
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's Reports

2023

MEMORY OPTIMIZATIONS FOR HIGH-THROUGHPUT COMPUTER MEMORY OPTIMIZATIONS FOR HIGH-THROUGHPUT COMPUTER

SYSTEMS SYSTEMS

Zhiyuan Lu
Michigan Technological University, zhlu@mtu.edu

Copyright 2023 Zhiyuan Lu

Recommended Citation Recommended Citation
Lu, Zhiyuan, "MEMORY OPTIMIZATIONS FOR HIGH-THROUGHPUT COMPUTER SYSTEMS", Open Access
Dissertation, Michigan Technological University, 2023.
https://doi.org/10.37099/mtu.dc.etdr/1660

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr

 Part of the Computer and Systems Architecture Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://doi.org/10.37099/mtu.dc.etdr/1660
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1660&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1660&utm_medium=PDF&utm_campaign=PDFCoverPages

MEMORY OPTIMIZATIONS FOR HIGH-THROUGHPUT COMPUTER

SYSTEMS

By

Zhiyuan Lu

A DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

In Computer Science

MICHIGAN TECHNOLOGICAL UNIVERSITY

2023

© 2023 Zhiyuan Lu

This dissertation has been approved in partial fulfillment of the requirements for the

Degree of DOCTOR OF PHILOSOPHY in Computer Science.

Department of Computer Science

Dissertation Advisor: Dr. Jianhui Yue

Committee Member: Dr. Soner Onder

Committee Member: Dr. Zhenlin Wang

Committee Member: Dr. Qinghui Chen

Department Chair: Dr. Zhenlin Wang

Dedication

To my families, teachers, and friends

who didn’t hesitate to encourage me, criticize my work, and give help at every stage -

without which I would neither be who I am nor would this work be what it is today.

Contents

List of Figures . xi

List of Tables . xv

Preface . xvii

Acknowledgments . xix

List of Abbreviations . xxi

Abstract . xxvii

1 Introduction . 1

1.1 Memory Wall . 1

1.2 System with Non-volatile Memory 2

1.3 Neural Network Accelerator . 4

2 Background . 7

2.1 Logging in Non-volatile Memory . 8

2.1.1 Crash Consistency in NVM systems 8

vii

2.1.2 Conventional Log Organization 10

2.1.3 Asynchronous DRAM Refresh (ADR) 11

2.1.4 Logless Atomic Durability (LAD) 12

2.2 Neural Network and Neural Network Accelerator 13

2.2.1 Neural Networks . 13

2.2.2 Computations in Neural Network 15

2.2.3 Computational Graph . 19

2.2.4 Neural Network Accelerators 22

2.2.5 im2col methods: NCHW vs. NHWC 25

2.2.6 Dataflow in Neural Network Accelerators 28

2.2.7 Off-chip Memory Mapping in NNAs 33

3 Improving the Performance of NVM Crash Consistency under

Multicore . 35

3.1 Overview . 35

3.2 Motivation . 36

3.2.1 Persist requirements of a transaction 36

3.2.2 Unnecessary Logs . 37

3.3 Two-Stage Transaction Execution (TSTE) 39

3.4 Virtualization of the ADR Buffer (VADR) 44

3.5 Redo Logging for ADR Depletion 47

3.6 Evaluation . 48

viii

3.6.1 Experiment Setup . 48

3.6.2 Removal of Unnecessary Log Operations 52

3.6.3 Transaction Throughput Improvements 53

3.6.4 Log Operations Reduction 55

3.6.5 Sensitivity of ADR Buffer Capacity 56

3.7 Summary . 58

4 Accelerate Hardware Logging for Efficient Crash Consistency in

NVM . 61

4.1 Overview . 61

4.2 Motivation . 62

4.3 Log Entry Allocation Scheme (LALEA) 63

4.4 Log Metadata Buffering Scheme (BLOM) 68

4.5 Evaluation . 71

4.5.1 Experiment Setup . 71

4.5.2 Transaction Throughput . 72

4.5.3 Log Entry Persistence Latency 74

4.5.4 Transaction Commit Latency 75

4.5.5 Throughput under the Alternative Address Mapping Scheme 76

4.6 Summary . 77

5 Improving Neural Network Accelerator Performance by Optimiz-

ing Memory Accesses . 79

ix

5.1 Overview . 79

5.2 Motivation . 80

5.2.1 Wide Layers . 80

5.2.2 Performance Impact of Wide Layers. 84

5.3 Alleviate Repeated Access to IFMAP (ARAI) 86

5.4 Load-Aware Placement of Data Tiles (LAP) 88

5.4.1 Microarchitecture of LAP 93

5.5 Evaluation . 108

5.5.1 Evaluation Setup . 108

5.5.2 Improvement in System Performance 111

5.5.3 Reduction in DRAM Read Traffic 112

5.5.4 Increased Bandwidth of Off-chip Memory 113

5.5.5 Sensitivity Analysis . 116

5.5.6 Discussion . 117

5.6 Summary . 117

6 Conclusion . 119

References . 121

A ACM Copyright Permission . 137

B IEEE Copyright Permission . 139

x

List of Figures

2.1 Transaction execution under (a) UNDO log and (b) REDO log . . . 8

2.2 (a) Ordering constraints of transaction execution in redo-log. (b) A

log record. 10

2.3 LAD execution . 12

2.4 Brief graph of Neural Network . 14

2.5 Convolution computation demonstration: H, W, and C indicate

the height, width, and channels of IFMAP. R and S indicate the height

and width of the filters. K is the number of filters, equal to the number

of channels in OFMAP. P and Q are the height and width of the matrix

on each channel of OFMAP. 16

2.6 Activation function demonstration: Binary Step 17

2.7 Example of pooling: 3x3 filter over 4x4 feature map using stride=1. 19

2.8 Computational Graph of a two-layer convolutional neural network . 20

2.9 Mapping type analysis in DNNFusion [1] 21

2.10 Architecture of Neural Network Accelerator 23

2.11 Example of NCHW im2col . 26

xi

2.12 Example of NHWC im2col . 26

2.13 LoopNest presentations. (a) Weight Stationary. (b) Output Sta-

tionary. (C) Input Stationary. 28

2.14 Example of convolution computation on NNA with WS.

Stride=1. (a) IFMAP and Filters. (b) Convolution computation

on NNA with Weight Stationary. 30

3.1 Transaction update demand distribution 37

3.2 Transaction types distribution. 38

3.3 TSTE architecture . 40

3.4 Examples of Two-Stage Transaction Execution 42

3.5 Virtual ADR buffer (VADR) in the memory controller 45

3.6 Undo logging and Redo logging. (a)Undo log operation, (b) Redo

log operation. 47

3.7 Transaction execution type distribution 52

3.8 Transaction throughput improvement over LAD 53

3.9 Log operations reduction . 55

3.10 Throughput improvements over LAD with various ADR buffer sizes 56

4.1 Compare LALEA with conventional logging 63

4.2 LALEA log record organization . 65

4.3 LALEA controller . 67

4.4 Compare the redo logging and our proposed log metadata buffering 70

xii

4.5 Improving transaction throughput 73

4.6 Reducing log entry persistence latency 74

4.7 Reducing latency to commit transaction 75

4.8 Improving transaction throughput with cache line level interleaving 76

5.1 Example of repeated off-chip memory access to IFMAP in a

Wide Layer. LoopNest(a) and LoopNest(b) present the convolution

computation with Weight Stationary before and after mapping filters

on the Systolic Array (SA), respectively. The sequence number of Tiles

indicates their execution order. IFMAP is read from off-chip memory

to on-chip memory. Arrows with different colors correspond to different

tiles of IFMAP. 81

5.2 Execution time distribution by layer types 84

5.3 Memory-stall time distribution by layer types 85

5.4 Illustration of ARAI . 87

5.5 Off-chip memory mapping examples. Off-chip memory has 2

channels, 2 banks per channel, and 4 rows per bank. There are three

concurrent data tiles. The numbers inside blocks indicate their order

during memory allocation. (a) is based on ROMANet. (b) is based on

LAP. 89

5.6 Architecture overview of LAP . 94

xiii

5.7 Key components in DTile Manager Unit (DMU): Memory Lo-

cation Table (MLT), DTile Mapping Table (DMT), Bank Status Ta-

ble (BST), Off-chip DTile Tracking Table (GT), Reg0: The head of

free MLTEntries, Reg1: The tail of free MLTEntries, Reg2: SelfMin-

BkRkCh in Algorithm 2, Reg3: MemMinBkRkCh in Algorithm 2,

Reg4: NextBkRkChToCheck in Algorithm 3 95

5.8 Main steps of DRAM allocation for DTile in LAP 101

5.9 Main steps of reading DRAM location for off-chip DTile 103

5.10 Reduction in Inference Time. Baseline is DWS ROMA. 111

5.11 Reduction in DRAM Read Traffic. 113

5.12 Increased DRAM Bandwidth by LAP. Baseline is ROMA 113

5.13 Increased Channel-Level Parallelism of DRAM. Baseline is ROMA. 114

5.14 Increased Bank-Level Parallelism of DRAM. Baseline is ROMA. . . 114

5.15 Reductions in Inference Time with different sizes of Systolic Array . 116

xiv

List of Tables

3.1 Muclticore workloads . 39

3.2 System parameters . 49

3.3 Benchmarks used for evaluation 49

3.4 Multicore workloads . 51

4.1 System parameters . 71

5.1 Space requirement of key components in DMU 105

5.2 Average number of rowTasks per DTile under different opera-

tions. Generation indicates Generating DTile. Read indicates Reading

DTile. DWS and ARAI indicate that the different dataflow adopted.

DWS and ARAI are explained in the evaluation 5.5.1. 106

5.3 System parameters of NNA evaluation 109

5.4 Summarization of NN workloads. Conv: the standard convolution

layer. ConvDW: the depthwise convolution layer. Res: the residual

block containing Conv and skip connection. FC: the fully connected

layer. 109

xv

Preface

This dissertation is submitted for the degree of Doctor of Philosophy at Michigan

Technological University. It contains published, completed papers, some important

preparations, and achievements for future publications completed by the author. The

research is to the best of my knowledge and original, except where references are

made to previous work. Part of this work contains previously published material.

Zhiyuan Lu did all of the work under the supervision of Dr. Jianhui Yue from the

Department of Computer Science at Michigan Technological University.

The important parts of the research work during this Ph.D. program are presented in

3 Chapters. Chapter 3 is the combination of two papers published by Zhiyuan Lu, etc.

on ICCD2020 and NAS2021. Chapter 4 is based on the paper published by Zhiyuan

Lu, etc. on DATE2022. These two chapters are focused on optimizing the logging

operations in the system with non-volatile memory. Chapter 5 aims to mitigate

the off-chip memory overhead in the neural network accelerators. Zhiyuan Lu and

Dr.Jianhui Yue designed all related research. Zhiyuan Lu modified and developed the

simulators to evaluate all related designs. Zhiyuan performed the statistical analyses

following discussions with Dr. Jianhui Yue. The manuscript is coedited by Zhiyuan

Lu and Dr.Jianhui Yue.

xvii

Acknowledgments

At Michigan Technological University, I have obtained valuable experience in learning

and researching. I would like to express my sincerest gratitude to the Department of

Computer Science for giving me the opportunity to pursue the Degree of DOCTOR

OF PHILOSOPHY in Computer Science. I would like to express my deepest gratitude

to all the people who have helped me, including but not limited to my academic

advisor, advisory committee members, course instructors, and office assistants.

I would like to first thank my academic advisor, Dr. Jianhui Yue, who gave me a

lot of instructions during my research work and the chance to have research practice.

Without his guidance, I cannot make the work presented in this dissertation. I would

like to thank the NSF for supporting my Ph.D. program. I also would like to thank

all collaborators during my research work.

I would like to express my sincerest acknowledgment to my academic advisory com-

mittee members, Dr.Soner Onder, Dr.Zhenlin Wang, and Dr.Qinghui Chen. Without

their support and help, I cannot keep pursuing and finally complete my Ph.D. pro-

gram.

I would like to show my deepest thanks and love to my families. They support and

encourage me unconditionally when I encounter difficulties and challenges.

xix

I would like to thank the fish at Michigan State. Their selfless sacrifice provided me

with a lot of fun and tasty food in my life after research work. I also would like to

thank Jay Zhou. Thanks to his singing for accompanying me night after night of hard

work. Without them, it is hard for me to keep a healthy mental status to solve the

pressure and problems during my Ph.D. program.

xx

List of Abbreviations

ACID Atomicity, Consistency, Isolation, Durability

ACM Association for Computing Machinery

ADR Asynchronous DRAM Refresh

AIT Address-Indirection-Translation

ATOM Atomic Durability in Non-volatile Memory through Hardware Logging

AccNum The number of memory blocks to be accessed

Addr Address

AllocNum The number of memory blocks allocated

BLOM Buffer log metadata in ADR buffer

BST Bank Status Table

B Tree Balanced Tree

BkID Index of Memory Bank

CNN Convolutional neural network

CONV Convolution

CPU Central processing unit

ChID Index of Memory Channel

Conv The standard convolution layer

ConvDW The depthwise convolution layer

xxi

D Cache Data Cache

DDR Double Data Rate

DIMM Dual In-line Memory Module

DMT DTile Mapping Table

DMU DTile Manager Unit

DNN Deep Neural Network

DRAM Dynamic random-access memory

DTile Tile of Data

DWS Weight Stationary optimized by DNNFusion

FC The fully connected layer

FCFS First-Come-First-Serve

FE Free entries collector

FH Free header

FIFO First-In-First-Out

FLE Free log entry

GEMM General Matrix Multiply

GID The global unique index of DTile

GT Table indexed by GID

im2col The transformation of Convolution Computation into GEMM

I/D Cache Instruction/Data Cache

I/O Input and Output

xxii

IEEE Institute of Electrical and Electronics Engineers

IFMAP Input feature maps

IS Input Stationary

LAD Logless Atomic Durability

LAD-RdLog LAD with redo log

LALEA Log entry allocation scheme

LAP Load-Aware Placement scheme for feature map tiles in off-chip memory

LEC Log entry collation

LR Log record registers

LSQ Load-Store Queue

MAC Multiply-Accumulate

MC The memory controller

MLT Memory Location Table

MLTEID Index of MLTEntry

MLTEntry Eentry of MLT

MLTHead The index of the first MLTEntry in the list of MLTEntries

MSHR Miss Status Holding Registers

MUDF Minimal-Update-Demand-First

NCHW Batch-Channel-Height-Width

NHWC Batch-Height-Width-Channel

NN Neural Network

xxiii

NNA Neural Network Accelerator

NVDLA NVIDIA Deep Learning Accelerator

NVM Non-volatile memory

NextRowID Index of the next DRAM row to be allocated for a rowTask

NoC Network On Chip

OFMAP Output feature maps

OLTP On-line transaction processing

OS Output Stationary

OoO Out-of-order execution

PE Processing Element

Psum Partial sum

rMLTEID read MLTEID

robabgrachco row-bank-bankgroup-rank-channel-column

RAI Reduce the Repeated Access to IFMAP

RB Tree Red-black tree

REDU Redo-based logging with Direct-Update

RNN Recurrent neural network

ROB Re-order buffer

ROMA DRAM mapping policy proposed by ROMANet

Res The residual block containing Conv and skip connection

RkID Index of Memory Rank

xxiv

RoID Index of Memory Row

SA Systolic Array

SPM Scratchpad Memory

SRAM Static random-access memory

STQ Store Queue

SchNum The number of rowTasks schedule

TATP Telecommunication Application Transaction Processing Benchmark

TLB Translation lookaside buffer

TPCC Transaction Processing Performance Council Benchmark C

TPU Tensor Processing Unit

TSTE-RdLog TSTE with redo log

VADR Virtual ADR buffer

VADR-RdLog Virtual ADR buffers with redo log and DRAM cache

WPQ Write pending queue

WS Weight Stationary

wMLTEID Write MLTEID

#Bank The number of banks inside an off-chip memory rank

#Channel The number of channels inside an off-chip memory

#Column The number of columns inside an off-chip memory row

#Rank The number of ranks inside an off-chip memory channel

#Row The number of rows inside an off-chip memory bank

xxv

xxvi

Abstract

The emergence of new non-volatile memory (NVM) technology and deep neural net-

work (DNN) inferences bring challenges related to off-chip memory access. Ensuring

crash consistency leads to additional memory operations and exposes memory update

operations on the critical execution path. DNN inference execution on some acceler-

ators suffers from intensive off-chip memory access. The focus of this dissertation is

to tackle the issues related to off-chip memory in these high-performance computing

systems.

The logging operations, required by the crash consistency, impose a significant per-

formance overhead due to the extra memory access. To mitigate the persistence time

of log requests, we introduce a load-aware log entry allocation scheme that allocates

log requests to the address whose bank has the lightest workload. To address the

problem of intra-record ordering, we propose to buffer log metadata in a non-volatile

ADR buffer until the corresponding log can be removed. Moreover, the recently pro-

posed LAD introduced unnecessary logging operations on multicore CPU. To reduce

these unnecessary operations, we have devised two-stage transaction execution and

virtual ADR buffers.

xxvii

To tackle the challenge of low response time and high computational intensity asso-

ciated with DNN inferences, these computations are often executed on customized

accelerators. However, data loading from off-chip memory typically takes longer than

computing, thereby reducing performance in some scenarios, especially on edge de-

vices. To address this issue, we propose an optimization of the widely adopted Weight

Stationary dataflow to remove redundant accesses to IFMAP in off-chip memory by

reordering the loops in the standard convolution operation. Furthermore, to enhance

the off-chip memory throughput, we introduce the load-aware placement for data

tiles on off-chip memory that reduces intra/inter contentions caused by concurrent

accesses from multiple tiles and improves the off-chip memory device parallelism dur-

ing access.

xxviii

Chapter 1

Introduction

1.1 Memory Wall

In modern computer systems, the memory wall represents a critical challenge that

arises due to the growing performance disparity between the processors and the mem-

ory systems.

The processor’s performance driven by improvements in microarchitecture and paral-

lel processing, has increased rapidly. However, the speed and bandwidth of memory

technologies have not kept pace with these advancements. This imbalance in per-

formance leads to situations where the processor spends a significant portion of its

time waiting for data to be fetched from memory, leading to underutilization of the

1

processor and reduced overall system efficiency.

The memory wall is particularly pronounced in data-intensive workloads, artificial

intelligence applications, and big data analytics, where rapid access to large datasets

is essential. These types of workloads further exacerbate the challenges associated

with the memory wall.

To address the memory wall problem and the off-chip memory bottleneck, computer

architects and system designers have explored various solutions, including the use of

multi-level cache hierarchies, non-volatile memory technologies, and improved mem-

ory access techniques. Additionally, software optimizations such as data locality and

memory management strategies play a crucial role in mitigating this bottleneck.

In this dissertation, several designs are proposed to tackle the memory wall problem

in the system with non-volatile memory and the neural network accelerator.

1.2 System with Non-volatile Memory

Non-volatile memory (NVM) aims to minimize the gap between memory and storage

due to its large storage capacity, fast speed, non-volatility, and byte-addressability.

However, one important challenge of the successful adoption of NVM in computer

systems is to ensure the atomicity of transaction updates in the event of a system

2

crash or power loss.

Crash consistency requires that all updates within a transaction are always com-

mitted to NVM in a nothing-or-all manner, even upon a system crash. Traditional

systems adopt undo-log, redo-log, or a combination of both to guarantee crash con-

sistency. With logging, transaction update is applied to in-place data after the log of

modifications is stored in NVM.

The logging method suffers from inferior performance due to ordering constraints

between logging and in-place update, which places the logging execution in the I/O

critical path. With caches being transparent, software applications cannot predict

when a dirty cache line is written to memory. Therefore, a memory update cannot be

performed until its log has been written to NVM. Nevertheless, flushing cache lines

and memory barriers introduced by software logging significantly degrade the overall

system performance. To reduce the logging overhead, hardware/hardware-assisted

logging methods [2, 3, 4, 5, 6] have been proposed to move the logging out of the

critical path. However, no logging operations are eliminated in either software or

hardware approaches, which is the root cause of the inefficiency.

In 2019, LAD [7] proposed a novel atomic in-place update without logging for those

transactions whose write set is smaller than the ADR (Asynchronous DRAM Refresh)

buffer [8]. Its main idea is that memory write requests of a transaction are accumu-

lated in the ADR buffer. These dirty data are flushed to NVM when all update

3

requests from this transaction have arrived at the ADR buffer. In case of a crash, the

ADR technology utilizes the energy provided by super-capacitors to flush all buffered

update requests to NVM, enabling the system to survive crashes. In this way, LAD

can avoid writing logs for these buffered transactions, thus boosting the performance.

However, when a multi-core system executes multiple transactions concurrently, these

transactions compete for the limited ADR buffer. Once the ADR buffer runs out of

space, LAD must resort to logging to ensure crash consistency, degrading system

performance.

1.3 Neural Network Accelerator

Specialized neural network accelerators (NNAs) have been developed to enhance

the performance of deep neural networks (DNNs) in diverse artificial intelligence

fields, such as computer vision, natural language processing, recommendation sys-

tems, graph analytics, and robotics. These NNAs employ systolic arrays (SAs) to

expedite computationally intensive convolution (CONV) operations, which are the

most prevalent and time-consuming tasks in deep neural networks. To optimize

data access for SA-based NNAs, a purpose-built on-chip memory is employed for

the storage of input feature maps (IFMAP), output feature maps (OFMAP), as well

as filters. This design minimizes the necessity for frequent access to slower off-chip

memory, such as DDR3/4. Nevertheless, the limited storage capacity of on-chip

4

memory still necessitates substantial off-chip memory accesses, as documented in the

previous works [9, 10, 11, 12, 13, 14]. This, in turn, introduces additional latency in

DNN inference.

To address the overhead incurred by accessing off-chip memory during DNN inference,

researchers have proposed two primary approaches:

† Enhancing on-chip data reuse: This approach focuses on maximizing the reuse

of on-chip data to minimize off-chip memory access. One strategy involves

designing the data movement within NNAs, referred to as dataflow. Data of

a particular type is stationed on NNAs with minimal movement, while other

data is streamed through NNAs to perform neural network computations with

the stationed data. These dataflows can be categorized into Weight Stationary

(WS) [15, 16, 17, 18, 19, 20, 21, 22], Output Stationary (OS) [23], or Input

Stationary (IS) [24]. WS, the most commonly adopted approach among current

NN chip vendors like NVIDIA and Google [18, 20, 21], is utilized to minimize

data movement. Another strategy involves operation fusion [1, 25, 26], which

eliminates the need for off-chip memory access for intermediate data between

fused operators. An example of this is the fusion of Convolution with Batch-

Normalization, Activation, and Pooling, a technique implemented by current

NN execution frameworks like Tensorflow [25] and TVM [26]. Given the diver-

sity of neural networks, different models may require unique operator fusions,

5

necessitating further profiling based on model-specific characteristics.

† Optimizing off-chip data placement: This approach is dedicated to optimizing

the allocation of data for tiles within the off-chip memory [14, 27, 28], with the

aim of improving off-chip memory access speed.

Despite these optimizations, the speed of off-chip memory access can still act as a

bottleneck in some NNAs [11, 14, 23, 27, 28, 29, 30, 31, 32]. Rather than customiz-

ing dataflow for specific NNAs [10, 33], the Weight Stationary is a widely adopted

dataflow for NNAs utilizing systolic arrays [17, 18, 20, 21, 22], which consist of a

matrix of processing elements. In this scenario, the unrolled filter must be tiled to

perform general matrix multiplication (GEMM) since the matrix size of the systolic

array is constrained. These layers are referred to as wide layers.

To complete convolution computations for wide layers, IFMAP is partitioned into mul-

tiple segments, each processed with a filter tile. This partitioning can lead to repeated

accesses to the same portions of IFMAP. Furthermore, the STOA tile placement op-

timization described in ROMANet [14] doesn’t fully account for memory contention

arising from simultaneous off-chip memory access for different feature map segments

during inference, leaving room for further enhancements in off-chip memory access

efficiency.

6

Chapter 2

Background

The emphasis of this dissertation lies in memory optimizations for non-volatile mem-

ory systems and neural network accelerators. In this chapter, two distinct sections

offer detailed introductions to the relevant background and related research. Sec-

tion 2.1 delves into topics such as crash consistency, logging operations, log organi-

zations, ADR, and LAD. Meanwhile, Section 2.2 presents comprehensive information

on neural networks, computational graph, accelerator architecture, and developments

related to neural network accelerators.

7

2.1 Logging in Non-volatile Memory

2.1.1 Crash Consistency in NVM systems

U-A Update Request A L-A Undo/Redo Log A P-A Persist modified A

U-A
L-A P-A

U-B
L-B P-B

U-C
L-C P-C

U-D

NVM

MC

CPU
Time

Transaction
Start

Transaction
End

Transaction
Start

U-A
L-A

P-A

U-B
L-B

P-B

U-C
L-C

P-C

U-D

NVM

MC

CPU
Time

Transaction
Start

Transaction
End

Transaction
Start

(a)

(b)

Figure 2.1: Transaction execution under (a) UNDO log and (b) REDO log

Crash consistency ensures that data on NVM are recoverable upon a system crash

or power loss. Prior studies [2, 3, 4, 6, 34] have proposed software logging to achieve

crash consistency. Based on log content, these logging schemes can be classified into

two categories: (1) undo-log : data are copied to the log before they are modified.

During recovery, logs are used to undo all changes made. (2) redo-log : new data are

8

written to the log before in-place updates. During recovery, logs are used to redo all

modifications.

To enforce the order constraint of write-log and write-data, software needs to run

cache line flush instructions and store fence instructions in the write-log stage and

write-data stage. Therefore, in these software schemes, the logging process is on the

critical path, leading to inferior performance. Figure 2.1 shows the execution overhead

introduced by logging with an example whose first transaction has 3 unique updates,

A, B, and C. Under undo-log, log entries with unmodified data are persisted before

their in-place updates are performed. Both persisting log entries and updates are on

the critical path. Under redo-log, while log entries with modified data are persisted,

their in-place updates are executed in the background after the transaction ends, with

the fast transaction commit speed. redo-log directs read requests to the log entries to

provide the latest values, incurring performance overhead.

Hardware-assisted logging methods are proposed to improve crash consistency perfor-

mance and reduce the burden on programmers. For example, ATOM [2] proposes a

hardware undo log, which initiates the write-log request for a store in the L1 cache and

delays the update to L1 until its write-log is done. The modified cache lines are flushed

to NVM later. The state-of-the-art hardware redo-log, REDU [6] buffers the latest

updates in the DRAM cache after persisting log entries to NVM and hence avoids

reading log entries from slow NVM when performing in-place updates. However,

9

these state-of-the-art designs still suffer from (1) handling complicated constraints on

ordering write-log and write-data, and (2) generating significant log write traffic and

reducing NVM’s lifetime.

2.1.2 Conventional Log Organization

TX1 Log Data Header
TX1 In-place Update

TX2 Log Data

Metadata[7]
Cache Line 1

NVM

TX2
Core

TX1
Cache Line 2
Cache Line 3
Cache Line 4
Cache Line 5
Cache Line 6
Cache Line 7

Stall

Ordering Unused Bytes
(b)(a)

Figure 2.2: (a) Ordering constraints of transaction execution in redo-log.
(b) A log record.

A transaction log includes 64-byte data content and an 8-byte home address for each

write request that occurred in this transaction. The address information in the log

is referred to as log metadata. To reduce the log metadata write traffic, ATOM [2]

proposes log entry collation (LEC) that co-locates seven log blocks’ metadata in a 64-

byte block referred to as a header. These seven log entries and the header constitute

a log record, shown in Figure 2.2(b). A log record header can be persisted to NVM

only after its log data blocks are written to NVM. This is the ordering constraint for

persisting a log record, and it is referred to as intra-record ordering. The intra-record

ordering is on the critical execution path for both the redo and undo logging scheme.

10

Figure 2.2(a) shows the ordering under redo logging.

However, LEC is sub-optimal in terms of write traffic reduction when the number of

write requests in a transaction is smaller than seven. For example, if a transaction

writes one cache line, its 64B log record header stores an 8B address, wasting NVM

write bandwidth. Whisper [35] shows most transactions have less than two write

requests in the NVM workloads. In addition, the log metadata traffic accounts for

12.5% of log traffic for transactions with a large number of write requests, degrading

performance, and NVM endurance.

2.1.3 Asynchronous DRAM Refresh (ADR)

Intel introduced a new technology ADR [8], which leverages energy held in capacitors

to ensure that pending write requests received by the memory controller (MC) will

be persisted to NVM even upon a power failure. The write pending queue (WPQ),

which holds write requests, is called the ADR buffer. The memory controller sends

an acknowledgment to the CPU immediately after the ADR buffer receives a clwb

instruction. This technology provides an exciting opportunity to efficiently achieve

crash consistency.

The energy stored in capacitors can also flush the memory controller buffer and AIT

cache to NVM upon crash [36]. Therefore, ADR makes the memory controller become

11

part of the persistence domain. However, it is challenging to provision the large

ADR buffer due to the memory controller’s power consumption and the capacitor

size limited by DIMM [37]. Typically, the ADR buffer can accommodate 24 or more

cachelines [2, 38, 39].

2.1.4 Logless Atomic Durability (LAD)

U-A Update Request A L-A Undo/Redo Log A P-A Persist modified A

U-A U-B U-C U-D

NVM

ADR
in MC

CPU
Time

Transaction
Start

Transaction
End

Transaction
Start&

P-A P-B P-C

Figure 2.3: LAD execution

To reduce log overhead, LAD [7] proposes the hardware mechanism that ensures a

transaction’s updates atomically persisted to NVM without logging, by exploiting

ADR. LAD stores updates of a transaction in the ADR buffer as it is running and

flushes these updates to NVM when the transaction ends. If a power failure happens

before an in-flight transaction ends, the partial log entries are discarded, without

affecting corresponding data stored in NVM. If a power failure happens after an in-

flight transaction ends, ADR can ensure that the buffered updates are safely persisted

to NVM, since the ADR buffer is part of the persistence domain. Figure 2.3 shows

12

how LAD works with a simple example. Assuming a transaction has 3 updates A, B,

and C, they are accumulated in the ADR buffer which is in MC as it is running and

LAD persists them after the transaction ends, without introducing log operations.

However, when the ADR buffer overflows, LAD falls back to hardware logging, by

writing log entries for speculative updates stored in the ADR buffer. After log entries

are persisted, their corresponding in-place updates are performed, losing the benefits

of LAD.

2.2 Neural Network and Neural Network Acceler-

ator

2.2.1 Neural Networks

Neural network (NN) is a type of artificial intelligence model that has gained signif-

icant attention in recent years due to its ability to perform complex tasks such as

image recognition, natural language processing, and decision-making. It is modeled

after the structure and function of the human brain, capable of learning and adapting

to new information through a process known as training. The basic building block

of a neural network is the artificial neuron, also known as a node. These neurons are

connected in layers, with each neuron in one layer connecting to one or more neurons

13

Input
Layer

Hidder
Layer-0

Hidder
Layer-n

Output
Layer

Figure 2.4: Brief graph of Neural Network

in the next layer. As shown in Figure 2.4, the input layer receives input data, such as

an image or a sentence, and the output layer produces a prediction or decision based

on the input. The intermediate layers are known as hidden layers and are responsible

for learning and processing information.

There are several types of neural networks, including convolutional neural networks

(CNN), recurrent neural networks (RNN), and deep neural networks (DNN). CNN is

commonly used for image and video recognition, while RNN is used for sequential data

such as speech and text. DNN has many hidden layers and has been successful in a

wide range of applications, including speech recognition, natural language processing,

and image and video analysis.

Neural networks have proven to be very effective in many applications and have

demonstrated state-of-the-art performance in tasks such as image recognition and

14

natural language processing. They have also been used in a wide range of indus-

tries, including healthcare, finance, and marketing. However, neural networks can

be computationally expensive and require a large amount of data. As such, research

continues to focus on improving the efficiency and performance of neural networks,

as well as developing new architectures to tackle specific problems.

2.2.2 Computations in Neural Network

The standard convolution computation, referred to as convolution computation in

this work, constitutes a fundamental operation in various neural network architec-

tures, particularly in DNN models employed for image and video recognition tasks.

Convolution computation entails the application of a set of filters to the input feature

map (IFMAP), wherein these filters are systematically moved across the input space.

At each spatial location, element-wise multiplication and summation operations are

executed. During the convolution process, every filter is convolved with every pixel

within the IFMAP, resulting in the generation of pixels on a channel of the output

feature map (OFMAP). This procedure is iterated for each filter, ultimately yielding

the OFMAP with multiple channels, each of which encodes distinct characteristics or

aspects of the input data.

Figure 2.5 provides the demonstration of convolution computation. The input data

15

H

W
C

IFMAP

Conv K

R
S

K

P
Q

OFMAPFilters

C

Figure 2.5: Convolution computation demonstration: H, W, and C
indicate the height, width, and channels of IFMAP. R and S indicate the
height and width of the filters. K is the number of filters, equal to the
number of channels in OFMAP. P and Q are the height and width of the
matrix on each channel of OFMAP.

denoted as IFMAP, consists of C channels and is represented as matrices of dimen-

sions H ×W with consistent shapes across channels. The filters, which serve as

weights, are K matrices, each with dimensions R × S ×C. OFMAP represents the

output, with the number of channels in OFMAP equal to K, corresponding to the

number of filters. The dimensions P and Q denote the height and width of the

OFMAP. Equation 2.1 and Equation 2.2 describe the relationships between the di-

mensions of IFMAP, filters, and OFMAP within the convolution computation process,

assuming no padding. The term Stride refers to the number of pixels by which the

filter shifts over IFMAP between steps, in the height or width directions. Equation 2.3

defines the mathematical calculation for each step, resulting in an output pixel. Each

output pixel O(p, q) on output channel k is derived by summing the products across

three dimensions: C, R, and S. As depicted in Figure 2.5, each matrix in OFMAP

is the outcome of convolving a filter of dimensions R × S × C with all matrices in

16

IFMAP whose dimensions is H×W×C.

P = (H −R + Stride)/Stride (2.1)

Q = (W − S + Stride)/Stride (2.2)

O(k, p, q) =
C−1∑
c=0

R−1∑
r=0

S−1∑
s=0

I(c, p+ r, q + s) ∗W (k, c, r, s) (2.3)

Besides the standard convolution computation, there are other types of convolution

operations, like Depthwise Convolution computation [40]. However, non-standard

convolution operations are not as commonly adopted in current NN algorithm designs

as standard convolution computation.

H

W
C

IFMAP

Conv R
S

Filter O(p,q)

f(x) =
1 if O(p,q)>=0

0 if O(p,q)<0

Y(p,q)Activation

Figure 2.6: Activation function demonstration: Binary Step

Activation functions are another essential component of artificial neural networks.

17

They are used to introduce nonlinearity into the output of a neuron, enabling neural

networks to model complex, nonlinear relationships between input data and output

predictions. As illustrated in Figure 2.6, the output pixel of a convolution operation,

O(p,q), is passed through an activation function, Binary Step, to produce a new

output pixel, Y(p,q). The most commonly used activation functions include Binary

Step 2.4, Sigmoid 2.5, Tanh 2.6, and ReLU 2.7. Choosing the right activation function

is crucial for achieving optimal model performance and training stability.

f(x) =


1 x >= 0

0 x < 0

(2.4)

f(x) = 1/(1 + e−x) (2.5)

f(x) = 2/(1 + e−2x)− 1 (2.6)

f(x) =


max(0, x) x >= 0

0 x < 0

(2.7)

18

Pooling is a technique commonly used in neural networks to reduce the matrix shape

of OFMAP while preserving critical features. It involves dividing the feature map

into non-overlapping or overlapping sub-regions and then applying a mathematical

operation to each sub-region. The resulting output has a decreased spatial resolution,

while the original number of channels is maintained. Figure 2.7 provides an example

of pooling, where the size of the feature map is reduced from 4× 4 to 2× 2. During

this process, the 4× 4 feature map is partitioned into multiple 3× 3 overlapping sub-

regions. Max pooling and average pooling are two common types of pooling, where

max pooling returns the maximum value in each sub-region, while average pooling

returns the average value.

Figure 2.7: Example of pooling: 3x3 filter over 4x4 feature map using
stride=1.

2.2.3 Computational Graph

A computational graph is a fundamental concept in the field of neural networks and

machine learning, serving as a graphical representation of mathematical operations

19

and dependencies within a model. It provides a way to visualize and understand the

flow of data through a network.

Conv ReLU MaxPool Conv ReLU MaxPoolInput Output

Operator NodeVariable Node Dependency

Figure 2.8: Computational Graph of a two-layer convolutional neural net-
work

As the example shown in Figure 2.8, a computational graph consists of nodes and

edges, where nodes represent mathematical operations or transformations, and edges

represent the data dependency between these operations. The graph is directed,

indicating the order in which computations are performed. There are two main types

of nodes in a computational graph:

† Operator Nodes: These nodes represent mathematical operations, such as addi-

tion, multiplication, or more complex operations like convolution or activation

functions (e.g., ReLU). Each operation takes input data, performs a specific

computation, and produces output data.

† Variable Nodes: These nodes represent the learnable parameters of the model,

such as weights and biases in a neural network.

To improve the efficiency of DNN inference, operator fusion is a key optimization

for computational graph in DNN execution frameworks, such as TensorFlow [25] and

20

TVM [26]. To further explore fusion opportunities, DNNFusion [1] developed a classi-

fication of both individual operator and their combinations. The fundamental concept

involves categorizing operators into distinct types and establishing rules for different

combinations of the types. Based on the correspondence between input and output,

operators are categorized into five types: one-to-one, reorganize, shuffle, one-to-many,

and many-to-many. In one-to-one operations, input pixels are directly mapped to

output pixels, exemplified by BatchNormalization. Reorganize and shuffle can be

considered variations of one-to-one with special mappings. Reorganize changes the

input dimensions without data movement, as seen in operators like Reshape. Shuf-

fle permutates the input dimensions with data movement, exemplified by operators

like Transpose. A representative operator featuring one-to-many mapping is Expand,

which broadcasts input tensors based on the given shape and rule. Many-to-many

mapping operators involve multiple input elements serving as operands to generate

one or more output elements, such as the standard convolution.

Figure 2.9: Mapping type analysis in DNNFusion [1]

DNNFusion conducted a fusion analysis based on the mapping type of operators, as

21

depicted in Figure 2.9. The first column and the first row, depicted without any color,

indicate the mapping types of the first and second operators slated for fusion. The

colored cells denote the resulting mapping type of the fused operator. This analysis

further categorizes the fusion of these mapping type combinations into three groups,

represented by green, orange, and red, respectively. Green denotes fusions that are

deemed legal and advantageous. Red signifies fusions known to be either illegitimate

or clearly unprofitable. Orange indicates that while these fusions are legitimate, their

profitability necessitates further examination.

With such exploration on operator fusion, the optimized computational graph not

only eliminates unnecessary computations but also reduces memory accesses for in-

termediate results, leading to enhanced efficiency in DNN inferences.

2.2.4 Neural Network Accelerators

Neural network accelerators (NNAs) are specialized hardware designed to improve the

throughput of neural network training/inference tasks. The intensive computations in

NN can be accelerated with targeted optimization for operations that are commonly

used in NNs, such as matrix-matrix computations and vector-matrix computations.

For NNAs tailored for DNN inferences, it is expected to have expeditious accesses to

data and the swift completion of computations, arising from the necessity to obtain

22

inference results with low latency.

PE PE PE

PE

PEPE

PE PE

PE

On-Chip
Memory

Vector Unit

DMA
Unit

Off-Chip
Memory

Weight

Input

(Partial) OutputOutput

NoC

Systolic
Array

Input
Buffer

Weight
Buffer

X
Multiplier

+
Accumulator

REG

Out Psum

In Psum

Psum

Figure 2.10: Architecture of Neural Network Accelerator

Figure 2.10 depicts a simplified NNA architecture, comprising a Systolic array (SA)

that includes a homogeneous network of tightly coupled Processing Elements, a Vector

Unit, on-chip memory, and off-chip memory.

Within the Systolic array, each Processing Element (PE) exhibits the capability to

independently and simultaneously conduct Multiply-Accumulate (MAC) operations

in parallel with other PEs. Figure 2.10 also provides a detailed focus on the primary

components of the PE. The multiplier and accumulator within the PE are responsible

for executing multiplication and addition operations, which are pivotal for efficient

matrix multiplication. In this illustrated example with Weight Stationary, buffers are

employed to store both the weights and inputs of a neural network. Simultaneously,

registers are utilized for temporarily storing intermediate results during computa-

tion. These PEs are typically homogeneous, signifying that they share an identical

23

architecture and functionality. Network on Chip (NoC) is a communication infras-

tructure that is designed to connect PEs in a Systolic array. The NoC serves as a

high-bandwidth communication network that enables the PEs to exchange data and

coordinate their operations efficiently. As the example illustrated in Figure 2.14, NoC

is employed to transfer weights from the top of the PEs matrix to the bottom, pre-

filling each PE with the required data. During the convolution computation, input

pixels are streamed from the left to the right through the NoC. Additionally, the

intermediate result, partial sum (Psum), within each PE is drained from the top to

the bottom using the NoC. By harnessing the parallelism inherent in the processing

elements, the Systolic Array can achieve significantly higher performance levels in

comparison to traditional single-processor architectures.

The Vector Unit serves as an adjunct coprocessor, tightly integrated with SA. It

specializes in executing vector operations, including accumulation, activation, nor-

malization, and pooling [17, 18, 41]. Its inputs are derived from the data drained

from the SA and the data buffered in on-chip memory, while its outputs are directed

back to the on-chip memory.

In NNAs, compiler-controlled on-chip memory offers the advantages of both higher

speed and increased energy efficiency when compared to off-chip memory. Among

the types of on-chip memory used in NNAs, Scratchpad Memory (SPM) is a common

choice [9, 14, 23, 29, 42, 43]. SPM is typically organized as a small, multi-bank SRAM,

24

and each bank can be independently accessed, enabling concurrent access to multiple

data elements. Another prevalent form of on-chip memory in NNAs is Vector Memory,

which is specifically designed for processing and manipulating extensive arrays of data

in a vectorized fashion, as highlighted in [17, 18, 41]. In some designs, operations,

like accumulation, are merged into the vector memory. The utilization of vector

memory can notably enhance the performance of vector operations. On-chip memory

not only allows for simultaneous on-chip access by the Systolic Array to multiple

tensor elements but also facilitates the reading and writing of data to and from off-

chip memory during on-chip computations. This functionality effectively reduces the

latency associated with off-chip memory access, which is essential for storing the

initial input and intermediate data generated during NN inference due to the limited

size of on-chip memory.

2.2.5 im2col methods: NCHW vs. NHWC

Offset nchw(n, c, h, w) = n× CHW + c×HW + h×W + w (2.8)

Offset nhwc(n, c, h, w) = n×HWC + h×WC + w × C + c (2.9)

25

P*Q

1A

im2col

2A1B 2B1D 2D1E 2E

W0A

W0B

W0C

W0D

W1A

W1B

W1C

W1D

W0A

W0B

W0C

W0D

W1A

W1B

W1C

W1D

W0A

W0B

W0C

W0D

W1A

W1B

W1C

W1D

1B 2B1C 2C1E 2E1F 2F

1D 2D1E 2E1G 2G1H 2H

1E 2E1F 2F1H 2H1I 2I

GEMM

C*R*S

K

P*Q

C*R*S

Unroll

2F2E

2C2B

2D

2G 2H 2I

2A

1F1E

1C1B

1D

1G 1H 1I

1A W1D

W1B

W1C

W1A

W0D

W0B

W0C

W0A W1D

W1B

W1C

W1A

W0D

W0B

W0C

W0A W1D

W1B

W1C

W1A

W0D

W0B

W0C

W0A

H=3

W=3

C=2

R=2

S=2

C=2

Filter_0 Filter_1 Filter_5
K=6

IFMAP Filters

=

O0A

O0B

O0C

O0D

O5A

O5B

O5C

O5D

K

O1A

O1B

O1C

O1D

OFMAP

Conv

Figure 2.11: Example of NCHW im2col

1A 2A 1B 2B 1D 2D 1E 2E

W0A

W1A

W0B

W1B

W0C

W1C

W0D

W1D

W0A

W0B

W0C

W0D

W1A

W1B

W1C

W1D

W0A

W0B

W0C

W0D

W1A

W1B

W1C

W1D

C*R*S
1B 2B 1C 2C 1E 2E 1F 2F

1D 1E 2E 1G 2G 1H 2H

1E 1F 2F 1H 2H 1I 2I

2D

2E

GEMMP*Q

C*R*S

K

Figure 2.12: Example of NHWC im2col

O0A = 1A×W0A+ 1B ×W0B ++ 2D ×W1C + 2E ×W1D (2.10)

26

Processing Elements in NNAs enable the execution of General Matrix Multiply

(GEMM) operations by performing parallel MAC operations. This necessitates the

transformation of Convolution Computation into GEMM using a technique known

as im2col transformation. An example of im2col is provided in Figure 2.11, where

both filters and IFMAP are unrolled into 2D matrices. Two commonly used implicit

im2col algorithms are NCHW [42, 44] and NHWC [43]. In the NCHW format, pixels

from the same channel of IFMAP are continuously placed, as shown in Figure 2.11.

As a result, filters are also unrolled in accordance with the NCHW format. In this

example, each column of unrolled weights corresponds to each filter, positioned above

from left to right. The blue and green squares signify the associated input channel,

indicating that weights within the same channel are sequentially placed in the NCHW

im2col format. However, due to hardware scalability limitations in stride Convolu-

tion Computation when using NCHW, the NHWC format was introduced in 2021 by

Zhou [43]. This format has since been embraced as the default format in contem-

porary machine learning frameworks [25] and recommended by various vendors [45].

As alternating blue and green squares shown in Figure 2.12, elements from different

channels are prioritized to be placed together in NHWC format.

Equation 2.8 and Equation 2.9 elucidate the pixel’s offset within the tensor layout for

NCHW and NHWC, respectively. With the im2col transformation, the OFMAP is

derived using GEMM. Equation 2.10 provides an example to obtain O0A, illustrating

that each element within the OFMAP represents the result of a MAC operation

27

Shape of IFMAP = [C, H, W], Shape of Filters = [K, C, R, S], Shape of OFMAP = [K, P, Q]

for k : [0, K)
 for r : [0, R)
 for s : [0, S)
 for c : [0, C)
 for h : [0, H)
 for w : [0, W)
 ofmap[k,h-r,w-s] +=
 ifmap[h,w,c]*filter[k,r,s,c]

(a) (c)(b)

for k : [0, K)
 for p : [0, P)
 for q : [0, Q)
 for c : [0, C)
 for r : [0, R)
 for s : [0, S)
 ofmap[k,p,q] +=
 ifmap[p+r,q+s,c]*filter[k,r,s,c]

for c : [0, C)
 for h : [0, H)
 for w : [0, W)
 for k : [0, K)
 for r : [0, R)
 for s : [0, S)
 ofmap[k,h-r,w-s] +=
 ifmap[h,w,c]*filter[k,r,s,c]

Figure 2.13: LoopNest presentations. (a) Weight Stationary. (b) Out-
put Stationary. (C) Input Stationary.

performed on a row and column from two unrolled matrices.

2.2.6 Dataflow in Neural Network Accelerators

Since hardware resources are limited, it is necessary in practice to partition big data

sets or layers into smaller chunks, which is called tiling [15]. Tiling divides a large data

set into smaller sub-regions, called tiles. Since tiling reduces the memory requirements

of the computation, a tile can be stationed on an SA, improving data reuse.

Dataflow refers to the way data is processed and propagated within and through

NN layers. To optimize the execution of neural network algorithms, various dataflow

algorithms have been proposed. Based on the data type stationed, here are listed

three dataflows:

† Weight Stationary (WS) [15, 16, 17, 18, 19, 20, 21, 22]: WS stations pixel of

28

filters on SA. Once a tile of filters is mapped onto SA, they are kept in the buffers

of PEs until all the computations involving the given set of filters are finished.

Every cycle, the pixels of IFMAP required to be multiplied with the loaded

pixels of filters are streamed into SA, generating partial sums. Figure 2.13(a)

illustrates the loop nest presentation of WS, where the iteration of filters is in

the outermost loop, enabling the highest degree of reuse.

† Output-Stationary (OS) [23]: Registers of PEs are reserved for the pixels of

OFMAP. Both the input and weight are streamed through SA to generate the

partial sum. Partial sums are kept and accumulated inside each PE to get the

final output. The LoopNest of OS is depicted in Figure 2.13(b).

† Input-Stationary (IS) [24]: Instead of stationing pixels of filters, a tile of IFMAP

is kept on SA, while the weights are streamed through to complete the compu-

tation. Figure 2.13(c) indicates LoopNest of IS, in which the input is highest

reused.

Among various NNA architectures, different Weight Stationary, Output Stationary,

and Input Stationary dataflows each could come with their respective advantages and

drawbacks. In addition, there are customized dataflow approaches tailored for specific

hardware, such as ISOSceles [33], which have demonstrated superior performance.

However, it is common for hardware vendors to adopt Weight Stationary dataflow,

as seen in TPUs [17, 18] and NVDLAs [19, 20, 21], for their NNAs [15].

29

2F2E

2C2B

2D

2G 2H 2I

2A

1F1E

1C1B

1D

1G 1H 1I

1A

W0CW0C

W1D

W1B

W1C

W1A

W0D

W0B

W0C

W0A W1D

W1B

W1C

W1A

W0D

W0B

W0C

W0A W1D

W1B

W1C

W1A

W0D

W0B

W0C

W0A

H=3

W=3

C=2

R=2

S=2

C=2

Filter_0 Filter_1 Filter_5
K=6

IFMAP Filters

W0A

W1A

W0B

W1B

W0A

W1A

W0B

W1B

W0A

W1A

W0B

W1B

W0A

W1A

W0B

W1B

W1CW1C

W0DW0D

W1DW1D

W
0C

~W
1D

 in Filter_2

W
0C

~W
1D

 in Filter_3

1A

2A

1B

2B

1B

2B

1C

2C

1D

2D

1E

2E

1E

2E

1F

2F

Systolic Array

W0BW1AW0A W0DW1D

Filter_1~4

W0BW1AW0A W0DW1D

Filter_0 Filter_5

2A1A 2B1B 2H1H 2I1I

W0A~W1B of Filter_0~3,
1A~2F of IFMAP

W0C~W1D of Filter_0~3,
1G~2I of IFMAP

Off-chip Memory

On-chip
Memory

Prefetch/Load

Prefill

Streaming
and

computation
Partial OFMAP

Vector Unit

Drain

Writeback

(a)

(b)

Figure 2.14: Example of convolution computation on NNA with
WS. Stride=1. (a) IFMAP and Filters. (b) Convolution computation on
NNA with Weight Stationary.

Figure 2.14 illustrates the key steps of convolution computation in an NNA, employing

a Weight Stationary dataflow. In Figure 2.14(a), the IFMAP is shown as having

dimensions of 3× 3 with 2 channels (H=3, W=3, C=2), and there are 6 2× 2 filters

30

(R=2, S=2, K=6) for each input channel, denoted as Filter 0 to Filter 5. The

Systolic Array is composed of a 4 × 4 PEs matrix, and all the data is unrolled and

stored in off-chip memory in NHWC format. Due to the limited size of the SA,

the convolution computation of a layer necessitates multiple tiles. In this specific

example, there are 4 tiles involved. Figure 2.14(b) outlines these steps. The on-

chip memory employs double-buffering, which enables data related to the next tile

to be prefetched from off-chip memory. Apart from the computation on SA, there

are 5 main steps involved in the data flow on the NNA. The example shown in

Figure 2.14(b) assumes that the NNA is at the beginning of computation for weights

W0A ∼ W1B of Filter 0 ∼ Filter 3.

1. Prefetch/Load: The first step involves transferring data from off-chip memory

to on-chip memory. In this instance, W0C ∼ W1D of Filter 0 ∼ Filter 3

and 1G ∼ 2I of IFMAP will be prefetched from off-chip memory once both

W0A ∼ W1B of Filter 0 ∼ Filter 3 and 1A ∼ 2F have been loaded into

on-chip memory.

2. Prefill: The second step entails loading data from on-chip memory into registers

of PEs. This data will remain stationed on the PEs throughout the computation

of the current tile. In this particular illustration, the SA has been preloaded

with W0A ∼ W1B of Filter 0 ∼ Filter 3, and these filter pixels will remain

within the SA until the completion of GEMM operation for this set of weights.

31

The subsequent data to be loaded into the SA is W0C ∼ W1D of Filter 0 ∼

Filter 3.

3. Streaming and Computation: The third step encompasses the continuous

streaming of data from on-chip memory to PEs for their computation within SA.

In the illustrative example presented in Figure 2.14, the data range 1A ∼ 2F

is streamed to the PEs for conducting MAC with the stationary filter pixels.

Following a MAC operation on a PE, the input pixel is passed on to the adja-

cent PE to the right. The Psum produced is then forwarded to the next PE

below, where it undergoes accumulation and is subsequently stored in on-chip

memory.

4. Drain: Following the computation, the remaining partial sums residing in the

registers of PEs are transferred to the Vector Unit, where they undergo final left

vector operations. It’s noteworthy that during the computation and draining

phases, vector operations can be executed simultaneously within the Vector

Unit, hiding the latency caused by them.

5. Writeback: Due to the limited capacity of on-chip memory, the intermediate

results produced during inference need to be written back to off-chip memory.

In this instance, it is assumed that the on-chip memory can buffer intermediate

results within a layer but lacks the capability to store the entire OFMAP. Con-

sequently, Partial OFMAP, OFMAP 0 ∼ OFMAP 3, will be written back to

off-chip memory once all elements have attained their final values subsequent

32

to accumulation in the vector unit.

2.2.7 Off-chip Memory Mapping in NNAs

Algorithm 1: Pseudo-code of DRAM Mapping proposed by ROMANet

Data:
#Channel: The number of channels in DRAM.
#Rank: The number of ranks per DRAM Channel.
#Bank: The number of banks per DRAM Rank
#Row: The number of rows per DRAM Bank.
#Column: The number of columns per DRAM Row.

1 for ch← 0 to (#Channel − 1) do
2 for rk ← 0 to (#Rank − 1 do
3 for ro← 0 to (#Row − 1) do
4 for bk ← 0 to (#Bank − 1) do
5 for co← 0 to (#Column− 1) do
6 //map a tile of data to
7 DRAM[ch, rk, bk, ro, co]

ROMANet [14] proposed an approach for mapping data of Neural Networks in of-chip

memory based on the tiling, resulting in improved DRAM access speed through en-

hanced row buffer hit rates and the utilization of multi-bank burst feature in DRAM.

In comparison to Caffeine [27], SmartShuttle [11], and BWA [28], ROMANet’s DRAM

Mapping technique achieves higher throughput while minimizing access energy and

latency.

Algorithm 1 provides a pseudo-code representation of the mapping policy for a data

tile, referred to as DTile in this research. At line 5, ROMANet gives priority to

33

mapping feature map elements to different columns within the same DRAM row to

maximize row buffer hits. This process can be carried out in parallel across different

chips if applicable, to leverage chip-level parallelism. If all columns within the same

row are fully occupied, any remaining data are mapped to different banks within the

same DRAM chip to exploit bank-level parallelism (line 4). Mapping to different

DRAM banks can also be executed in parallel across different chips if applicable. For

each bank, data are mapped to different columns within the same row, mirroring the

procedure described in line 5. Here, if all columns within the same row are filled, any

remaining data are mapped to a different row (line 3). These steps (lines 3∼5) are

iterated until all data are mapped within a DRAM rank. If any data remain, they

can be mapped to different DRAM ranks (line 2) and channels (line 1), respectively,

if applicable, using the same process outlined in lines 3∼5.

In ROMANet, off-chip memory access requests are sequentially directed to different

DRAM banks. Specifically, if bank0 was accessed in the previous cycle, the sub-

sequent request will be directed to bank1, and so forth. Furthermore, ROMANet

employs the First-Come-First-Serve (FCFS) scheduling policy. FCFS ensures that

memory requests are serviced in the order they are received, without any prioritiza-

tion or reordering based on various policies. This approach simplifies the design of

the memory controller and reduces its complexity.

34

Chapter 3

Improving the Performance of

NVM Crash Consistency under

Multicore

3.1 Overview

In this work, it is observed that in our studied 4-core workloads, up to 59.5% trans-

actions’ log operations would be avoided if these transactions ran alone, without any

ADR buffer contention. We propose two algorithms to reduce unnecessary log opera-

tions for concurrent transactions, two-stage transaction execution (TSTE) and virtual

35

ADR buffer (VADR). TSTE allows write requests of a transaction to be in both the

ADR buffer and an introduced staging SRAM buffer. Log operations and in-place

updates are performed in different buffers at different stages to reduce the number

of log operations. VADR decouples the ADR buffer’s buffering from the number of

its reliable draining requests. With VADR, requests in the ADR buffer only issue

in-place updates. Additionally, VADR can parallelize ADR-assisted in-place updates

with log write operations, increasing the parallelism in NVM writes. Compared with

LAD, the evaluation shows that combined with the redo log, TSTE improves the

throughput by 28.7% on average. VADR achieves an average of 36.2% improvement

in transaction throughput.

3.2 Motivation

3.2.1 Persist requirements of a transaction

A persist requirement is defined as the number of modified cache lines in a transac-

tion. Figure 3.1 shows the distribution of the persist requirement for the benchmarks

used in this work. A sub-bar represents the percentage of the range of the number of

modified cache lines in a transaction. The persistent requirement for most transac-

tions in all workloads studied in this work is less than 64. For example, the persistent

36

0%

20%

40%

60%

80%

100%

Array_Rand B_Tree RB_Tree TATP TPCC

1~8 9~16 17~24 25~32 33~48 49~

Figure 3.1: Transaction update demand distribution

requirements are less than 32 for the benchmark RB Tree and TATP. This is con-

sistent with observations made by the recent study [35]. Innovative techniques, such

as deduplication [46, 47] and data structure optimization for persistence [48], have

been proposed to further reduce the persistent requirement of a transaction. These

observations motivate us to leverage the recently introduced ADR to achieve write

atomicity without logging.

3.2.2 Unnecessary Logs

Unfortunately, concurrent transactions compete for ADR buffer and make ADR buffer

overflows frequently, under a multi-core system. It is often that the update demand

37

Figure 3.2: Transaction types distribution.

of each individual transaction is smaller than the ADR buffer but the total update

demand of all in-flight transactions is larger than the capacity of the ADR buffer. Log

operations caused by the overflow of the ADR buffer are unnecessary if these trans-

actions do not issue update requests simultaneously. These log operations, referred

to as unnecessary logs, consume significant I/O bandwidth and reduce transaction

throughput, leading to inferior system performance. Figure 3.2 shows that LAD can

cause up to 59.5% unnecessary log transactions in our 4-core workloads listed in Ta-

ble 3.1. This important observation motivates us to improve efficiency by eliminating

unnecessary logging.

We classify each transaction into a log-transaction or a logless-transaction depending

on whether this transaction involves log operation or not when it runs individually.

38

In terms of a transaction’s update demand and the capacity of the ADR buffer, a

transaction is a logless-transaction if its update demand is less than or equal to the

capacity of the ADR buffer, otherwise, a transaction is a log-transaction.

Workload Benchmarks
Mix1 Array Random + B Tree + Array Random + B Tree
Mix2 Array Random + RB Tree + Array Random + RB Tree
Mix3 Array Random x 4
Mix4 B Tree + TPCC + B Tree + TPCC
Mix5 RB Tree x 4
Mix6 TATP x 4

Table 3.1
Muclticore workloads

3.3 Two-Stage Transaction Execution (TSTE)

LAD switches to logging when in-flight transactions take more than 80% of the ADR

buffer. However, LAD often generates log operations that are in fact unnecessary. To

reduce unnecessary log operations, we propose the Two-Stage Transaction Execution.

It is motivated by the observation that write requests to be logged do not have to be

stored in the ADR buffer. Therefore, TSTE stores logged requests in the introduced

SRAM staging buffer and ADR accommodates more write requests without logging.

As a transaction is running, some of its write requests could be stored in the staging

buffer and its remaining write requests could be in the ADR buffer. TSTE performs

log operations for a transaction’s write requests stored in the staging buffer at the

first stage and then executes in-place updates for its write requests in the ADR buffer

39

Core 4Core 3Core 2Core 1

NVM

① ②

③

④

⑤ ⑥In-place update log

Director

ADR
Buffer

Staging
Buffer

Metadata

Figure 3.3: TSTE architecture

in the second stage. We will discuss how to direct a transaction’s write requests

to the ADR buffer and the staging buffer later. After issuing all update requests,

the transaction is stalled and becomes an end-transaction, waiting for its commit

completion. Being an end-transaction may start in-place update operations for its

write requests in the ADR buffer. TSTE commits a transaction immediately after its

second stage begins since its remaining write requests are in the ADR buffer.

The proposed hybrid scheme ensures the atomicity of a transaction’s update. If

a crash takes place during a transaction’s first stage, the recovery system reverts

all affected transactions to their original states by applying persisted log entries.

The recovery system can apply a partial undo log to recover the affected data to

40

their original value, while the recovery system discards partial redo log entries and

removes corresponding remapping entries. If a crash occurs during the second stage

of a transaction, ADR guarantees that all remaining in-place update requests of this

transaction are executed, achieving the update atomicity.

Figure 3.3 shows the TSTE architecture. After receiving a write request from a core,

the director sends this request to either the ADR buffer(step 1) or the staging

buffer(step 2). On the ADR buffer overflow, TSTE keeps the priority transaction’s

write requests in the ADR buffer and migrates non-priority transactions’ requests to

the staging buffer(step 3). When the ADR buffer has sufficient free entries, TSTE

promotes an end-transaction to be a secondary one and moves its pending write

requests from the staging buffer to the ADR buffer(step 4). While TSTE performs

in-place update operations for write requests in the ADR buffer(step 5), it executes

log operations for write requests in the staging buffer(step 6). When a priority

transaction depletes the ADR buffer, TSTE directs this transaction’s remaining write

requests to the staging buffer(step 3).

Each transaction has its metadata to keep tracking the locations of its in-flight write

requests in the ADR/staging buffer with the ADR bitmap and the staging bitmap

where each entry has 2 bits to represent a request’s state and its validity. Assuming

the ADR buffer and the staging buffer are 32 entries and 64 entries respectively, one

transaction ADR bitmap and the staging bitmap have 32 bits and 64 bits respectively.

41

The bitmaps overhead is 4× (64× 2 + 32) bits (160 bytes) for a 4-core system since

each core only runs one in-flight transaction at a time. We set the staging buffer size

to 4KB SRAM. The Cacti [49] estimates its area overhead to be 0.0143 mm2 with

the 22 nm technology.

A1Initial
State A2 B1 B2

A1Case a A2 B1 B2

Case b

B3Case c B4 A3

A1Case d A2 A3 A4 B1 B2 A5 A6

A1 A2 A3 B1 B2 B3 B4

ADR Buffer Staging Buffer

X: logging Y: pending

Figure 3.4: Examples of Two-Stage Transaction Execution

Figure 3.4 uses examples to illustrate how TSTE directs write requests for concur-

rently running transactions to either the ADR buffer or the staging buffer. Assume

both the ADR buffer and the staging buffer can hold 4 entries, and transactions A

and B cause the ADR buffer overflow (see the initial state in Figure 3.4).

42

† Case a. If transaction A is selected as a priority one, write requests of transac-

tionA are kept in the ADR buffer. Write requests of all non-priority transactions

are moved to the staging buffer, and then log operations are issued for them.

† Case b. Since transaction A and B are priority transaction and non-priority

one respectively; the request A3 is directed to the ADR buffer, and the requests

B3 and B4 are stored in the staging buffer. TSTE limits the maximal degree of

logging parallelism for each non-priority transaction. For instance, Figure 3.4

case b shows logging operations of B1 and B2 are running, but B3 and B4 are

pending.

† Case c. After a non-priority transaction eventually becomes an end-transaction,

it will be promoted to be a secondary one if its pending write requests can be

accommodated to the ADR buffer. For example, Figure 3.4’s case c shows the

non-priority transaction B becomes a secondary one and its pending requests,

including B3 and B4, are migrated to the ADR buffer. The completion of its

issued log operations leads to committing this transaction; simultaneously their

in-placed updates are initiated in parallel.

† Case d. If the priority transaction, tx, makes the ADR buffer overflow, its

remaining update requests are directed to the staging buffer. After that, the

TSTE initiates log operations for tx’s update requests in the staging buffer,

which is in the first stage of execution. After tx’s first stage is done, TSTE

commits it, and then starts in-place updates for tx’s write requests in the ADR

43

buffer, avoiding writing logging for them. Case d in Figure 3.4 shows that

the priority transaction A causes the ADR buffer overflow, and its A5 and A6

perform logging in the staging buffer. After A5 and A6 are done, TSTE commits

transaction A, flushing A’s requests in the ADR buffer.

When a transaction TX1 issues its first write request, we need to decide its location:

either the ADR buffer or the staging buffer. If ADR is empty, TX1’s first request is

directed to ADR, which is a priority transaction. If ADR buffers write requests of a

priority transaction or a secondary transaction, the transaction TX1’s write requests

are directed to the staging buffer, as a non-priority transaction. On completion of

a write request in the ADR buffer, TSTE attempts to promote a non-priority end-

transaction, tx, to be a secondary if the ADR buffer has sufficient free space to

accommodate tx’s pending requests in the staging buffer.

3.4 Virtualization of the ADR Buffer (VADR)

In Section 3.3, we propose to allow a priority transaction to use ADR exclusively

when the ADR buffer overflows. This reduces unnecessary log operations for logless-

transactions. However, a logless priority transaction’s write request is held in ADR

until its all update requests arrive, leading to inferior performance. The worse is that

a log priority transaction’s dirty cachelines can be written after its first stage is done.

44

ADR

Core 4
Core 3
Core 2
Core 1

VADR 2

VADR 3

VADR 4

①
②

④

VADR 1

③

NVM

Memory Controller

Figure 3.5: Virtual ADR buffer (VADR) in the memory controller

To address this issue, we propose to decouple the ADR’s buffering function from

its durable writing function. We only send the write requests of one transaction to

the ADR buffer after all of its requests arrive, and then these write requests can

be immediately issued. To achieve this goal, we propose to add a private SRAM

buffer (called Virtual ADR buffer, VADR) in the memory controller for each core, as

shown in Figure 3.5. Each VADR has the same capacity as the ADR buffer and it

predicts whether an in-flight transaction is logless. Each core sends write requests to

its private VADR (step 1○). Since VADR has the same size as the ADR buffer, VADR

can accept all write requests of a logless-transaction without overflow. After VADR

collects all dirty cache lines of a logless-transaction, the memory controller moves

45

them to the ADR buffer (step 2○) and then writes them to NVM (step 3○). When

VADR overflows, the memory controller marks the corresponding in-flight transaction

as a log-transaction, and starts to directly log this transaction to NVM (step 4○). The

hardware overhead is negligible. Assuming the ADR buffer has 32 entries, VADRs for

a 4-core processor consume only 8KB SRAM in the memory controller. The Cacti [49]

estimates its area overhead to be 0.0147 mm2 with the 22 nm technology.

Each VADR collects all updated write requests of an in-flight logless-transaction,

without stalling the execution of its corresponding core. However, this transaction

cannot be committed until all these write requests have been moved to ADR. This is

because an uncommitted transaction in ADR can survive a crash and flushing these

write requests to NVM violates the update atomicity of the transaction. For the

same reason, ADR initiates in-place updates to NVM only after ADR has collected

all dirty write requests from a transaction. To facilitate this process, an ADR buffer

entry is marked as flushable after ADR collects all write requests of the corresponding

transaction, and only flushable write requests can be drained to NVM.

Multiple logless-transactions can consume ADR simultaneously. When there is suf-

ficient free space in ADR, the memory controller admits all requests of a logless

transaction in VADR to ADR. In this design, we deploy a simple admission policy:

First-Come-First-Serve (FCFS). We have also evaluated a complicated policy, called

Minimal-Update-Demand-First (MUDF). However, the performance gain is minimal.

46

Thus, FCFS is chosen due to its simplicity and fairness.

VADR can guarantee crash consistency for transactions. The logging mechanism

ensures crash consistency for log-transactions. A logless-transaction has no update

requests persisted to NVM if a crash occurs before all write requests are admitted

to the ADR buffer. If a logless transaction has been admitted to ADR, the update-

atomicity of this transaction can survive a crash.

3.5 Redo Logging for ADR Depletion

Read

Update Addr1

Log Write Read Log Write

Update Addr2
MC

NVM

Update Addr1

Log
Write

Log
Write

Update Addr2
MC

NVM

DRAM
Cache

(a)

(b)

Figure 3.6: Undo logging and Redo logging. (a)Undo log operation,
(b) Redo log operation.

Upon ADR buffer overflow, LAD resorts to undo-log. However, the speed to commit

an undo-logged transaction is slower than that of a redo-logged. Figure 3.6(a) shows

undo logging needs to read the old value of the updated cache lines from NVM, then

47

write log entries to NVM, and finally write the dirty cache lines to NVM before

this transaction commits. On the other hand, Figure 3.6(b) shows that redo logging

can commit a transaction by only writing the dirty cache lines to the log in NVM.

However, redo logging needs to consult the remapping table for reading. To reduce

remapping overhead, we use a DRAM cache to hold the latest cache lines, which log

entries in the NVM log region, in a way similar to REDU [6]. An NVM read request

looks up the DRAM cache, which avoids scanning the logs. Therefore, both TSTE

and VADR use redo logging to increase the transaction commit speed. This design

has the same hardware overhead as REDU [6].

3.6 Evaluation

3.6.1 Experiment Setup

The proposed designs are implemented and evaluated via ChampSim [50] and DRAM-

Sim2 [51]. ChampSim is an Intel PIN [52] based simulator that models out-of-order

micro-architecture at the cycle level with detailed memory access behaviors, such

as LSQ’s memory dependence, Miss Status Holding Registers (MSHR) for TLB and

caches. These are not modeled in McSimA+ [53], which is used in previous NVM

crash consistency researches [3, 54, 55, 56]. To accurately model NVM access, the

48

Cores
OoO core @2GHz, 192 ROB entries,
48 store queue entries

L1 Inst. Cache
32KB, 64B lines, 8-way,
1 cycle access latency, 8 MSHR entries

L1 Data Cache
32KB, 64B lines, 8-way
3 cycle access latency, 8 MSHR entries

L2 Data Cache
256KB, 64B lines, 8-way
12 cycles access latency, 16 MSHR entries

LLC Cache
2MB per core, 64B lines, 16-way
30 cycles access latency, 32 MSHR entries

DRAM cache access latency 100 cycles, 32MB
Memory Controller 1 controller, 32 ADR buffer entries
NVM Access Latency 300 ns Write latency, 48 ns Read latency

Table 3.2
System parameters

Array Random Randomly insert/delete Elements in an array
B Tree Insert/delete nodes in a B tree
RB Tree Insert/delete nodes in a Red Black tree
TATP [57] Update locations
TPCC [58] Add new orders

Table 3.3
Benchmarks used for evaluation

cycle-level DRAMSim2 is incorporated into ChampSim. We have extended Champ-

Sim to support Intel persistent memory instructions clwb and sfence. The default

ADR buffer capacity is 32, which is similar to the ADR configurations used in previ-

ous studies [2, 56]. The configuration and parameters of the processor and memory

system used in our experiments are listed in Table 3.2.

Table 3.3 lists benchmarks used for evaluation in this study. Array Random, B tree,

and RB tree are micro-benchmarks. TPCC [58] is an online transaction processing

workload requiring ACID guarantees. TATP is an OLTP workload that simulates a

49

caller location system [57]. Figure 3.1 shows the transaction update demand distri-

bution for each benchmark. As we have mentioned in section 3.2.1, the persistent

requirement for most transactions in all workloads studied in this work is less than

64. Since this work targets multicore workloads, we construct 4-core workloads shown

in Table 3.4. In the multicore simulation, a core re-executes its workload if it finishes

earlier than other cores. The simulation is done until the slowest core completes the

execution of its workload.

We evaluated the following designs.

† LAD: It implements LAD according to Ref. [7]. A logless-transaction can di-

rectly perform in-place updates after all updated cache lines of this transaction

are collected by the ADR buffer. Otherwise, this transaction is required to write

undo log entries to NVM before performing in-place updates to NVM. Due to

simulating a single memory controller, we do not implement the distributed

commit protocol for multiple distributed memory controllers. LAD serves as

the baseline for comparisons in this study.

† LAD with redo log (LAD-RdLog): LAD is enhanced by redo log with the DRAM

cache [6]. It also models the latency for DRAM cache accesses for each NVM

read request.

† TSTE with redo log (TSTE-RdLog): We evaluate TSTE with redo log and the

50

Workload Benchmarks
Mix1 Array Random + B Tree + Array Random + B Tree
Mix2 Array Random + RB Tree + Array Random + RB Tree
Mix3 Array Random x 4
Mix4 B Tree + TPCC + B Tree + TPCC
Mix5 RB Tree x 4
Mix6 TATP x 4

Table 3.4
Multicore workloads

DRAM cache. Its staging buffer has 64 entries, and we limit the maximal log

parallelism to 8 for each transaction.

† Virtual ADR buffers with redo log and DRAM cache(VADR-RdLog): We evalu-

ate virtual ADR buffers with redo log, and the DRAM cache latency is simulated

for each NVM read request.

To evaluate different designs, we use the following metrics.

† Transaction throughput: It is defined as the number of committed transac-

tions divided by the execution time. It is the transaction system performance

indicator. The higher the throughput, the better the system performance is.

† Average Log traffic: It is defined as the number of cache lines read and written

for logging divided by the total number of simulated transactions. A large value

of log traffic indicates large NVM bandwidth consumption.

51

3.6.2 Removal of Unnecessary Log Operations

Figure 3.7: Transaction execution type distribution

A transaction execution can be classified into three categories: direct in-place update,

unnecessary-log, and necessary-log. A direct in-place update transaction can fit in

the ADR buffer, and perform direct in-place updates to NVM without logging. While

an unnecessary-log transaction’s write set size is smaller than the ADR buffer size

but is involved with logging, a necessary-log transaction’s write set size is larger than

the ADR buffer size. Figure 3.7 shows the distribution of transaction execution types

for LAD-RdLog and VADR-RdLog, which are indicated by the left bar and right

52

bar respectively for each workload. First, LAD-RdLog causes a significant percent-

age of unnecessary-log transactions in some workloads. For example, the workload

Mix4’s unnecessary-log transactions reaches 59.5%. On average, these workloads’

unnecessary-log transactions account for on average 28.3%. Second, VADR-RdLog

can successfully remove unnecessary-log transactions and convert them to direct in-

place update transactions. VADR can allow logless-transaction to exclusively access

the ADR buffer even when multiple transactions compete for the ADR buffer. There-

fore, VADR can efficiently remove unnecessary-log transactions.

3.6.3 Transaction Throughput Improvements

0%

20%

40%

60%

80%

Mix1 Mix2 Mix3 Mix4 Mix5 Mix6 AVG

LAD-RdLog TSTE-RdLog VADR-RdLog

Figure 3.8: Transaction throughput improvement over LAD

Figure 3.8 shows the LAD-RdLog, TSTE-RdLog, and VADR-RdLog transaction

53

throughput improvement over LAD. First, VADR-RdLog achieves the highest

throughput improvements. For example, the workload Mix1 boosts the throughput

to 78.6% compared with LAD. On average, VADR-RdLog increases the throughput

by 36.2%. The VADR buffer can prevent log-transaction from consuming the ADR

buffer and only allows logless transactions to access the ADR buffer, almost avoid-

ing log operations caused by the ADR resource contention. Second, TSTE-RdLog

improves the throughput by 28.7% on average. TSTE-RdLog not only removes log

operations for write requests of priority transactions in the ADR buffer but also avoids

log operations for eligible pending write requests in the staging buffer. This log op-

eration reduction leads to throughput improvement. Third, LAD-RdLog boosts the

throughput by 20.1% on average. This higher transaction throughput comes from the

faster transaction commit speed of the redo logging. Fourth, the efficiencies of TSTE-

RdLog and VADR-RdLog depend on the transaction execution type distribution of

workloads. For example, in some workloads, such as Mix1 and Mix4, which have

significant percentages of unnecessary-log transactions (see Figure 3.7), our design

can achieve significant performance improvement (see Figure 3.8). If the workloads,

such as Mix5 and Mix6, lack unnecessary-log transactions, our designs have fewer

opportunities to reduce log operations, leading to less performance gain.

54

0%

20%

40%

60%

80%

100%

Mix1 Mix2 Mix3 Mix4 Mix5 Mix6 AVG
TSTE-RdLog VADR-RdLog

Figure 3.9: Log operations reduction

3.6.4 Log Operations Reduction

Figure 3.9 indicates that TSTE-RdLog and VADR-RdLog can effectively reduce log

operations, compared with LAD-RdLog. First, VADR-RdLog is more efficient than

TSTE-RdLog to reduce log operations under our workloads. For example, on av-

erage, VADR-RdLog generates 9.7% fewer log operations than TSTE-RdLog. How-

ever, TSTE-RdLog performs fewer log operations than VADR-RdLog under work-

loads Mix1, Mix2, and Mix3. This can be explained by the transaction execution

type distribution shown in Figure 3.7. Mix1 and Mix3 have more log-transactions

than the other workloads. VADR-RdLog fails to reduce log operations for those

55

log-transactions since each write request of such transactions needs a log operation.

However, TSTE can avoid log operations for log-transactions’ eligible pending re-

quests, by migrating these write requests to the ADR buffer. On the other hand,

VADR-RdLog works more efficiently than TSTE-RdLog for workloads dominated by

logless-transactions, such as Mix5 and Mix6. This also can explain why Mix5 and

Mix6 reduce significant portions of log operations but boost less throughput, as shown

in Figure 3.8.

3.6.5 Sensitivity of ADR Buffer Capacity

0%

20%

40%

60%

80%

100%

Mix1 Mix2 Mix3 Mix4 Mix5 Mix6 AVG

TSTE(RLOG)-32 VADR(RLOG)-32 TSTE(RLOG)-64 VADR(RLOG)-64

Figure 3.10: Throughput improvements over LAD with various ADR buffer
sizes

56

In this subsection, we study the transaction throughput sensitivity to different ADR

buffer sizes. Figure 3.10 shows the throughput improvement of TSTE-RdLog and

VADR-RdLog over LAD when the ADR buffer has 32 and 64 entries. On average,

TSTE-RdLog improves the throughput by 28.7% and 21.0% with 32 and 64 entries,

respectively. In VADR-RdLog, the average throughput improvement is 36.2% and

35.4%, respectively for 32 and 64 entries. Both TSTE-RdLog and VADR-RdLog

show the same trend that the performance improvement diminishes as the size of

the ADR buffer increases. This is because a larger ADR buffer helps mitigate the

ADR resource contention, and reduces the number of logless-transactions and log-

transactions under the same workload. However, VADR-RdLog works better for

Mix1 and Mix3 as the ADR buffer size increases from 32 to 64. This is because, with

a buffer size of 32, more log-transactions are generated under these two workloads,

and some log-transactions become logless-transaction if the size of the ADR buffer

is increased to 64, resulting in more reduction of log operations. As the number of

cores in a processor keeps increasing and it is hard to scale up the ADR buffer size,

we expect that efficient ADR buffer management schemes are still needed to mitigate

the ADR buffer contention.

57

3.7 Summary

The NVM systems require log schemes to ensure crash consistency, introducing se-

vere performance overhead. Recently, LAD was proposed to remove log operations

for those transactions whose total amount of simultaneously updated cache lines is

smaller than the ADR buffer, without sacrificing the crash consistency of such trans-

actions. When concurrently executing transactions compete for the ADR buffer,

they tend to deplete the ADR buffer quickly, and hence log operations have to be

performed. We observe that there are a significant number of log operations that

could be eliminated if a transaction runs alone. To remove these unnecessary log

operations, this work presents a new transaction execution scheme that places write

requests of a transaction in both the ADR buffer and the SRAM staging buffer. Our

scheme, called two-stage transaction execution (TSTE), performs log operations only

for write requests of a transaction in the SRAM staging buffer and executes in-place

update operations for this transaction’s write requests in the ADR buffer. To further

improve ADR resource utilization, this work also proposes virtual ADR buffers to de-

couple the buffering from the ADR’s reliable writing data. The proposed virtual ADR

buffers only allow logless operations to access ADR resources. Additionally, this work

proposes to adopt a redo log with a DRAM cache to speed up the transaction commit

speed. Our evaluation results demonstrate that our proposed schemes can efficiently

reduce log operations by up to 94.9% and improve the transaction throughput by up

58

to 78.6%.

59

Chapter 4

Accelerate Hardware Logging for

Efficient Crash Consistency in

NVM

4.1 Overview

This work reveals two common factors that contribute to the inefficiency of logging:

(1) load imbalance among memory banks, and (2) constraints of intra-record ordering.

Overloaded memory banks may significantly prolong the waiting time of log requests

targeting these banks. To address this issue, we propose a novel log entry allocation

61

scheme (LALEA) that reshapes the traffic distribution over NVM banks. In addition,

the intra-record ordering between a header and its log entries decreases the degree of

parallelism in log operations. We design a log metadata buffering scheme (BLOM)

that eliminates the intra-record ordering constraints. These two proposed log opti-

mizations are general and can be applied to many existing designs. Our evaluation

shows that LALEA can achieve 54.04% higher transaction throughput on average,

compared to the state-of-the-art design REDU. BLOM can achieve 17.16% through-

put improvement over REDU on average. LALEA and BLOM together can boot

throughput by 56.62%.

4.2 Motivation

This work is motivated by the observation that the inefficiency of logging is mainly

caused by two factors: (1) imbalanced workload over underlying NVM banks, and (2)

intra-log record persistence ordering. The imbalanced workload over banks leads to

the high latency of log request persistence if a log request is served by the bank with a

large number of pending memory requests. However, it is challenging to solve the bank

workload imbalance. Reference locality tends to make requests cluster around a few

banks, leading to workload imbalance over banks. Conventional log entry allocation

schemes blindly allocate a physical address to a log request, further deteriorating this

issue. The intra-log record persistence ordering requires a log record’s metadata can

62

be persisted only after all log entries of this record have been persisted to NVM.

The persisting serialization between a log record metadata and its entries aggravates

transaction throughput.

4.3 Log Entry Allocation Scheme (LALEA)

W1Bank0

Bank1

Conventional Logging

L1

Bank0

Bank1

W2

W3

Proposed Logging

L2 L3

L1

W2 L2

L3

W1

W3

time

Gain

W In-place update L Log write

Figure 4.1: Compare LALEA with conventional logging

The log operation execution of a transaction could be on the critical path. For

example, redo logging can commit a pending transaction only after all log requests are

persisted. The slow execution of these log operations dictates the transaction commit

63

latency. Log requests in a bank with a larger number of pending requests suffer

from a higher persistence latency. Therefore, the slow log operation execution could

be caused by the imbalanced workloads over memory banks. The uneven workload

distribution over banks could be caused by the inherent locality of workloads [59, 60],

which makes in-place updates occur in one or a few banks. Furthermore, all prior

designs prefer to allocate a well-known contiguous NVM space for log entries, to

facilitate log management and recovery. This workload-agnostic log allocation scheme

deteriorates the issue of bank workload imbalance.

As discussed above, a balanced workload among banks can lead to low latency for log

requests. To balance workload over banks, we propose a novel strategy that performs

load-aware log entry allocation (LALEA) and effectively balances log write requests

over NVM banks. The main idea of LALEA is to allocate a log entry address according

to the underlying banks’ current pending operations. Specifically, LALEA allocates

an incoming log write operation a free block in the log region whose bank has the

smallest number of pending requests. Such adaptive log entry allocation can mitigate

the workload imbalance of memory banks caused by transactions’ in-place update

operations. The balanced workload brings two performance benefits: (1) reduced log

request persistence latency and (2) reduced memory latency for non-log requests. The

evenly distributed bank traffic can decrease memory latency for both memory read

requests and memory write requests issued in the transaction execution stage.

64

Figure 4.1 compares our LALEA with conventional log management by using a simple

example. For simplicity, assume that the system has only two banks, Bank0 and

Bank1, and they have two pending in-place update requests and one in-place update

request, respectively. Conventional log management schemes sequentially allocate

free memory blocks in Bank0 to log requests L1, L2, and L3, ignoring the current

workload on these banks. This leads to a longer service time for the log request L3.

However, our proposed method can allocate a log entry to the bank with a minimal

number of pending operations, and these three log entries are allocated to two banks.

LALEA can balance memory requests over banks and reduce the completion time of

log requests, especially for L3, decreasing the transaction commit latency.

Home addr [7]

Log addr [7]

Home addr [7]

Log addr [7]

......

[0]

[1]

[2]

[3]

[4]

[5]

[6]

Logged data

Logged data

Logged data

......

TxID Valid
Bits

Next Ptr

......

TxID Valid
Bits

Next Ptr

Figure 4.2: LALEA log record organization

The log organization scheme, such as LEC, requires that all log entries of a log record

65

are sequentially stored in the log region so that they can be accessed without storing

their addresses. However, the lack of the addresses of log entries makes it impossible

for LELEA to access non-sequentially stored log entries of a log record. To address

this issue, we enhance a log recorder header that includes an extra 64B metadata

block to store addresses for seven log entries stored in different banks, as shown in

Figure 4.2. The field Next P tr in the second metadata block points to the log header

of the next log record belonging to a transaction. The Next P tr is NULL if its

log record is the last one in a transaction. The V alid Bits in the header indicates

the count of valid log entries in its log record. The two-64B header is allocated to

the same bank that has a minimal number of pending requests. Although LALEA

writes extra log metadata to NVM, the introduced performance overhead is shadowed

by the performance improvement brought by LALEA, which is confirmed by our

experimental results.

LALEA requires that each bank has a managed log region to store log entries. Two

contiguous 64B data blocks of a LALEA header must be stored in the same bank.

However, two contiguous free log entries cannot be guaranteed to be found in the

free block list quickly. To solve this issue, we divide a bank’s log region into the log

entry region and the header region, and their allocation entries are 64B and 128B,

respectively. The free log entry (FLE) FIFO and the free header (FH) FIFO indicate

the free blocks to be allocated. When an entry is released, its address is appended

to its related FLE FIFO. These two FIFOs only maintain addresses of free blocks.

66

Log Queue

In-place Update
Queue

LR Reg. (# Core * 8B)

FE-Collector

FLE FIFO (1024)

FH FIFO (1024)

#wrt (8 bits)

Bank Info. Table

Figure 4.3: LALEA controller

They are not required to be persistent in that they can be rebuilt during the crash

recovery process.

Figure 4.3 shows the LALEA controller. It contains a bank information table, log

record registers (LR), a free entries collector (FE), a log queue, and an in-place update

queue. Each entry of the bank information table includes a write operation counter,

an FLE FIFO, and an FH FIFO. An 8-bit operation counter indicates the number

of pending memory operations in the bank. Upon a log entry or a header allocation

request, the controller first identifies the bank with the minimal operation counter and

then grabs a free block address from the corresponding FIFO in the bank. An FLE

FIFO and an FH FIFO contain 1024 and 256 free block addresses, respectively. A free

67

block address only includes a row address and a partial column address. Assuming a

row address and a column address have 16 and 10 bits respectively, a log entry block

address and a header address have 20 bits and 19 bits. Therefore, an FLE FIFO

and an FH FIFO require 2.5 KB and 2.375 KB, respectively. A CPU core has an 8B

LR register that points to the header of the first log record whose transaction’s log

records have been persisted to NVM. The LR register is non-volatile in that persisted

log entries of a CPU core are accessed through its LR register.

In case of a crash, the recovery module can revert the system to a consistent state, by

accessing log entries persisted to NVM. The non-volatile LR register maintains the

address to the chain of headers for these persisted log data blocks. The Next P tr in

a log record header links log records stored in NVM, forming the chain. Following

this chain, we can walk through these persisted log record headers and apply each

logged data to the home region, to make the system state back to a consistent state.

4.4 Log Metadata Buffering Scheme (BLOM)

Conventional log organization is inefficient in terms of log writing throughput. The

intra-record ordering constrains the degree of parallelism in log writes. Additionally,

the low utilization of the recorder header wastes precious NVM write bandwidth when

the corresponding transaction has a few write requests, which is common in NVM

68

workloads [35].

To address these limitations of conventional log organization, we propose to buffer

log metadata in ADR buffer, which is referred to as BLOM. The main idea is that

log metadata blocks are buffered in the ADR buffer until they are not needed. Log

metadata blocks can be discarded when all in-place updates of their corresponding

transaction are completed. If there is no crash, the buffering log metadata blocks

are not written to the NVM, improving the system performance and enhancing the

NVM’s lifetime. Upon a crash, ADR persists the buffered log metadata blocks to

NVM. When the system reboots, the recovery module can recover the system to a

consistent state, following the conventional recovery procedure. When the ADR buffer

is used up, the memory controller writes the buffered metadata block of a selected

transaction to NVM.

Figure 4.4 compares our proposed metadata buffering and the conventional redo log-

ging. The conventional redo logging initiates the persisting of transaction TX1’s

header at the time point t2 when the log entries are persisted. The header write

operation is finished at time t3. The intra-recorder ordering requires the serialization

of the persisting log data blocks and the header, and the stall of the CPU core ex-

ecution until time t3. Our proposed log metadata buffering eliminates the ordering

constraint by buffering the metadata block in the ADR buffer. Furthermore, this

69

NVM

TX2
Core

TX1 Stall

NVM

TX2
Core

Stall

TX1 Log Data

TX1

Header

TX1 Log Data
t1 t2 t3

Conventional REDO

Metadata Buffering REDO

Figure 4.4: Compare the redo logging and our proposed log metadata
buffering

metadata buffering avoids writing the metadata block to NVM. Therefore, the meta-

data buffering allows transaction TX2 to execute at time t2, reducing the CPU core

stalling time.

Our proposed metadata buffering is inspired by LAD [7]. However, our design differs

from LAD in the following aspects. First, while LAD buffers all update requests of

a transaction, our design only buffers log metadata blocks. LAD degrades to the

conventional logging scheme when the ADR buffer overflows. This is a common case

when multiple transactions run concurrently and compete for the limited ADR buffer.

ADR buffer overflow happens infrequently in our design as it only buffers metadata

blocks. In addition, our design writes a smaller number of blocks than LAD upon

70

an ADR buffer overflow. An overflow forces LAD to write log blocks for all update

requests in a transaction, while our design only writes the minimal number of buffered

metadata blocks.

4.5 Evaluation

4.5.1 Experiment Setup

Cores 4 OoO core @2GHz,192 ROB entries,
48 STQ entries

TLB L1: 6 sets, 4 ways; L2: 128 sets, 12 ways
L1 I/D Cache private, 32KB, 2 cycles, 8 ways

8 log buffer entries
L2D Cache private, 256KB, 8 cycles, 8 ways
LLC 8MB, 25 cycles, 16 ways
Memory Controller 1 channel, 1 rank, 8 banks, 8GB NVM

16 ADR Buffer entries [37], 32 Log Queue entries
NVM Access Latency 300(48) ns write(read) [46, 61]

Table 4.1
System parameters

The proposed designs are implemented and evaluated by using ChampSim [50] with

DRAMSim2 [51]. ChampSim is an Intel PIN [52] based simulator that models out-of-

order micro-architecture at cycle level with detailed memory access behaviors, includ-

ing TLB, LSQ memory dependence, and MSHR. To accurately model NVM accesses,

the cycle-level memory simulator DRAMSim2 is integrated with ChampSim. We en-

hance ChampSim to support tx begin, and tx end. The configurations of the processor

71

and memory system used in our experiments are listed in Table 4.1. The default mem-

ory address mapping is page-level interleaving. We use both micro-benchmarks and

real workloads in our experiments. The micro-benchmarks include B tree (B-Tree),

chain queue (ChainQueue), a hash table (HashTable), and red-block tree (RB-Tree),

the real workloads include TPCC [58] and TATP [57]. Workloads are simulated under

a 4-core processor and each core executes the same workload.

Our proposed LALEA and BLOM are generic logging optimization methods that can

be applied to prior designs. As examples demonstrate their capabilities, we apply

them to two start-of-the-art designs: REDU [6] and LAD [7]. LALEA and BLOM

represent that they are applied to REDU, while LALEA-LAD denotes that LALEA

optimization is applied to LAD. Since LALEA and BLOM are orthogonal, they can

work together. LALEA+BLOM represents their combinations applied to REDU.

4.5.2 Transaction Throughput

Figure 4.5 shows the transaction throughput improvement over REDU. LALEA,

BLOM, and LALEA+BLOM improve the throughput of REDU by 54.04%, 17.16%,

and 56.62% on average, respectively. LALEA balances the banks’ workloads and

reduces log operation latency, leading to throughput improvement. BLOM removes

the intra-recording ordering constraints and reduces log traffic, thus also improving

72

Figure 4.5: Improving transaction throughput

the throughput. LALEA is more effective than BLOM. This is because LALEA ac-

celerates the writing of all log entries while BLOM only speeds up serving log record

headers. As expected, LALEA+BLOM achieves an extra 2.58% throughput gain over

LALEA.

Our evaluation shows that LAD is inferior to REDU in throughput. There are several

reasons for LAD’s performance degradation. First, concurrent transactions under

multi-core CPU compete for the limited ADR buffer and the depletion of the ADR

buffer makes LAD fall back to log operations. Second, ADR buffer capacity is limited

in the commodity CPUs that support NVM. For example, the ADR buffer in the

memory controller for Intel Optane memory only can buffer 16 cache lines [37]. Last

but not least, LAD issues log requests when the LAD buffer overflows, while REDU

can immediately initiate log requests as soon as they arrive. The delayed issue of

73

log requests increases LAD transaction commit latency. In addition, REDU’s logging

scheme is more efficient than the logging scheme used by LAD. After being applied

to LAD, LALEA can efficiently execute log requests and outperform LAD by 67.45%

in terms of throughput.

4.5.3 Log Entry Persistence Latency

80%

85%

90%

95%

100%

B-Tree ChainQueue HashTable RB-Tree TATP TPCC AVG

LALEA LALEA-LAD

Figure 4.6: Reducing log entry persistence latency

Figure 4.6 shows incorporating LALEA into REDU and LAD can reduce the latency

of log entry persistence by 92.51% and 93.66% on average over these two prior de-

signs, respectively. LALEA effectively reduces log request queuing time by workloads

over balancing NVM banks. The short queuing time can be translated into decreased

persistence latency. The reduced latency minimizes the memory barrier synchro-

nization time required by logging. A transaction commit time is determined by the

execution time of transaction instructions and the synchronization time of memory

74

barriers. The reduced log entry latency decreases the memory barrier synchronization

time, improving the transaction throughput. This also explains why log entry latency

improvement is more significant than the throughput gain.

4.5.4 Transaction Commit Latency

0%
20%
40%
60%
80%

100%

B-T
ree

Ch
ain
Qu
eu
e

Ha
sh
Ta
ble

RB
-Tr
ee

TA
TP

TP
CC AV

G

LALEA BLOM LALEA+BLOM LALEA-LAD

Figure 4.7: Reducing latency to commit transaction

Figure 4.7 shows transaction commit latency reduction for LALEA, BLOM, and

LALEA+BLOM over REDU, and for LALEA-LAD over LAD. The latency to com-

mit a transaction is defined as the period from the issue of its last instruction to the

completion of its all log requests. On average, LALEA, BLOM, and LALEA+BLOM

decrease the transaction commit latency by 86.55%, 28.74%, and 88.74%, respec-

tively. In addition, LALEA reduces the commit latency by 79.02%, when it is applied

to LAD. Since LALEA can reduce the log entry persistence latency, a transaction’s log

requests take a shorter time to complete, leading to a lower commit latency. BLOM

75

avoids persisting log metadata blocks and thus also decreases the finish time of log

requests. When these two optimizations work together, the commit latency is further

reduced.

4.5.5 Throughput under the Alternative Address Mapping

Scheme

-40%

-20%

0%

20%

40%

B-T
ree

Ch
ain
Qu
eu
e

Ha
sh
Ta
ble

RB
-Tr
ee

TA
TP

TP
CC AV

G

LALEA BLOM LALEA+BLOM LAD LALEA-LAD

Figure 4.8: Improving transaction throughput with cache line level inter-
leaving

We have demonstrated that LALEA and BLOM can improve the transaction execu-

tion performance, by decreasing the log entry persistence latency. These two optimiza-

tions work well when the imbalanced bank workload causes a longer log persistence

latency. We believe that uneven bank workload commonly exists in programs, even

though a physical memory address mapping scheme could affect the workload distri-

bution over banks. To demonstrate LALEA and BLOM capability, we evaluate them

76

under an aggressive address mapping scheme, cache line level interleaving, which dis-

tributes contiguous cache lines to different banks. Due to space limitations, we only

present LALEA, BLOM, and LALEA+BLOM throughput improvement over REDU

under this aggressive address mapping scheme. Figure 4.8 indicates that they improve

the throughput by 17.01%, 0.99%, and 24.81% on average, respectively. In addition,

LALEA improves LAD’s throughput by 10.96%. As expected, the aggressive address

mapping scheme can mitigate the imbalance of bank workload and achieve less per-

formance gain for these optimizations than page-level address mapping. The more

balanced bank workload makes BLOM achieve marginal performance improvement.

However, LALEA still achieves significant performance gains.

4.6 Summary

Logging schemes are widely used to ensure crash consistency for persistent memory.

The ordering constraints between log operations and transaction execution place some

log operations on the I/O critical path, thus introducing severe performance overhead.

We have identified two fundamental and common reasons for the inefficiency of log

operations. First, the over-loaded NVM banks increase the queuing time for log re-

quests served by these banks, leading to a high persistence latency for log requests.

Second, the intra-record ordering serializes the persisting of log entries and the header,

increasing transaction commit latency. To address the first issue, we propose LALEA

77

which balances banks’ workload through the novel log entries allocation method. To

address the second issue, we propose BLOM that removes intra-record ordering con-

straints by buffering headers in the ADR buffer. Our evaluation shows that LALEA

can achieve 54.04% and 17.16% higher transaction throughput on average compared

to prior designs, respectively.

78

Chapter 5

Improving Neural Network

Accelerator Performance by

Optimizing Memory Accesses

5.1 Overview

This work introduces two optimizations to alleviate the bottleneck resulting from off-

chip memory access during DNN inference tasks. We observed that the execution of

layers with substantial input channels on edge NNAs causes significant performance

overhead, and revealed that the execution of such layer introduces repeated off-chip

79

memory accesses to IFMAP. To Alleviate the issue of Repeated Access to IFMAP,

we propose an enhanced Weight Stationary strategy, named ARAI, achieved by re-

ordering the iteration order within the loop-nest for wider layers. ARAI reduces

repeated IFMAP access, thereby minimizing the number of off-chip memory accesses.

Taking into account the concurrent off-chip memory access by multiple data tiles, we

present an innovative Load-Aware Placement (LAP) scheme for feature map tiles in

off-chip memory to improve the memory parallelism. LAP dynamically places tiles

in optimal memory banks on-the-fly, enhancing off-chip memory throughput. We

evaluate the proposed designs and compare them with STOA optimizations. Our

evaluation shows that ARAI reduces inference latency by 33.37% on average. LAP

outperforms the state-of-art off-chip tile mapping scheme[14] by an average of 42.00%.

Since these two optimizations are orthogonal, the combination of them can achieve

61.90% performance improvement on average.

5.2 Motivation

5.2.1 Wide Layers

The NHWC im2col requires that pixels of a filter are firstly unrolled in the direction

of depth, corresponding to different input channels. With WS, each unrolled filter is

80

for k : [0, K)
 for r : [0, R)
 for s : [0, S)
 for f : [0, C/T)
 parallel-for t in [0, T)
 for h : [0, H)
 for w : [0, W)
 c = f*T+t

 ofmap[k, h-r, w-s] +=
 ifmap[h,w,c]*filter[k,r,s,c]

for k : [0, K)
 for r : [0, R)
 for s : [0, S)
 for c : [0, C)
 for h : [0,H)
 for w : [0, W)
 ofmap[k, h-r, w-s] +=
 ifmap[h,w,c]*filter[k,r,s,c]

Tile_3

Tile_2

Tile_1

W
0
00

W
T-1
00

W
0

W
T-1
00

00

SA Tile_0

W
T
00

W
2T-1

00

W
T

W
2T-1

00

00

W
2T
00

W
3T-1

00

W
2T

W
3T-1

00

00

W
0
01

W
T-1
01

W
0

W
T-1
01

01

W
T
01 W

T
01

C2

C1

C0

C0

C

C

C = C0 + C1 + C2

IFMAP Unrolled Filters on SA

C0
C1

C2
W

H

LoopNest(a)

LoopNest(b)

Off-chip On-chip
Ti

m
e

Figure 5.1: Example of repeated off-chip memory access to IFMAP
in a Wide Layer. LoopNest(a) and LoopNest(b) present the convolution
computation with Weight Stationary before and after mapping filters on the
Systolic Array (SA), respectively. The sequence number of Tiles indicates
their execution order. IFMAP is read from off-chip memory to on-chip
memory. Arrows with different colors correspond to different tiles of IFMAP.

81

mapped to one column of SA to perform GEMM [13]. When the size of the unrolled

filter is larger than the size of the SA column, each filter is partitioned into many

tiles, illustrated by the LoopNests shown in Figure 5.1. LoopNest(a) depicts the

convolution computation before mapping unrolled filters onto the SA. The order of

iteration, [k, r, s, c, h, w], from the outermost to the innermost, signifies the order of

weight pixels to be loaded into the SA to complete the convolution computation.

LoopNest(b), [k, r, s, f, t, h, w], shows the loop nest with weight tiles after they are

mapped onto the SA. Here, T represents the number of PEs in a column of the SA,

which serves as the partition factor for each filter. A convolution layer is termed a

wide layer when the number of input channels, C, exceeds T.

In this setup, the weights in each filter tile perform GEMM with inputs from a subset

of IFMAP channels, resulting in IFMAP tiles. As the example shown in Figure 2.14,

the channels of IFMAP are divided into 3 portions, C0, C1, and C2, while the first

filter tile, Tile 0, does GEMM with the inputs on C0 of IFMAP. Inputs from all

channels of IFMAP are processed after the f loop. The parallel-for t loop highlights

the concurrent execution on rows of the PE matrix, where weights corresponding

to the same input channel from different filters are stationed and perform MAC

operations with the same inputs. Each IFMAP tile conducts GEMM with at least

one filter tile, while different filter tiles may perform GEMM with the same IFMAP

tile. In Figure 2.14, the inputs on C0 of IFMAP are accessed for both Tile 0 and

Tile 3.

82

However, due to the limited size of on-chip memory, it is challenging to buffer an

entire IFMAP on-chip. Inputs that are not involved in neural network computation

with the current on-chip weights are released to facilitate the prefetching of other

inputs for subsequent computations. In this scenario, repeated access to the same

IFMAP tile located in off-chip memory could happen in wide layers.

Figure 5.1 illustrates the repeated off-chip memory accesses to IFMAP tiles with a

simplified example. The shape of the filter is 3x3 on each input channel, indicated

by weight pixels W00∼W08. The superscript of a Weight pixel indicates the input

channel which it will do MAC with. Weights from different filters are presented in

different colors. The number of IFMAP channels, C, is divided into three parts by

T, which are C0, C1, and C2. Due to the double-buffering on-chip memory, IFMAP

tiles are repeatedly released from on-chip memory and fetched from off-chip memory

between two iterations in the s loop. In this example, after the execution of the filter

tile Tile 0, the inputs on C0 (presented by purple arrow) are released to save on-chip

memory space for the coming inputs on C2 (presented by blue arrow) at the current

iteration in the s loop. But at the next iteration, the filter tile Tile 3 will do GEMM

with the inputs on C0 again, leading to repeated reading from off-chip memory. The

inputs on C1 (presented by red arrow) and C2 meet the same problem.

83

0%
20%
40%
60%
80%

100%

ALX DRK FR RES VGG ZF MOB AVG

1~32 33~64 65~128 129~

Figure 5.2: Execution time distribution by layer types

5.2.2 Performance Impact of Wide Layers.

In modern DNN models [40, 62, 63, 64, 65, 66, 67], except for the initial layers, the

convolution layers typically feature a substantial number of input channels, reaching

up to 1024. This increase in input channels is indicative of the abundance of features

captured by the preceding layers. The prevalence of a large number of input channels

often leads to the occurrence of wide layers, especially in edge devices where the PE

matrix of the SA typically ranges from 16×16 to 64×64[68, 69, 70].

We have observed that wide layers experience significant memory-stall time when

executing DNN models on edge NNAs. Figure 5.2 and Figure 5.3 illustrate the dis-

tribution of execution time and memory-stall time for layers with varying numbers of

IFMAP channels when these NN models are run on an NNA with a 32x32 SA.

Layers in all the NN models have been categorized into four types based on the

number of IFMAP channels: narrow layer (1∼32), medium layer (33∼64), wide layer

84

0%
20%
40%
60%
80%

100%

ALX DRK FR RES VGG ZF MOB AVG

1~32 33~64 65~128 129~

Figure 5.3: Memory-stall time distribution by layer types

(65∼128), and wider layer (more than 128). The distribution of execution time reflects

the percentage of execution time that different layer types consume during the NN

inference. Meanwhile, the distribution of memory-stall time denotes the percentage

of time that different layer types take to access off-chip memory.

As presented by Figure 5.2, wide and wider layers account for the highest percentage

of the execution time, averaging 20.31% and 75.53%, respectively. This means that

a substantial portion of the inference time is primarily dedicated to the execution of

wide and wider layers.

Additionally, the distribution of memory-stall time in Figure 5.3 shows that off-chip

memory access time of wide layers and wider layers constitutes an average of 19.03%

and 70.75% of the model execution time, respectively. This reveals the significant

overhead caused by off-chip memory access when processing wide and wider layers.

These observations motivate us to explore strategies to alleviate the performance

bottleneck caused by wide layers when running NN inference on edge devices.

85

To tackle the performance bottleneck on edge NNAs arising from off-chip memory

access, we begin by introducing an optimization for Weight Stationary toAlleviate the

issue of Repeated Access to IFMAP (ARAI) in off-chip memory. Subsequently, we

present the concept of Load-Aware Placement (LAP). LAP is designed to optimize

the placement of tiles on off-chip memory, thereby reducing the time required for

accessing data in off-chip memory.

5.3 Alleviate Repeated Access to IFMAP (ARAI)

To Alleviate the issue of Repeated Access to IFMAP caused by wide layers, we intro-

duce ARAI as an optimized Weight Stationary dataflow. While preserving the NHWC

im2col format, filter tiles undergoing GEMM operations with the same IFMAP tile

are processed continuously. Unlike the loop order [k, r, s, f, t, h, w] employed by WS

in LoopNest(b) as shown in Figure 5.1, ARAI reorders the loops as [k, f, r, s, t, h, w]

to facilitate the reuse of on-chip IFMAP tiles, thereby minimizing off-chip memory

traffic.

Figure 5.4 provides an example to explain how ARAI operates, using the same il-

lustrative example presented in Section 5.2. In the LoopNest, c represents the input

channel to be accessed. With the use of parallel-for, inputs from IFMAP channels

ranging from f ∗ T to f ∗ T + T − 1 are concurrently streamed to various rows of

86

W
2T
00

Tile_9

Tile_1

W
0
00

W
T-1
00

W
0

W
T-1
00

00

SA Tile_0

W
T
01

W
T-1
01

W
T

W
T-1
01

01

W
T
00

W
2T-1

00

W
T

W
2T-1

00

00

W
2T
00

C2

C1

C0

C0

C = C0 + C1 + C2

C0
C1

C2
W

H

Tile_2 ~ 8

Tile_10~17

C0 x7

C1 x8

for k : [0, K)
 for f : [0, C/T)
 for r : [0, R)
 for s : [0, S)
 parallel-for t in [0, T)
 for h : [0, H)
 for w : [0, W)
 c = f*T+t

 ofmap[k, h-r, w-s] +=
 ifmap[h,w,c]*filter[k,r,s,c]

LoopNest

Unrolled Filters on SAIFMAP

Off-chip On-chip

Ti
m

e
Figure 5.4: Illustration of ARAI

the SA. By moving the f loop outside the r loop and s loop, ARAI enables inputs

from these IFMAP channels to continually participate in GEMM operations with

different filter tiles, as indicated by all iterations of the r and s loops. This process

is visualized with different colored arrows in Figure 5.4. For instance, after inputs on

C0 (depicted by the purple arrow) are read from off-chip memory for Tile 0, they are

87

retained on-chip and continually utilized until the final filter tile in the r and s loops,

Tile 8. The subsequent iteration in the f loop requires input from C1 (represented

by the red arrow), which remains in on-chip memory until the conclusion of Tile 17.

During this process, inputs on C0 in on-chip memory are released to allow for the

prefetching of inputs on C2 (illustrated by the blue arrow).

With ARAI, each IFMAP tile is read only once during the r loop and s loop, thus

preventing the repeated off-chip memory access for the same IFMAP tiles, as illus-

trated in Figure 2.14. Importantly, ARAI can be seamlessly integrated into Deep

Learning frameworks that support the NHWC format, such as Tensorflow [25].

5.4 Load-Aware Placement of Data Tiles (LAP)

ROMANet [14] has introduced an off-chip memory mapping policy that leverages the

multi-bank burst feature of DRAM. This approach improves DRAM Bandwidth by

exploiting access parallelism across multiple banks. However, ROMANet performs

off-chip memory mapping for each data tile separately, without considering the po-

tential intra/inter memory contention of data tiles. During inference, both filter tiles

and IFMAP tiles are read from off-chip memory. Additionally, intermediate results,

88

Channel0

Bank0 Bank1

Channel1

Bank0 Bank1

row0

row1

row2

row3

1 2

3 1

2 1

Channel0
Bank0 Bank1

Channel1
Bank0 Bank1

row0

row1

row2

row3

1 23

2

1

1

DTile_0 DTile_1 DTile_2

(a)

(b)

Figure 5.5: Off-chip memory mapping examples. Off-chip memory
has 2 channels, 2 banks per channel, and 4 rows per bank. There are three
concurrent data tiles. The numbers inside blocks indicate their order during
memory allocation. (a) is based on ROMANet. (b) is based on LAP.

namely OFMAP tiles, need to be written back to off-chip memory due to the con-

straints of on-chip memory size. Such concurrent off-chip memory access could serial-

ize the access to different data tiles on banks. For instance, as shown in Figure 5.5(a),

three data tiles, DTile 0, DTile 1, and DTile 2, on bank1 of channel0 are serially ac-

cessed. Another limitation of ROMANet is the underutilization of parallelism on the

89

channel level within the current multichannel off-chip memory system. It prioritizes

placing a data tile across banks of a DRAM rank over ranks and channels. The shared

bus among banks within a channel restricts DRAM Bandwidth.

To address memory contention and leverage channel-level parallelism, we introduce

a novel approach called Load-Aware Placement (LAP) for feature maps in DRAM.

The objective of LAP is to enhance DRAM Bandwidth. Given that the OFMAP

of the intermediate layers becomes the IFMAP for another layer, we simplify our

discussion by collectively referring to both IFMAP tiles and OFMAP tiles as DTiles.

LAP determines the DRAM locations for OFMAP tiles based on the existing layout

of DTile and the load status of DRAM. When a DTile is generated, LAP divides

its DRAM accesses into multiple tasks, each at the granularity of the DRAM page

size. Then, LAP allocates a free DRAM row to each of these tasks, referred to as

rowTasks. The allocation process for a DTile is outlined by the pseudo-code in Al-

gorithm 2. During the allocation for each rowTask, LAP first ensures that there is

no DRAM access contention with other rowTasks originating from the same DTile

(line: 2 and line: 19). It then identifies the DRAM banks with the lightest load as

potential allocation positions (lines: 4 ∼ 6). A DRAM location, including the indices

of channel, rank, bank, and row, is selected from these potential positions while pri-

oritizing channel-level parallelism (lines: 7 ∼ 17). In the example illustrating DRAM

allocation with LAP, as shown in Figure 5.5(b), three rowTasks belonging to DTile 0

90

Algorithm 2: Pseudo code of DRAM Allocation for a DTile in LAP

Data:
RowTask: DRAM access task at the granularity of DRAM page size.
SelfMinBkRkCh: DRAM locations with minimum rowTasks of current DTile.
MemMinBkRkCh: DRAM locations with minimum rowTasks scheduled to
access.
#Channel: The number of channels in DRAM.
#Rank: The number of ranks per DRAM Channel.
#Bank: The number of banks per DRAM Rank
#Row: The number of rows per DRAM Bank.

1 for rowTask in RowTasks do
2 for BkRkCh in SelfMinBkRkCh do
3 //Check the layout of DTile itself.
4 if BkRkCh is in MemMinBkRkCh then
5 //Check current DRAM Status.
6 BkRkChRecords.insert(BkRkCh);

7 for bk ← 0 to (#Bank − 1) do
8 for rk ← 0 to (#Rank − 1) do
9 for ch← 0 to (#Channel − 1) do

10 //Channel Level Parallelism.
11 tmpBkRkCh← (bk, rk, ch);
12 if tmpBkRkCh is in BkRkChRecords then
13 for ro← 0 to (#Row − 1) do
14 memLocation← (tmpBkRkCh, ro);
15 if memLocation is free then
16 //Allocate.
17 rowTask.setMemInfo(memLocation);
18 goto Foo;

19 Foo: Update SelfMinBkRkCh;

are prioritized to different DRAM channels, Channel0 and Channel1. Subsequently,

they are assigned to different banks within the same channel. When it comes to

DTile 1, the first rowTask is allocated to the DRAM bank with the lightest load,

which is Bank1 in Channel1. In situations where all banks have an equal load status,

91

Algorithm 3: Generate DRAM Address to Access from rowTasks in LAP

Data:
rTaskListOnBkRkCh: List of scheduled read rowTasks on all DRAM banks.
wTaskListOnBkRkCh: List of scheduled write rowTasks on all DRAM banks.
NextBkRkChToCheck: Containing IDs of Bank, Rank, and Channel.
#Channel: The number of channels in DRAM.
#Rank: The number of ranks per DRAM Channel.
#Bank: The number of banks per DRAM Rank
Result:
Addr: address of a DRAM block.

1 nextBk ← Bk in NextBkRkChToCheck;
2 nextRk ← Rk in NextBkRkChToCheck;
3 nextCh← Ch in NextBkRkChToCheck;
4 rowTaskPtr ← NULL;
5 //Search the rowTask from NextBkRkChTocheck;
6 for bkOffset← 0 to (#Bank − 1) do
7 bk ← (bkOffset+ nextBk)mod(#Bank);
8 for rkOffset← 0 to (#Rank − 1) do
9 rk ← (rkOffset+ nextRk)mod(#Rank);

10 for chOffset← 0 to (#Channel − 1) do
11 ch← (chOffset+ nextCh)mod(#Channel);
12 BkRkCh← (bk, rk, ch);
13 if have valid rowTask in rTaskListOnBkRkCh[BkRkCh] then
14 rowTaskPtr ← rTaskListOnBkRkCh[BkRkCh].front();

15 else if has valid rowTask in wTaskListOnBkRkCh[BkRkCh] then
16 rowTaskPtr ← wTaskListOnBkRkCh[BkRkCh].front();

17 //Generate DRAM Address to access
18 if rowTaskPtr is not NULL then
19 Addr ← rowTaskPtr.nextAddrToAccess();
20 //update NextBkRkChToCheck with (bk, rk, ch);
21 (nextBk, nextRk, nextCh)← (bk, rk, ch);
22 nextCh← (ch+ 1);
23 if nextCh >= #Channel then
24 nextCh← 0;
25 nextRk ← (rk + 1)mod#Rank;
26 if nextRk == 0 then
27 nextBk ← (bk + 1)mod#Bank;

28 NextBkRkChToCheck ← (nextBk, nextRk, nextCh);
29 goto: Foo;

30 ... //Search from (0, 0, 0) to NextBkRkChTocheck;
31 Foo: return Addr;

92

the second rowTask of DTile 1 is allocated to the bank of another channel, specifi-

cally Bank0 in Channel0. In scenarios where the load status varies among DRAM

Channels, rowTask will be allocated to the bank of the channel with the lightest load,

as illustrated in the allocation of the rowTask for DTile 2.

Based on the allocation of a DTile, its mapping information is stored to support write-

back to DRAM and future retrieval as input from DRAM. The mapping information

for a DTile is released after it is no longer needed as input.

Algorithm 3 outlines the logic for maximizing DRAM access parallelism with LAP.

DRAM access requests are prioritized to be sent to different channels, then ranks,

and banks (lines: 5 ∼ 11 and lines: 20 ∼ 26) if there is a scheduled rowTask for that

specific position. Similar to ROMANet, LAP utilizes the FCFS policy for DRAM

access. This choice ensures that the DRAM access requests are served by DRAM

in the same order as they are sent, maximizing parallelism on both the channel and

bank levels.

5.4.1 Microarchitecture of LAP

To facilitate Load-Aware Placement (LAP), we introduce the DTile Manager Unit

(DMU) on the chip. The DMU supports both DRAM allocation and address mapping

for DTiles, extending the address translation supported by DMA [17, 18, 29, 32, 41].

93

Off-chip
Memory

DMA
DMU

Scalar Unit

On-chip
Memory

Systolic
Array

&
Vector
Unit

1 4

2

3

5

6

Figure 5.6: Architecture overview of LAP

Integrated with software-managed DMA, the DMU is involved in the data transfer

between on-chip memory and off-chip memory. Figure 5.6 depicts an architectural

overview of LAP.

The scalar unit manages the compiler-controlled memory hierarchy and on-chip com-

putation. To facilitate off-chip memory access for DTiles, relevant instructions issued

to the DMA are expanded to include a description of the DTile, incorporating details

such as the operation type (Read/Write), the global unique index of the DTile, and

the size of the data, as depicted in Figure 5.8 and Figure 5.9. Instructions originating

from the scalar unit for off-chip memory access of DTile 1 prompt the DMU to

execute DRAM allocation for the DTile intended for writing back to off-chip memory

or address mapping for the DTile read from off-chip memory 2 . Additionally, the

DMU generates the sequence of memory accesses 2 , as illustrated in Algorithm 3.

Subsequently, data is transferred between on-chip memory and off-chip memory 3 .

Upon completion of the data transfer of DTile, a completion notification is sent

94

DMU Reg0

Entry-1

Entry-0
MLT :

GT :
Entry-0

ChIDRkIDBkIDRoID MLTEID0AllocNum aBit MLTEID1AccNumrBit

Entry-1

Entry-0
DMT :

GID MLTHead

Reg1 Reg2

Entry-1

Entry-0
BST :

Reg3 Reg4

SchNum NextRowID vBit rMLTEID vrBit wMLTEIDvwBit

GID dBit Addr

Entry-1

ChIDRkIDBkIDRoIDAllocNumChIDRkIDBkIDRoIDAllocNum

ChIDRkIDBkIDRoIDAllocNum

GID dBit Addr

SRAM

pBit lBit

Figure 5.7: Key components in DTile Manager Unit (DMU): Mem-
ory Location Table (MLT), DTile Mapping Table (DMT), Bank Status Table
(BST), Off-chip DTile Tracking Table (GT), Reg0: The head of free ML-
TEntries, Reg1: The tail of free MLTEntries, Reg2: SelfMinBkRkCh in
Algorithm 2, Reg3: MemMinBkRkCh in Algorithm 2, Reg4: NextBkRkCh-
ToCheck in Algorithm 3

back to the scalar unit 4 , allowing for the continuation of the program execution

5 6 . For instance, after DMA completes the off-chip memory read of DTile, the

scalar unit could issue instructions to initiate on-chip computation 5 . During the

computation, input is streamed through the computation units, while intermediate

results are buffered in the on-chip memory 6 .

DTile Manager Unit: DMU is responsible for storing and managing data struc-

tures related to LAP, ensuring efficient allocation and DRAM access for DTiles. Fig-

ure 5.7 provides a detailed overview of the DMU.

95

On-chip DTile Tracking: In LAP, DRAM access from a DTile is divided into

multiple rowTasks, each with separately determined locations. To keep track of the

DRAM locations and manage DRAM access for on-chip DTiles, we introduce two

essential data structures: the Memory Location Table (MLT) and the DTile Mapping

Table (DMT). These tables are crucial for efficient DRAM allocation, as outlined

in Algorithm 2, and for managing DRAM access as described in Algorithm 3. The

MLT is responsible for recording all DRAM locations allocated for on-chip DTiles and

monitoring the status of DRAM access for rowTasks. Each entry in the MLT, referred

to as an MLTEntry, contains detailed information about the DRAM location allocated

to a rowTask, including the IDs of the channel (ChID), rank (RkID), bank (BkID),

and row (RoID). Additionally, the number of memory blocks allocated (AllocNum) for

each rowTask is recorded in the MLTEntry. Since multiple rowTasks can be generated

from a single DTile, the DRAM locations of one DTile could be recorded in multiple

MLTEntries. These entries are organized into a list by including the index of the

subsequent MLTEntry (MLTEID0), whose validity is indicated by a flag bit (pBit).

To distinguish the operations in which MLTEntry is involved, two additional flag bits

(aBit and rBit) are introduced. The aBit is introduced to indicate whether the DTile

is during allocation of LAP. The rBit is to denote whether the given rowTask generates

read or write DRAM access requests. To monitor the progress of DRAM access for

each rowTask, the count of memory blocks to be accessed (AccNum) is maintained

within each MLTEntry. Upon reaching zero, the DRAM access for the respective

96

rowTask is considered complete. During DRAM access from DTiles, the scenario

may arise where a single DRAM bank is accessed by multiple rowTasks. MLTEntries

associated with rowTasks that access the same DRAM bank are categorized into read

and write lists. To form a list, each MLTEntry records another index of MLTEntry

(MLTEID1), corresponding to the subsequent rowTask scheduled for the same bank.

A flag bit (lBit) is to denote whether the MLTEID1 is valid.

The DTile Mapping Table (DMT) is responsible for tracking DRAM locations for

on-chip DTiles. Each on-chip DTile corresponds to a DMT entry, which contains the

global unique index of this DTile (GID) and the index of the first MLTEntry in the

list of its MLTEntries (MLTHead). The GID serves as the sequence number for DTile

generation during NN inference. Once the inference is compiled, the execution order

of filter tiles is determined, which in turn indicates the sequence of DTile generation.

To facilitate the DRAM allocation of LAP, we introduce Reg0 and Reg1, which record

the head and tail of the list of free MLTEntries used to track DRAM locations for

rowTasks. As DRAM locations are sequentially determined for DTiles by LAP, we

introduce a bitmap register, Reg2, to indicate which banks have had the minimum

rowTasks allocated to the current DTile. This information is used as SelfMinBkRkCh

in Algorithm 2.

DRAM Status Tracking: As shown in Algorithm 2 and Algorithm 3, the status

of DRAM banks is referred for both DRAM allocation for DTiles and DRAM access

97

from DTiles in LAP. To track the status of DRAM, we introduce the Bank Status

Table (BST) and two bitmap registers, Reg3 and Reg4. Each individual DRAM bank

corresponds to a unique entry in BST and a bit in both Reg3 and Reg4. For Algo-

rithm 2, each BST entry records information about the bank, such as the number

of rowTasks scheduled to be accessed on this bank (SchNum), the index of the next

DRAM row to be allocated for a rowTask (NextRowID), and a flag bit (vBit) indi-

cating the validity of NextRowID for the allocation. NextRowID is updated during

the allocation of a rowTask and the release of a rowTask. Its value is set in ascending

order within the range of rows per bank. With the configuration of off-chip memory

in Table 5.3, inference tasks for Neural Network models listed in Table 5.4 cannot

exceed the space of DRAM. The preliminary analysis of these workloads indicates

that VGG16 has the largest storage requirement, which is 80.56MB. With the par-

allelism achieved by LAP, it is hard for NextRowID to exceed the number of rows

per bank during the inference task. Thus, the row indicated by NextRowID is always

free for allocation. Once NextRowID has exceeded the range of rows in one bank,

this indicates that the range of rows in all other banks is going to be exceeded. In

this case, the storage requirement of the inference task is over the capacity of DRAM,

terminating program execution. Reg3 is responsible for summarizing the banks with

the minimum number of rowTasks scheduled to access. Each bit in Reg3 indicates

whether a specific bank has the minimum number of rowTasks scheduled to access.

98

With Reg3, it is straightforward to obtain MemMinBkRkCh in Algorithm 2. Mem-

MinBkRkCh, as indicated by Reg3, is based on the value of SchNum for all banks. To

achieve maximum parallelism in DRAM access, the rowTasks scheduled to access each

bank should be tracked. In DMU, each rowTask from an on-chip DTile has a unique

MLTEntry to indicate its DRAM location. Each BST entry tracks two lists of ML-

TEntries for read and write. In a layer, DRAM read access is prioritized over DRAM

write access when there is contention on a DRAM bank, as shown in Algorithm 3.

This is because, during the execution of the layer, the time to complete NN computa-

tion is affected by reading related DTiles. For each list, MLTEID1 in each MLTEntry

plays the role of the pointer to the subsequent MLTEntry. RowTasks represented

by each list of MLTEntries are served in the order in which they appear in the list.

The index of MLTEntry to read (rMLTEID) indicates the first rowTask in the read

list which has DRAM read accesses to this bank. Similarly, the first rowTask in the

write list is tracked by wMLTEID. Two flag bits, vrBit and vwBit, indicate whether

rMLTEID and wMLTEID are valid, respectively. Additionally, the bit in Reg4 in-

dicates whether a specific bank is actively serving access. NextBkRkChToCheck, as

indicated by Reg4, is updated each time a DRAM access request is generated.

Off-chip DTile Tracking: Due to the limited size of on-chip memory, the OFMAP

needs to be written back to off-chip memory after generation. To track the off-chip

DTiles for future reading, each rowTask is tracked by its DRAM location information,

99

including ChID, RkID, BkID, RoID, and AllocNum. The DRAM locations of row-

Tasks originating from the same DTile are continuously stored either in the SRAM

of DMU or in DRAM. Thus, we introduce a table indexed by GID (GT). Each GT

entry contains the unique GID for a DTile, a flag bit (dBit), and an address (Addr).

To minimize the time overhead of DRAM mapping, the DRAM location information

for off-chip DTiles is prioritized to be stored in the SRAM of DMU. Once the limit

of SRAM capacity is going to be exceeded, subsequent DTiles’ location information

is directed to be stored in DRAM. The dBit indicates whether the DRAM locations

of rowTasks are stored in the SRAM of DMU or in DRAM. The Addr specifies the

starting SRAM/DRAM address where the tracking information of rowTasks from this

DTile is stored. The off-chip tracking information of a DTile will only be released

when its data has been released from DRAM.

The DMU plays a crucial role in the generation and reading of DTiles, using the data

structures mentioned above. We outline how DMU operates during these processes:

Generating DTile: Figure 5.8 illustrates the procedure by which DMU facilitates

the DRAM allocation for DTile. In this process, a DMT entry is allocated. Addi-

tionally, free MLTEntries are assigned to record DRAM locations and monitor the

status of DRAM access for these rowTasks. While MLTEntries are assigned to row-

Tasks, the head of the free MLTEntries list is updated and recorded in Reg0. Values

pertaining to DRAM locations in each MLTEntry are set according to Algorithm 2,

100

Start

DTile Info:
GID, Size of Data

Calculate:
The number of RowTasks,
DataSize for each RowTask.

Assign free DMT Entry:
GID = GID, MLTHead = R0

Update MLTEntry:
Algorithm2 updates ChID, RkID, BkID, RoID.
AllocNum = DataSize, aBit =1, pBit=0

rBit=0, AccNum=AllocNum, lBit=0

Update BST Entry corresponding to (ChID, RkID, BkID):
Append MLTEntry to the end of write list indexed by wMLTEID.
SchNum++

R0 = MLTEID0 of MLTEntry

Update NextRowID and vBit for BST Entry

Does RowTask without DRAM Location exist?

Assign MLTEntry indexed by R0 to the
first RowTask without DRAM Location

End

pBit=1

N

Y

Figure 5.8: Main steps of DRAM allocation for DTile in LAP

101

including ChID, RkID, BkID, RoID, and AllocNum. The aBit is set to 1, indicating

that this DTile is undergoing DRAM allocation. Reg2 and Reg3 provide SelfMin-

BkRkCh and MemMinBkRkCh for Algorithm 2, respectively. NextRowID and vBit

in a BST entry are updated after an MLTEntry is allocated to this bank. During the

writeback to DRAM, all rBits in MLTEntries are set to 0, indicating that they are

write tasks. Based on the DRAM bank to be accessed, each MLTEntry is appended

to the write lists of MLTEntries scheduled for that bank. SchNum in this BST entry

is also updated. Algorithm 3 determines whether a DRAM write request is sent to

the DRAM location indicated by the MLTEntry with wMLTEID of a BST entry.

NextBkRkChToCheck provided by Reg4 is checked and updated during this process.

AccNum in the MLTEntry is initialized to the value of AllocNum and decreased dur-

ing DRAM access. When the value of AccNum reaches 0, it signifies that all data

for this DRAM location has been written back. The wMLTEID in this BST entry is

then moved to the index of the next MLTEntry in its write list. Once all the data of a

DTile has been successfully written back to DRAM, its DRAM location information

is transferred to either the SRAM or DRAM, tracked by the GT. The MLTEntries

associated with this DTile are then reset and appended to the tail of the list of free

MLTEntries, making them available for future allocations or reading.

Reading DTile: As shown in Figure 5.9, when a request to read a DTile from off-

chip memory is received, DMU first transfers the mapping information tracked by a

GT entry to a DMT entry and multiple MLTEntries. The values of DRAM locations,

102

Start

GID of DTile to Read

Read GT Entry with GID

N

Y

dBit == 0 ?

Read Summarization of DRAM
Locations from SRAM inside DMU

Y

Read Summarization of DRAM
Locations from DRAM

Assign MLTEntry indexed by R0 to RowTask

N

Update MLTEntry:
ChID, RkID, BkID, RoID, AllocNum.
aBit =0, pBit=0, rBit=1, lBit=0.
AccNum=AllocNum

Update BST Entry corresponding to (ChID, RkID, BkID):
Append MLTEntry to the end of read list indexed by rMLTEID.
SchNum++

R0 = MLTEID0 of MLTEntry

Does all rowTasks have been recorded in MLT?

End

pBit=1

Assign free DMT Entry:
GID = GID, MLTHead = R0

Figure 5.9: Main steps of reading DRAM location for off-chip DTile

103

including ChID, RkID, BkID, RoID, and AllocNum, are copied from the off-chip

DTile tracking information pointed to by Addr in the GT entry. The MLTEntries are

allocated from the free list of MLTEntries and initialized for DRAM read access with

the DRAM locations. Similar to the writeback to DRAM, based on the banks to be

accessed, these MLTEntries of DTile to be read from off-chip memory are appended

to different read lists recorded by BST entries and served. When a DTile needs to be

released from on-chip memory, either due to the limited size of on-chip memory or

the absence of further need for its data, the MLTEntries of this DTile are reset and

appended to the tail of the list of free MLTEntries.

Overhead: The space requirements for the key components in DMU, based on the

NNA system configuration in Table 5.3, are detailed in Table 5.1. For tracking 2MB

of on-chip memory (double-buffering SPM), 2048 MLTEntries are required, requiring

16KB of SRAM. BST comprises 64 entries and consumes 0.5KB of SRAM. Though the

number of on-chip and off-chip DTiles varies, 64KB of SRAM is sufficient to accom-

modate all the data structures mentioned above, which is based on the observation of

workloads in Table 5.4. According to Cacti [49], the area of 64KB SRAM in DMU is

approximately 0.35 mm2 when implemented with 22 nm technology. After optimiza-

tion by neural network compilers, the execution of the inference task becomes static,

leading to a predetermined order for generating and reading DTiles. Moreover, since

DRAM is dedicated to a single Systolic Array, both DRAM allocation and the status

of DRAM access are entirely determined by the inference run on this Systolic array.

104

Components Filed Size Requirement
Reg0∼4 64-bit ×5

ChID 1 Bit for 2 Channels
RkID 1 Bit for 2 Ranks
BkID 4 Bits for 16 Banks

Memory Location Table (MLT) RoID 15 Bits for 32768 Rows
64-bit Entry×2048 AllocNum 7 Bits for 128 Mem Blocks

pBit 1 Bit
MLTEID0 11 Bits for 2048 Entries

aBit 1 Bit
rBit 1 Bit

AccNum 7 Bits 128 Mem Blocks
lBit 1 Bit

MLTEID1 11 Bits for 2048 Entries
DTile Mapping Table (DMT) GID 15 Bits

32-bit Entry×N, N≤34 MLTHead 11 Bits for 2048 Entries
SchNum 11 Bits for 2048 Entries

NextRowID 15 Bits for 32768 Rows
Bank Status Table (BST) vBit 1 Bit

64-bit Entry×64 rMLTEID 11 Bits for 2048 Entries
vrBit 1 Bit

wMLTEID 11 Bits for 2048 Entries
vwBit 1 Bit

DTile Tracking Table (GT) GID 15 Bits
64-bit Entry, Dynamic dBit 1 Bit

Addr 48 Bits

Table 5.1
Space requirement of key components in DMU

Consequently, address translation for DTiles can be completed in advance by the

DMU. Table 5.2 presents the average number of rowTasks per DTile under different

operations (generation and reading) for Neural Network models in the evaluation. Al-

gorithm 3 outlines the concept of generating the sequence of DRAM accesses. With

the support of the DMU, the update of NextBKRKChToCheck is reflected by the

change of bits in Reg4. The pipeline execution of access request generation enables

105

NN Models Generation Read,DWS Read, ARAI
AlexNet 1.71 2.21 1.20

DarkNet19 8.03 3.56 3.13
FaceRecognition 10.35 4.95 5.96

Resnet18 11.17 4.08 4.22
VGG16 21.68 11.38 2.98
ZFNet 2.34 2.22 1.39

MobileNet-v1 12.77 4.33 4.33

Table 5.2
Average number of rowTasks per DTile under different

operations. Generation indicates Generating DTile. Read indicates
Reading DTile. DWS and ARAI indicate that the different dataflow
adopted. DWS and ARAI are explained in the evaluation 5.5.1.

the generation of a single DRAM block access request about each cycle. Addition-

ally, off-chip memory accesses run in parallel with the generation of memory access

requests. This implies that after a rowTask has been scheduled to the corresponding

bank, the time overhead of the subsequent address translation can be disregarded for

that rowTask. Coupled with an analysis of the time during inference execution, the

time overhead caused by LAP can be effectively concealed. For instance, in AlexNet,

the average time for on-chip computation is approximately 9000 cycles before generat-

ing a DTile, with a DTile having an average of 1.71 rowTasks. In modern SRAMs [71],

the estimated latencies for read and write operations in a 64KB SRAM are estimated

to be 1ns. Regarding the DRAM allocation for each rowTask, Algorithm 2 takes

approximately 128 cycles for a 64-bank DRAM system, as illustrated in Table 5.3.

Following the key steps outlined in Figure 5.8, the DRAM allocation for each rowTask

consumes approximately 140 cycles at a clock frequency of 1GHz. Given the average

of 1.71 rowTasks per DTile in AlexNet, the estimated time for DRAM allocation

106

is roughly 250 cycles, significantly less than the 9000 cycles. Figure 5.8 indicates

that during the DRAM allocation of a DTile, the rowTasks slated for write-back are

scheduled to corresponding DRAM banks. With time allocated for reading input and

weight elements, there is ample time available before DTile generation, making the

time overhead introduced by DRAM allocation in LAP trivial. In contrast to DTile

generation, reading a DTile incurs much less time overhead. Figure 5.9 outlines the

steps to initialize address mapping information for reading. Concurrently, rowTasks

designated for reading are scheduled to their respective DRAM banks. To facilitate

the translation of information from the summarization in SRAM to MLTEntries for a

DTile, the latency is estimated to be 5 cycles. As all DRAM mapping information for

off-chip DTiles can be accommodated in DMU with 64KB on-chip SRAM, the trans-

lation latency for each rowTask is estimated to be 5 cycles. For AlexNet with ARAI,

the average latency of address translation is estimated to be 11 cycles, representing

a negligible portion of the overall estimated 1K cycles involved in DTile reading.

Limitation: It is important to note that, although we simplified the discussion of

LAP by focusing on the DRAM allocation for individual DTiles, the partitioning of

OFMAP into DTiles is a complex task that has not been addressed in this chapter.

The above discussion of LAP was based on the assumption that the tiling of OFMAP

is the same as that of IFMAP in the layer that reads the OFMAP as IFMAP. This

assumption holds for many models [40, 62, 63, 64, 66, 67] but may not cover all

scenarios, such as NN models with residual blocks [65]. In cases where the output

107

of one layer serves as the input for multiple layers or a part of the input for another

layer, a more complex approach to address the allocation and reading of DTiles is

required. This could involve treating each output to be written back from on-chip

memory as a special DTile to apply LAP Algorithm 2 for DRAM allocation. The

reading process differs. Instead of simply reading complete rowTasks, DTile is read

based on the correspondences of pixels between the layer generating intermediate data

and the layer reading this data. Each input pixel of IFMAP tiles is mapped to a pixel

of OFMAP or the initial IFMAP. Additionally, the partitioning of feature maps and

the generation of rowTasks for DTiles are determined. With the given data layout

format as NHWC, the aim rowTask and the offset inside rowTask can be obtained

for each input pixel.

5.5 Evaluation

5.5.1 Evaluation Setup

To evaluate our designs, we developed an in-house cycle-accurate NNA simulator

integrated with the DRAM simulator DRAMSim3 [72]. This setup allows for precise

simulation of off-chip memory accesses. The simulator encompasses modeling the

execution of the System Array, on-chip memory, DMA Unit, off-chip memory, data

108

Systolic Array 32x32 PEs, 1GHz
On-chip Memory 2MB Scratchpad Memory, double buffering,

NHWC im2col format
DMA Unit 1 pair of send/receive ports,

1ns SRAM read/write latency [71] inside DMU
2400 MHz DDR4 [72], robabgrachco, FCFS

Off-chip Memory ro=32768, ba=4, bg=4, ra=2, ch=2, co=128
1KB page size, 8B block size

Table 5.3
System parameters of NNA evaluation

ALX AlexNet [62]. Conv×5, FC×3.
DRK DarkNet19 [63]. Conv×19, FC×1.
FR FaceRecognition [64]. Conv×5
RES Resnet18 [65]. Conv×1, Res×8, FC×1
VGG VGG16 [66]. Conv×13, FC×3
ZF ZFNet [67]. Conv×5, FC×3
MOB MobileNet-v1 [40]. Conv×14, ConvDW×13, FC×2

Table 5.4
Summarization of NN workloads. Conv: the standard convolution
layer. ConvDW: the depthwise convolution layer. Res: the residual block

containing Conv and skip connection. FC: the fully connected layer.

movements directed by the dataflows, and the proposed DTile Manager Unit, which

is described in detail in section 5.4. Configuration parameters for the simulation are

provided in Table 5.3. The evaluated DNN models are listed in Table 5.4.

In our evaluation, we adopt the NHWC data layout format [25, 43, 45]. The baseline

dataflow is Weight Stationary with fused operators implemented using DNNFusion [1],

against which we compare ARAI. The default DRAM mapping policy is based on

ROMANet [14]. For clarity in the subsequent discussion, we introduce the following

abbreviations to refer to different designs:

109

† DWS: Weight Stationary with DNNFusion optimized Computational Graph, in

which NN operators are classified into five mapping types. The fusion oppor-

tunities are exploited based on the mapping types. For example, the Batch-

Normalization is fused with the convolution operation, while two convolution

operations will not be fused.

† ROMA: DRAM mapping policy proposed by ROMANet.

† DWS ROMA: Combination of DWS and ROMA, serving as the baseline for

evaluation.

† ARAI ROMA: Combination of ARAI and ROMA, indicating the application of

our dataflow optimization, ARAI.

† DWS LAP: Combination of DWS and LAP, signifying that the DRAM place-

ment of DTiles is managed by LAP.

† ARAI LAP: Combination of ARAI and LAP, indicating the simultaneous ap-

plication of both designs.

Our evaluation employs the following metrics:

† Inference time: This metric quantifies the time required to complete the simula-

tion of NN inference, serving as an indicator of the overall system performance.

† DRAM Read Traffic: Signifies the number of DRAM read accesses.

110

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

ALX DRK FR RES VGG ZF MOB AVG

ARAI_ROMA DWS_LAP ARAI_LAP

Figure 5.10: Reduction in Inference Time. Baseline is DWS ROMA.

† DRAM Bandwidth: Represents the working bandwidth of DRAM when being

accessed.

5.5.2 Improvement in System Performance

Figure 5.10 illustrates that all the evaluated designs outperform DWS ROMA in terms

of Inference Time. Specifically, ARAI enhances system performance by an average

of 33.37%, as demonstrated by ARAI ROMA. LAP, on the other hand, enhances

system performance by an average of 42.00%, as evidenced by DWS LAP. The com-

bined application of ARAI and LAP results in a 61.90% average increase in system

performance, as shown by ARAI LAP.

The performance improvement achieved by ARAI can be attributed to its reduction

in DRAM Read Traffic. This reduction stems from the permutation of loop orders as

depicted in Figure 5.4, which increases the reuse of on-chip input data. This, in turn,

111

reduces the need for repeated data transfers between on-chip and off-chip memory.

The performance gain from LAP is attributed to its ability to enhance DRAM Band-

width by improving both the channel-level parallelism and the bank-level parallelism

of DRAM.

Upon closer examination, it becomes evident that the combined improvement in sys-

tem performance achieved by applying ARAI and LAP separately surpasses the per-

formance gain obtained when both optimizations are applied together. This outcome

can be attributed to the fact that ARAI’s focus on reducing off-chip memory access

diminishes the benefits of LAP.

Furthermore, it’s noteworthy that ARAI has no impact on MobileNet [40], in which a

standard convolution is factorized into a depthwise convolution and a 1×1 pointwise

convolution. The computation of both components cannot be optimized by ARAI.

5.5.3 Reduction in DRAM Read Traffic

Figure 5.11 demonstrates the percentage reduction in DRAM Read Traffic when

ARAI is applied. On average, ARAI achieves a 41.12% reduction in DRAM read

112

0%
10%
20%
30%
40%
50%
60%
70%
80%

ALX DRK FR RES VGG ZF MOB AVG

Figure 5.11: Reduction in DRAM Read Traffic.

0%
20%
40%
60%
80%

100%

ALX DRK FR RES VGG ZF MOB AVG

DWS ARAI

Figure 5.12: Increased DRAM Bandwidth by LAP. Baseline is ROMA

accesses during NN inference. This outcome proves ARAI’s effectiveness in eliminat-

ing redundant accesses to IFMAP tiles in DRAM, thereby enhancing system perfor-

mance. This is consistent with the trend observed in Figure 5.10. Notably, there is

no reduction observed for MobileNet, and this finding aligns with the aforementioned

results.

5.5.4 Increased Bandwidth of Off-chip Memory

In Figure 5.12, we illustrate the percentage increase in DRAM Bandwidth achieved by

LAP compared to ROMA. The bars, DWS and ARAI, represent the enhancements in

113

70%

80%

90%

100%

ALX DRK FR RES VGG ZF MOB AVG

DWS ARAI

Figure 5.13: Increased Channel-Level Parallelism of DRAM. Baseline is
ROMA.

0%
40%
80%

120%
160%
200%
240%

ALX DRK FR RES VGG ZF MOB AVG

DWS ARAI

Figure 5.14: Increased Bank-Level Parallelism of DRAM. Baseline is
ROMA.

DRAM Bandwidth when comparing DWS LAP with DWS ROMA and ARAI LAP

with ARAI ROMA.

With the DWS dataflow, LAP demonstrates an average improvement of 75.04%, and

with ARAI optimization, it exhibits a significant average improvement of 81.55%. No-

tably, compared with DWS LAP, the reported value of DRAM Bandwidth by DRAM-

Sim3 remains lower in ARAI LAP. A comparison between these scenarios suggests

that LAP’s impact is somewhat enhanced in ARAI LAP. This enhancement can be

attributed to ARAI’s effective improvement in on-chip input data reuse, which re-

duces the need for repeated access to the same DRAM positions. While DWS involves

114

more off-chip memory access, repeated access to the same positions can lead to con-

centrated concurrent access to the same DRAM channel.

The more off-chip memory access in DWS results in higher DRAM Bandwidth values

in both DWS ROMA and DWS LAP compared to ARAI ROMA and ARAI LAP.

However, the improvement achieved by LAP is limited due to the repeated access to

the same DRAM positions. The increased channel-level parallelism, as depicted in

Figure 5.13, leads to a lower average improvement of 87.98% for LAP with DWS. In

contrast, ARAI LAP demonstrates an average increase of 92.66% in the channel-level

parallelism of DRAM compared to ROMA LAP. However, in the case of ALX, the

increase in DRAM Bandwidth is less when the dataflow is ARAI. This discrepancy is

attributed to the influence of bank-level parallelism in DRAM.

As illustrated in Figure 5.14, LAP achieves a substantial improvement in the bank-

level parallelism of DRAM. In comparison to ROMA, LAP’s improvement in bank-

level parallelism is 80.93% for DWS and 72.29% for ARAI. For ALX, LAP increases

bank-level parallelism by 31.82% for DWS and 12.95% for ARAI. The reduced bank-

level parallelism in the case of ARAI is a result of the reduced off-chip memory access

in ARAI. While LAP demonstrates higher increased bank-level parallelism for FR

and RES in the ARAI dataflow, the number of concurrent working banks is still less

compared to the DWS dataflow.

115

0%

20%

40%

60%

80%

ALX DRK FR RES VGG ZF MOB AVG

16X16 32X32 64X64

Figure 5.15: Reductions in Inference Time with different sizes of Systolic
Array

5.5.5 Sensitivity Analysis

The effectiveness of ARAI is contingent upon the percentage of wide layers during

neural network inference, which is directly influenced by the matrix size of the systolic

array (SA). Figure 5.15 illustrates the impact of different SA sizes on the reduction

of Inference Time. It is evident that as the SA size increases, the reduction achieved

by ARAI decreases. Specifically, when the SA is equipped with a 16×16 matrix

of processing elements (PEs), the average reduction in Inference Time amounts to

46.03%. In the case of a 32×32 PE matrix, the average reduction is 33.37%, and with

a 64×64 PE matrix, the average reduction dwindles to 21.43%.

116

5.5.6 Discussion

As the above evaluation shows, ARAI can effectively increase the system performance

for neural network accelerators whose size of the systolic array is small. A typical ap-

plication scenario is on edge devices. Compared with ARAI, the application scenario

of LAP is more general. However, as discussed in section 5.4, the layer partition could

be a challenge. Additionally, when LAP is applied on edge devices, the introduced

energy consumption should be considered, which is our future work.

5.6 Summary

This work proposes two optimizations to mitigate the off-chip memory bottleneck

for DNN inference on edge NNAs. We observe the execution of wide layers on edge

NNAs causes significant performance overhead and reveal that the execution of wide

layer introduces repeated accesses to IFMAP tiles in off-chip memory. To address

this issue, we propose ARAI to remove redundant accesses to IFMAP by permuting

the iteration order of the convolution computation. To further boost the memory

bandwidth, we introduce the load-aware tile placement on off-chip memory, LAP,

that reduces intra/inter contentions caused by concurrent accesses from multiple tiles

and improves the off-chip memory device parallelism during access. The evaluation

117

shows that ARAI reduces inference latency by 33.37% on average and LAP reduces

42.00% on average. The combination of ARAI and LAP achieves an average 61.90%

performance improvement over the prior works.

118

Chapter 6

Conclusion

This dissertation presents multiple memory optimizations for high-performance com-

puting systems, focusing on the non-volatile memory systems and the neural network

accelerators.

Chapter 3 and Chapter 4 summarize our previous works [73, 74, 75] on computing

systems with Non-Volatile Memory, where logging is introduced to ensure crash con-

sistency, resulting in additional memory overhead. We proposed TSTE and VADR

to eliminate unnecessary log operations, LALEA to reduce log persistence time, and

BLOM in ADR to address intra-record ordering issues. Compared with STOA works

at that time, all these designs achieved significant improvement in the system through-

put.

119

However, with the development of NVM[76], our focus shifted to the memory system

of the neural network accelerator, where we found that off-chip memory access is

a performance bottleneck in edge devices. To minimize the impact caused by off-

chip memory on the inference time, we introduce two designs, ARAI and LAP, in

Chapter 5. Our evaluation shows that ARAI effectively reduces redundant accesses

to IFMAP in off-chip memory by reordering the loops in the standard convolution

operation. LAP mitigates intra/inter access contentions from data tiles and enhances

the access parallelism for off-chip memory.

120

References

[1] W. Niu, J. Guan, Y. Wang, G. Agrawal, and B. Ren, “Dnnfusion: Accelerating

deep neural networks execution with advanced operator fusion,” in Proceedings

of the 42nd ACM SIGPLAN International Conference on Programming

Language Design and Implementation, ser. PLDI 2021. New York, NY, USA:

Association for Computing Machinery, 2021, p. 883–898. [Online]. Available:

https://doi.org/10.1145/3453483.3454083

[2] A. Joshi, V. Nagarajan, S. Viglas, and M. Cintra, “ATOM: atomic durability

in non-volatile memory through hardware logging,” in 2017 IEEE International

Symposium on High Performance Computer Architecture, HPCA 2017, Austin,

TX, USA, February 4-8, 2017, 2017, pp. 361–372.

[3] K. Doshi, E. Giles, and P. Varman, “Atomic persistence for scm with a non-

intrusive backend controller,” in 2016 IEEE International Symposium on High

Performance Computer Architecture (HPCA), 2016, pp. 77–89.

121

https://doi.org/10.1145/3453483.3454083

[4] S. Shin, S. K. Tirukkovalluri, J. Tuck, and Y. Solihin, “Proteus: A flexible and

fast software supported hardware logging approach for nvm,” in Proceedings of

the 50th Annual IEEE/ACM International Symposium on Microarchitecture, ser.

MICRO-50 ’17, 2017, pp. 178–190.

[5] S. Shin, J. Tuck, and Y. Solihin, “Hiding the long latency of persist barriers

using speculative execution,” in Proceedings of the 44th Annual International

Symposium on Computer Architecture, ISCA 2017, Toronto, ON, Canada, June

24-28, 2017, 2017, pp. 175–186.

[6] J. Jeong, C. H. Park, J. Huh, and S. Maeng, “Efficient hardware-assisted log-

ging with asynchronous and direct-update for persistent memory,” in 51st An-

nual IEEE/ACM International Symposium on Microarchitecture, MICRO 2018,

Fukuoka, Japan, October 20-24, 2018, 2018, pp. 520–532.

[7] A. D. Siddharth Gupta and B. Falsafi, “Distributed logless atomic durability

with persistent memory,” in the Annual IEEE/ACM International Symposium

on Microarchitecture, ser. MICRO ’19, 2019.

[8] D. Mulnixl. Intel xeon processor d product family tech-

nical overview. https://software.intel.com/en-us/articles/

intel-xeon-processor-dproduct-family-technical-overview/.

[9] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “Diannao:

122

https://software.intel.com/en-us/articles/intel-xeon-processor-dproduct-family-technical-overview/
https://software.intel.com/en-us/articles/intel-xeon-processor-dproduct-family-technical-overview/

A small-footprint high-throughput accelerator for ubiquitous machine-learning,”

SIGARCH Comput. Archit. News, vol. 42, no. 1, p. 269–284, feb 2014.

[10] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for energy-

efficient dataflow for convolutional neural networks,” in 2016 ACM/IEEE 43rd

Annual International Symposium on Computer Architecture (ISCA), 2016, pp.

367–379.

[11] S. Li, X. Xie, J. Huang, Y. Zhang, X. Hu, and H. Yang, “Smartshuttle: Optimiz-

ing off-chip memory accesses for deep learning accelerators,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 2021.

[12] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing fpga-

based accelerator design for deep convolutional neural networks,” in Proceedings

of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays, ser. FPGA ’15. New York, NY, USA: Association for Computing Ma-

chinery, 2015, p. 161–170.

[13] A. Samajdar, J. M. Joseph, Y. Zhu, P. Whatmough, M. Mattina, and T. Krishna,

“A systematic methodology for characterizing scalability of dnn accelerators us-

ing scale-sim,” in 2020 IEEE International Symposium on Performance Analysis

of Systems and Software (ISPASS), 2020, pp. 58–68.

123

[14] R. V. W. Putra, M. A. Hanif, and M. Shafique, “Romanet: Fine-grained reuse-

driven off-chip memory access management and data organization for deep neu-

ral network accelerators,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 29, no. 4, pp. 702–715, 2021.

[15] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient processing of deep neural

networks: A tutorial and survey,” CoRR, vol. abs/1703.09039, 2017.

[16] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally,

“Weight-stationary architecture for deep learning,” in Proceedings of the 2016

ACM/IEEE 43rd Annual International Symposium on Computer Architecture.

IEEE Press, 2016, pp. 13–24.

[17] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,

S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark,

J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami,

R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu,

R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan,

D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary,

Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller,

R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,

N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn,

G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson,

B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox,

124

and D. H. Yoon, “In-datacenter performance analysis of a tensor processing

unit,” SIGARCH Comput. Archit. News, vol. 45, no. 2, p. 1–12, jun 2017.

[Online]. Available: https://doi.org/10.1145/3140659.3080246

[18] T. Norrie, N. Patil, D. H. Yoon, G. Kurian, S. Li, J. Laudon, C. Young, N. Jouppi,

and D. Patterson, “The design process for google’s training chips: Tpuv2 and

tpuv3,” IEEE Micro, vol. 41, no. 2, pp. 56–63, 2021.

[19] N. Corporation, “Nvidia, NVDLA Open Source Project,” http://nvdla.org/69,

76,92,94,96,97,113,114, 2017.

[20] “Nvidia T4 GPU,” https://www.nvidia.com/en-us/data-center/t4-tesla/, Insert

Year, accessed: Insert Date.

[21] “Nvidia V100 GPU,” https://www.nvidia.com/en-us/data-center/v100/, Insert

Year, accessed: Insert Date.

[22] Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik, N. Jiang,

B. Keller, A. Klinefelter, N. Pinckney, P. Raina, S. G. Tell, Y. Zhang,

W. J. Dally, J. Emer, C. T. Gray, B. Khailany, and S. W. Keckler, “Simba:

Scaling deep-learning inference with multi-chip-module-based architecture,” ser.

MICRO ’52. New York, NY, USA: Association for Computing Machinery,

2019, p. 14–27. [Online]. Available: https://doi.org/10.1145/3352460.3358302

[23] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and

O. Temam, “Shidiannao: Shifting vision processing closer to the sensor,” in 2015

125

https://doi.org/10.1145/3140659.3080246
http://nvdla.org/69,76,92,94,96,97,113,114
http://nvdla.org/69,76,92,94,96,97,113,114
https://www.nvidia.com/en-us/data-center/t4-tesla/
https://www.nvidia.com/en-us/data-center/v100/
https://doi.org/10.1145/3352460.3358302

ACM/IEEE 42nd Annual International Symposium on Computer Architecture

(ISCA), 2015, pp. 92–104.

[24] H. Yang, C. Yuan, J. Xing, and W. Hu, “Scnn: Sequential convolutional neural

network for human action recognition in videos,” in 2017 IEEE International

Conference on Image Processing (ICIP), 2017, pp. 355–359.

[25] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-

mawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G.

Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and

X. Zheng, “Tensorflow: A system for large-scale machine learning,” in Proceed-

ings of the 12th USENIX Conference on Operating Systems Design and Imple-

mentation, ser. OSDI’16. USA: USENIX Association, 2016, p. 265–283.

[26] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan, H. Shen, L. Wang,

Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy, “Tvm: An automated

end-to-end optimizing compiler for deep learning,” in Proceedings of the 13th

USENIX Conference on Operating Systems Design and Implementation, ser.

OSDI’18. USA: USENIX Association, 2018, p. 579–594.

[27] Z. Jia, T. Yu, H. Zhang, Y. Wang, and H. Yang, “Caffeine: Toward uniformed

representation and acceleration for deep convolutional neural networks,” in 2018

IEEE International Parallel and Distributed Processing Symposium (IPDPS).

IEEE, 2018, pp. 798–807.

126

[28] S. Tewari, A. Kumar, and K. Paul, “Bus width aware off-chip memory access

minimization for cnn accelerators,” in 2020 IEEE Computer Society Annual Sym-

posium on VLSI (ISVLSI), 2020, pp. 240–245.

[29] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,

N. Sun, and O. Temam, “Dadiannao: A machine-learning supercomputer,” in

2014 47th Annual IEEE/ACM International Symposium on Microarchitecture,

2014, pp. 609–622.

[30] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay, “Neurocube:

A programmable digital neuromorphic architecture with high-density 3d mem-

ory,” in 2016 ACM/IEEE 43rd Annual International Symposium on Computer

Architecture (ISCA), 2016, pp. 380–392.

[31] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris: Scalable

and efficient neural network acceleration with 3d memory,” in Proceedings

of the Twenty-Second International Conference on Architectural Support for

Programming Languages and Operating Systems, ser. ASPLOS ’17. New York,

NY, USA: Association for Computing Machinery, 2017, p. 751–764. [Online].

Available: https://doi.org/10.1145/3037697.3037702

[32] B. Hyun, Y. Kwon, Y. Choi, J. Kim, and M. Rhu, “Neummu: Architectural

support for efficient address translations in neural processing units,” in

Proceedings of the Twenty-Fifth International Conference on Architectural

127

https://doi.org/10.1145/3037697.3037702

Support for Programming Languages and Operating Systems, ser. ASPLOS

’20. New York, NY, USA: Association for Computing Machinery, 2020, p.

1109–1124. [Online]. Available: https://doi.org/10.1145/3373376.3378494

[33] Y. Yang, J. S. Emer, and D. Sanchez, “Isosceles: Accelerating sparse cnns

through inter-layer pipelining,” in 2023 IEEE International Symposium on High-

Performance Computer Architecture (HPCA), 2023, pp. 598–610.

[34] T. Nguyen and D. Wentzlaff, “Picl: A software-transparent, persistent cache

log for nonvolatile main memory,” in 51st Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO 2018, Fukuoka, Japan, October 20-

24, 2018, 2018, pp. 507–519.

[35] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton, “An analysis

of persistent memory use with whisper,” in Proceedings of the Twenty-Second

International Conference on Architectural Support for Programming Languages

and Operating Systems, ser. ASPLOS ’17, 2017, pp. 135–148.

[36] J. Yang, J. Kim, and etc, “An empirical guide to the behavior and use of scalable

persistent memory,” in 18th USENIX Conference on File and Storage Technolo-

gies, FAST 2020, Santa Clara, CA, USA, February 24-27, 2020, 2020.

[37] I. Corporation, “Intel optane dc persistent memory sampling today revenue

delivery 2018,” 2018. [Online]. Available: https://www.servethehome.com/

intel-optane-dc-persistent-memory-sampling-today-revenue-delivery-2018

128

https://doi.org/10.1145/3373376.3378494
https://www.servethehome.com/intel-optane-dc-persistent-memory-sampling-today-revenue-delivery-2018
https://www.servethehome.com/intel-optane-dc-persistent-memory-sampling-today-revenue-delivery-2018

[38] J. R. S. Liu, A. Kolli and S. Khan, “Crash consistency in encrypted non- volatile

main memory systems,” in IEEE International Symposium on High Performance

Computer Architecture, ser. HPCA ’18, 2018.

[39] J. T. M. Alshboul and Y. Solihin, “Lazy persistency: A high-performing and

write-efficient software persistency technique,” in ACM/IEEE 45th Annual In-

ternational Symposium on Computer Architecture (ISCA), ser. ISCA ’18, 2018.

[40] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-

dreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for

mobile vision applications,” 2017.

[41] N. P. Jouppi, D. Hyun Yoon, M. Ashcraft, M. Gottscho, T. B. Jablin, G. Kurian,

J. Laudon, S. Li, P. Ma, X. Ma, T. Norrie, N. Patil, S. Prasad, C. Young, Z. Zhou,

and D. Patterson, “Ten lessons from three generations shaped google’s tpuv4i :

Industrial product,” in 2021 ACM/IEEE 48th Annual International Symposium

on Computer Architecture (ISCA), 2021, pp. 1–14.

[42] M. Peemen, A. A. A. Setio, B. Mesman, and H. Corporaal, “Memory-centric

accelerator design for convolutional neural networks,” in 2013 IEEE 31st Inter-

national Conference on Computer Design (ICCD), 2013, pp. 13–19.

[43] Y. Zhou, M. Yang, C. Guo, J. Leng, Y. Liang, Q. Chen, M. Guo, and

Y. Zhu, “Characterizing and demystifying the implicit convolution algorithm

on commercial matrix-multiplication accelerators,” in 2021 IEEE International

129

Symposium on Workload Characterization (IISWC). Los Alamitos, CA,

USA: IEEE Computer Society, nov 2021, pp. 214–225. [Online]. Available:

https://doi.ieeecomputersociety.org/10.1109/IISWC53511.2021.00029

[44] S. Lym, D. Lee, M. Ox27;Connor, N. Chatterjee, and M. Erez, “Delta: Gpu

performance model for deep learning applications with in-depth memory system

traffic analysis,” in 2019 IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS). Los Alamitos, CA, USA:

IEEE Computer Society, mar 2019, pp. 293–303. [Online]. Available:

https://doi.ieeecomputersociety.org/10.1109/ISPASS.2019.00041

[45] N. Corporation. (2023) Convolutional layers user’s guide. Oct.2023.

[Online]. Available: https://docs.nvidia.com/deeplearning/performance/

dl-performance-convolutional/index.html

[46] S. Liu, K. Seemakhupt, G. Pekhimenko, A. Kolli, and S. Khan, “Janus: Optimiz-

ing memory and storage support for non-volatile memory systems,” in Proceed-

ings of the 46th International Symposium on Computer Architecture, ser. ISCA

’19, 2019.

[47] P. Zuo, Y. Hua, M. Zhao, W. Zhou, and Y. Guo, “Improving the performance

and endurance of encrypted non-volatile main memory through deduplicating

writes,” in 51st Annual IEEE/ACM International Symposium on Microarchitec-

ture, MICRO 2018, Fukuoka, Japan, October 20-24, 2018, 2018, pp. 442–454.

130

https://doi.ieeecomputersociety.org/10.1109/IISWC53511.2021.00029
https://doi.ieeecomputersociety.org/10.1109/ISPASS.2019.00041
https://docs.nvidia.com/deeplearning/performance/dl-performance-convolutional/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-convolutional/index.html

[48] P. Mahapatra, M. D. Hill, and M. M. Swift, “Don’t persist all : Efficient persis-

tent data structures,” CoRR, vol. abs/1905.13011, 2019.

[49] R. Balasubramonian, B. A. Kahng, N. Muralimanohar, A. Shafiee, and V. Srini-

vas, “Cacti 7: New tools for interconnect exploration in innovative off-chip mem-

ories,” TACO, pp. 14:1–14:25, 2017.

[50] Champsim. https://github.com/ChampSim/.

[51] Dramsim. https://github.com/umd-memsys/DRAMSim2.

[52] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,

V. J. Reddi, and K. Hazelwood, “Pin: Building customized program analysis

tools with dynamic instrumentation,” in Proceedings of the 2005 ACM SIGPLAN

Conference on Programming Language Design and Implementation, ser. PLDI

’05, 2005.

[53] S. O. J. H. Ahn, S. Li and N. P. Jouppi, “Mcsima+: a manycore simulator with

application-level+ simulation and detailed microarchitecture modeling,” in Per-

formance Analysis of Systems and Software (ISPASS), 2013 IEEE International

Symposium on, ser. pp. 74-85, 2013.

[54] D. H. Y. Y. X. J. Zhao, S. Li and N. P. Jouppi, “Kiln: Closing the performance

gap between systems with and without persistence support,” in in Proceedings

of the 46th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), ser. MICRO’2013, 2013.

131

https://github.com/ChampSim/
https://github.com/umd-memsys/DRAMSim2

[55] J. Z. S. L. A. B. Y. X. X. Hu, M. Ogleari, “Persistence parallelism optimization:

A holistic approach from memory bus to rdma network,” in Proc. 51st Annu.

IEEE/ACM Int. Symp. Microarchit., ser. pp. 494-506, 2018.

[56] J. Z. M. A. Ogleari, E. L. Miller, “Steal but no force: Efficient hardware

undo+redo logging for persistent memory systems,” in IEEE International Sym-

posium on High Performance Computer Architecture (HPCA), ser. HPCA ’18,

2018.

[57] A. W. Markku manner Vilho Raatikka Simo Neuvonen. Tatp telecommu-

nication application transaction processing (benchmark description). http://

tatpbenchmark.sourceforge.net/TATP-Description.pdf.

[58] Transaction processing performance council(tpc), tpc-c. http://www.tpc.org/

tpcc/default.asp.

[59] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient main

memory using phase change memory technology,” in ISCA. ACM, 2009, pp.

14–23.

[60] P. Zuo, Y. Hua, and Y. Xie, “Supermem: Enabling application-transparent se-

cure persistent memory with low overheads,” in MICRO. ACM, 2019, pp.

479–492.

[61] S. Liu, A. Kolli, J. Ren, and S. Khan, “Crash consistency in encrypted non-

volatile main memory systems,” in HPCA, 2018, pp. 310–323.

132

http://tatpbenchmark.sourceforge.net/TATP-Description.pdf
http://tatpbenchmark.sourceforge.net/TATP-Description.pdf
http://www.tpc.org/tpcc/default.asp
http://www.tpc.org/tpcc/default.asp

[62] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6, p. 84–90,

may 2017. [Online]. Available: https://doi.org/10.1145/3065386

[63] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” CoRR, vol.

abs/1612.08242, 2016. [Online]. Available: http://arxiv.org/abs/1612.08242

[64] B. Research, “Deepbench: Quantifying representational similarity across deep

learning architectures,” https://github.com/baidu-research/DeepBench, 2020.

[65] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” 2015. [Online]. Available: https://arxiv.org/abs/1512.03385

[66] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” arXiv preprint arXiv:1409.1556, 2015.

[67] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional

networks,” CoRR, vol. abs/1311.2901, 2013. [Online]. Available: http:

//arxiv.org/abs/1311.2901

[68] S. Cho, H. Choi, E. Park, H. Shin, and S. Yoo, “Mcdram v2: In-dynamic random

access memory systolic array accelerator to address the large model problem in

deep neural networks on the edge,” IEEE Access, vol. 8, pp. 135 223–135 243,

2020.

133

https://doi.org/10.1145/3065386
http://arxiv.org/abs/1612.08242
https://github.com/baidu-research/DeepBench
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1311.2901

[69] U. S. Solangi, M. Ibtesam, M. A. Ansari, J. Kim, and S. Park, “Test architecture

for systolic array of edge-based ai accelerator,” IEEE Access, vol. 9, pp. 96 700–

96 710, 2021.

[70] Google coral edge tpu explained in depth. Accessed on: Oct. 2023. [Online].

Available: https://qengineering.eu/google-corals-tpu-explained.html

[71] M. Imani, S. Patil, and T. Rosing, “Low power data-aware stt-ram based hybrid

cache architecture,” in 2016 17th International Symposium on Quality Electronic

Design (ISQED), 2016, pp. 88–94.

[72] A. Li and et al., “Dramsim3: A cycle accurate memory system simulator,” in

2018 IEEE International Symposium on High Performance Computer Architec-

ture (HPCA), 2018, pp. 406–418.

[73] Z. Lu, J. Yue, Y. Deng, and Y. Zhu, “Improving the performance of nvm crash

consistency under multicore,” in 2020 IEEE 38th International Conference on

Computer Design (ICCD), 2020, pp. 561–564.

[74] ——, “Efficient nvm crash consistency by mitigating resource contention,” in

2021 IEEE International Conference on Networking, Architecture and Storage

(NAS), 2021, pp. 1–8.

[75] ——, “Accelerate hardware logging for efficient crash consistency in persistent

memory,” in 2022 Design, Automation Test in Europe Conference Exhibition

(DATE), 2022, pp. 388–393.

134

https://qengineering.eu/google-corals-tpu-explained.html

[76] I. Corporation, “eadr: New opportunities for persistent

memory applications,” Intel Developer Zone, 2021. [Online].

Available: https://www.intel.com/content/www/us/en/developer/articles/

technical/eadr-new-opportunities-for-persistent-memory-applications.html

135

https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html

Appendix A

ACM Copyright Permission

The publisher of Paper [75] is ACM. ACM grants gratis permission for individual

digital or hard copies made without fee for use in academic classrooms and for use

by individuals in personal research and study. Further reproduction or distribution

requires explicit permission and possibly a fee.

All copies should carry the original citation, the appropriate copyright and notice of

permission on the first page or initial screen of the document. (See §2.2 Copyright

Notice)

Most permission requests should go through ACM’s automated rights system available

in the ACM Digital Library and pointed to by permissions@acm.org. Requests that

cannot be handled through the online system will take longer to resolve: requestors

137

may expect a response to their inquiry within seven business days. More info refer:

https://cacm.acm.org/help/copyright-policy

138

Appendix B

IEEE Copyright Permission

139

Sign in/Register

© 2023 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Data Security and Privacy

| For California Residents | Terms and Conditions

Improving the Performance of NVM Crash Consistency under
Multicore
Conference Proceedings:
2020 IEEE 38th International Conference on Computer Design (ICCD)

Author: Zhiyuan Lu

Publisher: IEEE

Date: October 2020

Copyright © 2020, IEEE

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however, you may
print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication]
IEEE appear prominently with each reprinted figure and/or table.
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and month/year
of publication]
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-
line.
3) In placing the thesis on the author's university website, please display the following message in a prominent place
on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity's name goes here]'s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

BACK CLOSE WINDOW

Comments? We would like to hear from you. E-mail us at

customercare@copyright.com

140

Sign in/Register

© 2023 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Data Security and Privacy

| For California Residents | Terms and Conditions

Efficient NVM Crash Consistency by Mitigating Resource Contention
Conference Proceedings:
2021 IEEE International Conference on Networking, Architecture and Storage (NAS)

Author: Zhiyuan Lu

Publisher: IEEE

Date: October 2021

Copyright © 2021, IEEE

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however, you may
print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication]
IEEE appear prominently with each reprinted figure and/or table.
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and month/year
of publication]
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-
line.
3) In placing the thesis on the author's university website, please display the following message in a prominent place
on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity's name goes here]'s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

BACK CLOSE WINDOW

Comments? We would like to hear from you. E-mail us at

customercare@copyright.com

141

	MEMORY OPTIMIZATIONS FOR HIGH-THROUGHPUT COMPUTER SYSTEMS
	Recommended Citation

	Contents
	List of Figures
	List of Tables
	Preface
	Acknowledgments
	List of Abbreviations
	Abstract
	Introduction
	Memory Wall
	System with Non-volatile Memory
	Neural Network Accelerator

	Background
	Logging in Non-volatile Memory
	Crash Consistency in NVM systems
	Conventional Log Organization
	Asynchronous DRAM Refresh (ADR)
	Logless Atomic Durability (LAD)

	Neural Network and Neural Network Accelerator
	Neural Networks
	Computations in Neural Network
	Computational Graph
	Neural Network Accelerators
	im2col methods: NCHW vs. NHWC
	Dataflow in Neural Network Accelerators
	Off-chip Memory Mapping in NNAs

	Improving the Performance of NVM Crash Consistency under Multicore
	Overview
	Motivation
	Persist requirements of a transaction
	Unnecessary Logs

	Two-Stage Transaction Execution (TSTE)
	Virtualization of the ADR Buffer (VADR)
	Redo Logging for ADR Depletion
	Evaluation
	Experiment Setup
	Removal of Unnecessary Log Operations
	Transaction Throughput Improvements
	Log Operations Reduction
	Sensitivity of ADR Buffer Capacity

	Summary

	Accelerate Hardware Logging for Efficient Crash Consistency in NVM
	Overview
	Motivation
	Log Entry Allocation Scheme (LALEA)
	Log Metadata Buffering Scheme (BLOM)
	Evaluation
	Experiment Setup
	Transaction Throughput
	Log Entry Persistence Latency
	Transaction Commit Latency
	Throughput under the Alternative Address Mapping Scheme

	Summary

	Improving Neural Network Accelerator Performance by Optimizing Memory Accesses
	Overview
	Motivation
	Wide Layers
	Performance Impact of Wide Layers.

	Alleviate Repeated Access to IFMAP (ARAI)
	Load-Aware Placement of Data Tiles (LAP)
	Microarchitecture of LAP

	Evaluation
	Evaluation Setup
	Improvement in System Performance
	Reduction in DRAM Read Traffic
	Increased Bandwidth of Off-chip Memory
	Sensitivity Analysis
	Discussion

	Summary

	Conclusion
	References
	ACM Copyright Permission
	IEEE Copyright Permission

