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Abstract

Kohn-Sham density functional theory is the work horse of computational material

science research. The core of Kohn-Sham density functional theory, the Kohn-Sham

equations, output charge density, energy levels and wavefunctions. In principle, the

electron density can be used to obtain several other properties of interest including

total potential energy of the system, atomic forces, binding energies and electric

constants. In this work we present machine learning models designed to bypass the

Kohn-Sham equations by directly predicting electron density. Two distinct models

were developed: one tailored to predict electron density for quasi one-dimensional

materials under strain, while the other is applicable across a wide array of material

systems, with a specific emphasis on metallic and alloy compositions.

The first model applies to important classes of material systems such as nanotubes,

for which, tuning the interplay of mechanical deformations and electronic fields —

i.e., strain engineering — is an active area of investigation. Using armchair single

wall carbon nanotubes as a example, we demonstrate the use of the model to predict

ground state electron density and the nuclear pseudocharges, when three parameters

— namely, the radius of the nanotube, its axial stretch, and the twist per unit length

— are specified as inputs. Other electronic properties of interest, including the ground

xxxi



state electronic free energy, can be evaluated from these predicted fields with low-

overhead post-processing, typically to chemical accuracy. We anticipate that this

framework will find utility in the automated discovery of low–dimensional materials,

as well as the multi-scale modeling of such systems.

The second model has an emphasis on metallic and alloy systems. One of the fun-

damental challenge for this model is generation of training data. The computational

expense of KS-DFT scales cubically with system size which tends to stymie train-

ing data generation, making it difficult to develop quantifiably accurate ML models

that are applicable across many scales and system configurations. Here, we address

this fundamental challenge by employing transfer learning to leverage the multi-scale

nature of the training data, while comprehensively sampling system configurations

using thermalization. Our ML models are less reliant on heuristics, and being based

on Bayesian neural networks, enable uncertainty quantification. We show that our

models incur significantly lower data generation costs while allowing confident — and

when verifiable, accurate — predictions for a wide variety of bulk systems well be-

yond training, including systems with defects, different alloy compositions, and at

unprecedented, multi-million-atom scales. Moreover, such predictions can be carried

out using only modest computational resources.
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Chapter 1

Introduction

Density functional theory (DFT) provides a powerful framework for calculating elec-

tronic structure of any material and predicting a wide range of material properties,

from electronic and magnetic properties to mechanical and thermodynamic behav-

iors. Its ability to accurately model complex systems has made DFT indispensable

in materials design and optimization. However, DFT is computationally expensive

and thus material research through DFT alone is laborious and prolonged. Hence,

in this work, our objective was to develop a Machine Learning models that alleviates

the computational burden of Density Functional Theory.

At its core, DFT solves Kohn-Sham Equations that output charge density, energy

levels and wavefunctions. Solving these equations is the majority of computational
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burden experienced in DFT. These outputs of Kohn-Sham equations can be postpro-

cessed to obtain any material property. Thus, bypassing the Kohn Sham equations

through Machine Learning will allow us to accelerate the material reserach by pro-

viding a computationally cheaper alternative to DFT.

Towards this, we have developed two distinct machine learning models. One model

is tailored to predict electron density for low-dimensional materials like nanotubes,

while the other is applicable across a wide array of material systems, with a specific

emphasis on metallic and alloy compositions. Rest of the dissertation is arranged as

follows. Chapter 2 explains the first machine learning model. Chapter 3 explains the

second machine learning model. Chapter 4 highlights conclusions, discussions and

future directions for both of these models. Chapter 5 lists the publications related

to these two works. Chapter 2 and 3 include detailed introduction to the topic and

related works in this direction.
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Chapter 2

Machine learning based prediction

of the electronic structure of

quasi-one-dimensional materials

under strain

We present a machine learning based model that can predict the electronic structure

of quasi–one–dimensional materials while they are subjected to deformation modes

©2022 APS. Machine learning based prediction of the electronic structure of quasi-one-dimensional
materials under strain, Shashank Pathrudkar, Hsuan Ming Yu, Susanta Ghosh, and Amartya S.
Banerjee, Phys. Rev. B 105, 195141
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such as torsion and extension/compression. The technique described here applies to

important classes of materials systems such as nanotubes, nanoribbons, nanowires,

miscellaneous chiral structures and nano–assemblies, for all of which, tuning the in-

terplay of mechanical deformations and electronic fields — i.e., strain engineering —

is an active area of investigation in the literature. Our model incorporates global

structural symmetries and atomic relaxation effects, benefits from the use of helical

coordinates to specify the electronic fields, and makes use of a specialized data gen-

eration process that solves the symmetry-adapted equations of Kohn-Sham Density

Functional Theory in these coordinates. Using armchair single wall carbon nanotubes

as a prototypical example, we demonstrate the use of the model to predict the fields

associated with the ground state electron density and the nuclear pseudocharges,

when three parameters — namely, the radius of the nanotube, its axial stretch, and

the twist per unit length — are specified as inputs. Other electronic properties of in-

terest, including the ground state electronic free energy, can be evaluated from these

predicted fields with low-overhead post-processing, typically to chemical accuracy.

Additionally, we show how the nuclear coordinates can be reliably determined from

the predicted pseudocharge field using a clustering based technique. Remarkably,

only about 120 data points are found to be enough to predict the three dimensional

electronic fields accurately, which we ascribe to the constraints imposed by symmetry

in the problem setup, the use of low-discrepancy sequences for sampling, and effi-

cient representation of the intrinsic low-dimensional features of the electronic fields.
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We comment on the interpretability of our machine learning model and anticipate

that our framework will find utility in the automated discovery of low–dimensional

materials, as well as the multi-scale modeling of such systems.

2.1 Introduction

Over the last decade, machine learning (ML) models have percolated into all areas of

science and engineering. Indeed, data-driven research is already an important part of

the medical sciences [3, 4, 5], chemistry [6, 7], and engineering fields like manufacturing

[8, 9], applied thermodynamics [10, 11], and miscellaneous others (see e.g. [12, 13,

14, 15]). The recent interest in these techniques has been driven by the improvement

in the machine learning algorithms themselves, as well as an exponential growth in

computation power, and the abundance of data. Additionally, data analysis tasks

such as regression, classification and dimensionality reduction, which are commonly

used across all areas of science, are easily handled by machine learning algorithms

by their innate design [16, 17], and this has contributed to the wide applicability of

machine learning techniques.

Machine learning methods have also shown great promise for various materials physics

problems [18, 19, 20, 21, 22, 23, 24, 25]. In particular, the use of high-throughput

Density Functional Theory (DFT) [26, 27] calculations in conjunction with machine
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learning techniques, has attracted much attention as a powerful tool for materials

discovery [28, 29, 30, 31, 32]. A large section of the research in this direction so far,

has been aimed at predicting specific material properties and screening novel materials

for targeted applications such as energy storage. This includes electronic properties

like the bandgap, chemical properties like adsorption and formation energies, and

mechanical properties like Young’s modulus and fracture toughness [13, 33, 34, 35,

36, 37, 38, 39, 40]. A common feature of most of these predicted material properties

is that they are low–dimensional — usually, simple scalars. An alternative to these

approaches is to use machine learning to directly predict electronic fields such as the

ground state electron density for atomic configurations of interest. This is appealing

since such fields contain all the information for predicting various material properties

— at least in principle, and the machine learning model provides a way to bypass

expensive DFT calculations which can compute these fields. Recent work in this

direction includes [41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53]. The large majority

of these contributions have focused on molecular systems (e.g. hydrocarbon chains

and clusters), while a few have considered bulk materials. The current contribution

can be viewed as an extension of the aforementioned efforts of machine learning based

prediction of electronic fields to broader classes of nanomaterials — specifically, quasi-

1D nanostructures. Notably, a separate strand of work has also explored improving

Density Functional Theory predictions themselves, by trying to learn the elusive

Hohenberg-Kohn functional [27] or by improving exchange correlation functionals
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used in Kohn-Sham theory [42, 54, 55, 56, 57]. This latter class of developments will

not have much bearing on the discussion that follows below.

Although machine learning based prediction of the electronic fields appears to be an

attractive option for the aforementioned reasons, the high–dimensional nature of the

fields usually makes it necessary to generate large amounts of data for model training

and validation purposes. Additionally, since the models require a description of the

atomic environments as input, it becomes necessary to choose a cutoff radius for

limiting the size of the environments, or to focus on small sized systems, in order to

make the models tractable. Furthermore, a careful choice of the atomic environment

descriptors needs to be made to enforce symmetry and locality properties [48]. From

this perspective, the current contribution is quite distinct in that global structural

symmetries in lieu of environmental descriptors are utilized here, and strains are

employed as model inputs. Our approach is related in spirit to [52] where the authors

investigated machine learning models for the electronic fields in a hexagonal close

packed crystalline material.

We present here a machine learning model that can predict the electronic structure of

quasi-one-dimensional materials as they are subjected to strains commensurate with

their geometries. One of the key motivations of our work is that the complex inter-

play of electronic fields and mechanical deformations in low–dimensional materials is

an active area of investigation in the literature [58, 59, 60, 61, 62, 63, 63, 64], and
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therefore, it is desirable to have machine learning models where strain parameters

can be mapped to electronic fields for such systems. Additionally, the techniques de-

scribed here are likely to find use in the discovery of novel phases of low–dimensional

chiral matter [65] and multiscale modeling [66]. The data generation process for the

ML model here is based on a recently formulated electronic structure calculation

technique, that exploits the global symmetries of quasi-one-dimensional structures,

and enables Kohn-Sham DFT calculations for such systems using a few representative

atoms in a symmetry adapted unit cell [67, 68, 69, 70, 71, 72, 73]. This computational

method, called Helical Density Functional Theory (Helical DFT), solves the symme-

try adapted Kohn-Sham equations in so-called helical coordinates to yield electronic

fields of interest, and is able to accommodate deformation modes such as extension,

compression and torsion, commonly associated with tubular or wire-like nanostruc-

tures. Atomic relaxation effects as a response to the applied strains are automatically

included, by driving the Hellman-Feynman forces [74] to zero. In order to map strain

parameters to resultant electronic fields, we utilize a two-step machine learning model,

motivated by recently developed techniques used to predict the high–dimensional de-

formation fields of multi walled carbon nanotubes [75]. Specifically, we use Principal

Component Analysis (PCA) to perform dimensionality reduction of the electronic

fields, and a neural network to learn in the reduced space. Using armchair single-wall

carbon nanotubes as an example, we demonstrate that the ML model accurately pre-

dicts the ground-state electron density and the nuclear pseudocharge fields when the
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radius of the nanotube, its axial stretch, and the twist per unit length are provided

as inputs. We have also developed a novel technique based on clustering that allows

us to determine the nuclear coordinates from the ML model predicted nuclear pseu-

docharge field, and we demonstrate the superior performance of this method when

compared to alternatives. Other quantities of interest, including ground state energies

and symmetry-adapted band diagrams can be readily computed from the ML model

predicted fields through low-overhead postprocessing steps. The strategy of predict-

ing smoothly varying ground state fields such as the electron density, and obtaining

energies from this field, instead of predicting the latter directly, appears to work bet-

ter in practice [42, 52]. In a similar manner, computation of the electronic bands

using a non-self-consistent calculation involving the machine-learning based Hamilto-

nian (i.e., diagonalization of a symmetry adapted Kohn-Sham Hamiltonian, with the

effective potential arising from machine learning predicted fields) is more straightfor-

ward when compared to prediction of the band diagram directly, as a function of the

inputs. This is due to the complexities in the structure of the latter [76, 77], including

e.g., the appearance of band crossings associated with insulator-metal transitions.

In our example, only about 160 simulations were performed, out of which around 120

are used for training purposes. Yet, ground state energies could be typically predicted

to chemical accuracy (i.e., to better than 1.6 milli-Hartree per atom, or 1-kcal/mol),

band-gap predictions were generally accurate to 0.05 eV, while the bandgap location
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was predicted accurately every time. This suggests that the predictions of three-

dimensional electronic fields themselves are rather accurate even with this limited

training data, a fact also directly borne out by the low normalized root mean square

errors in these quantities. The high accuracy of the present ML model is likely

related to (i) the constraints imposed by symmetry in the problem setup, (ii) efficient

exploration of the input space through quasi-random low-discrepancy sequences, and

(iii) significant reduction in the dimensionality of the electronic fields. Indeed, only

7 and 15 principal component modes were found to be sufficient to capture most

of the variations in the ground state electron density and the nuclear pseudocharge

fields, respectively, which reinforces points (i) and (iii) above. We also observed

that the electronic fields and post-processed quantities are accurately predicted for

inputs whose values were not used during training, thus suggesting that our model

can predict anywhere in the input space, even beyond the training data. Notably,

the machine learning surrogate model is much cheaper computationally — while the

DFT calculation can take up to hundreds of CPU hours (in order to include atomic

relaxation effects through ab initio geometry optimization), the machine learning

model prediction can be done in a fraction of a second, and the subsequent post-

processing steps (including prediction of band diagrams) can be typically performed

in about 30 to 40 minutes of wall time.

The rest of the paper is organized as follows. We first explain the scheme of the

ab initio simulations, which are used to obtain the training data for our machine
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learning model. Details regarding the system under consideration and the governing

equations are presented in Section 2.2. This is followed by an overview of our machine

learning model. Specifically, details of the dimension reduction of the electronic fields,

neural network based regression, and a new approach to predict atomic coordinates

are explained in Section 2.3. Post-processing of machine learning predicted electronic

fields to evaluate various energy components, band structures and atomic coordinates

is explained in Section 2.4. Next, we validate the machine learning model and quantify

its accuracy in Section 2.5. We also comment on the model interpretability. We end

with our conclusions and a discussion of future research directions.

2.2 Methodology: First principles calculations

In this section, we describe the system setup, key aspects of the first principles sim-

ulation method (Helical DFT). The atomic unit system with me = 1, ℏ = 1, 1
4πϵ0

= 1

will be used throughout, unless otherwise mentioned.

For the rest of the paper, eX, eY, eZ will denote the standard orthonormal basis of R3.

Vectors in three dimensions will be denoted using lowercase boldface letters, while

3 × 3 matrices will be denoted using uppercase boldface. Cartesian, cylindrical and

helical coordinates will be denoted as (x, y, z), (r, ϑ, z), and (r, θ1, θ2), respectively,
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and the relation between these is:

r =
√
x2 + y2 , θ1 =

z

τ
,

θ2 =
1

2π
arctan2 (y, x)− αz

τ
=

ϑ

2π
− αz

τ
. (2.1)

Here, α is related to the twist in the system as explained below.

2.2.1 System specification and global symmetries

We begin by providing a description of the geometry of the quasi-one-dimensional

systems under study, and the associated computational domains. As a prototypical

system, we consider a nanostructure aligned and infinite in extent along eZ . Since

the system of interest is quasi-one-dimensional, it is of limited extent in the eX-

eY plane. These conditions imply that the system can be embedded in a cylinder

with axis eZ (or annular cylinder, if the system is tubular — as considered here), of

infinite height and finite radius, and this region of space will be referred to as the

global simulation domain. The structures considered in this work may be undeformed,

or more generally, they may include axial deformation (i.e., stretch or compression)

along eZ, and/or torsional deformation about the same axis. As pointed out in

the literature, helical and cyclic symmetries can be used to describe such systems

12



conveniently [68, 71, 78, 79, 80, 81, 82]. Thus if the atoms of the system have positions:

S = {p1,p2,p3, · · · : pi ∈ R3} , (2.2)

then we may identify a discrete group of isometries:

G =
{
Υm,n =

(
R(2πmα+nΘ)|mτeZ

)
: m ∈ Z, n = 0, 1, . . . ,N− 1

}
, (2.3)

and a finite collection of atoms (called simulated atoms or representative atoms) with

coordinates:

P = {r1, r2, r3, . . . , rM : ri ∈ R3} , (2.4)

such that the structure can be described as the orbit of the group G on the set P , i.e.,

S =
⋃
m∈Z

n=0,1,...,N−1

M⋃
i=1

R(2πmα+nΘ)ri +mτ eZ . (2.5)

Here, Υm,n is an isometry operation (i.e., rigid body motion) consisting of the rotation

matrix R(2πmα+nΘ) with axis eZ and translation vector mτeZ. It acts on an arbitrary

point x ∈ R3 by rotating it through the angle 2πmα + nΘ about the axis of the

nanostructure, while simultaneously translating it by mτ about the same axis. The

quantity N is a natural number that captures any (N-fold) cyclic symmetries in the

nanostructure, and the angle Θ = 2π/N. The parameter τ is related to the axial
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pitch of the structure and it can capture extensions and compressions about the axis,

while the scalar α is related to the rate of applied or intrinsic twist in the structure,

measured as β = 2πα/τ . For the structures considered here, we have 0 ≤ α < 1, with

α = 0 representing untwisted structures. For undeformed armchair carbon nanotubes,

the value of τ as suggested by the “roll-up construction” [79, 83] is
√
3a, where a is

the interatomic bond-length of graphene (Figure 2.1). Note that the numbers m ∈ Z

and n ∈ {0, 1, . . . ,N − 1} introduced above serve to label the group elements of G

(i.e., the isometries Υm,n).

As pointed out in [68, 71], a key advantage of the above formulation is that with

the knowledge of the relevant symmetry group, any quasi-one-dimensional material

can be represented efficiently by means of the representative atoms alone — usually,

just a few are adequate, and the behavior of the system under deformations (small

or large) can be obtained by minimizing the system’s free energy with respect to

the coordinates of the representative atoms. The Helical Density Functional Theory

(Helical DFT) technique described below, provides a computational framework for

carrying out this procedure.
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2.2.2 Helical Density Functional Theory (Helical DFT)

We use Helical Density Functional Theory (Helical DFT) [68, 71] to compute the elec-

tronic fields associated with the (possibly deformed) quasi-one-dimensional nanostruc-

tures of interest in this work. To accommodate the global symmetries of the system

under study, Helical DFT solves the symmetry adapted equations of Kohn-Sham DFT

within a fundamental domain (or symmetry adapted unit cell) that encapsulates the

representative atoms. In the context of this work, provided that the simulated atoms

have radial coordinates between Rin and Rout, a suitable fundamental domain is the

following region (expressed in cylindrical coordinates):

D =
{
(r, ϑ, z) ∈ R3 : Rin ≤ r ≤ Rout,

2παz

τ
≤ ϑ ≤ 2παz

τ
+Θ, 0 ≤ z ≤ τ

}
. (2.6)

Due to the global symmetries of the system described above, the eigenstates of the

Kohn-Sham Hamiltonian, and other quantities related to its spectrum can be la-

beled using the characters of the group (i.e., its complex one dimensional irreducible

representations). For m ∈ Z and n ∈ {0, 1, 2, ...,N− 1}, these are [67, 68, 84, 85]:

Ĝ =
{
e2πi

(
mη+nν

N

)
: η ∈

[
−1

2
,
1

2

)
; ν = {0, 1, . . . ,N− 1}

}
. (2.7)

Accordingly, Helical DFT uses (η, ν) to label the eigenvalues, the eigenvectors, and
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the electronic occupations. For j ∈ N, the symmetry adapted Kohn-Sham equations

over the fundamental domain (i.e. x ∈ D) are:

HKS ψj(x; η, ν) = λj(η, ν)ψj(x; η, ν) ,H
KS = −1

2
∆ + Vxc + Φ+ Vnl , (2.8)

with the eigenstates ψj(x; η, ν) satisfying the Helical Bloch conditions:

ψj(Υm,n ◦ x; η, ν) = e−2πi
(
mη+nν

N

)
ψj(x; η, ν) . (2.9)

In the above, HKS denotes the Kohn-Sham operator, Vxc denotes the exchange corre-

lation potential, Φ denotes the net electrostatic potential arising from the electrons

and the nuclear pseudocharges (i.e., a combination of the Hartree and electron-nucleus

interaction terms), and Vnl denotes the non-local pseudopotential operator. The field

Φ obeys the following Poisson problem in terms of the electron density ρ and the

nuclear pseudocharge field b:

−∆Φ = 4π
(
ρ+ b

)
. (2.10)

The non-local pseudopotential operator can be expressed in Kleinman-Bylander form

[86] as:

Vnl =
M∑
i=1

∑
p∈Γi

γi,pχ̂i,p(·; η, ν; ri) χ̂i,p(·; η, ν; ri) , (2.11)
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with χi,p, γi,p and Γi denoting the atom-centered projection functions (associated

with the ith atom), the corresponding normalization constants, and the total set

of projectors for the atom, respectively. Within Helical DFT, for a given set of

atoms in the fundamental domain, the nuclear pseudocharge field b and the non-local

pseudopotential operator Vnl are computed explicitly, along with a suitable starting

guess for the electron density ρ. Following these computations, the symmetry adapted

Kohn-Sham equations (eq. 2.8) are solved self-consistently [87]. At self-consistency,

the free energy per unit fundamental domain and the Hellman-Feynman forces on the

atoms may be computed following the expressions presented in [68, 71].

It is important to point out at this stage that construction of the symmetry adapted

Kohn-Sham Hamiltonian requires knowledge of the atomic coordinates within the

fundamental domain, due to the explicit dependence of the operator Vnl on the lat-

ter. Thus, unless all-electron calculations are being performed, it is not possible to

compute the Kohn-Sham eigenstates via a simple diagonalization step, even if the

electron density and the nuclear pseudocharge fields are known. As discussed later

(Section 2.3.3), we address this issue in this work by means of an unsupervised learn-

ing technique that can pick out the atomic coordinates from the nuclear pseudocharge

field, which in turn can be used to set up the operator Vnl.
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2.2.3 Use of helical coordinates

The fundamental domain D assumes the form of a cuboid [Rin, Rout]× [0, 1]× [0, 1/N]

in helical coordinates. Helical DFT uses a higher order finite difference scheme in

these coordinates to discretize and solve the governing equations [68, 71]. Thus,

the electronic fields computed by the method are available over a set of grid points

(corresponding to the finite difference mesh) in the fundamental domain.

In addition to converting the complicated geometry of the fundamental domain to

a simple cuboidal geometry for simulations, helical coordinates allow for additional

simplifications in the data generation process. First, irrespective of the nanotube

radius and the level of torsional and axial deformation imposed, the helical coordinates

of an atom within the fundamental domain are such that θ1 andN θ2 remain constant,

as long as relaxation effects are negligible. Thus, even when relaxation effects are not

small, this property can be used to provide good starting guesses to the structural

relaxation procedure. Second, for nanotubes of any radii undergoing relatively small

torsional or extensional distortions, the total number of grid points (and hence the

size of the vector used for describing the electronic fields) can be kept constant, with

relatively small changes to the overall accuracy of the calculations. To see this, we

denote Nr,Nθ1 ,Nθ2 as the number of grid points along the r, θ1 and θ2 directions,

respectively. The electronic fields are then represented as vectors in dimension Nr ×
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Nθ1 × Nθ2 , and the mesh spacings corresponding to these discretization choices are:

hr =
Rout −Rin

Nr

, hθ1 =
1

Nθ1

, hθ2 =
1/N

Nθ2

(2.12)

The overall mesh spacing h = max
(
hr, τhθ1 , 2π(

Rin+Rout

2
)hθ2

)
dictates the accuracy

of the calculation. In the radial direction, by enforcing a constant amount of vacuum

padding around the tubes, the mesh spacing hr (and hence Nr) can be kept constant

with respect to the tube diameter. In the axial direction, small changes to τ with

respect to its equilibrium value (due to imposed strains) do not affect the overall

calculation accuracy appreciably, as long as Nθ1 is large enough to accommodate the

largest value of τ considered. Finally, in the θ2 direction, assuming the nanotube

is placed halfway between Rin and Rout, the effect of change in Rin+Rout

2
is offset by

the corresponding change in cyclic group order N, thus helping keep the product

(Rin+Rout

2
)hθ2 constant. Thus the same value of Nθ2 can be chosen irrespective of the

tube diameter.

2.2.4 Other details of first principles calculations

All Helical DFT calculations described in this work use a 4-atom fundamental domain

as shown in Figure 2.1. To enable expeditious generation of data, calculations are done

in two steps. First, ab initio geometry optimization calculations are done for a given
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level of axial and torsional strains by using h = 0.3 Bohr, and by sampling 15 k-points

in the η direction. These discretization choices are sufficient to produce chemically

accurate forces and ground state energies for the Troullier-Martins norm conserving

pseudopotential [88] used to model the carbon atoms in this work [71]. Atomic relax-

ation is carried out using the Fast Intertial Relaxation Engine [89], and the structures

are relaxed till each atomic force component drops below 0.001 Ha/Bohr. Next, for

each relaxed structure, we redo a self-consistent calculation to generate the electronic

fields data for the machine learning model, using the finest discretization parameters

that could be reliably afforded within computational resource constraints. This cor-

responds to a mesh spacing of h = 0.25 Bohr (resulting in Nr × Nθ1 × Nθ2 ≈ 60,000)

and 21 k-points in the η-direction. Due to the use of the above two-step procedure

to generate the data, the machine learning model automatically incorporates atomic

relaxation effects in response to applied strains.

For all ab initio calculations, we used the Perdew-Wang parametrization [90] of the

Local Density Approximation [26], a 12th order finite difference discretization scheme

[68, 91, 92, 93, 94, 95, 96, 97], vacuum padding of 11 Bohrs in the radial direction

and 1 milli-Hartree of smearing using the Fermi-Dirac distribution.
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Figure 2.1: Roll-up construction of an undeformed armchair carbon nan-
otube, starting from a graphene sheet. The 4 atoms shown in the shaded
region are used for the data generation process using Helical DFT. The pa-
rameter a represents the planar interatomic distance of 1.407 Angstrom.

2.3 Methodology: Machine Learning Model for

Prediction of the Electronic Fields

This section describes the proposed Machine Learning (ML) model that aims to pre-

dict the electronic structure (high–dimensional) of quasi–one–dimensional materials

under torsional and axial loads. The tubular structures considered in this work can

be characterized by their radius — which is related to the degree of cyclic symme-

try present in the structure, and the position of the atoms within the fundamental

domain. Given strain parameters related to axial and torsional loads that the struc-

ture might be subject to, these atomic positions can be determined by minimizing
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the system’s energy with respect to them. Thus, the trio of parameters Ravg — the

nanotube radius (or equivalently, the average radial coordinate of the atoms in the

fundamental domain), α — the twist parameter, and τ — the axial pitch parameter,

serve to specify a particular nanotube, along with the imposed torsional and axial

strains. Accordingly, we letH denote the map from the space consisting of system and

loading parameters (Ravg, α, τ) to the electronic fields ρ, b of the deformed nanotubes:

H : {Ravg, α, τ} → {ρ, b} (2.13)

The objective of this work is to approximate this map H using a machine learning

model. Inputs of this map Ravg, α and τ are scalars, while the outputs ρ (r, θ1, θ2)

and b (r, θ1, θ2) are high–dimensional discretized scalar fields (expressed in helical

coordinates).

Approximating the map H directly through a supervised machine learning algo-

rithm (such as a Neural Network (NN)) is infeasible since the output quantities

ρ (r, θ1, θ2) and b (r, θ1, θ2) are very high–dimensional. For instance, with the dis-

cretization choices adopted in this work, the field ρ (r, θ1, θ2) is represented by a

vector of dimension close to 60, 000 (see Section 2.2). The difficulty in predicting

such high–dimensional outputs using machine learning models is referred to as curse

of dimensionality. Specifically, the number of discrete cells required to discretize the

output space grows exponentially with its dimensionality, and an exponentially large
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quantity of training data is then needed to ensure that the cells in the output space

are accurately mapped from the input space [16].

In the present work, we circumvent this problem by using Principal Component Anal-

ysis (PCA) to reduce the dimensions of the electronic fields. Subsequently, the low–

dimensional representation of the electronic fields is learned via neural networks in a

supervised manner. This two-step approach, i.e., dimensionality reduction followed

by learning in the reduced space, allows the prediction of the high–dimensional quan-

tities such as electronic fields while reducing the data required for training. Schematic

of the two-step ML model introduced above is given in Fig. 2.2. Recently, a similar

approach has been found to have excellent accuracy in high–dimensional predictions

related to purely mechanical problems [75, 98].

In the following sections, we detail various important aspects of the above ML model

and also describe an auxiliary clustering based technique that allows us to determine

the nuclear coordinates from the ML model predicted nuclear pseudocharge field.

2.3.1 Design of Experiments to Explore the Input Space

We now describe the use of Design of Experiments (DoE) [99, 100] techniques for

efficient sampling in the input space. As described above, the triplet of input param-

eters {Ravg, α, τ} specify a particular nanotube and the applied strains. The number
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Figure 2.2: Schematic of the present Machine Learning (ML) model and
the data generation process via DFT simulations. The firm arrows show the
steps for data generation and training, and the dashed arrows show the steps
for prediction via the ML model.

of possible combinations with these three input variables can be quite large even if

finite bounds are emplaced for these variables. Given the relatively high cost of DFT

simulations for the deformed nanotubes, it is infeasible to simulate nearly all possible

combinations in the input space. Purely random sampling of the input space is not

desirable either, since it may require a large number of sampling points to learn the

pattern in the data accurately [101, 102, 103]. To address this challenge, we generate

sequences of quasi-random sampling points in the input space to reduce the number

of simulations required for training an accurate ML model.

Quasi-random sampling: Space-filling designs can be used to explore the input do-

main effectively since they sample the space uniformly without assuming any prior

knowledge of the problem [101, 104]. Commonly used space-filling designs include low

discrepancy sequences [105, 106], good lattice points [107], Latin Hypercube Sampling
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[108] and Orthogonal Latin Hypercube sampling [109]. These methods are often eval-

uated based on their measure of uniformity [102, 110, 111], and such criteria suggest

that Optimal Latin hypercube sampling [112] and Sobol sequences [106, 113] offer

a great balance between uniform and random sampling. In this work, we have cho-

sen Sobol sequences (low discrepancy quasirandom sequences), to sample the input

space. The main advantage of this technique is that the samples generated via this

procedure are spread out over the input variables space non-uniformly, but cover the

space evenly [114], thus allowing efficient exploration of the input space. An addi-

tional benefit is that as the Sobol sequence progresses, the input variables space is

refined successively. This latter feature allows us to add simulations to the training in

a systematic manner, till the desired accuracy is achieved in the ML model. Further

details of the sampling procedure used are provided in Appendix A.1.

2.3.2 Dimensionality Reduction of the Electronic Fields and

Regression in the Reduced Dimension

Dimensionality Reduction of the Electronic Fields: We reduce the high dimensional-

ity of the electronic fields using Principal Component Analysis (PCA) [115, 116, 117,

118]. PCA reduces the dimensionality of the data by projecting it onto a lower–

dimensional space such that the maximum statistical information within the data is

retained. The basis vectors for this low–dimensional space are uncorrelated with each
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other and are called the principal components. Thus, PCA enables dimensionality

reduction while minimizing the information loss.

To elaborate further, given the data points xi ∈ Rd (i = 1, . . . , n), PCA allows one

to obtain a lower dimensional approximation x̃i ∈ RK , such that, K < d, and:

x̃i =
K∑
j=1

cijvj + µ . (2.14)

Here, µ =
1

n

n∑
i=1

xi is the sample mean, the orthonormal vectors vj are the principal

components (PCs) and the scalars cij are the coefficients of the principal components

(CoPCs). Importantly, the PCs (vj) depend on the entire dataset rather than being

associated with a particular data point; therefore, all the points in the original dataset

can be defined in terms of distinct cij values, but the same vj. The value ofK depends

on the degree of variance of the data that needs to be captured. We perform PCA

on the electronic field (ρ and b) – data generated by the DFT simulations.

Regression for the Electronic Fields in the Reduced Dimension: We employ Neural

Networks (NN) [16, 119] to perform regression for the electronic fields in the reduced

dimension. The choice of NN is motivated by our previous work on the ML based

modeling of complex rippling deformation fields of low-dimensional nanostructures

[75]. The NN architecture consists of the input layer, multiple hidden layers, and the

output layer. The neurons of the hidden layers contain a weighted linear transform of
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neurons in the previous layer acted upon by a nonlinear activation function. During

the training phase of the model, the neural network learns the map between input

and output spaces by finding the weights of these linear transforms such that it can

accurately predict output for a given input. We use NNs to predict the coefficients

of the principal components (CoPCs) of the electronic fields for a given system and

loading parameters. We deploy two different neural networks N1 and N2 to predict

CoPCs for ρ and b respectively, which use the same input parameters. In the input

layer, we have three neurons, for the input parameters (i) Ravg , (ii) α and (iii) τ . The

neurons of the output layer correspond to the CoPCs (cij). Note that the number of

CoPCs depends on the desired variance to be captured in the data.

Inference via the trained ML model involves the following two steps. First, the CoPCs

are predicted for a given input using the neural network. Second, the predicted

CoPCs are used to obtain the higher dimensional electronic fields using the principal

components following Eq. 2.14. These two steps inference procedure via the ML

model are shown in Fig. 2.2.
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2.3.3 Prediction of Nuclear Coordinates from Pseudocharge

Fields

As mentioned earlier, calculation of the Kohn-Sham Hamiltonian arising from ML

predicted fields requires knowledge of the nuclear coordinates so that the non-local

part of the pseudopotential operator may be constructed (see Section 2.2.2). In this

section we deal with the problem of obtaining these coordinates as a function of the

tube geometry and loading parameters, i.e., {Ravg, α, τ}.

One possible approach [52] is to directly train a neural network with these parameters

as inputs and the desired nuclear coordinates as outputs. In our experience, however,

this approach does not appear to work particularly well (see Appendix A.3), and the

amount of training data that was found to be adequate for predicting the electronic

fields ρ and b accurately, was found to result in unacceptable levels of error while

predicting the nuclear coordinates. This led us to devise a new strategy for determin-

ing the nuclear coordinates from the ML predicted nuclear pseudocharge field b(x),

since this field is readily predicted with relatively high accuracy (Section 2.5.2), and

it already contains the nuclear coordinate information in principle.

We make the observation that the nuclear pseudocharge field over the fundamental do-

main is a superposition of the individual atomic pseudocharges i.e., b(x) =
M∑
i=1

bi(x).
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Furthermore, each atomic pseudocharge field is spherically symmetric and atom cen-

tered (i.e. bi(x) ≡ bi(|x− ri|)), and under usual circumstances, also non-overlapping.

This suggests that a clustering based approach that can identify agglomerations of

positive charges arising from individual atoms might be fruitful, and the desired nu-

clear coordinates can then be determined as cluster centers. Clustering algorithms

are widely employed to divide datasets into smaller subgroups in an unsupervised

manner, such that the data points in each subgroup share some common attributes

[16]. One of the most widely used and successful clustering algorithms is DBSCAN

(Density-Based Spatial Clustering of Applications with Noise) [120, 121]. This tech-

nique creates clusters for volumes with a high density of points, and treats the points

which lie in very low-density volumes as outliers. DBSCAN offers advantages over

other clustering algorithms like k−nearest neighbors, since it does not require prior

knowledge of the number of clusters present in the data, it can find out any arbi-

trarily shaped clusters and it is robust against errors induced by the outliers. In

the present case, this means that when applied to the nuclear pseudocharge data,

DBSCAN should be able to form clusters around every nucleus in the fundamental

domain, without the total number of nuclei being specified apriori. However, we

found that a direct application of DBSCAN to the pseudocharge field fails to deter-

mine the nuclear coordinates accurately. In the following, we identify two reasons for

this failure and develop procedures to overcome them.
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First, the fundamental domain is effectively periodic in the θ1 and θ2 directions. How-

ever, clustering algorithms are not typically aware of domain boundary conditions,

as a result of which, pseudocharges associated with atoms close to the domain edges

may result in the identification of clusters for which the cluster centers are not at the

nuclear coordinates. This issue is readily addressed by expanding the fundamental do-

main into a supercell, applying the clustering procedure to the periodically replicated

pseudocharge field in the supercell, and finally, retaining the cluster centers found to

lie within the fundamental domain. Second, some atomic pseudocharges (such as the

one associated with the Troullier Martins pseudopotential for Carbon used in this

work), while being radially symmetric, may exhibit multiple peaks, when plotted as

a function of atom center distance (see Figure 2.3). This can cause the clustering

algorithm to identify multiple clusters near a single nucleus and the centers of these

clusters will not coincide with the nuclei. To overcome this challenge we propose a

map (T ) that truncates the pseudocharge field b to retain only the data around the

first peak (see Figure 2.3):

T : b(r, θ1, θ2)→ b̄(r, θ1, θ2), b̄(r, θ1, θ2) =


b(r, θ1, θ2), if b(r, θ1, θ2) > ct

0, if b(r, θ1, θ2) ≤ ct

(2.15)

The only quantitative information needed for implementing this map is the height of

the second peak ct, which is readily available for the pseudopotentials used to produce

the training data. The DBSCAN procedure, when applied on the truncated field b̄
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can readily identify the nuclear pseudocharge density cluster around each nucleus.

Nuclear coordinates are subsequently computed as centers of these clusters.
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Figure 2.3: Atomic pseudocharge as a function of distance (in Bohr) from
the atom for the Troullier-Martins pseudopotential for Carbon used in this
work. The dashed red line indicates the truncation level employed before
the DBSCAN procedure is used.

Together, the above set of strategies leads to a robust and efficient method for ob-

taining the nuclear coordinates as a function of the ML model inputs. The entire

procedure outlined above executes within a few seconds of wall time on a desktop

and is able to determine the nuclear coordinates to acceptable levels of accuracy in

every case (see Table 2.2). Comparison of the accuracy of our clustering based ap-

proach, with that of nuclear coordinate predictions using a standard neural network

are presented in Appendix A.3.
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1-1 0
Figure 2.4: Cluster formation from nuclear pseudocharge field to determine
nuclei position. A slice of the pseudocharge field at the average radial coor-
dinate of the atoms in the fundamental domain is shown. Red clusters show
the positive charge around the nucleus and the black dots are nuclei. The
pseudocharge field on the fundamental domain is expanded to a supercell to
avoid domain edge effects, a truncation is implemented to discard secondary
peaks in the atomic pseudocharges, the DBSCAN procedure is then applied
on the supercell and finally, the nuclear coordinates within the fundamental
domain are identified.

2.4 Post-processing of ML Predicted Electronic

Fields

In this section, we describe the postprocessing steps used for computing quantities of

interest from the machine learning model predicted fields and atomic coordinates. The

machine learning model produces electronic fields ρML(x) and bML(x) that includes

self-consistency and atomic relaxation effects. Within the ML model, however, we do

not explicitly enforce any constraints regarding the net charges associated with these

fields. Although in practice these constraints seem to be automatically obeyed by the

model — at least approximately (see Table 2.1 within the section on Results), we find

it useful to scale the ML predicted fields for postprocessing purposes [122], as shown
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below:

ρScaled(x) = ρML(x)× Ne´
D ρ

ML(x) dx
,

bScaled(x) = bML(x)× −Ne´
D b

ML(x) dx
. (2.16)

Using these scaled fields, we compute the net electrostatic potential Φ via iterative

solution of eq. 2.10 using preconditioned GMRES [123] iterations. The exchange cor-

relation potential Vxc is directly computed from the electron density. Next, we use

a clustering based unsupervised learning technique (see Section 2.3.3) to pick out

the nuclear coordinates from the nuclear pseudocharge field and use it to set up the

non-local pseudopotential operator Vnl. Thereafter, we diagonalize the Kohn-Sham

Hamiltonian (eq. 2.8) resulting from these machine learning predicted quantities, to

obtain the Kohn-Sham eigenstates. We use a combination of Generalized Precon-

ditioned Locally Harmonic Residual (GPLHR) [124] and Arnoldi Iterations [125] to

carry out the diagonalization, and initialize the calculations using random wavefunc-

tion vectors. The Fermi level of the system is subsequently determined from the

Kohn-Sham eigenvalues by enforcing the constraint of having a fixed number of elec-

trons within the fundamental domain.

Using the aforementioned post-processed quantities, the ground state free energy per
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unit fundamental domain may be calculated as [71]:

F = Ekin + Exc + Enl + Eel − TeS , (2.17)

with the terms on the right hand side denoting the electronic kinetic energy, the

exchange correlation energy, the non-local pseudopotential energy, the electrostatic

energy and the electronic entropy contribution at temperature Te, respectively. Alter-

nately, a more accurate estimate for the ground state free energy per unit fundamental

domain may be obtained using the Harris-Foulkes functional [126, 127]:

FHF = Eband + Exc − Ẽxc + Ẽel + Esc − Te S . (2.18)

In the above, the first term on the right hand side is the electronic band energy:

Eband = 2

ˆ 1
2

− 1
2

1

N

N−1∑
ν=0

∞∑
j=1

λj(η, ν) gj(η, ν) dη , (2.19)

in which gj(η, ν) denotes the electronic occupations. The term Exc denotes the ex-

change correlation energy, while:

Ẽxc =

ˆ
D
Vxc(ρ(x))ρ(x) dx . (2.20)
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The term Ẽel is related to electrostatic interactions and has the form:

Ẽel =
1

2

ˆ
D

(
b(x)− ρ(x)

)
Φ(x) dx . (2.21)

Finally, Esc accounts for nuclear pseudocharge self-interactions and overlap correc-

tions [69], while the last term is related to the electronic entropy contribution. No-

tably, in the above breakdown for the Harris-Foulkes energy, Exc and Ẽxc depend

solely on the electron density field, Esc depends on the nuclear coordinates and the

nuclear pseudocharge field, the electrostatic term Ẽel depends on both the electron

density and nuclear pseudocharge fields, while Eband depends on the Kohn-Sham op-

erator eigenvalues (i.e., its dependence on ρ and b is implicit). Therefore, monitoring

these terms in addition to FHF allows us to estimate the accuracy of the machine

learning based predictions of ρ, b and other post-processed quantities (such as the

eigenstates), in the energetic sense (see Section 2.5 for more details).

2.5 Results

We now present the predictions of the machine learning (ML) model for armchair

carbon nanotubes under torsional and axial loading. These are compared against

Helical DFT simulations to quantify the ML model’s accuracy and efficacy. Notably,
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the inference process from the trained ML model is orders of magnitude faster com-

pared to the cost of the ab initio simulations using Helical DFT. While the ML model

requires 0.003 seconds and 0.009 seconds to predict the ρ and b fields respectively

(average times on a desktop with a 2.2 GHz Intel Xeon Gold processor), a typical ab

initio structural relaxation calculation using Helical DFT can stretch into hundreds

of CPU hours. Post-processing of the ML predicted electronic fields (to calculate

band structures, energies, etc.) can be typically performed in about 30 to 40 minutes

of wall time. Training of the neural networks for ρ and b requires about 12 and 15

minutes, respectively, measured using the same hardware setup.

2.5.1 Principal Component Analysis and Neural Networks

Principal Component Analysis Results: As the first step in our two-step ML model,

we utilize PCA to obtain reduced dimensional representations for the outputs of the

map H. To reconstruct the original electronic fields with minimum reconstruction

error, we capture 99.99% variance of the data. As shown later (Section 2.5.3), this is

generally sufficient for obtaining electronic ground state energies to chemical accuracy

and also adequate for reproducing band structures correctly. For capturing this level

of variance in the data, we required only 7 PCs in case of ρ and 15 PCs in case of b

(Figure 2.5).
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Figure 2.5: Cumulative percentage of variance vs Principal components
for ρ (left) and b (right). The red dashed line shows 99.99% variance.

Neural Network: As the second step in our two-step ML model, two Neural Networks

N1 and N2 are trained to predict CoPCs corresponding to ρ and b, respectively.

Since 7 PCs in case of ρ and 15 PCs in case of b are required to capture 99.99%

variance of the data, the number of neurons in output layers is 7 for N1 and 15 for

N2. Following our architecture optimization strategy (elaborated in Appendix A.2)

we choose 6 hidden layers of 150 neurons each for N1 and 2 hidden layers of 150

neurons each for N2. We use Rectified Linear Unit (ReLU) as an activation function

for both networks. Mean Squared Error(MSE) is utilized as a loss function along with

the elastic net regularization [128], and the Adam optimizer [129] with a learning rate

of 0.001 was employed. Before the training phase, each input parameter column was

scaled to zero mean and unit variance, thus standardizing the input features. 75% of

the total data points were utilized for training (123 data points), 10% were utilized

for validation (16 data points), and the remaining 15% were utilized for testing (25

data points). Further details of the neural network, including a discussion of the

hyperparameters, and learning curves are provided in Appendix A.2.
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2.5.2 Prediction of electronic fields by the ML model

We now discuss the overall performance of the machine learning model for the predic-

tion of the electronic fields. The Pearson correlation coefficient (R) between the pre-

dicted and actual electronic fields at each point of the discretized domain for the test

data was found to be 0.9949 and 0.9983 for ρ and b, respectively. In addition to the test
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Figure 2.6: Parity plots for (a) test data of ρ (R = 0.9949), (b) test data
of b (R = 0.9983).

data points described above, we have chosen three additional test data points where

the input parameters were partially unseen during the training (i. Ravg = 49.51Bohr,

α = 0.002, τ = 4.5052Bohr; ii. Ravg = 35.55Bohr, α = 0.00125, τ = 4.6052Bohr;

iii. Ravg = 53.32Bohr, α = 0.0015, τ = 4.5552Bohr). For each of these three test

cases, there is one input variable whose value was not used in the training data (e.g.

data point with τ and α values present in the training data but the value of Ravg not

present in the training data). Finally, we have randomly selected two additional test

data points where none of the three input variables were seen by the ML model during
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training (i. Ravg = 49.51Bohr, α = 0.00125, τ = 4.5552Bohr; ii. Ravg = 30.46Bohr,

α = 0.00075, τ = 4.6552Bohr). These additional test data points with partial or

wholly unseen input parameters help assess the ML model’s capability to generalize

beyond training data. Machine Learning predicted and actual (DFT) electronic fields

for one of the test data points with all unknown input parameters are compared in

Fig. 2.7.

Figure 2.7: Comparison between ML predicted and DFT simulation ob-
tained electronic fields for a test data point with all unknown input param-
eters (Ravg = 49.51Bohr, α = 0.00125, τ = 4.5552Bohr). A slice of the
electronic fields at the average radial coordinate of the atoms in the fun-

damental domain is shown. The error is computed as |ρDFT−ρML|
|max(ρDFT)−min(ρDFT)| ,

similarly for b. Here, max(·) and min(·) denote maximum and minimum
over the fundamental domain.

We quantify the error in the predicted electronic fields through the normalized root
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mean square error (NRMSE) [52]:

NRMSE =

√
1
d

∑d
i=1 (ρ

DFT
i − ρML

i )
2

|max(ρDFT)−min(ρDFT)|
(2.22)

Here max(·) and min(·) denote maximum and minimum over the fundamental domain

and d is the dimension of the data (∼ 60, 000). NRMSE for b is calculated similarly.

The NRMSE for various categories of test data points, including cases with partial

or wholly unseen inputs, are presented in Table 2.1. The low NRMSE values on

the test data are indicative of the general accuracy of the ML model. In particular,

low NRMSE values for the input conditions beyond the training data establish the

generalization capacity of the model.

In addition to evaluating the NRMSE values, we monitored the integrals of ρML and

bML over the fundamental domain. For a neutral system with Ne electrons within the

computational unit cell, the electron density and the nuclear pseduocharge fields obey

the normalization conditions

ˆ
D
ρ(x) dx = Ne and

ˆ
D
b(x) dx = −Ne respectively.

Since these constraints were not built into the ML model, they allow additional quality

checks on the ML predicted fields to be performed. As shown in Table 2.1, the errors

associated with deviations from these constraints are quite low (0.000625 particles or

lower, per electron), indicating high quality predictions of the electronic fields by the

ML model.
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Case NRMSE (ρ)
∣∣Ne −

´
D ρ

ML(x)dx
∣∣ NRMSE (b)

∣∣(−Ne)−
´
D b

ML(x)dx
∣∣

Average for test data set 2.8× 10−4 3.2× 10−3 5.6× 10−4 5.4× 10−3

Random test data point
Ravg = 40.64 , α = 0.0015, τ = 4.7052

2.8× 10−4 9.2× 10−3 2.8× 10−4 8.6× 10−3

Test data point with unknown Ravg

Ravg = 49.51 , α = 0.002, τ = 4.5052
1.3× 10−4 5.2× 10−4 2.1× 10−4 2.5× 10−3

Test data point with unknown α
Ravg = 35.55 , α = 0.00125, τ = 4.6052

2.5× 10−4 1.2× 10−3 1.9× 10−4 5.6× 10−3

Test data point with unknown τ
Ravg = 53.32 , α = 0.0015, τ = 4.5552

1.6× 10−4 4.2× 10−3 2.5× 10−4 8.6× 10−3

Test data point with unknown Ravg, α, τ
Ravg = 49.51 , α = 0.00125, τ = 4.5552

2.1× 10−4 4.3× 10−3 4.8× 10−4 3.1× 10−3

Test data point with unknown Ravg, α, τ
Ravg = 30.46 , α = 0.00075, τ = 4.6552

2.3× 10−4 3.0× 10−3 2.8× 10−4 2.8× 10−3

Table 2.1
Table showing NRMSE for ML predicted ρ and b for various test cases.

Also shown are errors in the integrals of electronic fields over the
fundamental domain. Ravg and τ values are in Bohr.

2.5.3 Prediction of nuclear coordinates, energies and band

structure

Finally, we post-process the ML predicted electronic fields for various test data points

to obtain nuclear coordinates, electronic properties and energy components of interest.

We compute the errors in these quantities for a random test data point, as well as the

aforementioned five test cases for which the inputs were partially or wholly unseen by

the ML model during training (Table 2.2). In general, the errors in the total ground

state energy, as computed through the Harris-Foulkes functional (eq. 2.18) are found

to be appreciably smaller than the chemical accuracy threshold (1.6×10−3 Ha/atom),

except for one of the cases which had an unseen value of α. Considering the various

components of the Harris-Foulkes energy, we see that the highest accuracies in the ML

predictions are associated with the exchange correlation term Exc, possibly due to the
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sole dependence of this quantity on the electron density, which itself is predicted rather

accurately. The energy component Ẽxc (eq. 2.18) also has a very similar behavior

and is not shown in Table 2.2. The nuclear self-energy and correction terms which

depend only on the nuclear pseudocharge field are also predicted with high accuracy.

The electrostatic term which depends on both the nuclear pseudocharge field and

the electron density, and the electronic band energy, which depends on the Kohn-

Sham eigenvalues are seen to be associated with somewhat lower accuracy predictions,

particularly for the test data points which had values of α and/or τ unseen by the

ML model. However, even in these cases, the errors are less than 3.0×10−3 Ha/atom,

and error cancellation leads to overall accurate ground state energy predictions. The

ability to predict ground-state energies of deformed quasi-one-dimensional structures

(while having atomic relaxation effects already included) with first principles accuracy,

at a small computational cost is one of the great advantages of the proposed ML

model, thus leading to its potential use in the multiscale modeling of low-dimensional

systems [66].

The unsupervised learning procedure used for picking out nuclear coordinates is also

found to be quite accurate, with typical errors (measured as the maximum error in

the Cartesian coordinate components of all atoms in the fundamental domain) of the

order of 0.02 to 0.03 Bohrs. The accuracy in the prediction of these coordinates is

also reflected in the overall accuracy of the ML predicted Kohn-Sham Hamiltonian,
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which in turn, affects the quality of electronic band diagrams and other eigenstate-

dependent quantities computed from the Hamiltonian. We found strikingly good

agreement between ML predicted and Helical DFT band diagrams for the test data

points considered here, with a typical case (associated with wholly unseen inputs)

demonstrated in Fig 2.10. Undeformed armchair carbon nanotubes are metallic [97,

130] but develop an oscillatory band gap as a function of imposed twist [71, 130]. The

band gap (computed here as the difference between the smallest eigenvalue above the

Fermi level and the largest eigenvalue below the Fermi level as the symmetry indices

(η, ν) are varied) is particularly error prone since it is the difference of two quantities.

However, the ML predicted location of the band-gap was correct for every test case

and its value was correct to about 0.05 eV or better, every time. The ability of the ML

model to predict the electronic structure of low-dimensional materials as a function

of imposed deformation opens up the use of such techniques for strain-engineering

applications [58, 59, 63].

Case

Ground state Exch. Corr. Electrostatic Nuclear self energy & Band Band Atomic
energy energy term correction term Energy gap coordinates

FHF Exc Ẽel Esc Eband ri
(Ha/atom) (Ha/atom) (Ha/atom) (Ha/atom) (Ha/atom) (eV) (Bohr)

Random test data point
9.0× 10−4 4.1× 10−5 7.1× 10−5 1.5× 10−4 9.9× 10−4 0.017 0.026

Ravg = 40.64 , α = 0.0015, τ = 4.7052
Test data point with unknown Ravg: 6.7× 10−4 1.9× 10−5 4.2× 10−4 4.3× 10−4 6.7× 10−4 0.018 0.028
Ravg = 49.51 , α = 0.0020, τ = 4.5052

Test data point with unknown α
3.6× 10−3 8.9× 10−5 2.1× 10−3 3.2× 10−4 1.2× 10−3 0.042 0.019

Ravg = 35.55 , α = 0.00125, τ = 4.6052
Test data point with unknown τ

2.2× 10−4 5.4× 10−5 2.7× 10−3 4.7× 10−5 2.9× 10−3 0.008 0.023
Ravg = 53.32 , α = 0.0015, τ = 4.5552

Test data point with unknown Ravg, α, τ 6.5× 10−4 7.4× 10−5 1.9× 10−3 1.8× 10−4 1.4× 10−3 0.008 0.022
Ravg = 49.51 , α = 0.00125, τ = 4.5552

Test data point with unknown Ravg, α, τ 1.35× 10−4 8.0× 10−5 1.8× 10−3 4.1× 10−4 1.3× 10−3 0.042 0.034
Ravg = 30.46 , α = 0.00075, τ = 4.6552

Table 2.2
Errors in various post-processed quantities. Refer to eq. 2.18 and related
discussion for interpretation of the various energetic terms. Ravg and τ

values are in Bohr.
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Figure 2.8: Symmetry adapted band
diagram in η, at ν = 2.
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Figure 2.9: Symmetry adapted band
diagram in ν, at η = 0.

Figure 2.10: Comparison of symmetry adapted band diagrams produced
by the original DFT method and the machine learning model (with post
processing) for the unknown test data point with Ravg = 49.51 Bohr, α =
0.00125 and τ = 4.5552 Bohr. The agreement appears excellent and the
post–processed ML model is also able to precisely predict the location of the
band–gap (at η = 1

3 , ν = 2) as well as its value (0.128 eV from Helical DFT)
to about 6% accuracy in this case. Note that λF denotes the system’s Fermi
level.
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We attribute the high accuracy of the model here to the accuracy in both dimen-

sionality reduction and learning through NNs. The fact that during training, the

model uses only about 120 data points and that chemical accuracy requirements are

met during prediction even for unseen input test cases, are particularly noteworthy

and prove the effectiveness and generalizability of our model. Also, as pointed out

earlier, in addition to being accurate, the proposed ML model is significantly more

computationally efficient than DFT simulations.

2.5.4 Interpretation of PCA modes

The number of PCs required in this problem is significantly less than the original

dimensions of the electronic fields data (∼ 60, 000), thus indicating that these quanti-

ties are mostly confined to subspaces of much lower–dimension. The presence of these

hidden lower–dimensional features, and the significant reduction of dimensionality of

the data through PCA, in turn, implies that just a few CoPCs have to be predicted

as a function of the input parameters by the second step of the ML model. This helps

account for the fact that such predictions can be made with relatively little training

data, as discussed earlier. Remarkably, just the first couple of PCs appear sufficient

to capture well over 90% of the variance in both ρ and b. Figure 2.11 shows these two

PCA modes for each quantity visualized using helical coordinates, specifically in a

θ1− θ2 plane located at the center of the simulation domain. As expected, the PCs of
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ρ and b capture the most significant aspects of the variations in these quantities, with

the modes of ρ reflecting changes in charge density along the carbon-carbon bonds,

and those of b capturing shifts in the nuclear positions.

Figure 2.11: First two principal components for ρ (top) and b (bottom). A
slice of the PCA modes at the average radial coordinate of the atoms in the
fundamental domain is shown.

To elaborate on the above interpretations, we first recall that (see Section 2.2.3) in the

absence of relaxation effects, an atom within the fundamental domain has the same

values of θ1 andN θ2, regardless of the tube radius or the level of axial/torsional strain

imposed (as before, N denotes the cyclic symmetry group order). Consequently, for

all values of the input parameters, the nuclei are expected to be located in the same

relative positions in a θ1−θ2 planar plot, if atomic relaxation effects can be ignored. In

the practice, upon imposition of strain, the nuclei re-adjust their positions to minimize

the system energy during the structural relaxation procedure, leading to somewhat
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different values of the helical coordinates associated with their pseudocharge centers,

than would be suggested by purely geometrical considerations. The PCA modes for

b illustrated in Figure 2.11 appear to be capturing this “motion” of the pseudocharge

centers (i.e., nuclear coordinates) associated with the relaxation procedure. Further-

more, due to the changes in the nuclear positions, the carbon-carbon bond lengths

change, and the PCA modes for ρ appear to be capturing changes in the electron

density along these bonds while they are stretched or compressed due to the imposed

strains. Notably, these bonds are at angles with respect to the θ1−θ2 axes (see Figure

2.1 and top row of Figure 2.7), leading to the tilted appearance of the electron density

lobes observable in Figure 2.11. Finally, the presence of more wiggles in the plots

for the PCA modes for b, as compared to those for ρ can be explained by observing

that at a discrete level, the latter is a smoother quantity. Specifically, the discretized

b field can have sharper local jumps since it is the sum of individual atom centered

pseudocharges, while ρ is more smeared out (also see top row of Figure 2.7). Indeed,

this difference in relative degrees of smoothness at the discrete level probably con-

tributes to the different number of PCA modes for these quantities needed to capture

the same level of variance in the data (Figure 2.5).
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Chapter 3

Electronic Structure Prediction of

Multi-million Atom Systems

Through Uncertainty

Quantification Enabled Transfer

Learning

The ground state electron density — obtainable using Kohn-Sham Density Func-

tional Theory (KS-DFT) simulations — contains a wealth of material information,

0Uploaded to arxiv, arXiv:2308.13096. Submitted to npj Computational Materials [131]

49



making its prediction via machine learning (ML) models attractive. However, the

computational expense of KS-DFT scales cubically with system size which tends to

stymie training data generation, making it difficult to develop quantifiably accurate

ML models that are applicable across many scales and system configurations. Here,

we address this fundamental challenge by employing transfer learning to leverage

the multi-scale nature of the training data, while comprehensively sampling system

configurations using thermalization. Our ML models are less reliant on heuristics,

and being based on Bayesian neural networks, enable uncertainty quantification. We

show that our models incur significantly lower data generation costs while allowing

confident — and when verifiable, accurate — predictions for a wide variety of bulk

systems well beyond training, including systems with defects, different alloy compo-

sitions, and at unprecedented, multi-million-atom scales. Moreover, such predictions

can be carried out using only modest computational resources.

3.1 Introduction

Over the past several decades, Density Functional Theory (DFT) calculations based

on the Kohn-Sham formulation [132, 133] have emerged as a fundamental tool in the

prediction of electronic structure. Today, they stand as the de facto workhorse of

computational materials simulations [134, 135, 136, 137], offering broad applicability

and versatility. Although formulated in terms of orbitals, the fundamental unknown in
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Kohn Sham Density Functional Theory (KS-DFT) is the electron density, from which

many ground state material properties — including structural parameters, elastic

constants, magnetic properties, phonons/vibrational spectra, etc., may be inferred.

The ground state electron density is also the starting point for calculations of excited

state phenomena, including those related to optical and transport properties [138,

139].

Ab initio simulations

Electron Density
Grid point based
descriptors 

Atoms
Grid point

Electron density 
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Figure 3.1: Overview of the present Machine Learning (ML) model. The
first step is the training data generation via ab initio simulations shown by
the arrow at the top. The second step is to generate atomic neighborhood
descriptors x(i) for each grid point, i, in the training configurations. The
third step is to create a probabilistic map (Bayesian Neural Network with
DenseNet like blocks consisting of skip connections) from atomic neighbor-
hood descriptors x(i) to the charge density at the corresponding grid point
ρ(i). The trained model is then used for inference which includes (i) de-
scriptor generation for all grid points in the query configuration, (ii) forward
propagation through the Bayesian Neural Network, and (iii) aggregation of
the point-wise charge density ρ(i) to obtain the charge density field ρ.

In spite of their popularity, conventional KS-DFT calculations scale in a cubic man-

ner with respect to the number of atoms within the simulation cell, making cal-

culations of large and complex systems computationally burdensome. To address

this challenge, a number of different approaches, which vary in their computational

expense and their range of applicability, have been proposed over the years. Such

techniques generally avoid explicit diagonalization of the Kohn-Sham Hamiltonian in
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favor of computing the single particle density matrix [140]. Many of these methods

are able to scale linearly with respect to the system size when bulk insulators or met-

als at high temperatures are considered [140, 141, 142, 143, 144], while others exhibit

sub-quadratic scaling when used for calculations of low-dimensional materials (i.e.,

nanostructures)[145, 146]. Contrary to these specialized approaches, there are only a

handful of first-principles electronic structure calculation techniques that operate uni-

versally across bulk metallic, insulating, and semiconducting systems, while perform-

ing more favorably than traditional cubic scaling methods (especially, close to room

temperature). However, existing techniques in this category, e.g. [147, 148], tend to

face convergence issues due to aggressive use of density matrix truncation, and in any

case, have only been demonstrated for systems containing at most a few thousand

atoms, due to their overall computational cost. Keeping these developments in mind,

a separate thread of research has also explored reducing computational wall times by

lowering the prefactor associated with the cubic cost of Hamiltonian diagonalization,

while ensuring good parallel scalability of the methods on large scale high-performance

computing platforms [149, 150, 151, 152]. In spite of demonstrations of these and re-

lated methods to study a few large example problems (e.g. [153, 154, 155]), their

routine application to complex condensed matter systems, using modest, everyday

computing resources appears infeasible.

The importance of being able to routinely predict the electronic structure of generic

bulk materials, especially, metallic and semiconducting systems with a large number of
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representative atoms within the simulation cell, cannot be overemphasized. Compu-

tational techniques that can perform such calculations accurately and efficiently have

the potential to unlock insights into a variety of material phenomena and can lead to

the guided design of new materials with optimized properties. Examples of materials

problems where such computational techniques can push the state-of-the-art include

elucidating the core structure of defects at realistic concentrations, the electronic and

magnetic properties of disordered alloys and quasicrystals [156, 157, 158, 159], and

the mechanical strength and failure characteristics of modern, compositionally com-

plex refractory materials [160, 161]. Moreover, such techniques are also likely to carry

over to the study of low dimensional matter and help unlock the complex electronic

features of emergent materials such as van-der-Waals heterostructures [162] and moiré

superlattices [163]. Notably, a separate direction of work has also explored improving

Density Functional Theory predictions themselves, by trying to learn the Hohenberg-

Kohn functional or exchange correlation potentials[42, 55, 164]. This direction of

work will not have much bearing on the discussion that follows below.

An attractive alternative path to overcoming the cubic scaling bottleneck of KS-DFT

— one that has found much attention in recent years — is the use of Machine Learning

(ML) models as surrogates [25, 165]. Indeed, a significant amount of research has

already been devoted to the development of ML models that predict the energies and

forces of atomic configurations matching with KS-DFT calculations, thus spawning

ML-based interatomic potentials that can be used for molecular dynamics calculations
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with ab initio accuracy [166, 167, 168, 169, 170, 171]. Parallelly, researchers have

also explored direct prediction of the ground state electron density via ML models

trained on the self-consistent electron density obtained from KS-DFT simulations

[42, 44, 48, 172, 173, 174]. This latter approach is particularly appealing, since,

in principle, the ground state density is rich in information that goes well beyond

energies and atomic forces, and such details can often be extracted through simple

post-processing steps. Development of ML models of the electron density can also

lead to electronic-structure-aware potentials, which are likely to overcome limitations

of existing Machine Learning Interatomic Potentials, particularly in the context of

reactive systems [175, 176]. Having access to the electron density as an intermediate

verifiable quantity is generally found to also increase the quality of ML predictions of

various material properties [172, 177], and can allow training of additional ML models.

Such models can use the density as a descriptor to predict specific quantities, such

as defect properties of complex alloys [178, 179] and bonding information [50]. Two

distinct approaches have been explored in prior studies to predict electron density

via Machine Learning, differing in how they represent the density – the output of the

machine learning model. One strategy involves representing the density by expanding

it as a sum of atom-centered basis functions [43, 47]. The other involves predicting

the electron density at each grid point in a simulation cell. Both strategies aim to

predict the electron density using only the atomic coordinates as inputs. While the

former strategy allows for a compact representation of the electron density, it requires
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the determination of an optimized basis set that is tuned to specific chemical species.

It has been shown in [43] that the error in the density decomposition through this

strategy can be reduced to as low as 1%. In contrast, the latter strategy does not

require such optimization but poses a challenge in terms of inference - where the

prediction for a single simulation cell requires inference on thousands of grid points

(even at the grid points in a vacuum region). The former strategy has shown good

results for molecules [43] while the latter has shown great promise in density models

for bulk materials especially metals [48, 53, 174]. In this work, we use the latter

approach.

A key challenge in building surrogate models of the ground state electron density

from KS-DFT calculations is the process of data generation itself, which can incur

significant offline cost [180]. In recent work [177], we have demonstrated how this

issue can be addressed for chiral nanomaterials [181]. For such forms of matter,

the presence of underlying structural symmetries allows for significant dimensionality

reduction of the predicted fields, and the use of specialized algorithms for ground state

KS-DFT calculations [68, 182, 183]. However, such strategies cannot be adopted

for bulk materials with complex unit cells, as considered here. For generic bulk

systems, due to the confining effects of periodic boundary conditions, small unit-cell

simulations alone cannot represent a wide variety of configurations. To obtain ML

models that can work equally well across scales and for a variety of configurations

(e.g. defects [184, 185]), data from large systems is also essential. However, due to
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the aforementioned cubic scaling of KS-DFT calculations, it is relatively inexpensive

to generate a lot of training data using small sized systems (say, a few tens of atoms),

while larger systems (a few hundred atoms) are far more burdensome, stymieing

the data generation process. Previous work on electron density prediction [44, 174]

has been made possible by using data from large systems exclusively. However, this

strategy is likely to fail when complex systems such as multi-principal element alloys

are dealt with, due to the large computational cells required for such systems. This

is especially true while studying compositional variations in such systems since such

calculations are expected to increase the overall computational expense of the process

significantly.

In this work, we propose a machine-learning model that accurately predicts the ground

state electron density of bulk materials at any scale, while quantifying the associated

uncertainties. Once trained, our model significantly outperforms conventional KS-

DFT-based computations in terms of speed. To address the high cost of training data

generation associated with KS-DFT simulations of larger systems — a key challenge

in developing effective ML surrogates of KS-DFT — we adopt a transfer learning

(TL) approach [186]. Thus, our model is first trained using a large quantity of cheaply

generated data from simulations of small systems, following which, a part of the model

is retrained using a small amount of data from simulations of a few large systems. This

strategy significantly lowers the training cost of the ML model, without compromising

its accuracy. Along with the predicted electron density fields, our model also produces
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a detailed spatial map of the uncertainty, that enables us to assess the confidence

in our predictions for very large scale systems (thousands of atoms and beyond),

for which direct validation via comparison against KS-DFT simulations data is not

possible. The uncertainty quantification (UQ) properties of our models are achieved

through the use of Bayesian Neural Networks (BNNs), which systematically obtain

the variance in prediction through their stochastic parameters, and tend to regularize

better than alternative approaches [5, 187, 188]. They allow us to systematically

judge the generalizability of our ML model, and open the door to Active Learning

approaches [189] that can be used to further reduce the work of data generation in

the future.

To predict the electron density at a given point, the ML model encodes the local

atomic neighborhood information in the form of descriptors, that are then fed as

inputs to the BNN. Our neighborhood descriptors are rather simple: they include

distance and angle information from nearby atoms in the form of scalar products and

avoid choosing the basis set and “handcrafted” descriptors adopted by other workers

[167, 190, 191, 192, 193]. Additionally, we have carried out a systematic algorithmic

procedure to select the optimal set of descriptors, thus effectively addressing the chal-

lenge associated with the high dimensionality of the descriptor-space . We explain this

feature selection process in section 3.3.4. To sample this descriptor space effectively,

we have employed thermalization, i.e., ab initio molecular dynamics (AIMD) simula-

tions at various temperatures, which has allowed us to carry out accurate predictions
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for systems far from training. Overall, our ML model reduces the use of heuristics

adopted by previous workers in notable ways, making the process of ML based predic-

tion of electronic structure much more systematic. Notably, the point-wise prediction

of the electronic fields via the trained ML model, make this calculation scale linearly

with respect to the system size, enabling a wide variety of calculations across scales.

In the following sections, we demonstrate the effectiveness of our model by predicting

the ground state electron density for bulk metallic and semiconducting alloy systems.

In particular, we present: (i) Predictions and error estimates for systems well beyond

the training data, including systems with defects and varying alloy compositions; (ii)

Demonstration of the effectiveness of the transfer learning approach; (iii) Uncertainty

quantification capabilities of the model, and the decomposition of the uncertainty into

epistemic and aleatoric parts; and (iv) Computational advantage of the model over

conventional KS-DFT calculations, and the use of the model to predict the electron

density of systems containing millions of atoms.

3.2 Results

In this section, we present electron density predictions by the proposed machine

learning (ML) model for two types of bulk materials — pure aluminum and alloys of

silicon-germanium. These serve as prototypical examples of metallic and covalently
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Figure 3.2: Electron densities (a) calculated by DFT and (b) predicted
by ML. The two-dimensional slice of (b) that has the highest mean squared
error, as calculated by (c) DFT and predicted by (d) ML. (e) Corresponding
absolute error in ML with respect to DFT. (i(f)-i(h)) Magnified view of the
rectangular areas in (i(c)-i(e)) respectively. The unit for electron density is
e/Bohr3, where e denotes the electronic charge.

bonded semiconducting systems, respectively. These materials were chosen for their

technological importance and because the nature of their electronic fields is quite

distinct (see Fig. B.4 in the supplemental material), thus presenting distinct challenges

to the ML model. Additionally, being metallic, the aluminum systems do not show

simple localized electronic features often observed in insulators [194, 195], further

complicating electron density prediction.

The overview of the present ML model is given in Fig. 3.1. The models are trained
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Figure 3.3: (i) Electron density contours for aluminum systems with lo-
calized and extended defects — Left: calculated by DFT, Right: predicted
by ML. (i.a) (Top) Mono-vacancy in 256 atom aluminum system, (Bottom)
Di-Vacancy in 108 atom aluminum system, (i.b) (1 1 0) plane of a perfect
screw dislocation in aluminum with Burgers vector a0

2 [110], and line direc-
tion along [110]. The coordinate system was aligned along [11̄2]–[1̄11]–[110],
(i.c) (Top) (0 1 0) plane, (bottom) (0 0 1) plane of a [001] symmetric tilt
grain boundary (0 inclination angle) in aluminum, (i.d) Edge dislocation in
aluminum with Burgers vector a0

2 [110]. The coordinate system was aligned
along [110]–[1̄11]–[11̄2] and the dislocation was created by removing a half-
plane of atoms below the glide plane. (ii) Electron density contours and
absolute error in ML for SiGe systems with ii(a-c) Si double vacancy defect
in 512 atom system ii(d-f) Ge single vacancy defect in 216 atom system.
Densities ii(a,d) calculated by DFT, ii(b,e) predicted by ML, and ii(c,f) er-
ror in ML predictions. Note that the training data for the above systems
did not include any defects. The unit for electron density is e/Bohr3, where
e denotes the electronic charge.
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Figure 3.4: A comparison of the accuracy in the prediction of the charge
density (in terms of the L1 norm per electron between ρDFT and ρscaled),
and the error (in Ha/atom) in the ground state total energy computed using
ρDFT and ρscaled, for Al (left), and SiGe (right) systems. ρscaled is the scaled
ML predicted electron density as given in Eq. 3.6. We observe that the
errors are far better than chemical accuracy, i.e., errors below 1 kcal/mol
or 1.6 milli-Hartree/atom, for both systems, even while considering various
types of defects and compositional variations. Note that for SixGe1–x , we
chose x = 0.4, 0.45, 0.55, 0.6.

using a transfer learning approach, with thermalization used to sample a variety of

system configurations. In the case of aluminum (Al), the model is trained initially

on a 32-atom and subsequently on a 108-atom system. Corresponding system sizes

for silicon germanium (SiGe) are 64 and 216 atoms respectively. Details of the ML

model are provided in section 3.3.

We evaluate the performance of the ML models for a wide variety of test systems,

which are by choice, well beyond the training data. This is ensured by choosing

system sizes far beyond training, strained systems, systems containing defects, or alloy

compositions not included in the training. We assess the accuracy of the ML models

by comparing predicted electron density fields and ground state energies against DFT
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Figure 3.5: The energy curve with respect to different lattice parameters
for a 2×2×2 (left) and 3×3×3 (right) supercell of aluminum atoms. Overall,
we see excellent agreement in the energies (well within chemical accuracy).
The lattice parameter (related to the first derivative of the energy plot)
calculated in each case agrees with the DFT-calculated lattice parameter to
O(10−2) Bohr or better (i.e., it is accurate to a fraction of a percent). The
bulk modulus calculated (related to the second derivative of the energy plot)
from DFT data and ML predictions agree to within 1%. For the 3 × 3 × 3
supercell, the bulk modulus calculated via DFT calculations is 76.39 GPa,
close to the experimental value of about 76 GPa [1]. The value calculated
from ML predictions is 75.80 GPa.

simulations. In addition, we quantify the uncertainty in the model’s predictions. We

decompose the total uncertainty into two parts: “aleatoric” and “epistemic”. The

first is a result of inherent variability in the data, while the second is a result of

insufficient knowledge about the model parameters due to limited training data. The

inherent variability in the data might arise due to approximations and round-off errors

incurred in the DFT simulations and calculation of the ML model descriptors. On the

other hand, the modeling uncertainty arises due to the lack of or incompleteness in the

data. This lack of data is inevitable since it is impossible to exhaustively sample all

possible atomic configurations during the data generation process. Decomposing the
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Figure 3.6: Uncertainty quantification for aluminum and SiGe systems.
(a) ML prediction of the electron density, (b) Epistemic Uncertainty (c)
Aleatoric Uncertainty (d) Total Uncertainty shown along the dotted line
from the ML prediction slice. The uncertainty represents the bound ±3σtotal,
where, σtotal is the total uncertainty. The unit for electron density is e/Bohr3,
where e denotes the electronic charge.

total uncertainty into these two parts helps distinguish the contributions of inherent

randomness and incompleteness in the data to the total uncertainty. In the present

work, a “heteroscedastic” noise model is used to compute the aleatoric uncertainty,

which captures the spatial variation of the noise/variance in the data.
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Figure 3.7: Uncertainty quantification for a 256 atom aluminum system
with a mono vacancy defect. (a) ML prediction of the electron density shown
on the defect plane, (b)) Epistemic uncertainty (c) Aleatoric uncertainty d)
Uncertainty shown along the black dotted line from the ML prediction slice.
The uncertainty represents the bound ±3σtotal, where, σtotal is the total
uncertainty. Note that the model used to make the predictions in (a-d)
is not trained on the defect data, as opposed to the model used for (e),
where defect data from the 108 atom aluminum system was used to train
the model. The uncertainty and error at the location of the defect reduce
with the addition of defect data in the training, as evident from (d) and
(e). The unit for electron density is e/Bohr3, where e denotes the electronic
charge.

3.2.1 Error Estimation

To evaluate the accuracy of the model, we calculated the Root Mean Squared Error

(RMSE) for the entire test dataset, including systems of the same size as the training
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data as well as sizes bigger than training data. For aluminum, the RMSE was deter-

mined to be 4.1×10−4, while for SiGe, it was 7.1×10−4, which shows an improvement

over RMSE values for Al available in [44]. The L1 norm per electron for Aluminuum

is 2.63 × 10−2 and for SiGe it is 1.94 × 10−2 for the test dataset. Additionally, the

normalized RMSE is obtained by dividing the RMSE value by the range of respective

ρ values for aluminum and SiGe. The normalized RMSE for aluminum and SiGe test

dataset was found to be 7.9 × 10−3 for both materials. Details of training and test

dataset are presented in SM section B.6. To assess the generalizability of the model,

we evaluate the accuracy of the ML model using systems much larger than those used

in training, but accessible to DFT. We consider two prototypical systems, an Alu-

minium system having 1372 atoms (Fig. 3.2(a)) and a Silicon Germanium (Si0.5Ge0.5)

system having 512 atoms (Fig. 3.2(b)). The model shows remarkable accuracy for

both of these large systems. The RMSE is 3.8 × 10−4 and 7.1 × 10−4 for aluminum

and SiGe respectively, which confirms the high accuracy of the model for system sizes

beyond those used in training.

We now evaluate the performance of the ML model for systems containing extended

and localized defects, although such systems were not used in training. We consider

the following defects: mono-vacancies, di-vacancies, grain boundaries, edge, and screw

dislocations for Al, and mono-vacancies and di-vacancies for SiGe. The electron

density fields predicted by the ML models match with the DFT calculations extremely

well, as shown in Figs. 3.3(a) and 3.3(b). The error magnitudes (measured as the
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L1 norm of the difference in electron density fields, per electron) are about 2× 10−2

(see Fig. 3.4). The corresponding NRMSE is 7.14× 10−3 . We show in Section 3.2.2,

that the model errors and uncertainty can be both brought down significantly, by

including a single snapshot with defects, during training.

Another stringent test of the generalizability of the ML models is performed by inves-

tigating SixGe1−x alloys, for x ̸= 0.5. Although only equi-atomic alloy compositions

(i.e., x = 0.5) were used for training, the error in prediction (measured as the L1

norm of the difference in electron density fields, per electron) is lower than 3× 10−2

(see Fig. 3.4). The corresponding RMSE is 8.04 × 10−4 and NRMSE is 7.32 × 10−3

. We would like to make a note that we observed good accuracy in the immediate

neighborhood (x = 0.4 to 0.6) of the training data (x = 0.5). Prediction for x = 0.4

is shown in Fig. 6(ii). The prediction accuracy however decreases as we move far

away from the training data composition. This generalization performance far away

from the training data is expected. We have also carried out tests with aluminum

systems subjected to volumetric strains, for which the results were similarly good.

Our electron density errors are somewhat lower than compared to the earlier works

[44, 48], At the same time, thanks to the sampling and transfer learning techniques

adopted by us, the amount of time spent on DFT calculations used for producing the

training data is also smaller. To further put into context the errors in the electron

density, we evaluate the ground state energies from the charge densities predicted by
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the ML model through a postprocessing step and compare these with the true ground

state energies computed via DFT. Details on the methodology for postprocessing can

be found in the ‘Methods’ section, and a summary of our postprocessing results can

be seen in Fig. 3.4, and in Tables B.4 and B.5, in the supplemental material. On

average, the errors are well within chemical accuracy for all test systems considered

and are generally O(10−4) Ha/atom, as seen in Fig. 3.4. Furthermore, not only are

the energies accurate, but the derivatives of the energies, e.g., with respect to the

supercell lattice parameter, are found to be quite accurate as well (see Fig. 3.5).

This enables us to utilize the ML model to predict the optimum lattice parameter

— which is related to the first derivative of the energy curve, and the bulk modulus

— which is related to the second derivative of the energy curve, accurately. We

observe that the lattice parameter is predicted accurately to a fraction of a percent,

and the bulk modulus is predicted to within 1% of the DFT value (which itself is

close to experimental values [1]). Further details can be found in the supplemental

material. This demonstrates the utility of the ML models to predict not only the

electron density but also other relevant physical properties.

Overall, the generalizability of our models is strongly suggestive that our use of ther-

malization to sample the space of atomic configurations, and the use of transfer-

learning to limit training data generation of large systems are both very effective. We

discuss uncertainties arising from the use of these strategies and due to the neural

network model, in addition to the noise in the data, in the following sections.
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Figure 3.8: Prediction of electronic structure for aluminum system contain-
ing ≈ 4.1 million and Si0.5Ge0.5 system containing ≈ 1.4 million atoms. The
unit for electron density is e/Bohr3, where e denotes the electronic charge.

3.2.2 Uncertainty quantification

The present work uses a Bayesian Neural Network (BNN) which provides a systematic

route to uncertainty quantification (UQ) through its stochastic parameters as opposed

to other methods for UQ, for instance ensemble averaging [196]. Estimates of epis-

temic and aleatoric uncertainties for the following systems are shown: a defect-free

Al system with 1372 atoms (Fig. 3.6(a)), a 256-atom Al system with a mono-vacancy
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(Fig. 3.7(a-d)), and a Si0.4Ge0.6 alloy (Fig. 3.6(b)). Note, for the results in Fig. 3.7(a-

d) the training data does not contain any systems having defects, and for the results

in Fig. 3.6(b) the training data contains only 50− 50 composition.

In these systems, the aleatoric uncertainty has the same order of magnitude as the

epistemic uncertainty. This implies that the uncertainty due to the inherent ran-

domness in the data is of a similar order as the modeling uncertainty. The aleatoric

uncertainty is significantly higher near the nuclei (Fig. 3.6(a) and Fig. 3.6(b)) and

also higher near the vacancy (Fig 3.7). This indicates that the training data has

high variability at those locations. The epistemic uncertainty is high near the nucleus

(Fig. 3.6(a) and Fig. 3.6(b)) since only a small fraction of grid points are adjacent to

nuclei, resulting in the scarcity of training data for such points. The paucity of data

near a nucleus is shown through the distribution of electron density in Fig. B.4 of

the supplemental material. For the system with vacancy, the aleatoric uncertainty is

higher in most regions, as shown in Fig. 3.7(c). However, the epistemic uncertainty

is significantly higher only at the vacancy (Fig. 3.7(b)), which might be attributed to

the complete absence of data from systems with defects in the training.

To investigate the effect of adding data from systems with defects in the training, we

added a single snapshot of 108 atom aluminum simulation with mono vacancy defect

to the training data. This reduces the error at the defect site significantly and also

reduces the uncertainty (Fig. 3.7(e)). However, the uncertainty is still quite higher at
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the defect site because the data is biased against the defect site. That is, the amount

of training data available at the defect site is much less than the data away from it.

Thus, this analysis distinguishes uncertainty from inaccuracy.

To investigate the effect of adding data from larger systems in training, we compare

two models. The first model is trained with data from the 32-atom system. The

second model uses a transfer learning approach where it is initially trained using

the data from the 32-atom system and then a part of the model is retrained using

data from the 108-atom system. We observe a significant reduction in the error and

in the epistemic uncertainty for the transfer learned model as compared to the one

without transfer learning. The RMSE on the test system (256 atom) decreases by

50% when the model is transfer learned using 108 atom data. The addition of the

108-atom system’s data to the training data decreases epistemic uncertainty as well

since the 108-atom system is less restricted by periodic boundary conditions than the

32-atom system. Further, it is also statistically more similar to the larger systems

used for testing as shown in Fig. B.5 of the supplemental material. These findings

demonstrate the effectiveness of the Bayesian Neural Network in pinpointing atomic

arrangements or physical sites where more data is essential for enhancing the ML

model’s performance. Additionally, they highlight its ability to measure biases in

the training dataset. The total uncertainty in the predictions provides a confidence

interval for the ML prediction. This analysis provides an upper bound of uncertainty

arising out of two key heuristic strategies adopted in our ML model: data generation
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through thermalization of the systems and transfer learning.

3.2.3 Computational efficiency gains and confident predic-

tion for unprecedented system sizes

Conventional KS-DFT calculations scale as O(Na
3) with respect to the number of

atoms Na, whereas, our ML model scales linearly (i.e., O(Na)), as shown in Fig. 3.9.

This provides computational advantage for ML model over KS-DFT with increasing

number of atoms. For example, even with 500 atoms, the calculation wall times for

ML model is 2 orders of magnitude lower than KS-DFT. The linear scaling behavior

of the ML model with respect to the number of atoms can be understood as follows.

As the number of atoms within the simulation domain increases, so does the total

simulation domain size, leading to a linear increase in the total number of grid points

(keeping the mesh size constant, to maintain calculation accuracy). Since the machine

learning inference is performed for each grid point, while using information from a

fixed number of atoms in the local neighborhood of the grid point, the inference time

is constant for each grid point. Thus the total ML prediction time scales linearly with

the total number of grid points, and hence the number of atoms in the system.

Taking advantage of this trend, the ML model can be used to predict the electronic

structure for system sizes far beyond the reach of conventional calculation techniques,
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including systems containing millions of atoms, as demonstrated next. We anticipate

that with suitable parallel programming strategies (the ML prediction process is em-

barrassingly parallel) and computational infrastructure, the present strategy can be

used to predict the electronic structure of systems with hundreds of millions or even

billions of atoms. Very recently, there have been attempts in the direction of making

predictions at an unprecedented scale. In [197], a machine learning based potential

is developed for germanium–antimony–tellurium alloys, effectively working for device

scale systems containing over half a million atoms. Another contribution comes from

Fiedler et al. [174], where they present a model predicting electronic structure for

systems containing over 100,000 atoms.

We show the electron densities, as calculated by our ML model, for a four million

atom system of Al and a one million atom system of SiGe, in Figs. 3.8(a) and 3.8(b)

respectively. In addition to predicting electron densities, we also quantify uncertain-

ties for these systems. We found that the ML model predicts larger systems with

equally high certainty as smaller systems (see Fig. B.3 of supplemental material).

The confidence interval obtained by the total uncertainty provides a route to assess-

ing the reliability of predictions for these million atom systems for which KS-DFT

calculations are simply not feasible. A direct comparison of ML obtained electron

density with DFT for large systems is not done till date, mainly because simulating

such systems with DFT is impractical. However, recent advancements in DFT tech-

niques hold promise for simulating large-scale systems [152, 198, 199]. In future, it
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will be worthwhile to compare ML predicted electron density for large systems and

the electron density obtained through DFT, utilizing these recently introduced DFT

techniques.
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Figure 3.9: Computational time comparison between DFT calculations
and prediction via trained ML model. (Top) Aluminum, (Bottom) SiGe.
The DFT calculations scale O(Na

3) with respect to the system size (number
of atoms Na), whereas, the present ML model scales linearly (i.e., O(Na)).
The time calculations were performed using the same number of CPU cores
and on the same system (Perlmutter CPU).
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3.2.4 Reduction of training data generation cost via transfer

learning

One of the key challenges in developing an accurate ML model for electronic struc-

ture prediction is the high computational cost associated with the generation of the

training data through KS-DFT, especially for predicting the electron density for sys-

tems across length-scales. A straightforward approach would involve data generation

using sufficiently large systems wherein the electron density obtained from DFT is

unaffected by the boundary constraints. However, simulations of larger bulk systems

are significantly more expensive than smaller systems. To address the computational

burden of simulating large systems, strategies such as “fragmentation” have been used

in electronic structure calculations [200, 201]. Further, certain recent studies on Ma-

chine Learning Interatomic Potentials suggest utilizing portions of a larger system for

training the models [202, 203]. To the best of our knowledge, there is no corresponding

work that utilizes fragmentation in ML modeling of the electron density. In this work,

to address the issue, we employed a transfer learning (TL) approach. We first trained

the ML model on smaller systems and subsequently trained a part of the neural net-

work using data from larger systems. This strategy allows us to obtain an efficient

ML model that requires fewer simulations of expensive large-scale systems compared
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to what would have been otherwise required without the TL approach. The effec-

tiveness of the TL approach stems from its ability to retain information from a large

quantity of cheaper, smaller scale simulation data. We would like to note however,

that the transfer learning approach is inherently bound by the practical constraints

associated with simulating the largest feasible system size.

As an illustration of the above principles, we show in Fig. 3.10, the RMSE obtained

on 256 atom data (system larger than what was used in the training data) using the

TL model and the non-TL model. We also show the time required to generate the

training data for both models. For the Al systems, we trained the TL model with 32-

atom data first and then 108-atom data. In contrast, the non-TL model was trained

only on the 108-atom data.

The non-TL model requires significantly more 108-atom data than the TL model to

achieve a comparable RMSE on the 256-atom dataset. Moreover, the TL model’s

training data generation time is approximately 55% less than that of the non-TL

model. This represents a substantial computational saving in developing the ML

model for electronic structure prediction, making the transfer learning approach a

valuable tool to expedite such model development. Similar savings in training data

generation time were observed for SiGe as shown in Fig. 3.10. In the case of SiGe,

the TL model was first trained using 64 atom data and then transfer learned using

216 atom data.
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Figure 3.10: Models with Transfer Learning (TL) and without Transfer
Learning (Non-TL): (a) Root mean square error (RMSE) on the test dataset
and (b) Computational time to generate the training data. In the case of
aluminum, the TL model is trained using 32 and 108 atom data. For SiGe,
the TL model was trained using 64 and 216 atom data. In the case of
aluminum, the non-TL model is trained using 108 atom data. Whereas, in
the case of SiGe, the non-TL model is trained using 216 atom data.

3.3 Methods

3.3.1 Ab Initio Molecular Dynamics

To generate training data for the model, Ab Initio Molecular Dynamics (AIMD) sim-

ulations were performed using the finite-difference based SPARC code [204, 205, 206].

We used the GGA PBE exchange-correlation functional [207] and ONCV pseudopo-

tentials [208]. For aluminum, a mesh spacing of 0.25 Bohrs was used while for SiGe,

a mesh spacing of 0.4 Bohrs was used. These parameters are more than sufficient to
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produce accurate energies and forces for the pseudopotentials chosen, as was deter-

mined through convergence tests. A tolerance of 10−6 was used for self-consistent field

(SCF) convergence and the Periodic-Pulay [87] scheme was deployed for convergence

acceleration. These parameters and pseudopotential choices were seen to produce the

correct lattice parameters and bulk modulus values for the systems considered here,

giving us confidence that the DFT data being produced is well rooted in the materials

physics.

For AIMD runs, a standard NVT-Nosé Hoover thermostat [209] was used, and Fermi-

Dirac smearing at an electronic temperature of 631.554 K was applied. The time step

between successive AIMD steps was 1 femtosecond. The atomic configuration and

the electron density of the system were captured at regular intervals, with sufficient

temporal spacing between snapshots to avoid the collection of data from correlated

atomic arrangements. To sample a larger subspace of realistic atomic configurations,

we performed AIMD simulations at temperatures ranging from 315 K to about twice

the melting point of the system, i.e. 1866 K for Al and 2600 K for SiGe. Bulk

disordered SiGe alloy systems were generated by assigning atoms randomly to each

species, consistent with the composition.

We also generate DFT data for systems with defects and systems under strain, in

order to demonstrate the ability of our ML model to predict unseen configurations.

To this end, we tested the ML model on monovacancies and divacancies, edge and
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screw dislocations, and grain boundaries. For vacancy defects, we generated monova-

cancies by removing an atom from a random location, and divacancies by removing

two random neighboring atoms before running AIMD simulations. Edge and screw

dislocations for aluminum systems were generated using Atomsk [210]. Further de-

tails can be found in Fig. 3.3(a). Grain boundary configurations were obtained based

on geometric considerations of the tilt angle — so that an overall periodic supercell

could be obtained, and by removing extra atoms at the interface. For aluminum, we

also tested an isotropic lattice compression and expansion of up to 5%; these systems

were generated by scaling the lattice vectors accordingly (while holding the fractional

atomic coordinates fixed).

3.3.2 Machine learning map for charge density prediction

Our ML model maps the coordinates {RI}Na
I=1 and species (with atomic numbers

{ZI}Na
I=1) of the atoms, and a set of grid points {ri}

Ngrid

i=1 in a computational domain,

to the electron density values at those grid points. Here, Na and Ngrid refer to the

number of atoms and the number of grid points, within the computational domain,

respectively. We compute the aforementioned map in two steps. First, given the

atomic coordinates and species information, we calculate atomic neighborhood de-

scriptors for each grid point. Second, a neural network is used to map the descriptors

to the electron density at each grid point. These two steps are discussed in more
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detail subsequently.

3.3.3 Atomic neighborhood descriptors

In this work, we use a set of scalar product-based descriptors to encode the local

atomic environment. The scalar product-based descriptors for the grid point at ri

consist of distance between the grid point and the atoms atRI ; and the cosine of angle

at the grid point ri made by the pair of atoms at RI and RJ . Here i = 1, . . . , Ngrid

and I, J = 1, . . . , Na. We refer to the collections of distances i.e., ||ri − RI || as set

I descriptors, and the collections of the cosines of the angles i.e., (ri−RI)·(ri−RJ )
||ri−RI || ||ri−RJ ||

are

referred to as set II descriptors.

Higher order scalar products such as the scalar triple product, and the scalar quadru-

ple product which involve more than two atoms at a time can also be considered.

However, these additional scalar products are not included in the descriptor set in

this work since they do not appear to increase the accuracy of predictions as elabo-

rated in the supplemental material.
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3.3.4 Selection of optimal set of descriptors

As has been pointed out by previous work on ML prediction of electronic structure

[44, 48], the nearsightedness principle [195, 211] and screening effects [212] indicate

that the electron density at a grid point has little influence from atoms sufficiently far

away. This suggests that only descriptors arising from atoms close enough to a grid

point need to be considered in the ML model, a fact which is commensurate with our

findings in Fig. 3.11.

Using an excessive number of descriptors can increase the time required for descriptor-

calculation, training, and inference, is susceptible to curse of dimensionality, and

affect prediction performance [75, 213, 214, 215]. On the other hand, utilizing an

insufficient number of descriptors can result in an inadequate representation of the

atomic environments and lead to an inaccurate ML model.

Based on this rationale, we propose a procedure to select an optimal set of descriptors

for a given atomic system. We select a set of M (M ≤ Na) nearest atoms from the

grid point to compute the descriptors and perform a convergence analysis to strike

a balance between the aforementioned conditions to determine the optimal value of

M . It is noteworthy that the selection of optimal descriptors has been explored in

previous works, in connection with Behler-Parinello symmetry functions such as [216]
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and [217]. These systematic procedures for descriptor selection eliminate trial-and-

error operations typically involved in finalizing a descriptor set. In [217], the authors

have demonstrated for Behler-Parinello symmetry functions that using an optimal set

of descriptors enhances the efficiency of machine learning models.

For M nearest atoms, we will have Nset I distance descriptors, and Nset II angle de-

scriptors, with Nset I =M and Nset II ≤ MC2 .

The total number of descriptors is Ndesc = Nset I + Nset II. To optimize Ndesc, we

first optimize Nset I, till the error converges as shown in Fig. 3.11. Subsequently, we

optimize Nset II. To do this, we consider a nearer subset of atoms of size Ma ≤ M ,

and for each of these Ma atoms, we consider the angle subtended at the grid point,

by the atoms and their k nearest neighbors. This results in Nset II = Ma × k, angle

based descriptors, with Ma and k varied to yield the best results, as shown in Fig.

3.11. The pseudo-code for this process can be found in Algorithms 2 and 3 in the

supplemental material. Further details on feature convergence analysis are provided

in the supplemental material.
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Figure 3.11: Convergence of error with respect to the number of descrip-
tors, shown for aluminum. The blue line shows the convergence with respect
to Nset I, while the other three lines show convergence with respect to Nset II.
The optimal Nset I and Nset II are obtained where their test RMSE values
converge.

3.3.5 Bayesian Neural Network

Bayesian Neural Networks (BNNs) have stochastic parameters in contrast to deter-

ministic parameters used in conventional neural networks. BNNs provide a mathe-

matically rigorous and efficient way to quantify uncertainties in their prediction.

We use a Bayesian neural network to estimate the probability P (ρ|x,D) of the output

electron density ρ for a given input descriptor x ∈ RNdesc and training data set
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D = {xi, ρi}Nd
i=1. The probability is evaluated as:

P (ρ|x,D) =
ˆ
Ωw

P (ρ|x,w)P (w|D)dw . (3.1)

Here w ∈ Ωw is the set of parameters of the network and Nd is the size of the training

data set. Through this marginalization over parameters, a BNN provides a route to

overcome modeling biases via averaging over an ensemble of networks. Given a prior

distribution P (w) on the parameters, the posterior distribution of the parameters

P (w|D) are learned via the Bayes’ rule as P (w|D) = P (D|w)P (w)/P (D), where

P (D|w) is the likelihood of the data.

This posterior distribution of parameters P (w|D) is intractable since it involves the

normalizing factor P (D), which in turn is obtained via marginalization of the like-

lihood through a high dimensional integral. Therefore, it is approximated through

techniques such as variational inference [187, 218, 219] or Markov Chain Monte Carlo

methods [220]. In variational inference, as adopted here, a tractable distribution

q(w|θ) called the “variational posterior” is considered, which has parameters θ. For

instance, if the variational posterior is a Gaussian distribution the corresponding pa-

rameters are its mean and standard deviation, θ = (µθ,σθ). The optimal value of

parameters θ is obtained by minimizing the statistical dissimilarity between the true

and variational posterior distributions. The dissimilarity is measured through the KL

divergence KL [q(w|θ) || P (w|D)]. This yields the following optimization problem:
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θ∗ = argmin
θ

KL [q(w|θ) || P (w|D)]

= argmin
θ

ˆ
q(w|θ) log

[
q(w|θ)

P (w)P (D|w)
P (D)

]
dw .

(3.2)

This leads to the following loss function for BNN that has to be minimized:

FKL(D,θ) = KL [q(w|θ) || P (w)]− Eq(w|θ)[logP (D|w)] . (3.3)

This loss function balances the simplicity of the prior and the complexity of the data

through its first and second terms respectively, yielding regularization [5, 187].

Once the parameters θ are learned, the BNNs can predict the charge density at any

new input descriptor x. In this work, the mean of the parameters (µθ) are used to

make point estimate predictions of the BNN.

3.3.6 Uncertainty quantification

The variance in the output distribution P (ρ|x,D) in Eq. (3.1) is the measure of

uncertainty in the BNN’s prediction. Samples from this output distribution can

be drawn in three steps: In the first step, a jth sample of the set of parameters,

ŵj=1,...,Ns , is drawn from the variational posterior q(w|θ) which approximates the
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posterior distribution of parameters P (w|D). Here, Ns is the number of samples

drawn from the variational posterior of parameters. In the second step, the sampled

parameters are used to perform inference of the BNN (fN) to obtain the jth prediction

ρ̂j = f
ŵj

N (x). In the third step, the likelihood is assumed to be a Gaussian distribution:

P (ρ|x, ŵj) = N (ρ̂j, σ(x)), whose mean is given by the BNN’s prediction, ρ̂j, and

standard deviation by a heterogenous observation noise, σ(x). A sample is drawn

from this Gaussian distribution N (ρ̂j, σ(x)) that approximates a sample from the

distribution P (ρ|x,D). The total variance of such samples can be expressed as:

var(ρ) = σ2(x) +

[
1

Ns

Ns∑
j=1

(ρ̂j)
2 − (E(ρ̂j))2

]
. (3.4)

Here, E(ρ̂j) = 1
Ns

∑Ns

j=1 f
ŵj

N (x). The first term, σ2(x), in Eq. (3.4) is the aleatoric

uncertainty that represents the inherent noise in the data and is considered irreducible.

The second term (in the square brackets) in Eq. (3.4) is the epistemic uncertainty,

that quantifies the modeling uncertainty.

In this work, the aleatoric uncertainty is learned via the BNN model along with the

charge densities ρ. Therefore, for each input x, the BNN learns two outputs: fw
N (x)

and σ(x). For a Gaussian likelihood, the noise σ is learned through the likelihood
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term of the loss function Eq. (3.3) following [221] as:

logP (D|w) =

Nd∑
i=1

−1

2
log σ2

i −
1

2σ2
i

(fw
N (xi)− ρi)2 . (3.5)

Here, Nd is the size of the training data set. The aleatoric uncertainty, σ, enables

the loss to adapt to the data. The network learns to reduce the effect of erroneous

labels by learning a higher value for σ2, which makes the network more robust or less

susceptible to noise. On the other hand, the model is penalized for predicting high

uncertainties for all points through the log σ2 term.

The epistemic uncertainty is computed by evaluating the second term of Eq.(3.4), via

sampling ŵj from the variational posterior.

3.3.7 Transfer Learning using multi-scale data

Conventional DFT simulations for smaller systems are considerably cheaper than

those for larger systems, as the computational cost scales cubically with the number

of atoms present in the simulation cell. However, the ML models cannot be trained

using simulation data from small systems alone. This is because, smaller systems are

far more constrained in the number of atomic configurations they can adopt, thus lim-

iting their utility in simulating a wide variety of materials phenomena. Additionally,

the electron density from simulations of smaller systems differs from that of larger
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systems, due to the effects of periodic boundary conditions.

To predict accurately across all length scales while reducing the cost of training data

generation via DFT simulations, we use a transfer learning approach here. Transfer

learning is a machine learning technique where a network, initially trained on a sub-

stantial amount of data, is later fine-tuned on a smaller dataset for a different task,

with only the last few layers being updated while the earlier layers remain unaltered

[15, 186]. The initial layers (called “frozen layers”) capture salient features of the

inputs from the large dataset, while the re-trained layers act as decision-makers and

adapt to the new problem.

Transfer learning has been used in training neural network potentials, first on Den-

sity Functional Theory (DFT) data, and subsequently using datasets generated using

more accurate, but expensive quantum chemistry models [222]. However, its use in

predicting electronic structure, particularly, by leveraging the multi-scale aspects of

the problem — as done here — is novel. Furthermore, the present transfer learning

approach leverages the statistical dissimilarity in data distributions between various

systems and the largest system. This process is employed to systematically select the

training data, ultimately reducing reliance on heuristics, as detailed in the supple-

mental material (see Fig. B.5). This approach allows us to make electron density

predictions across scales and system configurations, while significantly reducing the

cost of training data generation.
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In the case of aluminum, at first, we train the model using a large amount of data from

DFT simulations of (smaller) 32-atom systems. Subsequently, we freeze the initial

one-third layers of the model and re-train the remaining layers of the model using a

smaller amount (40%) of data from simulations of (larger) 108-atom systems. Further

training using data from larger bulk systems was not performed, since the procedure

described above already provides good accuracy (Figs. 3.4,3.10), which we attribute

to the statistical similarity of the electron density of 108 atom systems and those

with more atoms (Fig.B.5 of the supplemental material). A similar transfer learning

procedure is used for the SiGe model, where we initially train with data from 64-atom

systems and subsequently retrain using data from 216-atom systems. Overall, due

to the non-linear data generation cost using DFT simulations, the transfer learning

approach reduces training data generation time by over 50%.

3.3.8 Postprocessing of ML predicted electron density

One way to test the accuracy of the ML models is to compute quantities of interest

(such as the total ground state energy, exchange-correlation energy, and Fermi level)

using the predicted electron density, ρML. Although information about the total

charge in the system is included in the prediction, it is generally good practice to first

re-scale the electron density before postprocessing [50, 177], as follows:
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ρscaled (r) = ρML(r)
Neˆ

Ω

ρML(r)dr
. (3.6)

Here, Ω is the periodic supercell used in the calculations, and Ne is the number of

electrons in the system. Using this scaled density, the Kohn-Sham Hamiltonian is set

up within the SPARC code framework, which was also used for data generation via

AIMD simulations [204, 205, 206]. A single step of diagonalization is then performed,

and the energy of the system is computed using the Harris-Foulkes formula [126, 127].

The errors in predicting ρML(r), and the ground state energy thus calculated, can be

seen in Fig. 3.4. More detailed error values can be found in Table B.4 and Table B.5

in the supplemental material.
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Chapter 4

Conclusions, Discussions and

Future directions

Electronic structure prediction of quasi one dimensional materials: This work pro-

poses a machine learning model, which predicts electronic fields of quasi-one-

dimensional materials under torsional and axial loads. We have demonstrated the

utility of the technique by predicting the electron density and the nuclear pseu-

docharges for armchair carbon nanotubes as a function of the tube geometry and

applied strains. The data generation process of the ML model uses a specialized sym-

metry adapted version of Kohn-Sham Density Functional Theory that is particularly

well suited for the problem geometries and loading conditions considered here. The

machine learning model has several salient features as we now summarize. First, to

91



populate the input space, quasi–random low–discrepancy sequences (Sobol sequence)

are employed and DFT simulations are performed at these inputs to generate the

data for training of the machine learning model. This strategy allows for obtain-

ing an accurate machine learning model with a minimal number of data points (123

training simulations in this case). Second, a two–step approach is taken to predict

electronic fields. This involves dimensionality reduction of electronic fields followed

by supervised learning in the reduced space. This two–step approach enables ac-

curate prediction of high–dimensional electronic fields. The proposed ML model is

remarkably accurate even for test cases with geometry and loading conditions that

were not seen by the model during training. Moreover, the ML model is several or-

ders of magnitude faster than the specialized, efficient Helical DFT technique used

here for data generation. Third, a new technique based on a density–based clustering

approach is developed to determine the atomic coordinates from the nuclear pseu-

docharges field predicted by the machine learning model. The atomic coordinates so

obtained, are used to compute the non-local part of pseudopotentials that appear in

the Kohn-Sham Hamiltonian, which would not have been possible otherwise. The

electronic fields predicted by the machine learning model are postprocessed to obtain

band structures, bandgaps, total energies, and various energy components.

We anticipate that machine learning models of the type developed here, will find use

in computational investigations of strain engineering in low-dimensional systems and

the multiscale modeling of the electromechanical response of such systems. One of the
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key advantages of the current ML model is its incorporation of symmetries commonly

associated with quasi-one-dimensional systems, which makes it easier to explore the

composition-structure space of such materials [78, 79]. Therefore, we anticipate that

in conjunction with techniques for DFT calculations of large scale systems [150, 223],

the current ML model and its extensions are likely to help in the exploration of

novel phases of chiral matter [224] and compositionally complex nanotubes [225].

Development of machine learning models that can capture atomic species specific

features, as well as ones that can perform the post-processing steps associated with

calculations of quantities such as energy components and band diagrams, serve as

worthy directions for future research.

Electronic structure model for multi-million atom systems: We have developed an

uncertainty quantification (UQ) enabled machine learning (ML) model that creates a

map from the descriptors of atomic configurations to the electron densities. We use

simple scalar product-based descriptors to represent the atomic neighborhood of a

point in space. These descriptors, while being easy to compute, satisfy translational,

rotational, and permutational invariances. In addition, they avoid any handcrafting.

We systematically identify the optimal set of descriptors for a given dataset. Once

trained, our model enables predictions across multiple length scales and supports

embarrassingly parallel implementation. As far as we can tell, our work is the first

attempt to systematically quantify uncertainties in ML predicted electron densities

across different scales relevant to materials physics. To alleviate the high cost of
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training data generation via KS-DFT, we propose a two-pronged strategy: i) we use

thermalization to comprehensively sample system configurations, leading to a highly

transferable ML model; and ii) we employ transfer learning to train the model using

a large amount of inexpensively generated data from small systems while retraining

a part of the model using a small amount of data from more expensive calculations

of larger systems. The transfer learning procedure is systematically guided by the

probability distributions of the data. This approach enables us to determine the

maximum size of the training system, reducing dependence on heuristic selection. As

a result of these strategies, the cost of training data generation is reduced by more

than 50%, while the models continue to be highly transferable across a large variety

of material configurations. Our use of Bayesian Neural Networks (BNNs) allows the

uncertainty associated with these aforementioned strategies to be accurately assessed,

thus enabling confident predictions in scenarios involving millions of atoms, for which

ground-truth data from conventional KS-DFT calculations is infeasible to obtain.

Overall, our ML model significantly decreases the reliance on heuristics used by prior

researchers, streamlining the process of ML-based electronic structure prediction and

making it more systematic.

We demonstrate the versatility of the proposed machine learning models by accurately

predicting electron densities for multiple materials and configurations. We focus on

bulk aluminum and Silicon-Germanium alloy systems. The ML model shows remark-

able accuracy when compared with DFT calculations, even for systems containing
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thousands of atoms. In the future, a similar model can be developed to test the

applicability of the present descriptors and ML framework for molecules across struc-

tural and chemical space [226, 227, 228, 229]. As mentioned above, the ML model

also has excellent generalization capabilities, as it can predict electron densities for

systems with localized and extended defects, and varying alloy compositions, even

when the data from such systems were not included in the training. It is likely that

the ensemble averaging over model parameters in the BNNs, along with comprehen-

sive sampling of the descriptor space via system thermalization together contribute

to the model generalization capabilities. Our findings also show a strong agreement

between physical parameters calculated from the DFT and ML electron densities (e.g.

lattice constants and bulk moduli).

To rigorously quantify uncertainties in the predicted electron density, we adopt a

Bayesian approach. Uncertainty quantification by a Bayesian neural network (BNN)

is mathematically well-founded and offers a more reliable measure of uncertainty in

comparison to non-Bayesian approaches such as the method of ensemble averaging.

Further, we can decompose the total uncertainty into aleatoric and epistemic parts.

This decomposition allows us to distinguish and analyze the contributions to the un-

certainty arising from (i) inherent noise in the training data (i.e. aleatoric uncertainty)

and (ii) insufficient knowledge about the model parameters due to the lack of infor-

mation in the training data (i.e. epistemic uncertainty). The aleatoric uncertainty or

the noise in the data is considered irreducible, whereas the epistemic uncertainty can
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be reduced by collecting more training data. As mentioned earlier, the UQ capability

of the model allows us to establish an upper bound on the uncertainty caused by two

key heuristic strategies present in our ML model, namely, data generation via the

thermalization of systems and transfer learning.

The reliability of the ML models is apparent from the low uncertainty of its predic-

tion for systems across various length-scales and configurations. Furthermore, the

magnitude of uncertainty for the million-atom systems is similar to that of smaller

systems for which the accuracy of the ML model has been established. This allows

us to have confidence in the ML predictions of systems involving multi-million atoms,

which are far beyond the reach of conventional DFT calculations.

The ML model can achieve a remarkable speed-up of more than two orders of mag-

nitude over DFT calculations, even for systems involving a few hundred atoms. As

shown here, these computational efficiency gains by the ML model can be further

pushed to regimes involving multi-million atoms, not accessible via conventional KS-

DFT calculations.

In the future, we intend to leverage the uncertainty quantification aspects of this

model to implement an active learning framework. This framework will enable us to

selectively generate training data, reducing the necessity of extensive datasets and

significantly lowering the computational cost associated with data generation. More-

over, we anticipate that the computational efficiencies offered via the transfer learning
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approach, are likely to be even more dramatic while considering more complex mate-

rials systems, e.g. compositionally complex alloys [230, 231].
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Chapter 5

Publications and Presentations

Published articles

† Pathrudkar, S., Yu, H. M., Ghosh, S., & Banerjee, A. S. (2022). Machine

learning based prediction of the electronic structure of quasi-one-dimensional

materials under strain. Physical Review B, 105(19), 195141.

† Yadav, U., Pathrudkar, S., & Ghosh, S. (2021). Interpretable machine learn-

ing model for the deformation of multiwalled carbon nanotubes. Physical Re-

view B, 103(3), 035407.

† Yadav, U., Pathrudkar, S., & Ghosh, S. (2021, November). Deformation

Manifold Learning Model for Deformation of Multi-Walled Carbon Nano-Tubes:

Exploring the Latent Space. In ASME International Mechanical Engineering
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Congress and Exposition (Vol. 85680, p. V012T12A010). American Society of

Mechanical Engineers.

Articles in review

† S. Pathrudkar, P. Thiagarajan, S. Agarwal, A. S. Banerjee, and S. Ghosh, “Elec-

tronic structure prediction of multi-million atom systems through uncertainty

quantification enabled transfer learning”, Under second round of review in npj

Computational Materials. arXiv preprint arXiv:2308.13096 (2023).

Conference Presentations

† Pathrudkar, S., Thiagarajan, P., Agarwal, S., Banerjee, A. S., & Ghosh, S.,

Title: Predicting the electronic structure of Large-Scale Bulk Metallic Systems

using Machine Learning Conference: 17th U. S. National Congress on Compu-

tational Mechanics, Albuquerque, New Mexico, July, 2023

† Pathrudkar, S., Thiagarajan, P., Agarwal, S., Banerjee, A. S., & Ghosh, S.,

Title: Predicting the electron density of bulk metals and alloys at large scales

using machine learning Workshop: USACM, Data-Driven and Computational

Modeling of Materials Across Scales, Los Angeles, California, May, 2023

† Pathrudkar, S., Yadav, U., & Ghosh, S., Title: A Manifold Learning Model for

the Deformation of Multiwalled Carbon Nanotubes under Torsion and Bending.
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Conference: 10th International Conference on Multiscale Materials Modeling

(MMM10), Baltimore, Maryland, October, 2022

† Pathrudkar, S., Yu, H. M., Ghosh, S., & Banerjee, A. S., Title: Machine learning

based prediction of the electronic structure of quasi-one-dimensional materials

under strain Conference: 19th U.S. National Conference for Theoretical and

Applied Mechanics (USNC/TAM), Austin, Texas, June, 2022
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[166] G. Csányi, T. Albaret, M. Payne, and A. De Vita, ““learn on the fly”: A hybrid

classical and quantum-mechanical molecular dynamics simulation,” Physical

review letters, vol. 93, no. 17, p. 175503, 2004.

[167] J. Behler and M. Parrinello, “Generalized neural-network representation of

high-dimensional potential-energy surfaces,” Physical review letters, vol. 98,

no. 14, p. 146401, 2007.

[168] A. Seko, A. Takahashi, and I. Tanaka, “Sparse representation for a potential

energy surface,” Physical Review B, vol. 90, no. 2, p. 024101, 2014.

[169] H. Wang, L. Zhang, J. Han, and E. Weinan, “Deepmd-kit: A deep learning

package for many-body potential energy representation and molecular dynam-

ics,” Computer Physics Communications, vol. 228, pp. 178–184, 2018.

[170] C. Chen and S. P. Ong, “A universal graph deep learning interatomic potential

for the periodic table,” Nature Computational Science, vol. 2, no. 11, pp. 718–

728, 2022.

[171] R. Freitas and Y. Cao, “Machine-learning potentials for crystal defects,” MRS

Communications, vol. 12, no. 5, pp. 510–520, 2022.

[172] A. M. Lewis, A. Grisafi, M. Ceriotti, and M. Rossi, “Learning electron densities

in the condensed phase,” Journal of Chemical Theory and Computation, vol. 17,

no. 11, pp. 7203–7214, 2021.

128



[173] P. B. Jørgensen and A. Bhowmik, “Equivariant graph neural networks for fast

electron density estimation of molecules, liquids, and solids,” npj Computational

Materials, vol. 8, no. 1, p. 183, 2022.

[174] L. Fiedler, N. A. Modine, S. Schmerler, D. J. Vogel, G. A. Popoola, A. P.

Thompson, S. Rajamanickam, and A. Cangi, “Predicting electronic structures

at any length scale with machine learning,” npj Computational Materials, vol. 9,

no. 1, p. 115, 2023.

[175] B. Deng, P. Zhong, K. Jun, J. Riebesell, K. Han, C. J. Bartel, and G. Ceder,

“Chgnet as a pretrained universal neural network potential for charge-informed

atomistic modelling,” Nature Machine Intelligence, vol. 5, no. 9, pp. 1031–1041,

2023.

[176] T. W. Ko and S. P. Ong, “Recent advances and outstanding challenges for

machine learning interatomic potentials,” Nature Computational Science, pp. 1–

3, 2023.

[177] S. Pathrudkar, H. M. Yu, S. Ghosh, and A. S. Banerjee, “Machine learning

based prediction of the electronic structure of quasi-one-dimensional materials

under strain,” Physical Review B, vol. 105, no. 19, p. 195141, 2022.

[178] G. Arora, A. Manzoor, and D. S. Aidhy, “Charge-density based evaluation and

prediction of stacking fault energies in ni alloys from dft and machine learning,”

Journal of Applied Physics, vol. 132, no. 22, 2022.

129



[179] B. Medasani, A. Gamst, H. Ding, W. Chen, K. A. Persson, M. Asta, A. Canning,

and M. Haranczyk, “Predicting defect behavior in b2 intermetallics by merging

ab initio modeling and machine learning,” npj Computational Materials, vol. 2,

no. 1, p. 1, 2016.

[180] Y. S. Teh, S. Ghosh, and K. Bhattacharya, “Machine-learned prediction of the

electronic fields in a crystal,” Mechanics of Materials, vol. 163, p. 104070, 2021.

[181] C. D. Aiello, J. M. Abendroth, M. Abbas, A. Afanasev, S. Agarwal, A. S.

Banerjee, D. N. Beratan, J. N. Belling, B. Berche, A. Botana, et al., “A chirality-

based quantum leap,” ACS nano, vol. 16, no. 4, pp. 4989–5035, 2022.

[182] H. M. Yu and A. S. Banerjee, “Density functional theory method for twisted

geometries with application to torsional deformations in group-iv nanotubes,”

Journal of Computational Physics, vol. 456, p. 111023, 2022.

[183] S. Agarwal and A. S. Banerjee, “Solution of the schrodinger equation

for quasi-one-dimensional materials using helical waves,” arXiv preprint

arXiv:2210.12252, 2022.

[184] C. Woodward and S. Rao, “Flexible ab initio boundary conditions: Simulating

isolated dislocations in bcc mo and ta,” Physical review letters, vol. 88, no. 21,

p. 216402, 2002.

[185] V. Gavini, K. Bhattacharya, and M. Ortiz, “Vacancy clustering and prismatic

130



dislocation loop formation in aluminum,” Physical Review B, vol. 76, no. 18,

p. 180101, 2007.

[186] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He, “A

comprehensive survey on transfer learning,” Proceedings of the IEEE, vol. 109,

no. 1, pp. 43–76, 2020.

[187] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight uncer-

tainty in neural network,” in International conference on machine learning,

pp. 1613–1622, Proceedings of Machine Learning Research, 2015.

[188] P. Thiagarajan and S. Ghosh, “Jensen-shannon divergence based novel loss

functions for bayesian neural networks,” arXiv preprint arXiv:2209.11366, 2022.

[189] B. Settles, “Active learning literature survey,” 2009.

[190] H. Huo and M. Rupp, “Unified representation of molecules and crystals for

machine learning,” Machine Learning: Science and Technology, vol. 3, no. 4,

p. 045017, 2022.
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[227] A. P. Bartók, S. De, C. Poelking, N. Bernstein, J. R. Kermode, G. Csányi, and
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[230] Y. Ikeda, B. Grabowski, and F. Körmann, “Ab initio phase stabilities and me-

chanical properties of multicomponent alloys: A comprehensive review for high

entropy alloys and compositionally complex alloys,” Materials Characterization,

vol. 147, pp. 464–511, 2019.

[231] E. P. George, D. Raabe, and R. O. Ritchie, “High-entropy alloys,” Nature

reviews materials, vol. 4, no. 8, pp. 515–534, 2019.

[232] P. Liashchynskyi and P. Liashchynskyi, “Grid search, random search, genetic

algorithm: a big comparison for nas,” arXiv preprint arXiv:1912.06059, 2019.

137



[233] X. Glorot, A. Bordes, and Y. Bengio in Proceedings of the fourteenth interna-

tional conference on artificial intelligence and statistics, pp. 315–323, 2011.

[234] X. Glorot and Y. Bengio in Proceedings of the thirteenth international conference

on artificial intelligence and statistics, pp. 249–256, 2010.

[235] L. Prechelt, Early Stopping — But When?, pp. 53–67. Springer, 2012.

[236] W. S. Sarle, “Stopped training and other remedies for overfitting,” Computing

science and statistics, pp. 352–360, 1996.
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Appendix A

Chapter 2 - Supplementary

material

A.1 Data Generation

Data generation for Machine Learning: We use the following bounds for the

input space in order to generate the data: Ravg ∈ [20.32 , 101.60 ] Bohr, α ∈ [0, 0.0025]

and τ ∈ [4.4052, 4.8052] Bohr. This corresponds to choosing armchair CNTs with

cyclic symmetry group orders between 16 and 80, i.e., with radii in the experimentally

relevant 1 to 5 nanometer range. The increments in α and τ are 0.0005 and 0.1 Bohr,

respectively. The maximum applied torsional strain of about 3.86 degrees/nm —
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close to the regime in which torsional instabilities may start to appear [79], and

the maximum axial strain considered here is about 4.3%. Helical DFT simulations

were performed in the input space following Sobol sequencing. Note that, the Sobol

sequence would not always generate a sample point that is feasible for simulations,

given the discrete nature of the nanotube radius. For such cases, we have carried out

simulations at the nearest feasible value of Ravg and strain parameters.

To achieve the desired accuracy in the prediction of the electronic fields with the

minimum number of DFT simulations we start with a set of points guided by the

Sobol sequence. Subsequently, we add simulations in smaller sets (referred to as Sobol

sets here) to the training data, till we attain the desired accuracy in the prediction

of electronic fields. Our first set consists of 85 simulations followed by 48 and 31

simulations in the second and third sets, respectively. As mentioned in Section 2.3.1

these three sets of simulations successively refine the input space. Fig. A.1 shows

NRMSE for test data obtained when the ML model was trained using these three

Sobol sets cumulatively. The first bar denotes test set NRMSE when only set I (85

data points) was used; the second bar denotes test set NRMSE when sets 1 and 2

(85+48 data points) were used; the third bar denotes test set NRMSE when sets 1,2

and 3 (85+48+31 data points) were used. Note that for each of these cases, 15% of

the data available to the ML model was used for testing.
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Figure A.1: Mean of NRMSE for test data when the machine learning
model is trained using Sobol sets. (Left) Error bars for ρ, (Right) Error bars
for b.

A.2 Training of Neural Networks

The Learning curves for the neural networks N1 (for ρ) and N2 (for b) are presented

in Fig. A.2. The loss function used to train the neural networks is computed on

CoPCs and is given in Eq. A.1 below.
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Figure A.2: (a) Learning curve for N1, (b) Learning curve for N2.
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Hyperparameter Optimization and Regularization

The proposed machine learning model contains various parameters associated with

the NNs that can affect the model’s overall accuracy and performance. In particular,

so-called hyperparameters associated with controlling the learning process need to be

tuned. Important hyperparameters for our model include the architectures for NNs,

the activation function, the learning rate, and the number of iterations. We discuss

each of these below.

Architecture: The predictive capability of a NN and the accuracy obtained in the

prediction depends on the number of hidden layers and the number of neurons in the

hidden layers. We optimized the number of hidden layers and number of neurons per

layer using the grid search method [232]. Fig. A.3 shows the test error for N1 and

N2 trained for varying number of layers and varying number of nodes per layer. For

N1, six layers of 150 neurons each yielded the least test error, and for N2, two layers

of 150 neurons each yielded the least test error.

Activation Function: We used Rectified Linear Unit (ReLU) as an activation func-

tion for both neural networks N1 and N2. This choice avoids problems of vanishing or

exploding gradients encountered by other common activation functions like Sigmoid,

Tanh [233, 234].

Learning Rate: The learning rate was set to 0.001 as suggested in [129]. Other

parameters pertinent to the Adam optimizer were set at suggested values [129] based
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Figure A.3: (Top) Test error (×10−5) for various architectures of N1

(trained for ρ), (Bottom) Test error (×10−4) for various architectures of
N2 (trained for b.)

on good results for other machine learning problems (β1 = 0.9, β2 = 0.999, ϵ = 10−8).

Number of Iterations: In order to avoid overfitting and help ensure good general-

ization performance of the ML model, we used early stopping [235, 236]. We stopped

the training when the validation loss does not improve over a specific number of pa-

tience epochs. We employed patience epochs of 1000, and the maximum number of

epochs was set to 200000.

Elastic net regularization: Along with early stopping, we used elastic net regu-

larization to avoid overfitting. This technique is a combination of L1 and L2 regu-

larization methods [128], and overcomes the individual drawbacks of each. The loss
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function including L1 and L2 regularization can be written as:

J̃ (y,N (x, w̄)) = J (y,N (x, w̄)) + λ1||w̄||1+λ2||w̄||2 , λ1, λ2 ∈ R . (A.1)

Here, J (y,N (x, w̄)) is the mean squared error over the true outputs y and the neural

network (N ) predicted outputs y′ = N (x, w̄). Furthermore, w̄ are the weights and

biases of N , x is the input, and ||w̄||1 and ||w̄||2 are the L1 and L2 regularization

terms, respectively. We have used λ1 = λ2 = 10−5 for both N1 and N2.

A.3 Comparison of the Clustering and Neural

Network Approaches to Obtaining the Nu-

clear Coordinates

We compare our clustering based approach to determine atomic coordinates with a

neural network that was trained to predict the atomic coordinates directly from the

inputs : Ravg, α and τ . We found that the error (distance between actual atomic co-

ordinates and predicted atomic coordinates) was significantly higher in the case of the

neural network model than the DBSCAN based approach proposed here. The errors
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in atomic coordinates using the neural network approach and our clustering approach

are shown in Fig A.4. The superior performance of the clustering based approach

is likely related to the ability of the method to make use of the specific structure of

the b field (i.e., it is the superposition of a set of non-overlapping, atom-centered,

spherically symmetric charge distributions), as opposed to the neural network model

which does not incorporate such information.
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Figure A.4: Error in predicted atomic coordinates (in Bohr), i.e., the dis-
tance between true and predicted nucleus positions, using a neural network
and the DBSCAN based clustering approach.
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X 10-4

ba c d

X 10-4

Figure B.1: Uncertainty quantification for a 256 atom aluminum system
with mono vacancy defect. From left: i) ML prediction of the electron
density shown on the defect plane, ii) Epistemic uncertainty iii) Aleatoric
uncertainty iv) Uncertainty shown on the black dotted line from the ML
prediction slice. The uncertainty represents the bound ±3σ, where, σ is the
total uncertainty.
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Figure B.2: Uncertainty quantification Si0.5Ge0.5 system containing 216
atoms. (a) ML prediction of the electron density, (b) Epistemic Uncertainty
(c) Aleatoric Uncertainty (d) Total Uncertainty shown along the dotted line
from the ML prediction slice. The uncertainty represents the bound ±3σtotal,
where, σtotal is the total uncertainty.

x 10-3 x 10-3

Figure B.3: (Left) Total uncertainty for the Al system (∼ 4.1 million
atoms) shown in Fig. 3.8(a) of the main text. (Right) Total uncertainty for
the SiGe system (∼ 1.4 million atoms) shown in Fig. 3.8(b) of the main text
(right).

a b

Figure B.4: Histogram showing the distribution of charge density (ρ) for
(a) aluminum and (b) SiGe.
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Figure B.5: (a-d) Comparison of the histograms of electron density of alu-
minum for the largest system with that of smaller systems. The shaded
green areas show the difference between the histograms. The largest alu-
minum system has 1372 atoms, whereas the smaller systems have 32, 108,
256, and 500 atoms. e) Kullback–Leibler (KL) divergence between the prob-
ability distributions corresponding to the histograms in a-d and that of the
largest system. The values of the KL divergence decreases with the increase
in system size.

B.1 Efficient generation of atomic neighborhood

descriptors

The atomic neighborhood descriptors to encode the atomic neighborhood of the grid

point are ||ri −RJ || and (ri−RK)·(ri−RS)
||ri−RK || ||ri−RS ||

, as described in the section 3.3 of the main

text. Our implementation of descriptor generation employs a tree data structure to

reduce computational complexity and is outlined as a pseudocode in Algorithm 1.

The descriptors described above satisfy the following conditions outlined in [190] and

[237]: (i) invariance with respect to rotations and translations of the system (ii)

invariance with respect to the permutation of atomic indices, i.e., the descriptors are

independent of the enumeration of the atoms. (iii) for a given atomic neighborhood,

the descriptors are unique. (iv) the descriptors encode the atomic neighborhood
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effectively while keeping the overall count low. (v) the descriptors generation process

is computationally inexpensive and uses standard linear algebra operations.

Algorithm 1 Generation of Descriptors

M = Number of nearest neighbor atoms to compute distances
Ma = Number of nearest neighbor atoms to compute angles
k = Number of angles obtained for each Ma atoms
Build supercell by extending unit cell in all directions
KDTree = K-D tree for atoms in supercell
for g do ▷ g: grid point

D ← distances to M nearest atoms from g using K-D tree
for j = 1 to Ma do

ai ▷ coordinates of ith nearest atom from g using K-D tree
v1 ← ai − g
for j = 1 to k do

Aj ▷ coordinates of jth nearest atom from ai

v2 ← Aj − g
Aij ← v1·v2

||v1|| ||v2||
end for

end for
A ← flatten(A)
descriptors ← [D,A]

end for
Note: Inner two for loops are vectorized and Outermost for is parallelized in the
implementation

Descriptors are obtained by implementing a parallelized version of Algorithm 1. In

the case of SiGe systems, instead of explicitly encoding the species information, we

follow [44] and concatenate the descriptors obtained for Si and Ge, to form inputs

to the neural network. To encode the relative placement of Si and Ge atoms with

respect to each other, we also consider the cosine of angles between Si and Ge atoms

formed at the grid point for the SiGe case.
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B.2 Computational Efficiency

Computational time comparison between DFT calculation and ML prediction is given

in tables B.1 and B.2 for aluminum and SiGe, respectively. DFT calculations were

performed using CPUs, whereas the ML predictions used a combination of GPU

(inference step) and CPU (descriptor generation) resources.

The primary contributor to ML prediction time is descriptor generation, constituting

the majority of the computational effort and the remaining time is neural network

inference (See Tables B.1 and B.2). Given that neural network inference is well-

suited for GPU execution and is commonly performed on GPUs, our assessment of

parallelization performance focuses on descriptor generation time. In Figure B.6, we

present the parallelization performance of descriptor generation for the Aluminum

system with 500 atoms. This parallelization was executed using the MATLAB’s

’parfor’ function on NERSC Perlmutter CPUs and we observe 66.6% strong scaling

for 64 processors.

The DFT and ML calculations presented in this work were performed through a

combination of resources, namely, desktop workstations, the Hoffman2 cluster at

UCLA’s Institute of Digital Research and Education (IDRE), the Applied Computing

GPU cluster at MTU, and NERSC’s supercomputer, Perlmutter. Every compute
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node of the Hoffman2 cluster has two 18-core Intel Xeon Gold 6140 processors (24.75

MB L3 cache, clock speed of 2.3 GHz), 192 GB of RAM and local SSD storage. Every

compute node on Perlmutter has a 64-core AMD EPYC 7763 processor (256 MB L3

cache, clock speed of 2.45 GHz), 512 GB of RAM and local SSD storage. The GPU

resources on Perlmutter consist of NVIDIA A100 Tensor Core GPUs. The GPU nodes

used at UCLA and MTU consist of Tesla V100 GPUs.

Large system generation: The million atom systems presented were generated by re-

peating one of the available test systems in all three directions and adding random

perturbations in the atomic coordinates for each atom in the resulting system. This

process ensures that the million-atom system is distinct from the smaller system em-

ployed in its generation and that the atomic neighborhoods generated within the

million-atom system are not identical to those in the smaller system. Additionally, it

is noteworthy that the systems replicated to achieve the million-atom configurations

are entirely excluded from the training dataset (e.g. in the case of Aluminum, 1372

atom system was employed to generate the 4.1 million-atom system, while the training

process utilized 32 and 108 atom systems. In the case of SiGe, a 512 atom system was

used to generate the 1.4 million atom system). The perturbations used were sampled

from a normal distribution with a zero mean and a 0.1 Bohr standard deviation. The

choice of standard deviation was deliberate, aiming to prevent impractical distances

between atoms and ensure realistic configurations.
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Large system calculations: We present electron density calculation for Al and SiGe

systems, each with an excess of a million atoms, in Fig. 3.8(a) and Fig. 3.8(b) of

the main text, respectively. To predict the charge density while avoiding memory

overload issues, we partition these multi-million atom systems into smaller systems,

while retaining the atomic neighborhood information consistent with the larger orig-

inal systems. In the case of aluminum, we break down the 4.1M atom system into

smaller units comprising 1372 atoms and a grid consisting of 1753 points. Compu-

tation of descriptors for this 1372-atom chunk takes approximately 34.72 seconds on

a desktop workstation system equipped with a 36-core Intel(R) Xeon(R) Gold 5220

CPU @ 2.20GHz. Subsequently, the charge density prediction requires approximately

1.6 seconds on an Nvidia V100 GPU. Overall, the charge density prediction for the

4.1M Al system takes around 30.72 hours of wall time on combined CPU and GPU

resources.

Analogously, for SiGe, we partition the 1.4M atom system into smaller systems com-

posed of 1000 atoms and a grid with dimensions of 1323 points. The computation of

descriptors for this 1000-atom SiGe chunk requires 22.17 seconds on the aforemen-

tioned desktop system. The subsequent charge density prediction takes approximately

1.1 seconds. Overall, it takes around 6.8 hours of wall time on combined CPU and

GPU resources, to predict the electron density of the SiGe system with 1.4M atoms.

Thus, the techniques described here make it possible to routinely predict the electronic
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structure of systems at unprecedented scales, while using only modest resources on

standard desktop systems.

Number of Atoms 32 108 256 500
DFT Time (CPU) 466 11560 112894 245798

ML
Time

Descriptor Generation 43.25 151.52 367.54 739.58
ρ Prediction (CPU) 2.76 9.67 23.46 47.20
ρ Prediction (GPU) 0.60 0.64 0.75 0.99
Total (With GPU) 43.85 152.16 368.29 740.57

DFT time / Total ML time 10.63 75.97 306.53 331.90

Table B.1
Comparison of DFT and ML wall times for prediction of electron density
for an aluminum system. All times are in seconds. The DFT calculations
were performed on Hoffman CPUs, ML descriptor generation was done on
Hoffman CPUs, and the ML inference was performed on Tesla V100 GPUs.

Number of Atoms 64 216 512 1000
DFT Time 185 4774 51247 281766

ML
Time

Descriptor Generation 38.82 115.23 291.45 611.2
ρ Prediction (CPU) 2.22 7.37 17.37 33.05
ρ Prediction (GPU) 0.50 0.62 0.75 0.89
Total (With GPU) 39.32 115.85 292.20 612.09

DFT time / Total ML time 4.70 41.21 175.38 460.33

Table B.2
Comparison of DFT and ML wall times for prediction of electron density
for a SiGe system. All times are in seconds. The DFT calculations were
performed on Perlmutter CPUs, ML descriptor generation was done on
Perlmutter CPUs and the ML inference was performed on Tesla V100

GPUs.
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Figure B.6: Speedup of ML prediction time with respect to number of
processors (strong parallel scaling). The plot is shown for a 500 atom Alu-
minum system. Speedup is obtained with reference to 1 processor. The
computation was performed on NERSC Perlmutter CPUs.

B.3 Feature Convergence Analysis

Algorithm 2 and Algorithm 3 describe the process used to obtain the optimal number

of descriptors. In algorithm 2 only distances (set I) are considered as descriptors. The

size of the set I (i.e. M) is selected for which the RMSE for the test dataset converges.

As an illustration, for the aluminum systems, following algorithm 2 we use an incre-

ment of m = 10. The algorithm converges to M = 60 as seen in Fig. 3.11 of the

main text. Therefore, the set I consists of 60 descriptors. Next, Set II descriptors

consist of angles subtended at the grid point by a pair of atoms taken from the set

of M neighboring atoms in the set I determined by algorithm 2. Each pair of the

neighboring atoms forms an angle at the grid point, yielding a total of M(M − 1)/2
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Algorithm 2 Optimal nearest neighbors

M = 0 ▷ Initialization
ϵ0 = ϵ−m = δ1 = δ2 = A large number ▷ Initialization
η = tolerance in RMSE
while δ1 ≥ η & δ2 ≥ η do

M =M +m ▷ Increase M by m ∈ Z+

Nset I ←M ▷ M nearest atoms
N ← Nset I ▷ Only set I descriptors
Compute N descriptors
Train fN ▷ Train the BNN
ϵM ← RMSE ▷ Compute RMSE
δ1 ← |ϵM − ϵM−m|
δ2 ← |ϵM − ϵM−2m|

end while
M =M − 2m

angles, which quickly becomes computationally intractable with increasing M . To

alleviate this issue, we reduce the number of Set II descriptors by eliminating large

angles, which are not expected to play a significant role. This amounts to choosing

angles originating from Ma < M atoms closest to the grid point, and the k− nearest

neighbors of each of these atoms. This yields a total of Ma× k angle descriptors. For

various fixed values of k, we iteratively chooseMa till the RMSE over the test dataset

converges (Fig. 3.11 of the main text).

Following algorithm 3 we use an increment of m = 5. Fig. 3.11 of the main text shows

the convergence plot for angles for k = 2, 3, and 4. For M = 60, the RMSE value is

the minimum for k = 3. The RMSE value for k = 3 converges at Ma = 15, which

results in a total of Ma × k = 45 angles. Therefore, set II consists of 45 descriptors.

To summarize, following the present feature selection strategy, the total number of

descriptors used for the aluminum model is N = Nset I +Nset II = 105.
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Algorithm 3 Optimal number of angles

k = 0 ▷ Initialization
ϵ0 = ϵ−m = δ1 = δ2 = δ3 = A large number ▷ Initialization
η = tolerance in RMSE
while δ3 ≥ η do

k = k + 1
Ma = 0
while δ1 ≥ η & δ2 ≥ η do

Ma =Ma +ma ▷ Increase Ma by ma ∈ Z+

Nset II ←Ma × k ▷ k neighbors of each of Ma nearest atoms
N ← Nset I +Nset II ▷ Number of total descriptors
Compute N descriptors
Train fN ▷ Train the BNN
ϵMa ← RMSE ▷ Compute RMSE
δ1 ← |ϵMa − ϵMa−ma |
δ2 ← |ϵMa − ϵMa−2ma |

end while
Ma =Ma − 2ma

ϵ′k ← ϵMa

δ3 ← |ϵ′k − ϵ′k−1|
end while
k = k − 1

We found that including scalar triple products and scalar quadruple products in the

descriptor, in addition to the dot products, did not improve the accuracy of the ML

model. To interpret why this is the case, we observe that the (normalized) scalar triple

product can be interpreted in terms of the corner solid angle (polar sine function)

of the parallelepiped generated by three vectors starting at the given grid point and

ending at three atoms chosen in the neighborhood of the grid point. However, this

quantity can also be calculated through the dot products between these vectors and

is, therefore, already incorporated in the second set of descriptors. Therefore, the

scalar triple product does not furnish any additional information. Similar arguments

can be made for quadruple and higher products.
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B.4 Details on Uncertainty Quantification

We provide additional results on uncertainty quantification (UQ) in this section. One

of the key advantages of the inbuilt UQ capabilities of the present ML model is that

it allows us to assess the model’s generalizability. To illustrate this, we consider

systems with defects and varying alloy compositions. The uncertainty estimates of a

model trained without any defect data in training are shown in Fig. 3.7 of the main

text. The model is more confident in its prediction of defects even if a small amount

(single snapshot) of defect data is added in training. This is evident by comparing

Fig. B.1 and main text Fig. 3.7. This result is in agreement with the fact that

unavailability or insufficient training data could yield high epistemic uncertainties at

locations where such incompleteness of data exists. In addition to high uncertainty,

the error at the defect location increases when data from systems with defects are not

used in training. This implies a positive correspondence between error and uncertainty

in the Bayesian neural network model. A similar effect of higher uncertainty for

unknown compositions is observed for the SiGe systems. Since the model is trained

only with data from SiGe systems with 50-50 composition, the uncertainties quantified

for this composition shown in Fig. B.2 is less in comparison to the prediction for 60-40

composition (Fig. 3.6(b) of the main text). However, the uncertainty for the 60-40

composition is not significantly higher than the 50-50 composition, demonstrating the

generalization capability of the ML model.
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In the following, we investigate the correlation between error and epistemic uncer-

tainty. The epistemic uncertainty is chosen since it captures the uncertainty due to

modeling error. We found positive correlations between the uncertainty and the error

for configurations that were not present in the training and therefore exhibit higher

errors. Examples include vacancies in Aluminum and alloy compositions away from

the training data, as shown in Fig. B.7. We have also observed that for systems

similar to training data, the errors as well as uncertainties are quite low, and do

not exhibit strong correlations. This indicates that for systems predicted with high

uncertainties, uncertainty values may be used to identify regions with high error.
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Figure B.7: Correlation between epistemic uncertainty and error. All three
cases show a positive correlation with R = 0.75, 0.90, 0.59, respectively. The
uncertainty values and absolute error values are normalized using the min-
max method. Each data point in the plots corresponds to uncertainty and
error values are averaged over the neighborhood that is used to compute
descriptors for the data point.

Results of uncertainty quantification ≈ 4.1 million atom aluminum system and ≈ 1.4

million atom SiGe system are shown in Fig. B.3. With an increase in system size, we

extrapolate farther away from the system size included in the training data. Despite
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this, the total uncertainty of millions of atom systems is similar to that of smaller

systems. This implies that the model can predict systems with millions of atoms with

the same level of confidence as smaller systems, which in turn assures the accuracy

of the predictions. Looking ahead, we plan to further enhance the credibility of

million-atom predictions by validating against results obtained from upcoming and

state-of-the-art techniques involving Density Functional Theory (DFT) computations

at a large scale [152, 198, 199, 238].

We found that the ML model is less confident in predicting charge densities near

the nucleus in comparison to the away from the nucleus for various systems, which

is reflected in the high values of uncertainties at those locations. We attribute this

to fewer grid points close to the nuclei, and the availability of more data away from

them. This imbalance in the data is evident from the histograms for the distribution

of charge densities shown in Fig. B.4, where grid points with low values of the electron

density — as is the case with points very close to the nuclei — are seen to be very

few.

B.5 Details on the advantages of transfer learning

As demonstrated in prior research [48] and in this work, employing data from larger

systems for training enhances the accuracy of machine learning models. However,
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Figure B.8: Comparison of (a) error and (b) training data generation time
between models with and without transfer learning.

the following question persists: what is the appropriate largest sizes of the training

system to achieve a sufficiently accurate machine learning model that works across

scales? To answer this question, we propose the following approach.

To ensure accurate predictions for bulk systems (comprising thousands or more

atoms), it is imperative that our model be trained on data that statistically resembles

such systems. Small-scale systems with only a few tens of atoms may not adequately

represent the bulk limit, primarily due to the periodicity constraints inherent in sim-

ulations. This calls for training the model using larger systems. To determine ap-

propriate training system sizes that adequately represents bulk systems, we employ

the Kullback-Leibler (KL) divergence [239]. We consider the largest available sys-

tem as the most faithful representation of bulk systems and use it to determine the

largest size of the training systems. For the case of Aluminum, a system consisting of

1372 atoms can be reliably calculated using KS-DFT and is chosen as the reference.
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Figure B.9: (i) Decrease in error and uncertainty for a larger system (1372
atom) with transfer learning. Comparison is shown between predictions by
a non-TL model trained using data only from the 32-atom system i(a-c) and
a TL model trained by transfer learning using additional data from the 108-
atom system i(d-f). The slice considered is shown in Fig. 3.6(a)(a) of the
main text. i(a and d) Error in ML prediction, i(b and e) Epistemic uncer-
tainty, i(c and f) Total uncertainty along a line, as shown in Fig. 3.6(a)(a)
of the main text. Color bars are the same for i(a) and (c), and i(b) and (d).
(ii) Bar plot showing a decrease in RMSE error and epistemic uncertainty.
ii(a) The decrease in RMSE error is 56% and ii(b) the decrease in the mean
epistemic uncertainty is 29%.

We compare the electron density distributions from various available systems against

this reference system. The KL divergence values then guide us in selecting the largest

training system needed to train a model that can accurately predict even at large
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scales (relevant to the reference system). Specifically, the largest training systems

chosen by us contain 108 atoms, as these systems are found to be sufficiently statis-

tically similar to the 1372-atom reference system (as illustrated in Fig. B.5). This

meticulous selection process guarantees that our machine learning model is accurate

at large scales while providing a judicious stopping point to our transfer learning

scheme by determining the largest system needed for training. Thus, we present an

approach that answers the question of selecting training system size and reduces the

reliance on ad hoc heuristics for doing so.

The transfer learning approach [240] significantly reduces the root-mean-square error

of a test dataset while costing much less computation for the training data generation.

To depict this, a comparison of the transfer learned model with various non-transfer

learned models is shown in Fig. B.8.

We found that transfer learning helps to reduce the error and uncertainty in prediction

for larger systems. By adding data from the 108-atom aluminum systems in training,

during the transfer learning approach, we significantly reduce the error (by 56%) and

uncertainty (by 29%) of the predictions for a 1372-atom test system in comparison

to a non-TL model trained using data only from the 32-atom systems, as shown in

Fig. B.9.
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B.6 Details on Bayesian Neural Network

Architecture: We use a Densenet [241] type architecture with three Dense blocks

for the Bayesian Neural networks in this work. Each Dense block is composed of three

hidden layers with 250 nodes per layer and a GELU activation function [242]. The skip

connections in the Densenet-type architecture are weighted by a trainable coefficient.

These skip connections have multiple advantages. Firstly, they prevent gradients from

diminishing significantly during backpropagation. Further, they facilitate improved

feature propagation by allowing each layer to directly access the feature generated

by previous layers. Finally, these skip connections promote feature reuse, thereby

substantially reducing the number of parameters. Such skip connections have been

used for electron density predictions in the literature [48].

Due to the stochastic weights of Bayesian neural networks, each weight is represented

by its mean and standard deviation. Thus, the number of parameters in a Bayesian

neural network is twice as compared to a deterministic network with the same archi-

tecture. In addition, the output of the Bayesian Neural networks used in this work

has two neurons, one for predicting the charge density (ρ) and the other for predicting

the aleatoric uncertainty (σ).
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Training Details: The parameters of the BNNs for the 32-atom Al system and 64-

atom SiGe systems were initialized randomly with values drawn from the Gaussian

distribution. The mean of the parameters were initialized with values drawn from

N (0, 0.1). The standard deviations were parameterized as σ = log(1 + exp(τ)) so

that σ is always non-negative. The parameter τ was initialized with values drawn

from N (−3, 0.1). The priors for all the network parameters were assumed to be

Gaussians: N (0, 0.1). With these initializations and prior assumptions the initial

models (i.e. model for 32-atom Al system and 64-atom SiGe system) were trained

using standard back-propagation for BNNs. The Adam optimizer [129] was used for

training and the learning rate was set to 10−3 for all the networks used in this work.

In the case of transfer learning, we freeze both the mean and standard deviation of the

initial one-third layers of the model and re-train the mean and standard deviations

of the remaining layers of the model. The prior assumptions, initialization of the

learnable parameters, and their learning procedures remained the same as described

above for the 32-atom Al and 64-atom SiGe systems. The training time for the Al

and SiGe systems are presented in Table B.3. All the Bayesian Neural networks are

trained on NVIDIA A100 Tensor Core GPUs

The amount of data used in training for the two systems is as follows:

† Al: 127 snaps from 32 atom data and in addition 25 snaps from 108 atom data.

The 108 atom data has 90× 90× 90 grid points, while the 32 atom system has
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60× 60× 60 grid points.

† SiGe: 160 snaps of 64 atom data and in addition 30 snaps of 216 atom data.

The 64 atom system has 53 × 53 × 53 grid points, while the 216 atom system

has 79× 79× 79 grid points.

System Size Epochs
Training wall time (s)
Per epoch Total

Al
32 20 906

31060
108 20 647

SiGe
64 20 651

18030
216 10 501

Table B.3
GPU Training times for the BNNs. The training was performed on the

NVIDIA Tesla A100 GPU.

Validation and Testing Details: 20% of the data from the systems used for train-

ing is used as validation data. Testing is performed on snapshots not used for training

and validation, and systems that are larger than those used for generating the training

data in order to determine the accuracy in electron density prediction.

B.7 Postprocessing results

In tables B.4 and B.5 we compare the errors in the electron densities and the ground

state energies for various Al and SiGe systems. We see errors well below the milli-

hartree per atom range for total energies, even in the presence of defects and some

degree of compositional variations — these systems being quite far from the ones used
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to generate the training data. The average L1 norm per electron between ML and

DFT electron densities for the largest available aluminum system (containing 1372

atoms — this is the largest aluminum system for which the DFT calculations could be

carried out reliably within computational resource constraints), is 1.14×10−2. In the

case of SiGe, where the largest available system consists of 1728 atoms, the average L1

norm per electron is 8.25×10−3. We observe that the errors for these largest systems

are somewhat smaller than the typical errors associated with the systems listed in

Tables B.4 and B.5, contradictory to what is anticipated. This can be attributed to

the fact that the available AIMD trajectories for larger systems are typically not long

enough (due to computational constraints) to induce significant variations in atomic

configurations with respect to the equilibrium configuration, unlike the longer AIMD

trajectories available for smaller systems. Consequently, the largest systems tested

here are more amenable to accurate prediction, resulting in lower errors.

The time for the calculation of the total energy and forces from ML-predicted densities

via postprocessing involves computation of the electrostatic, exchange correlation and

band-energy terms, and uses a single diagonalization step to compute wave-function

dependent quantities. Therefore, its computational time is similar to that of a single

self-consistent field (SCF) step in a regular DFT calculation, provided the same eigen-

solver is used. For reference, using the MATLAB version of the SPARC code [205]

on a single CPU core, the postprocessing time is about 174 seconds for a 32 atom

aluminum system while it is about 1600 seconds for 108 atoms. This also includes the
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time for computation of the Hellmann-Feynman forces. We would also like to mention

here that this postprocessing step can be significantly sped up by the ML prediction

of other relevant quantities, such as the band energy and electrostatic fields [52]. As

for the atomic forces, i.e., energy derivatives with respect to atomic coordinates, au-

tomatic differentiation of the underlying neural networks can be employed to speed

up calculations. All of these constitute ongoing and future work.

Case
Accuracy of Ground-state Exch. Corr. Fermi Max error in

electron density energy energy level eigenvalue
(L1 norm per electron) (Ha/atom) (Ha/atom) (Ha) (Ha)

Entire test data set 2.62× 10−2 2.33× 10−4 4.36× 10−4 4.61× 10−4 4.58× 10−3

Al (32 atoms) 2.27× 10−2 1.30× 10−4 1.07× 10−3 9.80× 10−4 4.10× 10−3

Al (108 atoms) 1.67× 10−2 9.33× 10−5 9.82× 10−5 1.13× 10−4 1.87× 10−3

Al (256 atoms) 3.93× 10−2 5.60× 10−4 4.18× 10−4 2.03× 10−4 6.67× 10−3

Al (500 atoms) 3.96× 10−2 4.11× 10−4 2.41× 10−4 5.04× 10−4 8.52× 10−3

Al vacancy defects 1.92× 10−2 9.80× 10−5 1.42× 10−4 2.98× 10−4 3.85× 10−3

Strain imposed Al 2.54× 10−2 1.75× 10−4 8.91× 10−4 6.64× 10−4 3.11× 10−3

Table B.4
Accuracy of the ML predicted electron density in terms of the L1 norm per

electron, calculated as 1
Ne
×
ˆ
Ω

∣∣∣ρscaled(r)− ρDFT(r)
∣∣∣ dr, for various test

cases for an FCC aluminum bulk system (Ne is the number of electrons in
the system). Also shown in the table are errors in the different energies as
computed from ρscaled. The test data set for post-processing was chosen
such that it covered examples from all system sizes, configurations, and

temperatures. For calculating the relevant energies, ρscaled was used as the
initial guess for the electron density, and a single Hamiltonian

diagonalization step was performed. Energies were then computed.

B.8 Calculation of the bulk modulus for aluminum

We show a comparison between some material properties calculated using the elec-

tron density predicted by the ML model, and as obtained through DFT calculations.
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Case
Accuracy of Ground-state Exch. Corr. Fermi Max error in

electron density energy energy level eigenvalue
(L1 norm per electron) (Ha/atom) (Ha/atom) (Ha) (Ha)

Entire test data set 1.93× 10−2 1.47× 10−4 9.34× 10−4 1.43× 10−3 7.29× 10−3

Si0.5Ge0.5 (64 atoms) 1.51× 10−2 8.08× 10−5 1.40× 10−3 8.71× 10−4 5.07× 10−3

Si0.5Ge0.5 (216 atoms) 1.90× 10−2 1.18× 10−4 2.50× 10−4 3.08× 10−4 4.99× 10−3

Si0.5Ge0.5 (512 atoms) 2.50× 10−2 2.57× 10−4 3.70× 10−4 1.32× 10−3 1.27× 10−2

Si0.5Ge0.5 vacancy defects 1.70× 10−2 9.68× 10−5 2.36× 10−4 2.82× 10−3 6.85× 10−3

SixGe1–x (x ̸= 0.5) 2.39× 10−2 2.54× 10−4 2.41× 10−3 1.25× 10−3 9.36× 10−3

Table B.5
Accuracy of the ML predicted electron density in terms of L1 norm per

electron, calculated as 1
Ne
×
ˆ
Ω

∣∣∣ρscaled(r)− ρDFT(r)
∣∣∣ dr, for various test

cases for Si0.5Ge0.5 (Ne is the number of electrons in the system). Also
shown in the table are errors in the different energies as computed from
ρscaled. The test data set for post-processing was chosen such that it

covered examples from all system sizes and temperatures. For calculating
the relevant energies, ρscaled was used as the initial guess for the electron
density, and a single Hamiltonian diagonalization step was performed.

Energies were then computed. For SixGe1–x , we used
x = 0.40, 0.45, 0.55, 0.60.

Specifically, we compute the optimum lattice parameter and the bulk modulus for alu-

minum— these corresponding to the first and second derivatives of the post-processed

energy curves (Fig. 3.5 of the main text), respectively. A summary of our results can

be found in Table B.6. It can be seen that bulk modulus differs by only about 1%,

while the lattice parameters are predicted with even higher accuracy. Notably, the

predicted lattice parameter and the bulk modulus are very close to experimental val-

ues [1], and the deviation from experiments is expected to decrease upon using larger

supercells to simulate the bulk, a trend also seen in Table B.6. This is consistent with

the overall results shown in the main manuscript and further reinforces the predictive

power of our model for non-ideal systems.
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B.9 Comparison with models based on other de-

scriptors

In the main text, we have presented errors achieved in electron density prediction

by our model. The results indicate that our approach is generally as accurate as

(and in some cases outperforms) previous work [44, 48]. To further compare it with

existing similar approaches, we compare it with electron density predictions made

via the well known SNAP descriptors [53, 243]. Specifically, we have compared the

relative L1 error (as defined in [48]) on 29 test snapshots using the dataset of an

Aluminum system with 32 atoms. We used the same training dataset and employed a

neural network for both the descriptors. Both the descriptors yield nearly identical L1

errors (although the distribution of errors is different as shown in Fig. B.10). At the

same time, the calculation of the scalar product descriptors employed here exhibits

computational efficiency, requiring about 50% less time than generation of the SNAP

descriptors. To ensure a fair and accurate comparison of descriptor computation

time, the computations for both descriptors were performed on a single-core CPU.

We utilized the data of Be 128 atoms provided by [174] and the SNAP code provided

by [53, 244], for comparing descriptor calculation time.
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Figure B.10: Comparison with SNAP descriptors

Material property 2× 2× 2 supercell 3× 3× 3 supercell
Lattice parameter (Bohr) 7.4294 (7.4281) 7.5208 (7.5188)
Bulk modulus (GPa) 92.2774 (92.7708) 75.7977 (76.3893)

Table B.6
A comparison between the calculated lattice parameter and the bulk

modulus for aluminum using ρML and ρDFT (DFT values in parentheses).
We observe that the predicted lattice parameter closely matches the value
given by DFT calculations. The “true” optimized lattice parameter for Al,
using a fine k-space mesh, is found to be 7.5098 Bohr while experimental

values are about 7.6 Bohr [2]). The ML predicted value of the bulk
modulus matches the DFT value very closely, which itself is very close to
the experimental value of approximately 76 GPa [1], at room temperature.
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Appendix C

Letters of Permission

The contents of Chapter 2 are published in the following journal article:Machine

learning based prediction of the electronic structure of quasi-one-dimensional materi-

als under strain, Shashank Pathrudkar, Hsuan Ming Yu, Susanta Ghosh, and Amartya

S. Banerjee, Phys. Rev. B 105, 195141.

As per the APS website,

“As the author of an APS-published article, may I include my article or a portion of

my article in my thesis or dissertation?

Yes, the author has the right to use the article or a portion of the article in a thesis

or dissertation without requesting permission from APS, provided the bibliographic

citation and the APS copyright credit line are given on the appropriate pages.”
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