
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's Reports

2024

INTEGRATING ARCGIS AND REDUX USING MIDDLEWARE INTEGRATING ARCGIS AND REDUX USING MIDDLEWARE

Vishnu Vardhan Reddy Rapuru
Michigan Technological University, vrapuru@mtu.edu

Copyright 2024 Vishnu Vardhan Reddy Rapuru

Recommended Citation Recommended Citation
Rapuru, Vishnu Vardhan Reddy, "INTEGRATING ARCGIS AND REDUX USING MIDDLEWARE", Open Access
Master's Report, Michigan Technological University, 2024.
https://doi.org/10.37099/mtu.dc.etdr/1749

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr

 Part of the Geographic Information Sciences Commons, and the Software Engineering Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://doi.org/10.37099/mtu.dc.etdr/1749
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1749&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/358?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1749&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1749&utm_medium=PDF&utm_campaign=PDFCoverPages

INTEGRATING ARCGIS AND REDUX USING MIDDLEWARE

By

Vishnu Vardhan Reddy Rapuru

A REPORT

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In Computer Science

MICHIGAN TECHNOLOGICAL UNIVERSITY

2024

© 2024 Vishnu Vardhan Reddy Rapuru

This report has been approved in partial fulfillment of the requirements for the Degree of

MASTER OF SCIENCE in Computer Science.

Department of Computer Science

Report Advisor : Robert L Pastel

Committee Member : Gorkem Asilioglu

Committee Member : Donald J Lafreniere

Department Chair : Zhenlin Wang

 iii

Table of Contents

Author Contribution Statement .. iv

Acknowledgements..v

Abstract ... vi

I. Introduction .. 1

Background ... 1

II. Understanding ArcGIS, ReactJs, and Redux .. 3

ArcGIS .. 3

ReactJs ... 3

Redux .. 4

III. Architecture Design .. 5

Overview of Middleware .. 5

Role of Middleware in Integrating ArcGIS and Redux .. 5

Components of the Integration Architecture ... 6

IV. Implementation Details .. 9

Setting up the Redux Store ... 9

Implementing Middleware for ArcGIS Integration ... 11

Process of Integrating ArcGIS and Redux ... 12

V. Benefits and Challenges .. 15

Benefits of Integrating ArcGIS and Redux... 15

Challenges Faced During Integration .. 16

VI. Future Enhancements ... 18

VII. References .. 20

 iv

Author Contribution Statement

The practical execution of the project was a joint effort between Vishnu Rapuru and Ram

Sudda, who worked in tandem to bring the project to fruition. The composition of this report,

however, was undertaken independently by myself, encapsulating the collective work and

findings derived from our collaborative endeavor.

 v

Acknowledgements

I would like to express my sincere gratitude to Parsharam Reddy Sudda, who

collaborated on various aspects of this project. While I am the author of this report, Ram's

contributions were instrumental in the successful implementation of the integrated ArcGIS and

Redux solution. His dedication, insights, and collaborative spirit significantly enriched the

development process, and I appreciate the teamwork that has led to the completion of this

project.

 vi

Abstract

The integration of ArcGIS with Redux through middleware presents a novel approach to

managing state in geospatial applications. This report outlines the process and benefits of

combining ArcGIS’s robust mapping and analytics capabilities with Redux’s predictable state

container for JavaScript apps. It begins with an introduction to both technologies, followed by a

detailed discussion on the architecture design, focusing on the role of middleware as the linchpin

in this integration[1]. The paper highlights the benefits, such as improved state management and

application performance, and addresses the challenges encountered during the integration

process. Implementation details are provided, including the setup of the Redux store and the

specific middleware used for ArcGIS integration. The paper concludes with a look at potential

future enhancements, emphasizing the scalability and maintainability of this integration method.

This Report serves as a guide for developers seeking to enhance their geospatial applications

with advanced state management techniques.

 1

I. Introduction

The integration of Redux with ArcGIS has been explored to enhance the capabilities of

web applications by combining the predictable state management of Redux with the powerful

geospatial features of ArcGIS. A notable example is the work shared by Esri on building modern

web apps with the ArcGIS JavaScript API, where Redux plays a crucial role in managing

application state, leading to fewer bugs and more predictable behavior [1]. Additionally, Esri

provides a boilerplate on GitHub for an ArcGIS JS API 4.x app using React and Redux, which

includes middleware for ArcGIS Online authentication and SceneView management [2]. This

boilerplate serves as a foundation for developers to build robust web scene viewers with

integrated state management.

This report emphasizes the benefits of this integration, such as total separation of data

and presentation, reusable UI components, and enhanced performance. It also discusses the

architectural patterns, like encapsulating the ArcGIS JS API in middleware to keep non-data

objects out of the store and facilitate easier testing. The use of Redux DevTools Extension for

live state browsing and dispatching actions, as well as Hot Module Replacement for seamless

updates during development, are highlighted as key features that improve the development

experience[2].

Background

The KeTT(Keweenaw Time Traveller) application is a tool that allows users to explore maps

and share stories related to the Copper Country history, powered by Esri modern. It integrates

ArcGIS and Redux to leverage the strengths of both technologies. However, the current version

of the KeTT application does not utilize middleware, which leads to following issues:

 2

• State Management Contradicting React Principles: The MapView is

embedded within the Map component, which prevents the Redux reducer from

controlling MapView interactions and state updates. As a result, the application relies on

querying the DOM to determine the state, which goes against the React principle of

having the app state dictate the UI [5][4].

• Tight Coupling of Actions and Components: Actions are dispatched directly

within components, leading to a tight coupling between them. This design limits the

reusability of actions across different parts of the application and makes it difficult to

manage state in a scalable way[6][5].

• Inefficient Map Rendering: Every time a new time-period or timeline range is

selected, the entire map component is re-rendered. This is not only inefficient but also

unnecessary since only the tile layer above the basemap needs to be updated.

To address these issues, integrating Redux Middleware can provide a centralized way to

handle actions, allowing for greater reusability and easier management of state transitions.

Middleware can also optimize rendering by initializing the basemap once and updating only the

necessary layers upon action dispatches. Furthermore, by abstracting MapView interactions into

middleware, the application can adhere to React’s unidirectional data flow, where the state is the

single source of truth for the UI.

 3

II. Understanding ArcGIS, ReactJs, and Redux

ArcGIS

ArcGIS is a comprehensive platform developed by Esri for mapping, spatial analysis, and

geospatial data visualization. It's widely used for creating interactive maps and geospatial

applications[13]. Major features of ArcGIS are:

• Geospatial Data: ArcGIS works with geographic and spatial data, such as maps, layers,

and features.

• Web Mapping: ArcGIS enables web-based mapping, allowing users to access maps via

web browsers or mobile apps.

• Spatial Analysis: It supports various spatial analysis operations, including proximity

analysis, geocoding, and routing.

• Customization: Developers can extend ArcGIS functionality through APIs and SDKs.

ReactJs

ReactJS, commonly known as React, is a free and open-source front-end JavaScript library

used for building user interfaces, particularly for single-page applications. It allows developers to

create large web applications that can change data, without reloading the page. Its key feature is

the ability to build components, which are small, reusable pieces of code that return a React

element to be rendered to the page. React’s declarative nature makes it easy to predict and debug,

and it efficiently updates and renders just the right components when data changes. Developed

by Facebook, React has gained immense popularity due to its simplicity, performance, and

scalability[15].

 4

• Component Reusability: React's component-based structure enables the creation of

reusable UI components, facilitating the development of modular and scalable applications.

• Virtual DOM: React's virtual DOM efficiently updates the UI by only re-rendering

components that have changed, optimizing performance in applications with dynamic data

updates, such as ArcGIS maps.

• State Management: React provides built-in state management capabilities, which can be

augmented with libraries like Redux for managing complex application states, including

ArcGIS data.

Redux

Redux is an open-source JavaScript library for managing application state in a predictable

and centralized manner. It's commonly used with React but can be integrated with other libraries

or frameworks[14]. Major Components of Redux are:

• Store: Redux stores the entire application state in a single JavaScript object.

• Actions: Actions are plain objects describing changes to the state. They're dispatched to the

store.

• Reducers: Reducers specify how the state changes in response to actions. They are pure

functions.

• Dispatch: Dispatching an action is the process of sending it to the Redux store.

 5

III. Architecture Design

Overview of Middleware

Redux middleware provides a way to interact with actions that have been dispatched to

the store before they reach the reducer. Middleware functions can perform tasks such as logging,

crash reporting, performing asynchronous requests, or modifying actions. Essentially,

middleware acts as a third-party extension point between dispatching an action and the moment

it reaches the reducer [7].

The Webmap Middleware that we implemented in our project is a specialized type of

middleware tailored for integrating ArcGIS capabilities with a Redux-managed React

application. By intercepting actions and handling the ArcGIS API calls within the middleware, it

streamlines the process of updating the map view and managing geospatial data. This approach

minimizes the need for multiple dispatches and allows for a more centralized and efficient

handling of state changes related to the map, which can be particularly beneficial in complex

applications where map interactions are frequent and varied [2].

Role of Middleware in Integrating ArcGIS and Redux

The ArcGIS.mapView object is created and configured in the middleware, and it is used

to display and manipulate the map within our application.

The middleware imports action types (e.g.: INIT_SCENE, SET_CENTER, SET_PLACE,

SET_PORTAL_URL) and a selector (selectedTimeline) from Redux action creators and

reducers. These action types represent various actions that can be dispatched in response to user

interactions.

 6

The selectedTimeline selector captures and updates the user's timeline selection. It is first

used by the middleware to render the ArcGIS map with the selected timeline's data, and then it is

stored in the Redux store for reference by other components, such as TimelineTitle, to provide a

consistent user experience based on the selected timeline.

Components of the Integration Architecture

Figure 1: Architecture for Integration of ArcGIS with Redux using Middleware

Redux Store

The Redux store stores the application state, including data and information that

components need to render. The ArcGIS.mapView object is a part of the application's

functionality allowing you to configure and control how geographic data is displayed to the user

using middleware to display the desired geospatial information. it is not stored within the store

itself.

 7

Storing the ArcGIS.mapView object directly in the Redux store is not a common pattern

because the map view is typically treated as part of the view layer of our application, while

Redux manages the application's state layer. The middleware facilitates rendering mapView on

our React Application but does not store the view itself in the Redux store.

Middleware

The middleware initializes a ArcGIS object, which serves as a container for ArcGIS-

related objects and data. This object allows you to maintain a reference to key ArcGIS

components and objects throughout the middleware's execution.

The middleware itself is a function that takes the store as its first argument, returning

another function that takes next as its argument, which, in turn, takes action as its argument. This

function structure is typical for Redux middleware.

// Middleware

export const webMap = store => (next) => (action) => {

 // Middleware logic here

 // ...

 next(action);

// Pass the action to the next reducer TimelinePicker in TimelineSlice

};

ArcGIS API Middleware

The ArcGIS API provides access to a wide range of geospatial capabilities and services.

Middleware calls ArcGIS API to retrieve map data, perform geospatial operations, and update

 8

map layers. Also uses ArcGIS servers and services to fetch geospatial information requested by

the React application.

 9

IV. Implementation Details

Setting up the Redux Store

1) Defining state Structure

State structure, in the context of Redux and similar state management libraries, refers to the

way the application's data is organized and stored. It defines the shape and structure of the entire

application's state, which includes all the data that your application needs to maintain and

manipulate. State structure typically consists of nested objects and arrays to represent different

aspects of the application's data.

At the top level, the application is organized into three major objects:

Store {

 timeline: {},

 errors: {},

 ArcGISstate: {}

 }

• Timeline: This part of the state is dedicated to storing timeline-related data. It specifically

stores the selectedTimeline which is used to call the ArcGIS API in the middleware and then

saved in the store.

const Timeline = () => {

useEffect(() => {

 handleOnChangeTimeline();

}, []);

 10

const handleOnChangeTimeLine = (year) =>{

 dispatch(selectedTimeline(payload))

}

}

• Errors: This part of the state manages error-related states in our Redux store.

• ArcGISstate: This part of the state is designated for storing data related to the ArcGIS

integration in our application. The ArcGISstate object may contain various properties and

data specific to ArcGIS functionalities. This data could include information about Center

coordinates integrated into our application.

2) Creating Reducers and actions

To describe the actions and reducers in our application, there are three slices that we use

in our application: ArcGISSlice, TimelineSlice, and errorSlice.

Reducers:

• ArcGISReducer: Manages state related to ArcGIS integration.

• TimelinePicker: Manages state related to timeline data and selection.

• Error: Manages error-related state.

Extra Reducers:

These reducers handle the states associated with the asynchronous ‘fetchTimelineData’

action, which are pending, fulfilled, and rejected states.

Actions:

 11

• ArcGISLoadMap: This action updates the ‘mapId’ property in the ArcGIS state with the

value provided in the payload. It’s used to load a specific map in the ArcGIS integration.

• selectedTimeline: This action updates the ‘selected time’ property in the timeline state with

values provided in the payload. It is used to select a specific timeline for display.

• clearTimelineData: This action clears the ‘timeline data’ property in the timeline state,

typically used when you need to reset or clear the timeline data.

• error: This action sets the error state to the value provided in the payload. It’s used to handle

and display errors in the application.

• remove error: This action clears the error state, typically used when an error needs to be

removed or reset.

Implementing Middleware for ArcGIS Integration

A. Handling Asynchronous actions

fetchTimelineData: This async action is used for fetching timeline data from a specified

URL. It has pending, fulfilled, and rejected actions automatically generated by the Redux

Toolkit’s ‘createAsyncThunk’. These actions are used to manage the loading state and handle

data retrieval.

B. Dispatching ArcGIS related actions

INIT_SCENE Action: (role of action) This action is dispatched to initialize the map scene

by creating a map view (MapView) and attaching it to an HTML container element (DIV).

A MapView instance is a 2D view of a Map within the application. It is responsible for

displaying the map and its various layers, handling user interactions like zooming and

panning, and providing access to the map’s data. When you store a MapView instance in the

 12

application’s state or context, it becomes a central element that other components and actions

can reference and manipulate. This allows for a cohesive and interactive mapping experience,

as the MapView instance acts as the canvas where geographical data is rendered. It facilitates

actions such as setting the map’s center, switching base maps, and adding layers, making it

an essential part of the application’s geospatial functionality1.

By incorporating the MapView instance as a core aspect of the INIT_SCENE action, it

ensures that the map’s state is readily accessible and modifiable by the application’s other

components. This integration allows for a dynamic and responsive mapping interface, where

changes to the map are efficiently managed and reflected in the user interface. The

MapView’s persistence within the application’s state is crucial for maintaining a consistent

and interactive mapping environment, enabling a seamless user experience as they interact

with the map and its features.

SET_CENTER Action: This action is dispatched to set the map's centre and zoom level.

SET_PORTAL_URL Action: This action is dispatched to set the URL of a tile layer based

on the provided URL in the action payload.

SET_PLACE Action: This action is dispatched when a user searches for a place. It uses the

ArcGIS Geocoding service to find address candidates for the specified place.

Process of Integrating ArcGIS and Redux

Dispatching actions from components

We have a Timeline component that presents various timelines to the user. When the user

selects a timeline, the selectedTimeline action is dispatched with a payload containing

information about the selected timeline to the webMap middleware.

const Timeline = () => {

 13

 const dispatch = useDispatch();

 const handleOnChangeTimeLine = (year) => {

 // ...

 // Dispatch the selectedTimeline action with payload

 dispatch(selectedTimeline({ payload }));

 }

 };

Middleware Processing of actions

The dispatched selectedTimeline action passes through the middleware layer before

reaching the Redux store. In our middleware setup, the webMap middleware intercepts these

actions.

Inside the webMap middleware, there is a switch statement that checks the type of each

intercepted action. Depending on the action type, different processing steps are performed.

For example:

• INIT_SCENE: Initializes the ArcGIS scene and map view if there isn’t an existing basemap,

using data from selectedTimeline.

• SET_CENTER: Modifies the map view’s center point and zoom level.

• SET_PORTAL_URL: Updates the feature layer (Tile Layer) on top of the basemap

according to given URL, which could change features or markers based on the selected time

period.

• SET_PLACE: Geocodes a specified place and updates the map view to center on this

location.

 14

Interfacing with ArcGIS API

After processing the action, the middleware utilizes ArcGIS API, which makes HTTP

requests to ArcGIS services, initializing map views, adding layers, or performing geospatial

operations. In the context of our middleware, we are configuring various aspects of the ArcGIS

map view, such as the base map, location widget, and housing layer.

Updating Redux store with selectedTimeline data

The selectedTimeline action, which contains information about the selected timeline, is

passed from the middleware to Timeline reducer to update the store. This ensures that the

selected timeline information is stored in the Redux store for further use.

 15

V. Benefits and Challenges

Benefits of Integrating ArcGIS and Redux

Integrating ArcGIS and Redux offers several benefits like streamlining the coding process,

making modifications more manageable, and facilitating long-term code maintenance by

enforcing clear patterns and practices. This combination enhances code quality and developer

productivity.

• Easy to code

Redux provides a clear and organized structure for managing the application state by

enforcing a predictable pattern for updating and accessing data, which simplifies the coding

process.

Redux encourages a modular approach to our application, including ArcGIS integration,

which can be encapsulated within separate reducers, actions, and middleware, which makes code

more manageable and easier to reason about [1].

• Easy to Modify Code

Redux facilitates consistent and structured state updates through reducers. When changes are

needed, developers can make modifications within well-defined reducers, ensuring that updates

are applied consistently throughout the application [9].

The structured nature of Redux allows developers to pinpoint issues within specific reducers,

actions, or middleware, reducing the time and effort required to identify and fix problems [10].

Redux's flexibility allows for code modifications without any significant disruptions to

extend functionality or introduce new features while maintaining existing code.

• Easy Maintenance

 16

Redux promotes a consistent and predictable way of managing state, which makes it easier

for development teams to maintain the codebase collectively, as everyone follows the same

conventions and patterns [11].

By providing a structured approach to state management, Redux helps prevent the

accumulation of technical debt with organized and maintainable code, reducing the likelihood of

costly refactoring or rewrites.

The Redux ecosystem has robust documentation and a supportive community that offers best

practices and guidance. This wealth of resources aids in maintaining code quality and addressing

maintenance challenges effectively.

Challenges Faced During Integration

• Data Synchronization

Integrating ArcGIS with Redux often involves managing complex geospatial data, which can

change frequently due to user interactions or real-world updates[1]. Ensuring that the data

displayed on the map remains synchronized with the application's state in Redux can be

challenging.

• Handling Complex Interactions

Single-user interaction on the map requires the complexity of user interactions with the map

to increase, which requires applications to perform tasks like drawing polygons, querying data,

or navigating between different map views. Coding for multiple interactions while ensuring a

clean and maintainable codebase can be a significant challenge [12].

• Overcoming UI Interaction Challenges

 17

A notable challenge during development involved the positioning of components above the

map, which occasionally obscured user interactions with MapView. The solution to this problem

was to employ a flexbox approach using Tailwind CSS, enabling precise component placement

on the page and ensuring that the map view's usability remained unaffected by any overlapping

UI elements. This solution provided an effective balance between user interface design and map

interactivity.

 18

VI. Future Enhancements

As the project evolves, several key enhancements and extensions are identified to elevate

the capabilities and user experience:

1. Complete Integration of ARCGIS with React and npm Module

Development:

• Develop a dedicated npm module that abstracts integrating ARCGIS with React applications.

As there is currently no official React support for ARCGIS, this initiative would empower

React developers to effortlessly incorporate geospatial functionalities into their applications.

The npm module not only facilitates integration but also allows users to conveniently

download and incorporate the necessary software components, enhancing accessibility and

usability.

• An npm module refers to a packaged collection of JavaScript files and other resources,

encapsulated to perform a specific set of functionalities.

• Define a clear and comprehensive API(Application Programming Interface) for the npm

module to facilitate straightforward integration and usage.(API essentially refers to a set of

functions, methods, and rules that allow one piece of software to interact with another.)

• Provide thorough documentation, including installation instructions, API references, and

usage examples, to ensure accessibility and ease of adoption.

2. Integration of a Reset Button:

• Introduce a reset button feature to enable users to revert to the default state effortlessly,

especially after performing various actions within the application.

 19

• Ensure the reset button is strategically placed, easily accessible, and clearly labelled for user

convenience.

• The introduction of a reset button offers a nuanced approach to resetting the application state

without the need for a complete application reload. Unlike a traditional reload, which

involves fetching data from APIs and rendering the entire map again, the reset button can be

implemented to selectively reset specific aspects of the state while minimizing unnecessary

data calls and rendering processes.

 These proposed enhancements aim to not only expand the maintainability and

robustness of the application but also improve its accessibility, usability, and overall user

satisfaction. This also ensures that the underlying code remains not only user-friendly but

also sustainably structured, facilitating long-term reliability and scalability for our

application.

 20

VII. References

1. React Redux: Building Modern Web Apps with the ArcGIS JS API –

https://www.esri.com/arcgis-blog/products/3d-gis/3d-gis/react-redux-building-modern-web-

apps-with-the-arcgis-js-api/

2. Boiler Plate on GitHub for an ArcGIS JS API 4.x app –

https://github.com/Esri/react-redux-js4

3. Keweenaw Time Traveller Web-application

https://kett.geospatialresearch.mtu.edu/

4. React Managing State –

https://react.dev/learn/managing-state

5. Keweenaw Time Travel Explorer Code Documentation –

https://github.com/Keweenaw-Time-Traveler/ktt-app/tree/docs/docs/js

6. React Redux: Performance considerations when dispatching multiple actions –

https://medium.com/unsplash/react-redux-performance-considerations-when-dispatching-

multiple-actions-5162047bf8a6

7. Middleware - https://redux.js.org/understanding/history-and-design/middleware

8. Redux Middleware – what it is and How to Build it from scratch –

https://www.freecodecamp.org/news/what-is-redux-middleware-and-how-to-create-one-from-

scratch/

9. Redux Fundamentals, Part 3: State, Actions, and Reducers –

https://redux.js.org/tutorials/fundamentals/part-3-state-actions-reducers

10. Right way to update state in redux reducers –

https://stackoverflow.com/questions/36031590/right-way-to-update-state-in-redux-reducers

11. How to organize your React + Redux Codebase –

https://www.pluralsight.com/resources/blog/guides/how-to-organize-your-react--redux-

codebase

12. Chapter 6. Handling Complex side effects –

https://livebook.manning.com/book/redux-in-action/chapter-6/10

13. ArcGIS Documentation:

https://www.esri.com/arcgis-blog/products/3d-gis/3d-gis/react-redux-building-modern-web-apps-with-the-arcgis-js-api/
https://www.esri.com/arcgis-blog/products/3d-gis/3d-gis/react-redux-building-modern-web-apps-with-the-arcgis-js-api/
https://github.com/Esri/react-redux-js4
https://kett.geospatialresearch.mtu.edu/
https://react.dev/learn/managing-state
https://github.com/Keweenaw-Time-Traveler/ktt-app/tree/docs/docs/js
https://medium.com/unsplash/react-redux-performance-considerations-when-dispatching-multiple-actions-5162047bf8a6
https://medium.com/unsplash/react-redux-performance-considerations-when-dispatching-multiple-actions-5162047bf8a6
https://redux.js.org/understanding/history-and-design/middleware
https://www.freecodecamp.org/news/what-is-redux-middleware-and-how-to-create-one-from-scratch/
https://www.freecodecamp.org/news/what-is-redux-middleware-and-how-to-create-one-from-scratch/
https://redux.js.org/tutorials/fundamentals/part-3-state-actions-reducers
https://stackoverflow.com/questions/36031590/right-way-to-update-state-in-redux-reducers
https://www.pluralsight.com/resources/blog/guides/how-to-organize-your-react--redux-codebase
https://www.pluralsight.com/resources/blog/guides/how-to-organize-your-react--redux-codebase
https://livebook.manning.com/book/redux-in-action/chapter-6/10

 21

• ArcGIS for Developers: https://developers.arcgis.com/

• ArcGIS REST API: https://developers.arcgis.com/rest/

14. Redux Documentation:

• Official Redux Documentation: https://redux.js.org/introduction/getting-started

15. React Documentation:

• React Official Documentation: https://reactjs.org/docs/getting-started.html

16. Middleware and Redux Toolkit:

• Redux Toolkit Middleware: https://redux-toolkit.js.org/api/createMiddleware

• Understanding Redux Middleware: https://redux.js.org/understanding/history-and-

design/middleware

17. Related Blog Posts and Articles:

• Using ArcGIS in a React Application:

https://developers.arcgis.com/javascript/latest/sample-code/intro-mapview/index.html

• Managing Complex UI with Flexbox and React: https://css-tricks.com/using-flexbox/

18. Redux and State Management:

• "Redux in Action" by Marc Garreau and Will Faurot

19. General Web Development Resources:

• Mozilla Developer Network: https://developer.mozilla.org/en-US/docs/Web

https://developers.arcgis.com/
https://developers.arcgis.com/rest/
/Users/vishnu/Downloads/Homework/Official%20Redux%20Documentation
/Users/vishnu/Downloads/Homework/React%20Official%20Documentation
/Users/vishnu/Downloads/Homework/Redux%20Toolkit%20Middleware
/Users/vishnu/Downloads/Homework/Understanding%20Redux%20Middleware
https://developers.arcgis.com/javascript/latest/sample-code/intro-mapview/index.html
/Users/vishnu/Downloads/Homework/Managing%20Complex%20UI%20with%20Flexbox%20and%20React
/Users/vishnu/Downloads/Homework/Mozilla%20Developer%20Network

	INTEGRATING ARCGIS AND REDUX USING MIDDLEWARE
	Recommended Citation

	Author Contribution Statement
	Acknowledgements
	Abstract
	I. Introduction
	Background

	II. Understanding ArcGIS, ReactJs, and Redux
	ArcGIS
	ReactJs
	Redux

	III. Architecture Design
	Overview of Middleware
	Role of Middleware in Integrating ArcGIS and Redux
	Components of the Integration Architecture

	IV. Implementation Details
	Setting up the Redux Store
	Implementing Middleware for ArcGIS Integration
	Process of Integrating ArcGIS and Redux

	V. Benefits and Challenges
	Benefits of Integrating ArcGIS and Redux
	Challenges Faced During Integration

	VI. Future Enhancements
	VII. References

