1000

Figure 6.1: Comparison of mapping performance for the EERC indoor
scenario at different perturbation levels.

(a) Fisher Add Snow - 700 (b) Fisher Add Snow - 1200 (c) Fisher Add Snow - 1400

Figure 6.2: Comparison of mapping performance for the Fisher outdoor
scenario at different perturbation levels.

above an error of 600, and the deviation remained low. We expect this behavior

comes from the SLAM algorithm perceiving the cloud points as ‘dead zones,’ either

adding them to the map or ignoring them outright until the points are sufficiently

dense.

The Modify Point Cloud model was found to be the most consistently disruptive for

each of the locations, providing an almost linear response to increased distribution

width. It is particularly interesting that the variation between runs stayed extremely
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(a) Figure 8 Add Snow - 1000 (b) Figure 8 Add Snow - 1500 (c) Figure 8 Add Snow - 2000

Figure 6.3: Comparison of mapping performance for the Figure 8 outdoor
scenario at different perturbation levels.

consistent until significant perturbation occurs. When the width of the distribution

exceeded 40 cm, the resultant map was significantly degraded, as shown in view

(d) of Figures 6.4–6.6. Most notably in Figure 6.4(d), we recognize substantially

increased ICP error with the Modify Point Cloud Local model, when the width of the

distribution surpasses 35 cm. Interestingly, the results seem to indicate a difference in

degradation for different perturbation models between indoor and outdoor locations,

having an almost constant impact on the outdoor locations: see Figures 6.5(d) and

6.6(d).

Further examination of the results shows that noise models incorporating local per-

turbations (such as Clouds Grid, Snow Local, or Modify Point Cloud Local) appear

to exert a noticeably greater impact on point clouds in indoor environments. This

conclusion seems logical given the relatively close features found in indoor settings,

which are much more prone to registration errors when the only features available for

localization are severely degraded. In contrast, outdoor locations benefit from con-

taining features that are considerably farther apart, making alignment easier when

21



(a) Add Clouds Grid (b) Add Snow

(c) Add Snow Local (d) Modify Point Cloud

(e) Modify Point Cloud Local

Figure 6.4: Plots of ICP error versus perturbation level for each perturba-
tion model in the EERC indoor scenario. Error bars indicate mean, mini-
mum, and maximum ICP error values for each noise level.
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(a) Add Clouds Grid (b) Add Snow

(c) Add Snow Local (d) Modify Point Cloud

(e) Modify Point Cloud Local

Figure 6.5: Plots of ICP error versus perturbation level for each pertur-
bation model for the Fisher outdoor scenario. Error bars indicate mean,
minimum, and maximum ICP error values for each noise level.
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(a) Add Clouds Grid (b) Add Snow

(c) Add Snow Local (d) Modify Point Cloud

(e) Modify Point Cloud Local

Figure 6.6: Plots of ICP error versus noise level for each perturbation model
for the Figure 8 outdoor scenario. Error bars indicate mean, minimum, and
maximum ICP error values for each noise level.
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adjacent features are disturbed.

We hypothesize that the majority of the error comes from the SLAM algorithm failing

to properly register the current scan with the previous, with the perturbation points

(or deletions) causing erred registration. Registration errors can create a secondary

layout of points that are improperly aligned, which can cascade into further mapping

failure and additional overlaid topography.

For a comprehensive discussion on additional results, please refer to Appendix A. In

this section, we provide an alternative scenario and explain the unexpected results of

an inconsistent increase in error level.
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7 Conclusion & Future Work

This work explored the effects of perturbed LIDAR measurements on an autonomous

vehicle mapping a complex, large-scale outdoor environment. The mapping algo-

rithms investigated was HDL Graph SLAM. Map quality was measured by first reg-

istering the perturbed map with a ground-truth map, then quantifying the difference

between the two using the final ICP error.

The perturbations tested in this work were fundamental types of sensor perturbations,

either adding to or deleting from the measured point cloud, or altering the measured

point cloud. These perturbations were accomplished by “highjacking” the sensor

measurements within ROS, altering them within a perturbation ROS node, and then

publishing the perturbed measurements for use by the mapping algorithms. The

advantage of this approach, as compared to implementing perturbations in the real

world, is that perturbations that are difficult or potentially impossible to physically

realize can be tested on a real-world system.

One conclusion from this study is that indoor and outdoor mapping are affected dif-

ferently by perturbations. Indoor mapping was significantly affected by local pertur-

bations close to the autonomous system. We surmise that this is because the features

of the indoor space are close to the system and do not extend beyond that local region
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(the robot cannot “see” through walls). Local perturbations were not as relatively

disruptive in the outdoor scenarios as the system could “see” over longer distances,

with mapping enabled by both close-in point cloud features as well as features at a

further distance.

In the future, we will examine real-world instantiations of perturbations to both vali-

date our hybrid in-situ/real-world experiments and also to examine the complexity of

producing such perturbations. Furthermore, these experiments will lead to algorithm

enhancements to improve the robustness of mapping.

Another area of future work is to look at metrics that examine the local quality of

map point clouds. We observed that some of the larger ICP error levels were seen

when only one section of the map failed, causing a cascaded error on the rest of the

map creation, even if the remaining map was locally correct. We aim to address this

in future work.
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Appendix A: Additional Results

In addition to the results presented in this paper, supplementary LIDAR data from

an alternate location is provided in this appendix. These additional findings offer a

different perspective on the results of the perturbation techniques and the impact on

point cloud coherence.

The additional location chosen for this study was a parking lot. This locale fea-

tured numerous highly reflective surfaces on vehicles and several complex structures.

These divergent conditions could possibly contribute to the observed disparities in

the outcomes, as depicted in Figure A.1.

Our analysis reveals similar results to those observed in other locations for all noise

models, with one exception. The ”Modify Point Cloud Local” model exhibits devia-

tions, showcasing an inconsistent escalation in error rates with increased noise levels.

Interestingly, the anticipated pattern of monotonically increasing error is not present.

Instead, we observe a noticeable elevation in noise and variance within the data, par-

ticularly around the 50cm mark. Beyond a width of 125cm, we regain a constant

error level.

This behavior may be attributed to a previously discussed scenario, where a failure
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to register a prior scan results in subsequent failures. In this instance, we believe

that registration errors initially contributed to an elevated error level. However, as

the width increased, successful registration was recovered, and the previous failed

registrations are eventually decimated to a point where they become insignificant.
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(a) Add Clouds Grid (b) Add Snow

(c) Add Snow Local (d) Modify Point Cloud

(e) Modify Point Cloud Local

Figure A.1: Plots of ICP error versus noise level for each perturbation
model for the Parking Lot outdoor scenario. Error bars indicate mean,
minimum, and maximum ICP error values for each noise level.
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