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Abstract

This dissertation focuses on developing algorithms to solve the problem of coor-

dinating multiple autonomous vehicles under various constraints, aiming to pro-

duce practical solutions for real-world applications. Built upon three journal pub-

lications addressing two coordination-related problems in different domains, this

research document tackles the challenges of heterogeneity constraints and cable

entanglement issues encountered by autonomous vehicle systems.

The first problem tackles task allocation and path planning for heterogeneous

ground mobile vehicles operating in a 2D environment with asymmetric travel

costs. By enhancing previous Primal-Dual approximation heuristic methods, novel

techniques are introduced to manipulate dual variables and achieve balanced

workload distribution, ultimately minimizing the maximum tour cost.

The second problem addresses the issue of tether entanglement faced by multi-

ple tethered underwater vehicle systems navigating underwater. A multi-layer

heuristic is developed by extending the Primal-Dual heuristic into a 3D environ-

ment and incorporating an additional algorithm layer to detect and resolve tether

entanglements within a reasonable computation cost.

Drawing on insights gained from these two problems, a new versatile algorithm

xvii



has been developed that is applicable to a range of min-max Multiple Depot

Heterogeneous Asymmetric Traveling Salesperson Problems (MDHATSPs). This

novel heuristic offers enhanced computational efficiency and practicality by refin-

ing formulation and integrating critical constraints, such as cable entanglement.

This dissertation has value in providing heuristics for routing problems that in-

volve multiple autonomous vehicles with additional constraints. Each algorithm

is developed from problem formulation and considered to improve solution qual-

ities and computation time for implementation in real-world applications.

xviii



Chapter 1

Introduction

Recent advancements in autonomous vehicle technologies have revolutionized

the execution of complex and time-sensitive tasks through multi-vehicle systems.

With a diverse range of autonomous vehicles, including ground mobile robots,

aerial autonomous vehicles, and underwater autonomous vehicles, each possess-

ing unique capabilities, the potential applications have expanded significantly.

These technologies are undergoing development for a wide spectrum of appli-

cations, spanning manufacturing, transportation services, search and rescue mis-

sions, mapping, surveillance, inspection, maintenance, and more [1, 2, 3, 4].
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However, orchestrating the systematic operations of multi-vehicle systems to ac-

complish complex tasks poses significant challenges due to the interrelation of nu-

merous sub-problems. A fundamental sub-problem that has to be solved in the

field is finding a tour for each vehicle so that each target is visited at least once by

some vehicle and the sum of maximum travel cost is minimal. When multiple ve-

hicles are involved, task allocation, path planning, and scheduling need to be dealt

with simultaneously, which amplifies the complexity of finding effective solutions.

These problems are known as vehicle routing problems, first introduced by George

Dantzig and John Ramser in 1959 [5], which is NP-hard [6]. This dissertation aims

to address two key problems within this field.

The first problem is coordinating multiple heterogeneous autonomous ground ve-

hicles with different motion constraints and velocities. Having heterogeneous

structures of the vehicles increases the complexity of the algorithm that provides

routes satisfying all motion constraints while considering workload balancing be-

tween the vehicles. This work aims to generate good-quality solutions at a reason-

able computational time while focusing on the practical aspect of the approach.

As an extension of the preliminary work based on the Primal-Dual approximation

heuristic, presented in [7], this work presents a new approach to manipulate the

dual variables using weights to penalize the travel costs and thus explore better

quality load distribution to minimize the maximum tour cost. The algorithm em-

braces asymmetric costs, which is more generalized than preliminary work. The
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details of this problem are discussed in Chapter 2.

The second problem pertains to coordinating multiple tethered autonomous un-

derwater vehicles while ensuring entanglement-free navigation. Despite offering

advantages such as uninterrupted communication and continuous power supply,

these vehicles face the risk of cable entanglement during movement, limiting their

applications. While significant attention has been devoted to the navigation of

standalone underwater vehicles [8], limited research has focused on tethered ve-

hicles. Existing studies primarily concentrate on motion planning while avoiding

tether entanglements between predefined start and endpoints. Addressing these

limitations, this dissertation proposes a heuristic approach that integrates cable

entanglement constraints into the routing problem. The approach builds upon the

algorithm devised for ground vehicles, with modifications and additional strate-

gies detailed in Chapter 3.

The knowledge gained from working on two problems led us to develop a new

heuristic approach with broad applicability. The generalized nature of this ap-

proach allowed for easy adaptation to address various constraints associated with

vehicle routing problems with multiple depots and min-max objectives. The new

heuristic offers enhanced efficiency by swiftly addressing the limitations of the

multi-layer Primal-dual-based approach. Moreover, the refined problem formu-

lation is introduced to integrate the crucial constraint of cable entanglement for

3



the second problem. Subsequently, we applied the new heuristic to solve both

problems, with a comprehensive discussion and analysis of the results presented

in Chapter 4. Through these efforts, we aim to contribute to advancing solutions

for complex optimization problems, offering practical and effective strategies to

address real-world challenges.
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Chapter 2

An Algorithm for Task Allocation and

Planning for a Heterogeneous

Multi-Vehicle System to Minimize

the Last Task Completion Time

This work[9] addresses the challenge of efficiently allocating tasks and planning

routes for heterogeneous multi-vehicle systems. While these approaches deal with

task allocation for multi-vehicle systems, they have distinctive objectives and con-

straints, and none deal with the same problem as this work. Leveraging a unique
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Primal-Dual formulation and a workload distribution strategy, the aim was to cre-

ate a tailored solution capable of accommodating the diverse motion constraints

of each vehicle while optimizing the overall system performance. A key focus was

minimizing the completion time of the last task, considering heterogeneity in the

system to ensure effective management of differences in speed and turning radius

of the vehicles. Overall, the goal was to deliver computationally viable solutions

to enhance the efficiency of multi-vehicle systems in real-world applications.

2.1 Introduction

The applications of heterogeneous multi-vehicle systems are increasing thanks to

advances in autonomy and artificial intelligence in recent decades [10, 11, 12, 13, 14,

15]. However, it is still difficult to overcome some limitations of current technolo-

gies due to the dynamic and unpredictable nature of the world. For the systematic

operations of multi-vehicle systems to accomplish complex tasks, four main topics

should be resolved: (1) task decomposition, (2) coalition formation, (3) task alloca-

tion, and (4) task execution/planning and control [16]. These topics are correlated

to each other, which makes the problems even more challenging to solve. Hav-

ing heterogeneity on multi-vehicle systems significantly increases the complexity

while causing more layers on the operating system regarding task decomposition

and allocations [17].
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Generally, heterogeneity is categorized into two parts: structural and functional

heterogeneity. The structural heterogeneity typically includes the differences in

vehicle designs, such as motion constraints, running speed, yaw rate, and fuel

capacity. On the other hand, functional heterogeneity includes the differences in

functions, such as different types of data coming from various sensors, maximum

payloads, and the ability for sample collections. Sensor-related issues on each ve-

hicle are one of the factors that make the task allocation and planning more chal-

lenging, and there are several active ongoing research [18, 19, 20, 21]. Having more

heterogeneity factors increases computational loads to find an efficient operational

strategy for multi-vehicle systems.

This work focuses on solving a task allocation and planning problem for multi-

vehicle systems with structural heterogeneity. While various heterogeneity factors

would be preferred to be considered, we deal with a problem that includes struc-

tural heterogeneity on multi-vehicle systems at this time. Specifically, we assume

the system has heterogeneous mobile vehicles in 2D space, such as autonomous

surface vessels or ground vehicles, with different motion constraints and running

velocities. We are interested in finding paths for vehicles that complete all the

given tasks within the minimum period with a given system. When the vehi-

cles depart from distinctive locations, and the travel costs do not guarantee sym-

metricity, we call the problem a min-max Multiple Depot Heterogeneous Asym-

metric Traveling Salesperson Problem (MDHATSP). The problem is a generalized

7



TSP, meaning it is an NP-hard problem [22]. As preliminary research, two vehicle

problems (2DHTSP, 2DHATSP) were studied in [23], and the problem for multiple

structurally heterogeneous vehicles with symmetric travel costs (MDHTSP) has

been studied in [7]. At this time, we relax the symmetric travel cost condition by

assuming the vehicles to be Dubin’s vehicles [24] with different minimum turning

radii. We put our efforts into lightening the computational loads for large prob-

lems while having good solution qualities to focus on the practical aspect of the

approach.

As the research for task allocation of multi-vehicle systems is becoming more ac-

tive compared to previous years, some publications are dealing with similar prob-

lems. However, as a characteristic of multi-vehicle system operational research,

each publication deals with its specific scenario, which makes it difficult to deploy

to other scenarios. For a recent publication, Sun and Escamilla proposed an un-

scented transform-based approach for a task allocation process with uncertainty

in situational awareness in [25]. While dealing with functional heterogeneity, they

proposed a Hungarian algorithm by focusing on handling uncertainties. Li et al.

presented a hybrid large neighborhood search algorithm that solves a multiple

depot Autonomous Aerial Vehicle (AAV) routing problem [26]. The article is fo-

cused on dealing with an open constraint on returning depots without considering

heterogeneity. Similarly, Cho et al. presented a sampling-based tour generation
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algorithm for multiple AAVs by formulating the problem into a generalized MD-

HATSP [27]. While [27] dealt with the most similar problem with this work, their

objective is min-sum, and there is a constraint that the vehicles must return to one

of the terminal nodes. A decentralized auction algorithm for the task allocation

of multi-vehicle systems under a limited communication range with a min-sum

objective has been proposed in [28]. A task allocation problem of autonomous

underwater vehicles problem with time and resource constraints and min-max ob-

jective is dealt with in [29]. In [30], an ant colony algorithm for a min-max MDTSP

without heterogeneity has been proposed and compared the results with those of a

linear program (LP) based algorithm. While these approaches deal with task allo-

cation for multi-vehicle systems, they have distinctive objectives and constraints,

and none deal with the same problem as this work. This work aims to fill the gap

in the area by targeting and producing reasonable solutions within a short time for

a generalized problem. This work has several unique contributions as an exten-

sion of the preliminary work presented in [7]. The heuristic in [7] is developed for

a min-max MDHTSP, which only solves the problems with symmetric costs. This

work has its novelty based on the following contributions. First, we present a new

approach in Algorithm 1 for deciding on the dual variables Wk, which play a role

as the weights on travel costs for each vehicle. Due to generalized travel costs, the

algorithm is designed to embrace the asymmetricity of the costs. In addition, new

pruning steps for the primal-dual heuristic have been developed in Algorithm 2

9



to enhance the task distribution between the vehicles. The algorithms are imple-

mented and compared with LP solutions with integer constraints relaxed, the LP

rounding method, and our work on a min-sum MDHATSP[31] to verify the effec-

tiveness of the proposed algorithm in the perspective of the workload balancing.

The real-world experiment results are added to verify the feasibility of the algo-

rithm in the field.

The remainder of this chapter is structured as follows: In Section 2.2, we specify

the problem and present the formulations. Section 2.3 presents the primal-dual

heuristic approach for a min-max MDHATSP. We present the computational re-

sults in Section 2.4.

2.2 Problem Description and Formulation

This section specifies the problem of allocating tasks between vehicles in a given

multiple heterogeneous ground mobile vehicles. The aim is to find a path for

each vehicle that satisfies its motion constraints and completes all the given tasks

by the multi-vehicle system while minimizing the maximum travel cost among

the agents. This problem is formulated as a min-max Multiple Depot Heteroge-

neous Asymmetric Traveling Salesman Problem (MDHATSP). It is assumed that

10



the travel costs satisfy triangle inequalities. The vehicles depart from distinct loca-

tions and return to their depots once they have completed the assigned tasks. The

vehicles are assumed to have different running velocities and minimum turning

radii. The travel cost is defined as the travel time of the vehicle and is calculated

by costk
ij = dk

ij/vk, where dk
ij represents the distance of the shortest path from ver-

tex i to j for vehicle k, and vk represents the average running velocity of vehicle

k. The vehicles are labeled as their running velocities decreased, and the mini-

mum turning radius increased as their indices increased. Then, all travel costs

will monotonically increase based on their indices, i.e., cost1
ij ≤ cost2

ij ≤, · · · ,≤

costm
ij , ∀{i, j} ∈ Vk, k = 1, · · · , m. For m vehicles and n tasks, the parameters and

decision variables used in the formulation are described as follows:

Parameters:

D = {d1, ...dm} a set of depots

T = {t1, · · · , tn} a set of tasks

Vk = {{dk} ∪ T} a set of vertices for kth vehicle

Ek = {(i, j), ∀i, j ∈ Vk} a set of edges that connect all vertices in Vk

costk
ij the travel cost of the edge from vertex i to vertex j

for kth vehicle

δ+k (S) the subset of the edges of Ek that entering to S from

Vk\S

11



Decision Variables:

xk
ij the decision variable that represents whether edge (i, j) is used for the tour of kth

vehicle

xk
ij =



















1 if edge (i, j) is traveled by the kth vehicle

0 otherwise

zk
U the decision variable that represents the assignment of tasks in T for kth vehicle

zk
U =















1 if U contains all vertices not assigned to 1st, · · · , kth vehicle

0 otherwise

q the maximum travel cost

The formulation for a linear program (LP) relaxation of the problem is shown be-

low:

CLP = min q (2.1)

∑
(i,j)∈δ+1 (S)

x1
ij ≥ 1− ∑

T⊇U⊇S

z1
U ∀S ⊆ T, (2.2)

∑
(i,j)∈δ+k (S)

xk
ij ≥ ∑

T⊇U⊇S

(zk−1
U − zk

U) ∀S ⊆ T, k = 2, · · · , m− 1, (2.3)

∑
(i,j)∈δ+m (S)

xm
ij ≥ ∑

T⊇U⊇S

zm−1
U ∀S ⊆ T, (2.4)

q ≥ ∑
i,j∈Vk

costk
ij xk

ij k = 1, · · · , m, (2.5)

xk
ij ≥ 0 ∀i, j ∈ Vk, k = 1, · · · , m, (2.6)
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zk
U ≥ 0 ∀U ⊆ Vk, k = 1, · · · , m− 1, (2.7)

q ≥ 0. (2.8)

The dual problem of the LP relaxation problem is stated below:

Cdual = max ∑
S⊆T

Y+
1 (S) (2.9)

∑
S:e∈δ+k (S)

Y+
k (S) ≤ Wkcostk

ij ∀i, j ∈ Vk, k = 1, · · · , m, (2.10)

∑
S⊆U

Y+
k (S) ≤ ∑

S⊆U

Y+
k+1(S) ∀U ⊆ T, k = 1, · · · , m− 1, (2.11)

∑
k=1,··· ,m

Wk ≤ 1 (2.12)

Y+
k (S) ≥ 0 ∀S ⊆ T, k = 1, · · · , m, (2.13)

Wk ≥ 0 k = 1, · · · , m. (2.14)

In this formulation, the dual variable Y+
k (S) can be interpreted as the price that

the vertices in set S are willing to pay to be reachable from dk, while Wk can be

interpreted as the weight given to the kth vehicle.
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2.3 A Heuristic for Min-Max MDHATSP

The heuristic for a min-max MDHATSP consists of two main procedures pre-

sented in Algorithms 1 and 2. While Algorithm 1 focuses on determining Wk

values for each vehicle to have better workload distribution, Algorithm 2 pro-

duces a feasible task allocation and path planning solution for the fixed Wk val-

ues. In Algorithm 1, we try to transfer the workloads from the vehicle with the

maximum travel cost to other vehicles to reduce the maximum travel cost in each

iteration. In the heuristic presented in Algorithm 2, we used the dual problem

(2.9-2.14) to find a heterogeneous directed spanning forest (HDSF). The result-

ing forest will become the allocation of the tasks. As we mentioned, the algo-

rithms treat Wk like the weights on vehicles to prioritize based on their capa-

bilities. The weighted costs should satisfy the monotonic increase inequalities,

W1cost1
ij ≤ W2cost2

ij ≤ · · · ≤ Wmcostm
ij ∀i, j ∈ T, all the time to guarantee the feasi-

bility of the algorithm. The notations below are utilized to present the algorithm

details.
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Algorithm Notations:

Fk A set of edges added to the graph for the kth vehicle

Ck A collection of vertex sets in the graph for the kth vehicle

Yk(S) The dual variable of set S for the kth vehicle

activek(S) The variable that represents the status of Yk(S)

activek(S) =























1 if set S can increase its dual variable

0 otherwise

Cost A set of costs for all vehicles,{Cost1, · · · , Costm}

W A set of all Wk, {W1, · · · , Wm}

Tour A set of assigned paths, {Tour1, · · · , Tourm}

TourCost A set of travel costs of Tourk, {TourCost1, · · · , TourCostm}

The algorithm starts with setting Wk values as they are equally distributed. This

step ensures at least one feasible solution is produced for the problem, as it should

satisfy the monotonic increase inequalities in default. Once the algorithm finds

a feasible solution, it iteratively runs a primal-dual heuristic (Algorithm 2) while

changing Wk values to reduce the maximum travel cost. To satisfy the monotonic

increasing inequalities of weighted costs, we designed the algorithm to have Wk

also satisfy the monotonic increasing inequalities, i.e., W1 ≤ W2 ≤ · · · ≤ Wm. Wk

is adjusted with a small amount ϵ (heuristically determined by the user) to share

the overloaded work with other vehicles while maintaining (2.12) is tight.
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Algorithm 1 A heuristic for min-max MDHATSP

1: Wk = 1/m for k = 1, · · · , m;
2: [TourCost, Tour] = GetPartition(Cost, W)
3: G ← max(TourCost)
4: while there is no improvement in G do

5: [TourCostk, k] = max(TourCost)
6: if k > 1 then

7: for j= 1:k− 1 do

8: Wj = Wj − ϵ

9: end for

10: for j= k:v do

11: Wj = Wj + ϵ

12: end for

13: else

14: break,
15: end if

16: Wk =
Wk

∑
m
k=1 Wk

for k = 1, · · · , m

17: [TourCost, Tour] = GetPartition(Cost, W)
18: if G < max(TourCost) then

19: G ← max(TourCost)
20: end if

21: end while

22: return TourCost, Tour

With every fixed Wk value, the task assignment is determined by Algorithm 2. Each

vehicle has its own graph, with all targets and a depot as vertices. Initially, each

vertex is in its own set, all dual variables are zero, and the edge set Fk is empty. For

every iteration, the algorithm searches for the dual variable that can tighten one of

the constraints (2.10) with the smallest increment. Add the corresponding edge ek

to Fk. Then, we look at the graph for this vehicle and check if any valuable changes

have been made. First, if a new strongly connected component is formed but is not

reachable from dk, then let the new component be an active set. Second, if any set

became newly connected to dk, then let dk and all reachable sets from dk be a new

inactive set. This new component’s subsets should also be all deactivated, while
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Algorithm 2 [TourCost, Tour]=GetPartition(Cost, W)
1: Initialization

2: Fk ← ∅, Ck ← {{v} : v ∈ Vk}, for k = 1, · · · , m
3: All the vertices are unmarked.
4: All the dual variables are set to zero.
5: activek({v})← 1, ∀v ∈ Vk , for k = 1, · · · , m
6: activek({dk})← 0, for k = 1, · · · , m

7: Main loop

8: while there exists any active component in C1, · · · , Cm do
9: for k = 1, · · · , m do

10: Find an edge ek = (i, j) ∈ Ek with i ∈ Ci , j ∈ Cj where Ci , Cj ∈ Ck , Ci ̸= Cj that minimizes εk =
Wkcostk

ij−dualk(j)

activek(Cj)
.

11: end for
12: Let the corresponding Cj ∈ Ck be Sk while S = {S1, · · · , Sm} satisfies S1 ⊇ S2 ⊇ · · · ⊇ Sm and all active.
13: Fk ← {ek} ∪ Fk

14: Increase the dual variables of Sk with amount of εk

15: if ek forms a new strongly connected component, and the component is not reachable from dk , then
16: Let the new strongly connected component be a new active component.
17: else if ek makes any vertex v ∈ S reachable from dk , then
18: Let dk and the all the reachable vertices from dk be a new inactive component.
19: if k < m then
20: Deactivate all the subsets of this component in Ck+1, · · · , Cm.
21: end if
22: if k > 1 then
23: Mark all the vertices in the supersets of this component in C1, · · · , Ck−1. Deactivate them if the corresponding

components consist of all marked vertices.
24: end if
25: else
26: Deactivate Sk .
27: end if
28: if there exists any inactive set without entering edge which is not connected to the depot and there exists no S =

{S1, · · · , Sm} can be chosen that satisfy the given conditions for any k ∈ {1, · · · , m}, then
29: Pick an inactive component for each k consisting of marked vertices with entering or outgoing edges. Combine

the connected components until the new component does not have any entering edges. Let the new component
be active.

30: end if
31: end while

32: Pruning

33: Let F′k be the resulting forest after performing reverse-deleting steps to remove all unnecessary edges.
34: Let P′k be the vertices in F′k for k = 1, · · · , m.
35: Let Pk be the vertices that are only connected to dk for k = 1, · · · , m.
36: if there exist any v ∈ T that doesn’t belong to any Pk for k = 1, · · · , m then
37: Let Pc be a set of such vertices.
38: while Pc ̸= ∅ do
39: Find the closest distances to the depots for all vertices in Pc.
40: Find the shortest distance. Let vc be the corresponding vertex and dk be the closest depot.
41: Pc ← Pc\vc; vc → Pk

42: end while
43: else
44: Pk = P′k
45: end if
46: Find the shortest tour for Pk for k = 1, · · · , m.
47: return TourCost, Tour

supersets should be all marked. Lastly, neither the first nor second happened;

deactivate the component. When the algorithm proceeds further, there could be a

phase where there is no active set without entering edges, but some sets are still
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not connected to the depot. Then, the algorithm generates a new active component

for each graph by combining some connected sets with at least one marked. The

iteration will stop when all sets in the graphs are inactive.

Lemma 1. The proposed heuristic produces a feasible plan for the given set of vehicles in

which every given target is visited only once by one of the vehicles.

Proof. In Algorithm 2, the main loop terminates when all the components are in-

active. There are only three cases where the components can be deactivated. First,

the component is not any part of the strongly connected components that do not

have entering edges, and none of the components’ vertices are reachable from the

depots. Second, the component becomes reachable from its depot. Third, one of

its supersets/subsets becomes reachable from its depots. As the first condition

can deactivate only one component within S, the termination condition cannot be

met only by the first condition. That means the second or third condition should

meet at least one to terminate the main loop, implying that all components should

be connected to at least one depot. The pruning steps ensure that each target is

connected to only one depot if there exists any target that is connected to multiple

depots. Thus, Algorithm 2 produces a feasible solution for the given set of vehicles

in which every given target is visited only once by one of the vehicles. As Algo-

rithm 1 updates Wk values while maintaining monotonic increase inequalities, the

proposed heuristic produces a feasible solution to the problem.
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2.4 Implementation Results

We implemented the heuristic and repeatedly performed the simulation by vary-

ing problem sizes to validate the proposed heuristic. All simulations were per-

formed in a PC equipped with an Intel®Core™ i7-7800X CPU running at 3.5 GHz

with 64 GB RAM. The numbers of vehicles and targets varied from 3 to 6 and 20 to

50, respectively. To have a standard for the produced solution qualities, we used

the optimal costs for the LP relaxation problem calculated by the commercial soft-

ware CPLEX [32] as lower bounds. While we have repeated the tests 50 times for

each size, we have tested only the heuristic for 100 targets to estimate the computa-

tional time due to the extensive computation time of LP for large-sized problems.

Using the LP solution, we also applied the LP rounding method, which assigns the

target to the one with the largest partitioning variable value to compare the results

based on the calculated LP relaxation costs. In addition, we have applied our pre-

vious algorithm that solves min-sum MDHATSP [31] to verify the effectiveness of

the algorithm especially to reduce the last task completion time. The coordinates

of depots and targets are randomly generated within a space of 3m × 3m with

a uniform distribution. As we mentioned previously, the vehicles are labeled as

their running velocities decrease while the minimum turning radius increases in

order with the index. costk
ij was set to the minimum travel time by calculating the
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Dubin’s path [24] from i to j divided by the average running velocity of kth vehi-

cle. The path within each assignment was generated using LKH [33] for both LP

rounding and the proposed heuristic.

The average and maximum posteriori bounds are shown in Figure. 2.1. The poste-

riori bound has been calculated by Costalgo/CostLP, where Costalgo represents the

cost generated by an algorithm and CostLP represents the optimal cost of the LP

relaxation problem. As the objective of the problem is min-max, which is nonlin-

ear, the gap between the costs of the original mixed-integer problem and the LP

relaxation problem is a bit large, which means that the actual solution qualities are

more reasonable than the presented numbers. As we can see from the results, the

average posteriori bounds of the proposed heuristic stayed the lowest while the

min-sum heuristic remained in the middle, and the LP rounding method was the

highest. The worst posteriori bounds for the proposed algorithm also maintained

the lowest regardless of the problem sizes.

The average and maximum computation times are shown in Table 2.1. Compared

to the results of the min-sum heuristic, which was an average of 9 seconds for 6

vehicles and 50 targets, the computation time is longer for min-max cases, with an

average of 35 seconds. For 10 instances of 20 vehicles and 100 targets, the algorithm

produced a solution within an average of 35 minutes. Considering the fact that the

algorithm can handle more generalized problems, the computation time is still in
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an acceptable range for real-world operations, especially for large-sized problems.

Figure 2.2 shows the results from three different algorithms for an instance of 3

vehicles and 30 targets within a 3m × 3m space.
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Figure 2.1: Average (left) and worst (right) posterior bounds.
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Figure 2.2: Three solutions were derived from different approaches for 3
vehicles with 30 tasks. The numbers next to the depots represent the index
of the vehicles. The green, red, and blue paths represent the trajectories
for vehicles 1, 2, and 3, respectively. The last task completion times for the
proposed heuristic, min-sum heuristic, and LP rounding method are 8360,
11,445, and 12,309 s, respectively. The computation times for the proposed
heuristic, min-sum heuristic, and LP rounding method are 2.43, 0.78, and
6495.11 s, respectively.
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Table 2.1

Computation time in seconds

tasks LP rounding min-sum proposed LP rounding min-sum proposed

Average with 3 vehicles Worst with 3 vehicles

20 4.36 0.23 0.68 6.41 0.58 1.95
30 67.39 0.65 1.77 85.97 1.07 3.38
40 619.08 1.46 4.04 888.91 1.83 7.01
50 3614.6 2.83 8.66 4922.4 3.42 12.75

Average with 4 vehicles Worst with 4 vehicles

20 5.89 0.38 1.06 8.66 1.47 2.29
30 82.22 1.07 3.30 112.46 1.99 5.93
40 952.54 2.36 7.77 4183.8 3.22 12.92
50 5128.1 4.34 13.66 4434.8 5.11 24.33

Average with 5 vehicles Worst with 5 vehicles

20 14.37 0.52 1.60 18.97 1.00 4.16
30 267.74 1.50 4.75 446.77 2.02 9.27
40 2960.1 3.41 11.55 4183.8 3.89 20.96
50 10920 6.67 23.88 15875 7.56 39.74

Average with 6 vehicles Worst with 6 vehicles

20 14.22 0.69 2.12 17.29 1.53 5.39
30 265.13 2.14 8.00 347.92 2.59 15.97
40 3153.3 4.62 16.79 4434.8 5.52 32.63
50 15527 8.99 35.05 21225 10.32 64.30

2.4.1 Field Experiments

In addition to the simulation, we performed field experiments to verify its effec-

tiveness in real-time applications with a small-sized problem. The multi-vehicle

system consists of four ground mobile robots, Turtlebot3 Waffle Pi [34], while each

robot has a different limited running velocity. The experiment site is the size of

16 ft × 12 ft and is equipped with an OptiTrack Motion Capture System (with 8

OptiTrack Prime 17W cameras) to transfer the locations of the robots in real time.

The central control system is implemented in ROS [35] to navigate the robots. The
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experimental setup is shown in Figure 2.4.

We have tested the proposed algorithm for a problem with 29 targets and dis-

tinctive depots for the robots. Once the task allocation and the path generation

are completed, the robots immediately work on the given tasks by following the

provided paths. In our experiments, unlike the simulation, we did not constrain

the robots’ motion to be Dubins, as the robots on the system are differential drive

robots. However, the linear velocities were set to 0.1, 0.083, 0.071, and 0.063 m/sec,

respectively, to include the heterogeneity in the system. To verify the effectiveness

of the proposed heuristic, we have compared the results with our preliminary re-

search, the primal-dual heuristic for min-sum MDHATSP [31].

The results from the field experiment results are shown in Figure 2.3 and Table 2.2.

Figure. 2.3 shows that the vehicles were able to complete their tasks as provided

by the heuristics. As shown in Table 2.2, though the min-sum heuristic ran in 0.95

seconds to complete the task allocation and path generation, the workload was

overloaded to robot 3, which caused a longer last task completion time. On the

other hand, the proposed heuristic ran in 3.23 seconds, which is a bit longer, but

the workload was well distributed, resulting in a shorter last task completion time.

However, the sum of the travel costs was better with the min-sum heuristic than

with the proposed algorithm, which makes sense as it aimed to minimize the total

travel costs to reduce the complexity of the problem.
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Table 2.2

Computation and Travel Time in seconds of the field experiments

Min-Max heuristic Min-Sum heuristic

Computation 3.23 0.95

Robot1 83.3 56.7

Robot2 81.5 85

Robot3 88.7 142.7

Robot4 103 24.7

Sum of times 356.5 309.1

Completion time 106.23 143.65

The results show that the proposed approach is practical for the real-time oper-

ations of actual applications as the new heuristic deals with a more generalized

problem with a better workload distribution within a reasonable computation

time.
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Figure 2.4: An experimental scene for the field experiments with 4 robots
and 29 targets
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Chapter 3

Coordinating Tethered Autonomous

Underwater Vehicles toward

Entanglement-Free Navigation

This work[36] addresses the persistent challenge of cable entanglement issues en-

countered by multiple Tethered Autonomous Underwater Vehicle (T-AUV) sys-

tems during navigation. Despite their potential for long and deep underwater

operations, these entanglement problems hinder the full utilization of multiple T-

AUVs. Effective planning is essential for successful large-scale operations, with

meticulous attention required for task allocation, path planning, and scheduling.

Recognizing the importance of overcoming these challenges, our objective was
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to develop a solution that addresses cable entanglement issues while optimizing

the performance of T-AUV systems. To achieve this, we developed a multi-layer

heuristic approach by extending the primal-dual method to the 3D environment

and incorporating a mixed approach that integrates scheduling and sectionaliza-

tion methods. Ultimately, this work aims to pave the way for real-time operations

of T-AUV systems, unlocking their full potential in underwater exploration and

enabling critical tasks across various industries and scientific endeavors.

3.1 Introduction

Since the first Autonomous Underwater Vehicle (AUV) launched in the 1950s

[37], AUVs have expanded human access to the harsh underwater environment,

both for scientific research and industrial work. While autonomous navigation in

aquatic environments has been focused on a single vehicle to overcome the hostile

and dynamic nature of the settings, a fleet of AUVs is desirable in many underwa-

ter applications, not restricted to search, exploration, monitoring, sampling, and

data collection [38, 39, 40, 41]. Proper fleet planning is required for successful mis-

sion completion in all these applications based on the AUVs’ structural and func-

tional characteristics. Planning multiple AUVs requires solving three main topics

1) task allocation, 2) path planning, and 3) scheduling, which are correlated with

each other and, thus, challenging to solve.
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AUVs can be categorized into two classes according to the presence of an umbil-

ical cable. One would be a vehicle with an umbilical cable attached to a control

tower called a Tethered Autonomous Underwater Vehicle (T-AUV). The second

type is one without the cable, called a Stand-alone Autonomous Underwater Vehi-

cle (S-AUV). S-AUVs include conventional AUVs, and T-AUVs include ROVs (Re-

motely Operated Vehicles) and hybrid AUVs. Because the umbilical cable provides

a stable power source, real-time communication, and data transfer, T-AUVs ben-

efit from long-duration working-class missions, including underwater ecosystem

exploration, infrastructure inspection/maintenance, and search and rescue mis-

sions. However, umbilical entanglement can sabotage the mission for single or

multi-vehicles or damage the system or other underwater elements. Murphy et

al. deployed multiple heterogeneous AUVs at the 2011 Great Eastern Japan Earth-

quake and reported that the mission was usually affected by close operations and

the fear of tethers tangling or even a collision[42]. Escaping from entanglement is

difficult due to the dynamic environment and limited information, especially for

human-operated vehicles.

Despite the crucial need for entanglement-free navigation in multiple T-AUV oper-

ations, the existing literature on this topic is limited. Specifically, Herts and Luml-

sky [43] addressed the entanglement-free simultaneous motion planning problem

for a highly specific scenario where each robot moves between a unique pair of

start and end nodes. They employed a motion planner to compute a sequential
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motion for the robots, followed by trajectories that allow for simultaneous move-

ment. While this work represents the only available literature directly related to

ours, it falls short in addressing the broader problem we tackle here, which in-

volves task allocation of multiple targets without visiting sequences with multiple

target locations and simultaneous entanglement-free path planning.

While many researchers are interested in planning for a fleet of AUVs, relatively

limited methods are available [44]. There is increasing interest in advancing tech-

niques for multiple AUVs under various conditions. For instance, [45] focused

on planning the obstacle avoidance of multiple AUVs in complex ocean environ-

ments with the time coordination of simultaneous arrival. Panda et al. [46] pro-

posed a hybrid grey wolf optimization algorithm for collision avoidance with ob-

stacles and other vehicles. Nam [47] proposed data-gathering protocols to support

long-duration cooperation by operating long-range AUVs considering energy con-

sumption. A two-stage cooperative path planner for multiple AUVs operating in a

dynamic environment that aims to minimize time consumption with simultaneous

arrival while avoiding collisions [48]. A motion planner that focused on obstacle

avoidance for a single AUV has been presented by McCammon and Hollinger[49].

A couple of pieces of literature focus on the motion planning of nonentangling

tethers. NEPTUNE [50] solves trajectory planning for multiple robots and a single

tethered robot, trajectory planning for multiple tethered robots to reach their in-

dividual targets without entanglements. While the algorithm considers 3D space,
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it validated the approach with aerial vehicles. Teshnizi and Shell [51] studied a

motion planner for a pair of tethered mobile robots. Zhang and Pham [52] pro-

posed a planner that coordinates the planar robot motions to realize a given non-

intersecting target cable configuration. Although some state-of-the-art techniques

considered heterogeneous fleets of AUVs, no entanglement-free constraint is con-

sidered in the planning. We aim to fill the gap and build a foundation in the area

by targeting to provide good approximate solutions with lighter computational

loads.

In our preliminary work, the task allocation and path planning problems for mul-

tiple structurally heterogeneous autonomous ground vehicles have been studied

to minimize the last job completion time [7, 9]. While working on these problems,

we observed that the heuristics often produce sectioned paths due to the nature

of workload balancing. The sectioned paths used in this work represent each path

in a 3D space that does not intersect with other paths. Based on this observation,

we propose an extended algorithm applicable to multiple AUVs by introducing an

extra dimension and additional steps to ensure no entanglement happens during

operations. This novel approach to the problem is rarely studied but is essential

in operations for multiple T-AUVs. The proposed approach is tested extensively

in simulation environments. While this work does not include field testing, it is

worth noting that the Intelligent Robotics and System Optimization Laboratory

(IRoSOL) at Michigan Tech possesses multiple BlueROV2 vehicles, measuring 457
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mm in length, 338 mm in width, 254 mm in height, and weighing 10 kg in air.

These resources offer promising opportunities for conducting field tests in the fu-

ture. The remainder of this chapter is structured as follows: In Section 3.2, we

specify the problem and present the formulations. Section 3.3 presents the heuris-

tic approach to the problem. The computational results are shown in Section 3.4.

3.2 Problem Description and Formulation

In this work, our objective is to address the problem of coordinating Tethered Au-

tonomous Underwater Vehicles (T-AUVs) in navigating a set of targets. We aim

to find paths for each vehicle that satisfy the following criteria: 1) All targets are

visited by at least one AUV, 2) Each path adheres to the motion constraints spe-

cific to the corresponding vehicle, 3) The tethers of the vehicles are kept at a safe

distance from each other to avoid entanglement, and 4) The maximum travel cost

among the vehicles is minimized. The initial setup assumes that the AUVs start at

distinctive depots on the surface and return to these depots once they have visited

all their assigned targets. To simplify the problem, several assumptions are made.

First, we assume symmetric travel costs that adhere to the triangle inequalities.

The vehicles are considered holonomic and homogeneous, with the travel cost de-

termined as the travel time between targets using the average running velocity of

the vehicles. Additionally, we assume that the cable connecting the vehicle and
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the depot is a straight line managed by a tether control system without requiring

extensive cable release. While these assumptions enable us to present an initial ex-

ploration of the problem, our future work aims to incorporate dynamic features of

the tether shape for a more comprehensive solution. If we relax constraint 3), the

problem can be formulated into a min-max Multiple Depot Heterogeneous Trav-

eling Salesman Problem, first introduced in [7]. We use the dual formulation of

the linear program relaxation of the problem to generate a minimum spanning for-

est, which becomes the initial task assignment. In the formulation, the following

definitions are used for the variables.

Variable Definitions:

T the set of targets

m the number of vehicles in the cohort

dk the depot of the kth vehicle

Vk the set of nodes that contains targets and the depot for kth vehicle

Ek the set of edges between the nodes in Vk

δk(S) the subset of the edges of Ek with one end in S, and the other end in Vk\S

In this formulation, Yk(S) can be interpreted as the prices that all targets in the

set S are willing to pay to be connected to dk, while Wk are treated like the gains

for giving priority to the vehicles. Once the initial task allocation is derived, we

resolve the entanglement problem. The details will be explained in the following

section.
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Cdual = max 2 ∑
S⊆T

Y1(S) (3.1)

∑
S:e∈δk(S)

Yk(S) ≤ costk
ijWk ∀i, j ∈ Vk, k = 1, · · · , m, (3.2)

∑
S⊆U

Yk(S) ≤ ∑
S⊆U

Yk+1(S) ∀U ⊆ T, k = 1, · · · , m− 1, (3.3)

∑
k=1,··· ,m

Wk ≤ 1 (3.4)

Yk(S) ≥ 0 ∀S ⊆ T, k = 1, · · · , m, (3.5)

Wk ≥ 0 k = 1, · · · , m. (3.6)

3.3 A Heuristic for Scheduling Multiple Tethered Un-

derwater Robots

As we briefly mentioned in Section 3.2, the heuristic for coordinating multiple T-

AUVs consists of two main steps: 1) producing an initial task allocation and routes

by relaxing the entanglement constraint and 2) detecting and resolving the possible

tether entanglements. We solved the initial task allocation and routing problem

with a primal-dual heuristic while following the main structure of the algorithm

presented in [7] but with some revisions. The heuristic is developed based on the

dual formulation (3.1)-(3.6) while iteratively changing the Wk values to improve
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the workload distribution. With fixed Wk values, the heuristic runs Algorithm

3 to find a task assignment and routes. Starting from all zero dual variables, in

each iteration, the dual variables Yk(S) that makes one of the dual constraints, (3.2)

or (3.3), tight is increased. If one of (3.2) becomes tight, add the corresponding

edge to the forest, and if one of (3.3) becomes tight, mark the corresponding set

and see if they can be connected to another depot with lower cost. The main loop

terminates once every target is connected to at least one of the depots. The pruning

steps guarantee assigning tasks to only one of the vehicles while trying to improve

workload balancing. Based on the results from fixed Wk values, the algorithm

adjusts Wk values to decrease the maximum travel cost while not violating the

monotonic cost increase condition, i.e., W1cost1
ij ≤ W2cost2

ij ≤ · · · ≤ Wmcostm
ij and

choose the best one among the trials. When m vehicles and n targets are given, the

following notations are utilized to present the algorithms.

Algorithm Notations:

Rk The kth vehicle

Fk A set of edges in the graph of Rk

Ck A collection of vertex sets in the graph of Rk

Yk(S) The dual variable of set S for Rk

dk The depot for Rk

dualk(v) The sum of dual variables for all sets that contain vertex v

boundk(S) The sum of Yk+1(S)
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Childrenk(S) The vertex sets of S that exist in the graph for Rk+1, · · · , Rm

activek(S) The variable that represents whether Yk(S) can be increased

activek(S) =



















1 if set S can increase its dual variable

0 otherwise

Cost A set of edge costs, {Co1, · · · , Com}

Tour A set of routes, {Tr1, · · · , Trm}

W A set of all Wk, {W1, · · · , Wm}

Sk The location of Rk

Tk The heading target location from Sk

Lt
k The estimated location of Rk between Sk and Tk

at time t, where t is a parameter

CVt
k The cable vector connecting Lt

k and dk

CPk The cable plane that contains dk and two targets assigned

to Rk in sequence

CSij The vector connecting di, dj

Ryield The vehicle which is made to yield

Rpass The vehicle that passes

v The average moving velocity of the AUVs

Dz zth departure among chronologically arranged n + m

scheduled departures of all vehicles
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Algorithm 3 Tour=GetPartition(Cost, W)

1: Wk = 1/k for k = 1, · · · , m;
2: [Fk, Ck, activek, Childrenk] = Initialization(m, Vk, dk)
3: Fk = Mainloop(Fk, Ck, activek, Childrenk, Cost, W)
4: Tour = Pruning(Fk, Cost, W)
5: Adjust Wk that satisfies the monotonic cost increase condition.
6: Repeat 2-4 until there is no improvement in the cost.
7: Choose the best Tour that produces the minimum max(TourCost)

Algorithm 3.1 [Fk, Ck, activek, Childrenk] = Initialization(m, Vk, dk)

1: Fk ← ∅, Ck ← {{v} : v ∈ Vk}, for k = 1, · · · , m
2: All the vertices are unmarked.
3: All the dual variables are set to zero.
4: activek({v})← 1, ∀v ∈ Vk, for k = 1, · · · , m
5: activek({dk})← 0, for k = 1, · · · , m
6: Childrenk({v})← {v}, ∀k = 1, · · · , m− 1;

Based on the initial routes, which didn’t consider entanglement constraints, we fo-

cus on detecting and resolving the possible tether entanglements. Given the initial

routes, the schedule, which is each vehicle’s arrival/departure time in each node,

should be determined to avoid collisions and tether entanglements. The proposed

approach repeatedly simulates the movement of the vehicles based on the aver-

age running speed v and processing time for each task to accomplish the mission

while detecting and resolving the possible tether entanglements. The details of the

algorithm have been presented in Algorithms 4-6.

Algorithm 4 presents the overall steps to detect the possible entanglements and re-

solve the issue. When entanglement occurs, we can observe co-planer cable vectors
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Algorithm 3.2 Fk = Mainloop(Fk, Ck, activek, Childrenk, Cost, W)
1: while there exists any active component in C1 do
2: for k = 1, · · · , m do
3: Find an edge ek = (i, j) ∈ Ek with i ∈ Ci, j ∈ Cj where Ci, Cj ∈ Ck, Ci ̸= Cj that minimizes

4: ε1
k =

{Wkcostk
ij−dualk(i)−dualk(j)}

activek(Ci)+activek(Cj)
.

5: end for
6: for k = 1, · · · , m− 1 do
7: Let ℜ := {R : activek(R) = 1, Children(R) = ∅, R ∈ Ck}. Find R̄ ∈ ℜ that minimizes

ε2
k = boundk(C)−Yk(R̄)

8: end for
9: εmin = min(ε1

1, · · · , ε1
m, ε2

1, ε2
m−1)

10: for k = 1, · · · , m do
11: for C ∈ Ck do
12: Yk(C)← Yk(C) + εminactivek(C)
13: dualk(v)← dualk(v) + εminactivek(C) ∀v ∈ C
14: if k < m then
15: boundk(C)← boundk(C) + εmin|Childrenk(C)|
16: end if
17: end for
18: end for
19: if εmin = ε1

k for some k then
20: Fk ← {ek} ∪ Fk

21: Ck ← Ck ∪ {Ci ∪ Cj} − Ci − Cj

22: Yk({Ci ∪ Cj}) = Yk(Ci) + Yk(Cj)
23: if k < m then
24: boundk(Ci ∪ Cj)← boundk(Ci) + boundk(Cj)
25: end if
26: if dk ∈ {Ci ∪ Cj} then
27: activek(Ci ∪ Cj)← 0
28: if k < m then
29: activek+1(C)← 0 ∀C ∈ Childrenk(Ci ∪ Cj)
30: end if
31: else
32: activek(Ci ∪ Cj)← 1
33: end if
34: else
35: activek(C)← 0, Mark all the vertices of C with label C
36: end if
37: end while

as shown in Fig. 3.1. To inspect co-planer cable vectors for the possible entangle-

ment, the following equation has been used:

(
−−→
CVt

i ×
−−→
CSij) ·

−−→
CVt

j = 0 (3.7)
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Algorithm 3.3 Tour = Pruning(Fk, Cost, W)

1: Remove all the edges in Fk that do not belong to any of the trees.
2: Let F′k be the resulting forest.
3: Let P′k be the vertices in F′k for k = 1, · · · , m.
4: Pk ← {the vertices that are only connected to dk}, ∀k = 1, · · · , m
5: if there exist vertices that are reachable from multiple depots then

6: Let Pc be the vertices connected to multiple depots.
7: Let Tk be the minimum directed spanning tree of Pk for k = 1, · · · , m.
8: while Pc is not empty do

9: Find the closest tree Pk from the vertex in Pc. Choose the one with the lowest
workload if the vertex is equidistant from multiple trees.

10: Remove the corresponding vertex from Pc and add to Pk.
11: end while

12: else

13: Pk = P′k
14: end if

15: while there is no empty Pk do

16: Assign the closest node to Pk

17: end while

18: Get the best Tour for each Pk for k = 1, · · · , m using existing routing algorithm.

Figure 3.1: Co-planer cables at the time of entanglement

The value of t obtained upon solving (4.9) is the time after which the tethers are

anticipated to entangle with each. If t is a positive real value within the range al-

lowed by both vehicles’ schedules, the cables will become a co-planner and may

get entangled if the cable segments intersect. Based on this fact, Algorithm 4 tries
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Algorithm 4 Possible Entanglement Management for T-AUVs

1: Initialization
2: Sk ← Coordinates of the dk for k = 1, · · · , m
3: Tk ← Coordinates of the first target of Rk for k = 1, · · · , m
4: Q =[1, · · · , m]
5: z = 1
6: Main Loop
7: while z ≤ the total number of departures in the mission do

8: for ∀i ∈ Q do

9: Lt
i = Si + (Ti − Si)/v× t

10: for j=1,. . . ,m do

11: Lt
j = Sj + (Tj − Sj)/v× t, for j ̸= i

12: Solve equation for t: (
−−→
CVt

i ×
−−→
CSij) ·

−−→
CVt

j = 0

13: if The value of t conforms to the range set by the time schedules of Ri and Rj

respectively, and their cable segments intersect then

14: [Schedules, C1]=TimeScheduling(Ri, Rj)
15: [Routes, C2]=RouteModification(CVt

i , CVt
j )

16: MC = min(C1, C2)
17: if MC == C2 then

18: Update routes and schedules according to the updated routes and restart
from initialization.

19: else

20: Update the schedules and restart from initialization.
21: end if

22: end if

23: end for

24: end for

25: Q = [The next departing vehicle P associated to Dz+1 scheduled at time tP]
26: Sk ← the location of Rk at time tP for k = 1, · · · , m
27: TP ← the immediate next target corresponds to SP

28: z = z + 1
29: end while

30: Repeat steps 1-14 and 19-29, utilizing the TimeScheduling only. Let the cost be TC.
31: Compare TC and MC and choose the one with less cost.

to find all possible entanglement within the initial routes. For a time interval be-

tween two consecutive departures Dz and Dz+1, it simulates the movement of the

vehicles and examines concurrent cable planes. If entanglement is not detected,

it selects vehicle P associated with Dz+1, updates TP and Sk, and examines new
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Algorithm 5 [Routes,Time]=RouteModification(CVt
i , CVt

j )

1: Find nodes corresponding to the CPi and CPj .
2: Determine a node Nr from step 1 such that its cable vector intersects the cable plane of

the other vehicle.
3: Let Rr be the vehicle corresponding to the Nr.
4: Remove Nr from the route of Rr and allocate it to another vehicle that offers the lowest

maximum tour time.
5: Return the updated routes and the maximum tour time.

Algorithm 6 [Schedules, Time]=TimeScheduling(Ri, Rj)

1: Ryield ← Ri and Rpass ← Rj

2: Select nyield from the nodes visited by Ryield before the time of entanglement such that
the cable vector at nyield does not intersect with the cable planes of Rpass

3: Find a node npass in route of Rpass such that all the cable planes comprised of the nodes
after npass never intersect with any of the cable planes of Ryield

4: tyield ← scheduled arrival time of Ryield at nyield

5: tpass ← scheduled arrival time of Rpass at npass.
6: W ← tpass − tyield

7: Ryield ← Rj and Rpass ← Ri and repeat steps 1-6.
8: Choose Ryield, which incurs lower W
9: Return the adjusted schedules with the maximum tour time.

cable plane of P against other concurrent cable planes using (4.9). The steps are

repeated until either an entanglement is detected or the time interval associated

with the last departure is passed without an entanglement. If entanglement is con-

firmed, it either modifies the existing routes based on Algorithm 5 or adjusts the

time schedules based on Algorithm 6. The heuristic chooses the approach that

resolves the entanglement at the expense of lower maximum tour time and ac-

cordingly updates the schedule or routes. Consequently, the algorithm re-initiates

a fresh detection for an entanglement from the beginning at time t = 0. As a last

step, the algorithm only checks if the current solution is better than the solution

with time scheduling. This step is added because 1) the schedule adjustment can
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run very fast, and 2) modifying the routes at the beginning causes a drastic delay

in the final result for some cases.

The route modification approach in Algorithm 5 tries to find alternate routes by

reallocating the node relevant to the entanglement. For example, if the cable vector

of Ra intersects with CPb, the responsible node will be removed from Ra’s route

and awarded to another vehicle with the lowest maximum tour time. Fig. 3.2

shows how the approach works with an instance. In this instance, there is possible

entanglement when R1 travels between targets 3 and 4 while R2 travels between

targets 7 and 8 in the initial routes as shown in the far left figure. Thus, target 8 is

removed from the route of R2 and inserted for R1 between targets 3 and 4.
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On the other hand, the time scheduling approach in Algorithm 6 adjusts the sched-

ules while forcing one of the vehicles involved in the entanglement to loiter on the

starting node on the plane involved in possible entanglement. It compares the loi-

tering time to avoid entanglement and chooses a more efficient one. Figure 3.3

shows the rescheduling between the vehicles for the same instance in Figure 3.2.

There exists a possible entanglement when R1 travels between targets 3 and 4 while

R2 travels between targets 7 and 8. As R2 leaves the departing target earlier than

R1, R1 waits at target 3 until all possible entanglements are resolved. Thus, R1

restarts to follow the route when R2 arrives at target 10.

The proposed heuristic approach produces a feasible solution for every case for

the following reasons: 1) The primal-dual heuristic that produces initial task allo-

cation and routes guarantees a feasible solution without considering the entangle-

ment constraint. 2) The proposed heuristic in Algorithm 4-6 ensures the removal

of all the possible entanglements from the initial routes. Thus, all constraints are

guaranteed to satisfy, although the heuristic may not produce an exact optimal

solution.
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3.4 Computational Results

The heuristic is implemented and tested in simulations with varying problem sizes

for validation. All simulations were performed in a PC with an Intel®Core™ i7-

7800X CPU running at 3.5 GHz with 64 GB RAM. The number of vehicles varied

from 3 to 10, and the number of targets was tested for 50 and 100. The tests were

repeated for 100 different instances for each problem size. The coordinates of tar-

gets and depots are randomly generated within a space of 2 m × 2 m × 3.2 m with

a uniform distribution. All the depots are constrained to lie in the topmost plane

of the defined space. All vehicles had the same average running speed. Costk
ij was

set to the minimum travel time by calculating the distance between i and j divided

by the average running speed.

The maximum tour time among all the vehicles is considered the operation

time. The experiment evaluates the efficacy of the proposed algorithm to provide

entanglement-free navigation of the vehicles while aiming to curb the increase in

operation time. Due to a lack of available literature on this problem, we have com-

puted posteriori bounds based on the upper and lower bounds utilizing the initial

routes produced by the primal-dual heuristic. The worst feasible solution can eas-

ily think of is one vehicle departing at a time, and all other vehicles wait until the

46



vehicle comes back to its depot. For this trivial approach, the operation time is cal-

culated by adding up the respective tour time of all the vehicles, and we consider it

as the upper bound. On the other hand, the initial operation time produced by the

primal-dual heuristic without considering entanglement constraints is considered

the lower bound, which is sometimes impossible to achieve. The equation we used

to compute Posteriori Bound 1 is the following:

PB1 =
Talgo − TLB

TUB − TLB
(3.8)

where TLB represents the lower bound, TUB represents the upper bound, and Talgo

represents the operation time of the entanglement-free solution produced by the al-

gorithm applied. While this becomes one way to estimate the qualities of solutions,

we observed that the upper bound increases a lot as the problem size increases be-

cause each vehicle must wait a long time at its depot for other vehicles to complete

their missions. Thus, we also computed posteriori bounds only compared with the

lower bound as follows:

PB2 =
Talgo

TLB
(3.9)

While the proposed algorithm uses a mixed approach between the rescheduling

and the route modification depending upon the cost, each problem instance is also
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solved using only one approach to compare the efficacy of both methods individ-

ually. The computational results are shown in Figure 3.4, and Table 3.1.

Table 3.1

Computation time in seconds

The computation time for the entire process

vehicles Proposed TS RM Proposed TS RM

Average with 50 targets Worst with 50 targets

3 0.56 0.48 3.54 1.39 1.34 10.81
6 1.15 1.07 3.98 2.79 2.49 9.46

10 1.97 1.83 4.08 4.04 3.17 8.66

Average with 100 targets Worst with 100 targets

3 2.69 2.39 25.19 4.47 3.28 89.07
6 6.56 6.11 28.77 9.99 7.53 112.78

10 11.66 10.84 30.09 21.78 17.56 92.14

The computation time only for entanglement resolving

vehicles Proposed TS RM Proposed TS RM

Average with 50 targets Worst with 50 targets

3 0.1 0.02 3 0.55 0.1 10
6 0.13 0.17 3 1.12 0.17 7

10 0.28 0.13 2.38 2.50 0.26 7

Average with 100 targets Worst with 100 targets

3 0.33 0.04 23 1.77 0.1 87
6 0.6 0.1 23 3.5 0.46 105

10 1.06 0.23 19 6.8 0.6 77

In Figure 3.4, the left shows Posteriori Bound 1, comparing the gaps to the

lower bounds with gaps between upper and lower bounds. The right presents

Posteriori Bound 2, comparing the costs with the lower bounds. The marker shows

the average, while the bar shows the minimum and maximum values. In both fig-

ures, RM represents the Route Modification approach, and TS represents the Time
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Figure 3.4: Posteriori bounds PB1 and PB2 of three approaches

Scheduling approach. The proposed approach is a hybrid of the two approaches.

The average posteriori bounds for the proposed approach had the best solution

quality among the compared methods while staying considerably closer to the

minimum. This means that the results are consistent most of the time while having
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some bad cases occasionally. For both posterior bounds, the minimum bounds for

the proposed and route modification-only methods have negative and less than 1

values, which shows that the routes are improved by modification from the initial

routes provided by the primal-dual heuristic, which is used as the lower bound.

While the solution quality stayed consistent for 50 targets, the largest problem size

had some increased gap from the lower bound for the proposed method. This

makes sense as the number of vehicles and targets increases, and more entangle-

ment issues can arise from the initial routes. The route modification-only method

has the worst performance and the longest computation time. This method tries

to remove all the possible crossing surfaces by exchanging the nodes, which could

result in having an overloaded vehicle with high computation time in some cases.

While the time scheduling-only method solves the problem instantly, in less than 1

second for all cases as shown in Table 3.1, the solution qualities were not as good as

the proposed approach because some vehicles often need to loiter for a long time

to resolve the entanglement issues. Thus, the proposed approach took advantage

of both methods and produced the best solutions among the methods within a rea-

sonable computation time. Although it compares the two methods every time it

detects a possible entanglement, the proposed method’s computation time is con-

siderably shorter than the route modification-only method because changing the

route at a certain iteration changes the rest of the schedules. Therefore, the number

of possible entanglement changes depends on which method was chosen in the

50



previous step, and this affects both solution quality and computation time. The

computational results show the algorithm’s potential to be implemented in real-

world applications, delivering an affordable solution within an average of 11.66

seconds for the largest problem size, staying less than 1.5 of the ratio from a lower

bound that doesn’t consider the entanglement. Lastly, Figure 3.7 shows one of the

instances with 3 vehicles and 30 targets. As the possible entanglement is detected

for the initial routes produced by Algorithm 3, Algorithm 4 updated the routes to

avoid entanglements. As shown in Figure 3.7 of 1-1 and 2-1, some targets were

exchanged between the vehicles while time scheduling was also performed in 2-2.
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Chapter 4

A Novel Heuristic for a Multiple

Tethered Autonomous Underwater

Vehicle Routing Problem

Following the successful resolution of the cable entanglement issue, we focused

on optimizing solution quality and computational efficiency. We undertook the

development of a novel heuristic designed to integrate all constraints concurrently

during task allocation and route planning for vehicles. We aimed to devise a ver-

satile heuristic capable of handling diverse constraints applicable to a system of

multiple autonomous vehicles, ensuring robust performance across various sce-

narios and applications.
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4.1 Introduction

With over 70% of the Earth’s surface covered by water, unlocking the potential of

these submerged realms is crucial for understanding our planet’s intricate ecosys-

tems, mitigating environmental threats, and harnessing valuable resources [53, 54].

The extreme and often inaccessible nature of underwater environments has lim-

ited our ability to explore and monitor them effectively. However, by employing

Autonomous Underwater Vehicles (AUVs), we can overcome these challenges and

delve deeper into the mysteries of the ocean. AUVs can be broadly categorized into

two classes based on their connection to a control system: tethered autonomous

underwater vehicles (T-AUVs) and stand-alone autonomous underwater vehicles

(S-AUVs). T-AUVs are equipped with an umbilical cable that links them to a con-

trol tower, providing stable power, real-time communication, and data transfer ca-

pabilities. Examples of T-AUVs include remotely operated vehicles (ROVs) and

hybrid autonomous underwater vehicles (H-AUVs). T-AUVs are preferred for

long-duration missions, such as underwater ecosystem exploration, infrastructure

inspection and maintenance, and search and rescue operations due to the reliabil-

ity offered by their umbilical cables. Despite their vast potential, operational chal-

lenges, particularly entanglement, hinder their efficacy, as demonstrated during

the Tokyo Fire Department’s search and rescue mission following a magnitude 9.0

undersea earthquake in 2011 [55]. Entanglement risks, exacerbated when multiple
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T-AUVs operate in shared spaces, demand solutions for vehicle routing problems

for fully autonomous navigation.

Despite the crucial need for entanglement-free routing in multiple T-AUV oper-

ations, the existing literature on this topic is limited. For multiple S-AUVs, sig-

nificant attention is directed toward either formation control or path planning to

achieve optimal area coverage while considering nonlinear dynamics and environ-

mental factors. Numerous studies have explored these aspects, as documented by

[8]. However, the challenges surrounding multiple T-AUVs have not been thor-

oughly addressed. Most of the existing research focuses on the motion planning of

autonomous vehicles while avoiding entanglements of the tethers with given start-

ing and ending nodes. Hert and Lumelsky conducted a study on an entanglement-

free motion planning algorithm for multiple tethered autonomous vehicles operat-

ing in 3D space, aiming to navigate from their respective starting positions to task

positions [43]. Their approach employs a simultaneous-motion planning strategy

involving the determination of a sequence of vehicle movements to maximize the

number of vehicles moving along straight lines toward their tasks. Subsequently,

paths are generated for the vehicles based on this sequence, with the objective

of minimizing the total path length. Notably, this planning method assumes a

straight-line umbilical connecting the host vessel and the vehicle. While theoret-

ically valuable with mathematical proofs on completeness and approximation ra-

tio, this work lacks consideration of complete operational scenarios, including task
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assignments and visiting sequences, which is essential for practical applications.

Recent studies have addressed routing problems for multiple tethered ground

or aerial vehicles. For instance, Cao et al. introduced a non-entangling trajec-

tory planning approach for teams comprising mobile vehicles and aerial vehi-

cles, proposing a decentralized algorithm that ensures avoidance of entanglement

through a tether-aware representation of homotopy [56]. The same team proposed

a braids-based algorithm for multiple tethered aerial vehicles [57]. Zhang and

Pham presented a motion planner that incorporates precedence constraints and

waiting times for navigation from initial to task positions, utilizing a precedence

graph to identify deadlocks [52]. While their iterative algorithm effectively re-

moves deadlocks, it lacks a comprehensive objective function for optimization, and

there’s no assurance of eliminating all deadlocks. Additionally, Peng et al. inves-

tigated Non-Crossing Anonymous multi-agent path Finding (NC-AMAPF) in 2D

space, aiming to determine non-crossing paths from anchor points to tasks within

a workspace containing obstacles with the maximum travel cost among the vehi-

cles minimization objective [58, 59]. Another study by Teshnizi and Shell focused

on a graph search algorithm for planning paths for a pair of tethered vehicles in 2D

space to prevent entanglement [51]. Several studies have also concentrated on ef-

ficient path generation for single T-AUV to ensure their umbilicals do not entangle

with static obstacles in a 2D plane [49, 60, 61]. For example, McCammon et al. for-

mulated the Non-Entangling Traveling Salesperson Problem (NE-TSP), utilizing
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homotopy augmented graphs and a Mixed Integer Program model for problem

resolution [49]. Moreover, literature on single-tethered vehicle path planning on

the ground or in the air is more widely available, [62, 63, 64, 65, 66].

In our preliminary work, we successfully solved the challenge of a routing prob-

lem of multiple T-AUVs [36]. Our primary aim was to minimize the maximum

travel cost among the vehicles while ensuring their cables did not entangle during

operation. To achieve this, we developed a multi-layer heuristic, which initially

relaxed the cable entanglement constraint, addressing a multiple Depot Travel-

ing Salesman Problem (mDTSP) to generate paths and schedules for each vehicle.

Specifically, we designed a primal-dual heuristic using a linear program formu-

lation that efficiently solved a min-max mDTSP in a 3-dimensional environment.

Subsequently, the next layer of heuristic identified and resolved potential entangle-

ments within the given routes. After obtaining the routes, the heuristic simulated

the movement of the vehicles along their assigned paths. Assuming a straight ca-

ble connecting a vehicle to its depot, the heuristic tracked the cable and examined

its intersection with other cables as the vehicle progressed along its route. How-

ever, a drawback of the multi-layer approach is that the entanglement constraint

is not considered during task allocation and path planning. Consequently, the so-

lution quality may degrade in some cases when the second layer of the heuristic

redistributes tasks among vehicles or adjusts their schedules. Furthermore, the

re-routing/scheduling process increases computational time, particularly in some
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cases, depending on the results from the first layer. To address these issues, this

work introduces two major contributions. First, we present a modified formulation

that incorporates the cable entanglement constraint, aiding in the decision-making

process regarding including an edge in a vehicle’s route. Second, we propose a

new heuristic that simultaneously considers all constraints in the formulation. This

modified formulation significantly enhances solution quality at a lower computa-

tional expanse compared to the multi-layer approach.

The remaining chapter is organized as follows: In Section 4.2, we describe the

problem and present the formulation. Section 4.3 explains the heuristic approach

to the problem. The computational results are presented in Section 4.4.

4.2 New Problem Formulation

Given a set of T-AUVs and designated tasks, the problem is to determine individ-

ual paths for each T-AUV while satisfying several key criteria: 1) task Coverage:

Ensure that at least one T-AUV visits every task during the mission; 2) Motion

Constraints: Each path must adhere to the motion constraints specific to the corre-

sponding T-AUV, accounting for its unique capabilities and limitations; 3) Entan-

glement Avoidance: Prevent any inter-tether entanglement by ensuring that the

tethers connecting the T-AUVs to their respective depots and tasks do not overlap
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or cross paths; and 4) Minimized maximum travel cost among T-AUVs: optimiz-

ing the efficiency of the operation. The vehicles depart from their respective depots

on the surface and return to the depots after visiting all assigned tasks. We assume

symmetric travel costs between two tasks that satisfy the triangle inequalities. The

vehicles are considered homogeneous, and travel cost is determined by the travel

time between tasks, utilizing the distance between the tasks and the average run-

ning velocity of the vehicles. We also assume that the cable remains straight during

the operation using a tether control system. The problem is formulated as a min-

max Multiple Depot Traveling Salesman Problem. Given a set of m vehicles and n

tasks, the parameters and decision variables used in the formulation are described

as follows:

Parameters: .

dk the depot of kth vehicle

D a set of depots, {d1, ...dm}

T a set of tasks, {t1, · · · , tn}

Vk a set of vertices for kth, vehicle{{dk} ∪ T}, {{dk} ∪ T}

Ek a set of edges that connect all vertices in Vk, {(i, j), ∀i, j ∈ Vk}

costk
ij the travel cost of the edge from vertex i to vertex j for kth vehicle

δ+k (S) the subset of the edges of Ek that entering into set S from Vk\S

tk
i the departure time of kth vehicle from task i in its route
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CVk
ij a cable vector, at any time t, that connects the kth depot to its vehicle

which is moving along the edge {i, j}, where tk
i ≤ t ≤ tk

j

Decision variables:

xk
ij the decision variable that represents whether edge {i, j} is used for the tour of

kth vehicle

xk
ij =



















1 if edge (i, j) is traveled by the kth vehicle

0 otherwise

zk
Ui

the decision variable that represents the assignment of tasks in T for k + 1th

vehicle

zk
Ui

=















































1 if Ui contains task j, ∀j ∈ T\(V1 ∪V2 · · · ∪Vk), such that

while k + 1th vehicle moves along the edge {i, j}, CVk+1
ij do

not contact with CVr
gh, where r ̸= k + 1, i ̸= g or h , j ̸= g or h

0 otherwise

q the maximum travel cost

The new binary decision variable zk
Ui

identifies the set of viable tasks for the k + 1th

vehicle that can be reached from a task i within its route. It becomes 1 only if the

set Ui contains all the tasks that are not assigned to any of vehicles 1, · · · , k, while

doesn’t cause any entanglement with the tasks that are assigned to the vehicles

1, · · · , k. This aims to establish an edge {i, j} in the route, ensuring that the cor-

responding cable does not come into contact with other cables while the vehicle
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traverses along the edge {i, j}. Based on the provided parameters and decision

variables, the problem is formulated as a Mixed Integer Linear Program (MILP),

as shown below:

CLP = min q (4.1)

∑
(i,j)∈δ+1 (S)

x1
ij ≥ 1− ∑

T⊇Ui⊇S

z1
Ui

∀S ⊆ T, (4.2)

∑
(i,j)∈δ+k (S)

xk
ij ≥ ∑

T⊇Ui⊇S

(zk−1
Ui
− zk

Ui
) ∀S ⊆ T, k = 2, · · · , m− 1, (4.3)

∑
(i,j)∈δ+m (S)

xm
ij ≥ ∑

T⊇Ui⊇S

zm−1
Ui

∀S ⊆ T, (4.4)

q ≥ ∑
i,j∈Vk

costk
ij xk

ij k = 1, · · · , m, (4.5)

xk
ij = {0, 1} ∀i, j ∈ Vk, k = 1, · · · , m, (4.6)

zk
Ui

= {0, 1} ∀Ui ⊆ Vk, k = 1, · · · , m− 1, (4.7)

q ≥ 0 (4.8)

In this formulation, constraints (4.2)-(4.4) ensure that each task is assigned to one

of the vehicles while not having any entanglements. (4.5) represents the min-max

objective, connected to (4.1), while binary and non-negativity constraints are in-

cluded in (4.6)-(4.8).
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4.3 A Heuristic for Entanglement-Free Coordination

of Multiple Tethered AUVs

This section introduces a new heuristic to solve the problem formulated in Sec-

tion 4.2. The proposed heuristic involves two primary steps: 1) Generating

entanglement-free routes using initial task allocation and 2) Iteratively redistribut-

ing the tasks among the vehicles to minimize the maximum travel cost while en-

suring that the routes remain free from cable entanglement during the operation.

We employed the main structure of the algorithm presented in Algorithm 7, and

the functions utilized in Algorithm 7 are presented in Algorithms 8, 9, and 10. The

following notations are utilized to present the algorithms.

Algorithm Notations:

Rk Route of kth vehicle

Pk Tasks allocated to Rk

τk Total travel cost of kth vehicle to complete its route Rk.

Nk A queue of nearby depots for the kth depot arranged in ascending order

of τz, ∀z ∈ Nk

∆k
j Minimum increase in travel cost of kth vehicle incurred upon transfer-

ring the task j into Rk
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Θ A queue of tasks arranged in ascending order of ∆
β
j , ∀j ∈ Pα

Qj A queue of all vehicles arranged in ascending order of costk
jdk

−−→
CSkr The vector connecting dk and dr

Algorithm 7 Coordination of T-AUVs

1: [Route, Q] = inital_allocation(n, m, d, Cost)
2: η = true

3: ηψ = true, ∀ψ ∈ {1, 2, · · · m}
4: while η do

5: Let κ = {1, · · · , m}
6: while κ is not empty do

7: Let τ = {τ1, · · · , τm} where τk = total travel cost of Rk & ψ be the vehicle with
maximum τr, ∀r ∈ κ

8: κ ← κ \ ψ

9: Nψ = f ind_neighbors(Rψ, Q, τ)
10: for each γ ∈ Nψ do

11: vh ←max (τψ, τγ)
12: vl ←min (τψ, τγ)
13: [Route, ηψ] = load_trans f er(vh, vl , τvh

, τvl
, Route)

14: end for

15: end while

16: η = η1 ∨ η2 ∨ · · · ∨ ηm

17: end while

18: return Route

The heuristic begins with generating the initial allocation of all given tasks to dif-

ferent depots based on the minimum travel cost each depot offers to visit a task in-

dividually. The details of the initial allocation strategy are presented in Algorithm

8, which generates entanglement-free routes and queues of depots in cost-effective

order for each task.

It starts with an empty partition Pk for all vehicles. For each task j, all the depots
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Algorithm 8 [Route, Q] = initial_allocation(n, m, d, Cost)

1: Pk ← ∅ for k = 1, · · · , m
2: for j = 1 : n do

3: Compare costs to each of the depots and find Qj and let q be the first vehicle in Qj.
4: Pq ← j
5: end for

6: for k = 1 : m do

7: Find the optimal route Rk for Pk and dk.
8: end for

9: Route ={R1, R2, · · · , Rm}
10: Q ={ Q1, Q2, · · · , Qm}
11: return Route, Q

Algorithm 9 Nk = f ind_neighbors(Rk, Q, τ)

1: Nk ← ∅

2: Let Pk = Rk\dk

3: for each p ∈ Pk do

4: Let w be the second vehicle in the Qp

5: Nk ← {Nk ∪ w}
6: end for

7: Arrange Nk in ascending order of τz for all z ∈ Nk

8: return Nk

Algorithm 10 [Route, η] = load_trans f er(vh, vl, τvh
, τvl

, Route)

1: η = false

2: Let Θ← ∅ and Pvh
= Rvh

\dvh

3: for each p ∈ Pvh
do

4: Calculate ∆
vl
p

5: Θ← {Θ ∪ p}
6: end for

7: for each j ∈ Θ do

8: Let τavg = 0.5 ∗ (τvh
+ τvl

)

9: Let τ
′

vl
be the new total travel cost of vl after accommodating the task j

10: if upon accepting task j, |τavg − τvl
| > |τavg − τ

′

vl
| and the resultant new routes are

entanglement free then

11: Transfer j from Rvh
to Rvl

12: Update Route, τvh
, and τvl

13: η = true

14: end if

15: end for

16: return Route, η
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are organized in a queue, called Qj, arranged in ascending order of the travel cost

costk
dk j. Following the orders of depots into queues, tasks are assigned to the first

vehicle of their respective queues.

Figure 4.1: An example of initial allocation steps in Algorithm 8: (a) An
example with 3 depots and 10 tasks

Figure 4.2: An example of initial allocation steps in Algorithm 8: (b) Com-
paring travel costs will give Q4 = {2,1,3}

Figures 4.1 to 4.4 show the steps of the initial allocation with an example of 3 vehi-

cles and 10 tasks. For task 4, Q4 is generated based on the travel costs costk
dk j offered
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Figure 4.3: An example of initial allocation steps in Algorithm 8: (c) Task 4
is allocated to R2 based on Q4

Figure 4.4: An example of initial allocation steps in Algorithm 8: (d) Initial
allocation and routes

by each depot. Since d2 offers the lowest cost, task 4 is allocated to d2. Similarly, all

the tasks are allocated to the nearest depots, and optimal routes are generated to

minimize the total travel cost τk within the partition and thus generate the initial

routes.

Once the initial entanglement-free routes are available, the heuristic iteratively re-

distributes the tasks among the vehicles to minimize the maximum travel cost. In
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Figure 4.5: An example of target transfer without entanglement of cables in
Algorithm 10: (a) Task 3 to be transferred to R1

Figure 4.6: An example of target transfer without entanglement of cables in
Algorithm 10: (b) Updated R1 and R2 do not have entanglement

each iteration, the feasibility of transferring tasks is checked for every vehicle in

descending order of the total travel cost τk. After selecting a vehicle, the algorithm

identifies suitable nearby neighbors for cost-efficient transfers of tasks. Algorithm

9 shows the details of how it generates a set of depots referred to as nearby neigh-

bors Nk for the kth depot, leveraging the previously generated queues Qj. For each

task in Pk, the respective queue of depots is referenced, and the second vehicle
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Figure 4.7: An example of target transfer result in entanglement of cables
in Algorithm 10: (a) Task 6 to be transferred to R3

Figure 4.8: An example of target transfer result in entanglement of cables
in Algorithm 10: (b) Updated R2 and R3 has intersecting cables

in the queue is chosen as the neighbor of kth depot. The chosen neighbor is then

placed into the queue of neighbors based on total travel cost. The set of nearby

neighbors varies as routes evolve in each iteration, thus providing more opportu-

nities to transfer tasks. As shown in the 4.2, since the second vehicle in Q4 is 1, d1

is one of the nearby neighbors for d2.
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Figure 4.9: The final entanglement free routes of the example

After preparing a queue of suitable nearby neighbors, the algorithm assesses the

feasibility of transferring tasks with the neighbors. Depending on the total travel

costs of the vehicle and its neighbor, they are assigned the roles of releasing vehicle

vh and receiving vehicle vl. Algorithm 10 manages the transfer of tasks between

the chosen vehicle and its neighbors, provided it is permissible. All the tasks asso-

ciated with vh are organized in a queue Θ in the ascending order of the minimum

increment in the total travel cost of vl, ∆
vl
p when transferring a task p from vh to

vl. A task is eligible for transfer if both of the following two conditions are met: 1)

the absolute difference between the initial average travel cost and the total travel

cost of vl decreases after transferring the task, and 2) the resulting new routes are

free from cable entanglement. The first condition aims to balance the workload

distribution, while the second condition ensures that cables will not be entangled

due to changes in their routes.

We have outlined our method for detecting entanglement in the previous chapter,
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Section 3.3. Here, we provide a concise overview of this detection approach. The

algorithm simulates vehicle movements by considering their routes and average

speeds. Each vehicle’s path is represented by a cable sweeping a distinct plane as

it moves between consecutive tasks. Consequently, when a vehicle moves away

from a task, a new cable plane emerges and is assessed for intersections with other

vehicles’ cable planes. For a system with n tasks, the algorithm sequentially exam-

ines n cable planes for potential entanglements. To assess potential entanglements,

the algorithm checks if the cable vectors sweeping these planes become co-planar

and if their segments intersect. Figures 4.5 - 4.6 illustrates a scenario where the

transfer of task 3 from R2 to R1 does not involve any entanglements, while Fig-

ures 4.7 4.8 demonstrates an instance where cable vectors CV3
68 and CV2

47 become

coplanar at time t, satisfying the conditions t3
6 ≤ t ≤ t3

8 and t2
4 ≤ t ≤ t2

7, and their

segments intersect. Two cable vectors become coplanar if there exists a time t that

satisfies the following equation, where ti ≤ t ≤ tj and tg ≤ t ≤ th.

(
−−→
CVk

ij ×
−−→
CSkr) ·

−−→
CVr

gh = 0 (4.9)

The algorithm continues transferring tasks between vehicles in this manner until

further task transfers become infeasible for each vehicle. In this problem, the travel

cost is assumed to be proportional to the distance, resulting in the allocation of

tasks to the nearest depot. Consequently, the cables sweep disjoint cable planes

while the vehicles move between the tasks. Hence, the heuristic guarantees the
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generation of at least one feasible solution. The detailed proof of the approach is

explained in Lemma 2.

Lemma 2. The proposed heuristic produces a feasible solution that is free from cable en-

tanglement.

Proof. The proposed heuristic starts with Algorithm 8, which produces vehicle

routes by allocating tasks to their nearest depots. This becomes an initial solution,

and it tries to improve the solution as much as possible. Thus, we will prove that

Algorithm 8 produces an entanglement-free routing for a given problem. While the

vehicles traverse the resultant routes, they cannot sweep intersecting cable plans,

which we will prove by contradiction. Let’s assume that the cable correspond-

ing to a depot d1 sweeps a cable plane d1n1n2 while the vehicle moves along the

edge {n1, n2}. Similarly, another cable corresponding to depot d2 sweeps cable plan

d2n3n4. Since the tasks are allocated to the nearest depot, the following inequalities

must be satisfied:

d1n1 < d2n1 (4.10)

d1n2 < d2n2 (4.11)

d2n3 < d1n3 (4.12)

If these two cable planes are not disjoint, it implies that at least one edge of a cable

plane will intersect with the cable plane corresponding to the other depot. Let’s
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assume that the edge d2n3 intersects with the plane d1n1n2 at a point nϕ. Extend

the line joining d1 and nϕ, which intersects the edge n1n2 at a point nω. For nω,

from (4.10) and (4.11) the following relationship must also be true:

d1nω < d2nω (4.13)

Applying triangle inequality on the resultant triangles, d1nωn3 and d2nωn3:

d1nω + nωn3 > d1n3 (4.14)

d2nω + nωn3 > d2n3 (4.15)

Subtracting equation (4.15) from (4.14) gives following :

0 > d1nω − d2nω > d1n3 − d2n3 (4.16)

d2n3 > d1n3 (4.17)

But (4.12) and (4.17) contradict each other; therefore, intersecting cable planes can

not exist. Thus, the proposed heuristic will provide a feasible solution that is

entanglement-free.
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4.4 Computational Results

The heuristic is implemented and tested in simulations with varying problem sizes

for validation. All simulations were performed on a PC with an Intel®Core™ i7-

7800X CPU running at 3.5 GHz with 64 GB RAM. The number of vehicles varied

from 3 to 10, and the number of tasks was tested for 50 and 100. The tests were

repeated for 100 different instances for each problem size. All the instances are

carried forward from the previous work for case-to-case basis comparison. The

coordinates of tasks and depots were randomly generated within a space of 2 m

× 2 m × 3.2 m with a uniform distribution. All the depots are constrained to lie

in the topmost plane of the defined space. All vehicles had the same average run-

ning speed. Costk
ij was set to the minimum travel time by calculating the distance

between i and j divided by the average running speed.

The maximum tour time among all vehicles is considered the operation time.

The experiment evaluates the efficacy of the proposed algorithm in providing

entanglement-free navigation of vehicles while aiming to minimize maximum

travel costs. In our preliminary work, we solved the problem using a primal-dual

based greedy heuristic, which first generates routes for each vehicle and then uses

a mixed approach between the rescheduling and route modification depending
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upon the cost to resolve any entanglement present in the routes. It was a multi-

layer approach where the entanglement constraint was considered only after the

routes were generated. In our new proposed approach, the entanglement con-

straint is resolved simultaneously while allocating a task to a vehicle and building

the route.
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Figure 4.10: Change in maximum travel cost % for entanglement free routes
generated by the multi-layer approach vs. the proposed heuristic

Figure 4.10 compares solutions of previously employed multi-layer approach and

the current proposed approach. The proposed approach produces, on average,

10-15% efficient solutions for each problem size. The performance also remains

consistent for larger-sized problems.
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Computation time 
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Figure 4.11: Computation time of proposed heuristic to generate
entanglement-free routes

The average computation time of the proposed heuristic for the largest problem

size is 5 seconds compared to 11 seconds for the previous approach, as shown in

Figure 4.11.
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Figure 4.12: Posteriori Bounds

In the previous chapter, we defined posterior bounds, Posteriori Bound 1 (PB1, 3.8)

and Posteriori Bound 2 (PB2, 3.9) to assess solution quality by comparing the

maximum travel cost, Talgo with the trivial solution called Upper bound (UB)

which is a feasible but inefficient solution and the primal-dual solution, called

lower bound (LB), which is typically not possible to achieve. We compared the
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Posteriori Bound 1 and Posteriori Bound 2 results for the proposed and multi-

layer approaches shown in Figure 4.12. For the proposed approach, the average

of Posteriori Bound 1 is closer to zero, while the average of Posteriori Bound 2 is

closer to 1 with narrow distributions, which indicates that the solution quality pro-

duced by the proposed algorithm is close to lower bounds.

Furthermore, we slightly tweaked the heuristic and tested it to allocate tasks and

path plan routes for a multi-vehicle system with heterogeneity and asymmetric

cost, as discussed in Chapter 2. The solution quality of 50 instances is compared

for each problem size: 5, 6 vehicles and 40, 50 tasks shown in Figure 4.13. Figure

4.14 compares the computation time.

% change in maximum travel cost

4 5 6 7

Number of Vehicles

-70

-60

-50

-40

-30

-20

-10

0

%
 C

h
a
n
g
e
 i
n
 m

a
x
im

u
m

 t
ra

v
e
l 
c
o
s
t 

50 Tasks

4 5 6 7

Number of Vehicles

-70

-60

-50

-40

-30

-20

-10

0

%
 C

h
a
n
g
e
 i
n
 m

a
x
im

u
m

 t
ra

v
e
l 
c
o
s
t 

100 Tasks

Figure 4.13: Change in maximum travel cost % for Heterogeneous system
with asymmetric cost: Primal-Dual vs New Heuristics
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Figure 4.14: Computation time in seconds (log10 scale) for Heterogeneous
system with asymmetric cost: Primal-Dual vs New Heuristics

The results show substantial improvement in the solution quality while the com-

putation cost is reduced drastically. Routes for two instances of 5 vehicles and 50

tasks are compared in Figures 4.15 and 4.16.
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Figure 4.17: Change in maximum travel cost % for solution generated by
the primal-dual based approach vs. Proposed new heuristic

The proposed heuristic is extended to solve a pick-drop problem for multiple

autonomous vehicles. With minor changes in Algorithm 8 and replacing entan-

glement constraint with payload constraint in Algorithm 10, we tested the new

heuristic on the capacity-constrained problem addressed in paper [67], which used

the primal-dual based heuristic approach to solve the problem. Figure 4.17 com-

pares solution quality of 50 instances for each of large-sized problems: 8, 10 ve-

hicles, and 50, 75, and 100 tasks. The new heuristic produced an average of 50 %

more efficient solutions compared to the previously employed Primal dual-based

approach at remarkably lower computation cost, as shown in Figure 4.18.
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The results highlight the importance of the new heuristic by showcasing its effec-

tiveness and adaptability across different problem sizes. The new heuristic offers

a significant advancement in addressing the multi-vehicle routing problem under

diverse constraints. Notably, the heuristic consistently delivers robust and reliable

coordination plans capable of navigating complex scenarios. Its unique design in-

tegrates all constraints simultaneously, ensuring balanced workload distribution

and leading to equitable task allocation and route planning. This capability en-

hances system efficiency and reduces computational costs, making it highly suit-

able for real-world applications where resource optimization is critical. The new

heuristic offers a promising solution to optimize multi-vehicle operations and im-

prove performance in various practical scenarios.
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Chapter 5

Conclusion and Future work

This research addresses some critical challenges encountered by multiple au-

tonomous vehicle systems in various real-world applications. The complexity of

the problem multifolds when autonomous vehicles with different capabilities and

constraints need to efficiently perform tasks while aiming for a balanced workload

distribution. The objective of this research has been to develop heuristic methods

to tackle these real-world problems effectively. A key emphasis has been placed

on achieving balanced workload distribution among the vehicles while adhering

to the specified constraints, which is crucial for optimizing overall system perfor-

mance and successful operation.
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One significant contribution of this research lies in guaranteeing practical solu-

tions for planning cable entanglement-free navigation of multiple tethered AUVs,

an area where only limited work has been done. This achievement marks a cru-

cial step forward, providing a foundation for further advancements in addressing

this challenging issue within the field. By demonstrating effectiveness in simula-

tion environments, this research highlights the algorithm’s potential for real-time

applications in underwater navigation tasks. This underscores not only its adapt-

ability but also its suitability for addressing challenges in complex and dynamic

environments.

Another contribution is the development of a new heuristic approach that exhibits

a combination of greedy and exploratory characteristics. This approach allows the

algorithm to incorporate all constraints seamlessly and simultaneously while man-

aging the workload balance among the vehicles. The flexibility and adaptability of

this heuristic make it applicable to a wide range of scenarios, making it a valuable

tool for solving min-max MDHATSP problems with diverse constraints.
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Looking ahead, future research directions include further refining the heuristic ap-

proach by comparing its performance against more exact solutions and consider-

ing additional factors such as realistic cable shapes, vehicle dynamics, and hydro-

dynamics. While the current version considers fixed depot locations, depot loca-

tions can be determined in the problem, which adds another challenge. Addition-

ally, efforts to enhance adaptability to diverse scenarios may involve introducing

more heterogeneity among the vehicles and exploring the integration of reinforce-

ment machine learning techniques to further optimize workload distribution.

Furthermore, extending the algorithm’s applicability to optimization problems be-

yond the min-max MDHATSP, such as trajectory tracking controllers, presents ex-

citing opportunities for innovation and advancement. The heuristic can solve opti-

mization problems that may include conflicting constraints, such as cable entangle-

ment constraints, scheduling constraints, time window constraints, etc. By contin-

uing to explore these avenues and refining the proposed approaches, researchers

can contribute to the advancement of multiple autonomous vehicle systems and

their effectiveness in real-world applications.
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Appendix A

Letters of Permission

The two papers forming Chapters 2 and 3 are licensed under an open-access Cre-

ative Commons CC BY 4.0 license.
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