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Abstract 

Over the last decade, the mining industry has seen a significant reduction in the number 

of fatalities in the United States. However, the annual employee hours have also decreased 

during the same period. Therefore, it is crucial to evaluate the historical mining data and 

identify the potential risks of a mine through the mine risk index. The risk indicators also 

describe the severity of accidents and injuries at mine sites. The variables such as citation, 

order, significant & substantial citations, lost time, and no lost time injuries and penalties 

are considered for the determination of the risk index. However, using multiple risk 

indicators to understand the safety standard of a mine could be a complicated process. The 

mining industry historically uses arithmetic averaging that considers equal weights for 

each indicator to calculate the mining risk index. This research proposed a new approach 

to calculate weight values for different risk indicators for calculating the mining risk 

index. The weights were calculated through the information entropy approach to 

understand the degree of dispersion. The influence of these variables on the risk analysis 

was evaluated to comprehend the risk index. The risk index is validated through 

hierarchical clustering algorithms such as BIRCH clustering. MANOVA and post-hoc 

tests were performed to validate the clustering performance. The statistical differences 

amongst the means of risk index from different clusters were tested through box plots and 

ANOVA test. The investigation was conducted during the 2011-2020 period utilizing the 

open-source mine safety and health administration (MSHA) databases. Results from the 

statistical analysis show that the risk indicators significantly differ from one cluster to the 

others for all periods. The results also show that the top 25 high-risk mines constitute 

around 64.8% of coal mines for all periods. The risk index results from the clustering and 

statistical analysis can help the mining industry to determine the risk index, thereby 

focusing on ensuring workplace safety. 
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1. Introduction

1.1. Overview 

The mining industry continues to pose a significant risk to worker safety and health. In 

recent years, industry has significantly improved in reducing major injuries and fatalities. 

However, multiple research studies and statistical data demonstrate that the number of 

serious injuries and fatalities remains at a higher level (Dragan et al., 2017). An accident 

occurs due to an unsafe physical or mechanical work environment. (Rahimi et al., 2022). 

Therefore, it is crucial to address the violations by evaluating the historic mining data 

and determining the risk index to ensure workplace safety. The mine safety and health 

administration (MSHA) of United States inspect mines to identify potentially hazards, 

thereby eliminating them before an accident which can help in reducing the injuries and 

fatalities (Milam et al., 2020). MSHA of the United States manages the accidents, 

violations, employment production, and inspections datasets that provide insights about 

the mine. MSHA issues citations to a mine operator and owner for an alleged violation 

of a standard or Section of the Act (Brian, 2021). Research on the determination of risk 

would help the mining companies to provide significant insights into factors related to 

mining injuries. 

The simplest method which has been applied in numerous research is to assign the 

criterion equal weights. However, evaluation outcomes largely depend on the criteria 

weights (Ghorabaee et al., 2021). It is important to consider the determination of the 

weights of the qualities. The method of determining weight using entropy can eliminate 

the possibility of subjectivity as well as the impact of human factors (Liu et al., 2021). 

The entropy measure used to determine criteria weights is that the less the entropy 

measure of a criterion, the more the weight should be assigned to that criterion among 

alternatives (Biswas and Sarkar, 2019). To summarize, this research focuses on the 

entropy-based weights determination of the risk index in the mining industry using 

clustering and statistical methods. 
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1.2 Outline 

The thesis is organized in the below-mentioned manner:  

Chapter 1: An overview of the general introduction to the research issue of this thesis 

is provided in this chapter, along with a description of the steps and techniques. The 

specifics include the risk analysis methodology in the mining industry. 

Chapter 2: This chapter discusses the procedure for the risk index parameters. The 

reason for considering the proposed risk index over other indicators is also explained 

in this section of the thesis. Finally, the results of applying statistical techniques and 

machine learning algorithms are studied. 

Chapter 3: This section of the thesis provides insight into the overall findings drawn 

from the statistical analysis and the clustering models. In addition, the scope of future 

work is also discussed. 
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2. AN ENTROPY-BASED RISK INDEX (ERI) OF MINING

HEALTH AND SAFETY USING CLUSTERING AND

STATISTICAL METHODS

Dharmasai Eshwara*, Snehamoy Chatterjeea, Rennie Kaundab, Hugh Millerb, Aref 

Majdarac 

aMichigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931 USA.  

bColorado School of Mines, 1600 Illinois St., Colorado School of Mines, Golden, CO, 80401, USA. 

cWashington State University , 14204 NE Salmon Creek Ave, Vancouver, WA, 98686. 

(This chapter will be submitted in Safety Science Journal – Elsevier Publications)  

Abstract 

Over the recent decades, the mining industry has significantly reduced accidents and 

injuries in the United States. While these statistics are positive, these numbers are 

confusing due to the declining workforce and employee hours throughout this time. The 

Mine Safety and Health Administration (MSHA) of the United States has implemented 

a Pattern of Violation (POV) and Significant & Substantial (S&S) calculator to monitor 

safety in mines; however, both have their limitations. Different risk indices were 

proposed to overcome these limitations by utilizing multiple matrices from MSHA 

databases. However, integrating multiple matrices within a single risk index is the key 

challenge. This research aims to develop an information entropy-based risk index (ERI) 

by optimizing the weights of the conflicting matrices. The risk indicators used for the 

ERI calculation are citation, order, significant & substantial citations, penalty, no lost 

time, and lost time injury. The proposed ERI was tested using MSHA’s underground 

mines data from 2011 to 2020. The proposed risk index was validated by BIRCH 

clustering algorithm and statistical analysis. The clustering performance was evaluated 

by multivariate analysis of variance (MANOVA) test and post-hoc analysis. Box plots 

and ANOVA test validated the statistical mean difference of the ERI between clusters. 

MANOVA test and post-hoc results show that BIRCH clustering successfully clustered 

the seven-dimensional risk indices for all periods. The ANOVA test shows mean risk 
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index values for at least one cluster is statistically different from other clusters at 95% 

confidence for all periods. The post-hoc analysis also demonstrated a statistical 

significance between the means of the risk index of different clusters. Box plot results 

also support those findings. Finally, the proposed approach was applied to an 

underground coal mine to show its effectiveness. The study supports that the proposed 

approach can help the mining company to understand its safety performance and take 

necessary measures to improve it. 

2.1 Introduction 

Mining is the process of extracting minerals from veins, seams, or ore bodies that are 

economically valuable and used in several industries, including steel production, power 

generation, electronics, construction products, and even agriculture (Groves et al., 2007). 

Despite these significant contributions, mining is termed the most hazardous 

environment affecting the safety and health of workers through dust inhalation, roof fall, 

explosions, rockslides, and humidity (Tawiah et al., 2014; Sanmiquel et al., 2018). 

Mining is associated with injuries and fatalities with high incidence rates compared to 

other industries (Onder, 2013). The fatal injury rate in the United States (US) for full-

time equivalent workers per 100,000 decreased from 23.5% in 2006 to 11.4% in 2015 

(Kia et al., 2017). Mine Safety and Health Administration (MSHA) in the US 

continuously monitors the fatalities and other injuries, accidents, and violations. The 

statistics show a decline in fatalities from 242 in 1977 to 28 fatalities in 2017. According 

to a study of US mine accident fatalities from 1983 to 2018, almost 0.017% of miners 

died in accidents on average (Rahmi et al., 2022). Figure 1 shows the total number of 

fatal injuries in the US from 2011 through 2020. However, these numbers are misleading 

due to the declining workforce and employee hours from 2015 – 2020 (Figure 1). 

Therefore, to decrease mining accidents and injuries, thus fatalities, a qualitative and 

quantitative risk analysis investigation helps identify potential risk-related incidents 

(Stemn, 2019; Grayson et al., 2009). 

MSHA of the US and the government have implemented various provisions to improve 

the protection of miners. MSHA shared an interactive portal based on the mine health 
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and safety standards containing the mine statistical databases, including accidents, 

inspections, violations, and degree of seriousness (Grayson et al., 2009). In addition, 

MSHA initiated several monitoring tools based on citation history, which includes the 

Pattern of Violation (POV) and Safe Performance Index (SPI) to monitor the potential 

cause of an accident (Kinilakodi and Grayson, 2011b). However, the complex calculation 

of POV with ten components and the orders and Significant & Substantial (S&S) 

citations are significantly challenged in the process. Consequently, the SPI is determined 

by considering more weightage to the more serious citations (Kinilakodi and Grayson, 

2011a). The Safety Performance Measurement (SPM) provides information about the 

remedial action for risk control rather than focusing on safety in the workplace (Arezes 

and Miguel, 2003). The SPM tend to be reactive because they only focus on a small part 

of the day-to-day performance and ignore the situations that potentially caused accidents. 

The S&S calculator tool, proposed by MSHA, determines a substantial likelihood of 

incurring a serious injury because of an underlying safety or health hazard. This tool 

determines the number of S&S citations and orders per 100 inspection hours within a 

specific time window (MSHA). However, it ignores further citations and only considers 

two factors: the quantity of S&S citations and the number of inspection hours. Therefore, 

it is critical to evaluate historical mining injury data and identify the potential risks 

through the mine risk index. 

One of the most critical issues the mining industry deals with is investigating the cause 

of accidents and quantitative analysis of the risk exposure (Onder, 2013). One such study 

of a citation-based reliability approach using a pilot sample of underground coal mines 

assesses the risk of violating safety and health standards. However, the main research 

focus was limited to underground coal mines with major citations (Kinilakodi and 

Grayson, 2011a). Another study investigated the modified safe performance index 

through an equal weightage of accident and citation measures to determine the mine 

safety performance (Kinilakodi and Grayson, 2011b). Other research examined the risk 

assessment of underground bituminous mines and risk characterization using citation 

data in Pennsylvania (Orsulak et al., 2010). However, there is also a need to address the 

https://www.emerald.com/insight/search?q=Pedro%20M.%20Arezes
https://www.emerald.com/insight/search?q=A.%20S%C3%A9rgio%20Miguel
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violations of the regulations and mandatory health and safety standards (Kecojevic, 

2011).   

The existing tools, including POV and S&S calculator help actively monitor the safety 

practices in the mines. However, they have their limitations in identifying the potential 

risks associated with any mine. The MSHA safety indicator metrics that offer 

understanding of safety are difficult to quantify (Harms-Ringdahl, 2009). Therefore, the 

research objective is to propose a risk index through leading health and safety indicators 

to help mining companies assess mine safety performance. An entropy-based risk index 

(ERI) is proposed to analyze the relative importance of different factors, based on their 

entropy values, and assign weights accordingly. The ERI is analyzed by utilizing the 

MSHA databases to assess and optimize the weights of the conflicting matrices. The 

weight determination of risk indicators was done through the information in an event and 

the degree of dispersion. The ERI was validated by comparing the results with the 

unsupervised machine learning (ML) algorithm to determine the clusters with relative 

risk. As a result, it is possible to calculate the risk index over time, which can reveal 

trends in the evolution of the amount of risk associated with mining operations. Thus, 

determining the risk index could bring more insight into the mining industry's risk profile. 

Figure 1 Mining Fatalities and Annual Hours in the United States 
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2.2 Materials  

The MSHA focuses on eliminating fatalities and injuries by implementing mandatory 

health and safety standards. MSHA databases contain records pertaining to safety and 

health violations that are updated every week. MSHA databases consist of violations, 

inspections, employment production and accidents dataset. The violations dataset 

includes the violations that were reported as a result of MSHA inspections that 

commenced on 1/1/2000. Each inspection generates a unique event number linked 

directly to the inspection’s dataset. Table 1 includes information on the precise citation, 

order, or safeguard issued, including the Section of Act, and the occurrences that led up 

to the violation (MSHA). A citation is issued for violating the mandatory safety and 

health standards during an inspection. In contrast, an order is issued to the mine operator 

with penalties when an aggravated activity constitutes greater than ordinary negligence. 

In addition, a log of failures is maintained for underground subsystems, which can be 

used in determining the risk hazards and eliminating potential accidents. (Grayson et al., 

2009). However, according to MSHA, specific criteria must be proven for a violation to 

be deemed serious and substantial. Firstly, there needs to be an underlying violation of a 

regulatory standard. Secondly, a specific safety threat must have contributed to the 

violation. Lastly, a decent chance is that the risk of hazard will cause an injury. A 

violation must include these components to be considered significant and substantial 

(Kinilakodi and Grayson, 2011b). The inspection dataset contains information about the 

name of the mine that was inspected, the inspection number assigned by MSHA, the 

inspection hours, and the dates when the inspection started and ended. The employee 

production dataset contains the annual total of employee hours and coal production 

reported by mine operators. The accidents dataset contains information on all reported 

accidents, injuries, and degree of injury by mine operators and contractors (MSHA). The 

degree of injury from accidents dataset is categorized into ten degrees based on MSHA 

reports (NIOSH, 2016), including fatal, permanent total or permanent partial disability, 

nonfatal with days lost only, nonfatal with days lost and days of restricted work activity, 

nonfatal with restricted work activity only and nonfatal with no days lost or restricted. 

The initial dataset consisted of injuries based on violations, inspections, employee 
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production, and accident datasets reported to MSHA from 2011 to 2020 thereby 

calculating the risk index is determined for each year. Based on existing research and 

analysis, the injured miner's data is examined using risk indicators and their association 

with the degree of injury (Amoako et al., 2021).  This research focuses on MSHA datasets 

and determining the mine risk index over the years. The complete list of variables 

considered in this research is provided in Table 1.

Table 1: List of variables used for analysis 

Column Name Description 

Violations dataset 

Citations     Type of citation issued 

Order       Type of order issued 

Safeguard     Type of safeguard issued 

Significant and substantial Gravity of injury  

Proposed penalty Penalty issued for a citation 

Inspections dataset 

Total inspection hours Recorded total inspection hours 

Employment Production dataset 

Annual hours  Summation of annual hours 

Accidents dataset 

Degree Injury 

Degree of injury or illness to an 

individual 

2.3 Methodology 

2.3.1 Evaluation of matrix parameters 

Incidences are associated with multiple contributing factors, and the metrics provide 

additional insight into the complex factors associated with these incidents resulting in 

death or injury. According to Title 30 of the Code of Federal Regulations (CFR), Part 50 

mandates that mine operators and contractors submit the MSHA Form 7000-1 with a 

detailed description of the reportable incident (Sammarco et al., 2016). The accidents in 

the mines are classified as no lost time injuries (NLT) and lost time injuries (LT) (Robson 

et al., 2018). Analysis of the lost time data helps prevent fatalities (Grayson et al. 2009). 
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The LT and NLT injuries were further classified into nonfatal days-lost injuries (NFDL) 

and fatal and no-days-lost injuries (NDL) (Komljenovic et al., 2008). Therefore, the 

incidence rate (IR), no-days-lost incidence rates (NDL IR), and nonfatal days-lost 

incidence rates (NFDL IR) are determined as:  

IR = 
number of injury occurrences

number of employee hours
 x 200,000                   (1) 

 

   NDL IR = 
number of injuries in a category 

number of employee hours
 x 200,000  (2) 

 

NFDL IR = 
number of nonfatal days lost injuries 

number of employee hours
 x 200,000          (3) 

 

SM = 
restricted and lost work days 

number of employee hours
 x 200,000                 (4) 

 

Research shows that the increased penalties for violations can help in improving the 

health and safety standards in mines (Kecojevic, 2011). The elevated citations for specific 

violations (such as those categorized as S&S and orders) may indicate failure to manage 

risks and lead to poor safety performance (Grayson and Kinilakodi, 2011). The frequency 

of occurrence is the normalized safety measure, and severity is estimated from the 

relative amount of related loss (Kinilakodi et al., 2012). The leading indicator-type 

statistics on significant and substantial citations (SS/100 IH), orders (O/100 IH), and 

citations (C/100 IH) per 100 inspection hours provide a detailed understanding of risk 

analysis (Grayson et al., 2009). MSHA imposed rules to address safety issues, and 

penalties for mine safety and health requirements violation that has increased 

considerably and now constitute a considerable cost to mine operators (Kecojevic, 2011). 

The penalty for each citation varies considerably, with more severe health and safety 

violations incurring heavier penalties (Yorio et al., 2014). The penalty per 100 inspection 

hours (P/100 IH) is an additional indicator to determine the risk index. The SS/100 IH, 

O/100 IH, P/100 IH and C/100 IH are calculated as: 
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C/100 IH = 
number of citations

number of inspection houes
 x 100 (5) 

SS/100 IH = 
number of significant and substantial citations

number of inspection houes
 x 100        (6) 

 O/100 IH = 
number of orders

number of inspection houes
 x 100 (7) 

P/100 IH =
penalty amount 

number of inspection houes
 x 100   (8) 

Table 2: Measures used for risk index calculation 

Mine ID P/100 

IH 

NDL 

IR 

NFDL IR SM  C/100 IH SS/100 

IH 

O/100 

IH 

1 0.0085 1.0000 0.0000 0.0000 0.1039 0.0000 0.0000 

2 0.0797 0.0000 1.0000 1.0000 0.6119 0.5159 0.0847 

3 0.1350 0.0000 0.0000 0.0000 0.2189 0.5801 1.0000 

4 0.1238 0.0016 0.4025 0.3461 0.3254 0.2861 0.0395 

5 0.4356 0.0001 0.0169 0.1088 0.6936 0.7851 0.2206 

Table 2 shows the standard injury measures used for calculating the performance index 

for five example mines. The risk analysis tools have various considerations to determine 

the risk and ensure safe operations in the mines. However, these techniques are based on 

a simplistic approach, and the utilization of different information to determine the 

potential risk is limited. A combination of multiple risk indicators is used to determine 

and manage the mining-related risks accurately. The risk index is calculated by 

multiplying the unknown weights (w1 to w7) by the individual risk indicators. To ensure 

simplicity, we can assign equal weight (1/7) to each of the seven component risks. The 

weights for each risk depend heavily on the indicators and can be quite subjective (Xu et 
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al., 2019). Equal weights are assigned when the indicators are of equal importance 

(Becker et al., 2020). A weight is a type of coefficient that indicates the relative 

importance of one attribute compared to others (Greco et al., 2019).  The weights can be 

calculated using the iterative unsupervised machine learning (ML) algorithms and a 

weighted ℓ2 metric determined for the indicator. (Jimenez-Fernandez et al., 2022). There 

are multiple ways to determine weights, including the analytic hierarchy process, the 

entropy method, and the expert evaluation method. Of these, the entropy approach is the 

most objective as it contains no artificial subjective factor, and the weight calculation is 

based on the variance of data, which can increase the precision of quantitative evaluation 

results (Xiao et al., 2020). The fundamental concept of the entropy weight methodology 

is to compute the objective weight of indicators based on the divergence degrees of the 

unbiased data (Tai et al., 2020). The flow chart for methodology has three key 

components, as shown in Figure 2: the information entropy approach, machine learning 

modeling, and statistical analysis. The information entropy approach determines the 

weights using the degree of dispersion for the risk index. The ERI is validated through 

unsupervised machine learning models and statistical analysis for an individual year. The 

following subsections present the detailed methodology proposed in this research. 
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2.3.2 Weight of indexes

The seven-dimensional dataset consisting of NDL IR, NFDL IR, SM, Penalty, C/100, 

SS/100, and O/100 is considered for each year to determine the weightage values and the 

risk index. The index weights are typically determined using subjective fixed weight 

techniques such as the Delphi, expert survey, and analytic hierarchy process (AHP).  

However, the objective fixed weight methods are based on the inherent information of 

indexes to generate index weights. In information theory, entropy can assess the degree 

of disorder and relevance to system information (Li et al., 2011). The entropy-weighting 

method more precisely avoids the impact of subjective considerations (Zhu et al., 2020). 

The probability of an event happening, and the amount of information entropy has a 

negative mathematical relationship. The probability value will be high, and the entropy 

will be low if an event can be accurately anticipated to occur (Amiri et al., 2014). The 

attributes with a comparatively higher entropy measure have a higher data distribution 

between the two extremes of the solution space. The more random the input, the more 

impact the associated attribute will have on the algorithm's decision-making (Rastogi et 

al., 2015). The entropy values weaken the impact of some unusual attributes and make 

the assessment more precise. The essential disagreement between the responses in 

decision-making can be handled using the entropy technique (Kumar et al., 2021). 

Therefore, an entropy approach is used to analyze the weight vectors of the indicators on 

comprehensive evaluation through the degree of dispersion (Ji et al., 2021).  The 

information entropy procedure follows: 

Step 1: The seven-dimensional database constructs the evaluation matrix. 

Step 2: If n sets of indexes exist in the index system and m mines, then xij is the value 

of the jth index in the ith mine. Standardizing indexes is important to remove the impact 

of index dimension on incommensurability. The assessment matrix in this study is 

normalized using the critical value approach. The normalized indicators are determined 

by: 

𝑥𝑖𝑗
1 =

𝑥𝑖𝑗−𝑚𝑖𝑛 𝑥𝑗

𝑚𝑎𝑥 𝑥𝑖−min 𝑥𝑗
(9)
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Step 3: The range of entropy value ej is [0, 1]. The greater the value of ej, the higher the 

degree of differentiation and the more information can be extracted (Zhu et al., 2020). 

According to the definition of entropy, the entropy of the jth index is determined by: 

ej=

− ∑
𝑥𝑖𝑗

′

∑ 𝑥𝑖𝑗
′

𝑚

𝑖=1

𝑚

𝑖=1

* ln(
𝑥𝑖𝑗

′

∑ 𝑥𝑖𝑗
′

𝑚

𝑖=1

) 

ln 𝑚
(10) 

Step 4: Wj is defined as the entropy weight of the jth parameter, which is calculated as: 

Wj=
1−𝑒𝑗

∑ (1−𝑒𝑗)
𝑗

(11) 

The weight calculation helps in determining each indicator's relative importance. To 

make the ERI unbiased, the sum of indicator weights was kept equal to 1. The risk index 

was calculated by multiplying the weights with the corresponding values. The proposed 

steps were followed for each year, and each year's risk index was determined.   

2.3.3 Validation 

The proposed risk index is validated by clustering seven-dimensional risk matrices for 

each individual year. If the resultant risk index can capture the seven-dimensional risk 

matrices, the risk index values from one cluster to others should be statistically different. 

The MANOVA test and post-hoc techniques were applied to determine the effectiveness 

of the clustering results. The ANOVA and post-hoc test were performed to ensure the 

mean value of the risk index from different clusters is statistically different.  

2.3.3.1 Unsupervised Machine Learning 

With the rapid advancement of ML techniques and algorithms, a greater emphasis has 

been placed on incorporating machine learning into safety-related studies, which has 

been proven in several applications (Ji et al., 2021). BIRCH is advantageous as it focuses 

on intelligent cluster assignment without human participation (Roselin et al., 2021). The 
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silhouette coefficient was used to determine the number of optimal clusters whereas the 

BIRCH clustering was applied to determine the cluster labels.  

2.3.3.2 Determining the Number of Clusters 

The proposed risk index is validated through unsupervised ML algorithms to determine 

the range of clusters. The ML algorithms learn from the data and, when new data is 

introduced, recognize the data class using the previously learned features (Mahesh, 

2018). Hence, clustering algorithms can be used to determine the similar relationships 

between the data groups (Lieber, 2013). However, most clustering methods are designed 

to evaluate the grouping or partition based on a known number of clusters (Kodinariya 

and Makwana, 2013). To determine the number of clusters, a silhouette method was used 

(Saputra, 2020). The silhouette coefficient considers the intra-cluster and inter-cluster 

distances for the cluster number selection (Dinh et al., 2019). The silhouette value 

represents the similarity of a datapoint to its cluster compared to other cluster centroids. 

The value ranges from -1 to +1. A higher silhouette score indicates an appropriate match 

of the datapoint to its cluster centroid. (Zhou and Gao, 2014). The mean for each data 

point's intra-cluster distance (a) and the nearest-cluster distance (b) are used to determine 

the silhouette coefficient (Shahapure and Nicholas, 2020):

Silhouette Coefficient =
𝑏−𝑎

max (𝑎,𝑏)
        (12)      

If the mean of the measured silhouette value is significantly high, the number of clusters 

is at its optimal value (Nanjundan et al., 2019).  

2.3.3.3 BIRCH Clustering 

A Balanced iterative reducing and clustering (BIRCH) using hierarchies is the fastest 

clustering algorithm by building the clusters through the cluster feature tree (CF Tree) 

and height-balanced tree (Lorbeer et al., 2018). The clustering features for hierarchical 

clustering are stored in a height-balanced tree (CF Tree) with two components: balancing 

factor B and threshold T. The process of analyzing the data and inserting it into the 
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appropriate cluster is carried out incrementally as part of building the CF tree. 

(Venkatkumar and Shardaben, 2016). The balanced tree is created using the BIRCH 

algorithm by clustering and storing the points in each leaf node. Each leaf node has 

pointers to the node directly below and above it. After the BIRCH process, these pointers 

offer quick access to sets provided by the BIRCH algorithm during clustering. (Kovacs 

and Bednarik, 2011). Here, the algorithm computes the intra-cluster distances using the 

clustering features until the appropriate number of clusters is reached; the algorithm 

merges the two closest clusters. Therefore, the BIRCH clustering approach uses 

multilevel clustering to reduce complexity and increase flexibility. It focuses on 

determining the best subclusters and multidimensional group metrics to produce clusters 

of the best quality (Nwadiugwu, 2020). 

2.3.3.4 Statistical Methods 

The multivariate analysis of variance (MANOVA), which is an extension of the 

univariate analysis of variance (ANOVA), determines the ability to find the difference 

between the groups (Smith et al., 2020). MANOVA focuses on three assumptions: 

independence, multivariate normality, and equality of variance matrices (Appolus and 

Okoli, 2022). MANOVA determines the simultaneous analysis of correlations that exist 

between several dependent variables. The null hypothesis (H0) states that the averages of 

the investigated parameters are the same. In contrast, the alternative hypothesis states 

that at least one parameter has a different average value for the populations being 

compared (Rybak et al., 2023). The MANOVA statistics such as Wilks lambda, 

Hotelling-Lawley trace, Pillai's trace, and Roy's largest root help in determining the p-

value and test for the null hypothesis (H0) (Anderson and Walsh, 2013). Tukey's Honestly 

Significant Difference (HSD) was applied as a post hoc test to compare the means of the 

various cluster labels. If the p-values were less than 0.05, it is determined as a statistically 

significant difference between the groups. (Korga et al., 2019). After testing the clusters 

robustness, the risk index’s validity was tested by comparing the means of the risk index 

value from different clusters. If the proposed weight calculation method successfully 

captured the seven-dimensional risk indices, the mean value of proposed risk index of 
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the cluster should be significantly different from the mean values of the risk index of 

other clusters statistically. The ANOVA test was carried out to verify the mean difference 

of the risk index from different clusters. Subsequently, the post-hoc test was performed 

to validate that all means of risk index from different clusters are statistically different. 

Box plot was also used to visualize the risk index values in other clusters. 

2.4 Results 

In the United States, surface mines are significantly higher than underground mines. 

However, the underground mine penalties are substantially higher than surface mine 

penalties. Figure 3 shows the MSHA statistics from 2011 - 2020, accounting for $410 

Million in underground and $222 Million in surface penalties, totaling around 65% of 

relative penalties in underground mines compared to surface mines. These statistics are 

based on significant and substantial violations that have a possibility of causing an injury 

of serious nature. The penalties for underground mines have decreased from about $96.8 

Million in 2011 to just over $17.5 Million in 2020. According to the citation statistics, 

underground mines had about 54,308 more significant and substantial citations than 

surface mines. According to the Safe Performance Index (SPI) analysis and the MSHA 

Pattern of Violation (POV) methodology, major hazard-related citations or increased 

citations have the potential to result in an accident or injury (Kinilakodi and Grayson, 

2011b). As a result, underground mines are focused on determining the risk index, 

thereby ensuring workplace safety. 
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Figure 3 Surface and Underground penalties in mines 

2.4.1 Risk Index Determination 

Shannon's entropy was applied to determine the relative weights for the ranking 

procedure. According to their respective importance, hierarchy gives each attribute an 

overall weight. Table 3 shows the weight values using the information entropy approach 

for comprehensive evaluation through the degree of dispersion. All the indicator weights 

vary over the years, with some having more severe amounts than others. However, the 

significant and substantial violations (SS/100) that lead to an injury are observed more 

important and assigned greater weight than citations. While citations are considered an 

effective tool for enforcing safety regulations and promoting compliance, the citations 

may not completely reflect the presence of risk to the miners. For 2019, the most critical 

criterion is NDL IR, with around 49% weight. The weights for the severity measures 

almost remains constant at about 0.2.  
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Table 3: Weights obtained through the information entropy approach. 

CAL 

YR 

P/100 

IH 

NDL IR NFDL IR SM C/100 

IH 

SS/100 

IH 

O/100 

IH 

2011 0.044 0.291 0.289 0.281 0.008 0.019 0.068 

2012 0.092 0.180 0.202 0.290 0.025 0.045 0.166 

2013 0.047 0.141 0.342 0.329 0.011 0.026 0.104 

2014 0.106 0.199 0.180 0.229 0.023 0.061 0.202 

2015 0.088 0.251 0.193 0.210 0.021 0.052 0.185 

2016 0.087 0.287 0.148 0.216 0.029 0.059 0.173 

2017 0.089 0.184 0.190 0.180 0.025 0.066 0.266 

2018 0.110 0.223 0.170 0.200 0.031 0.070 0.195 

2019 0.064 0.491 0.119 0.125 0.019 0.045 0.137 

2020 0.105 0.197 0.173 0.179 0.041 0.090 0.215 

The risk index is calculated by multiplying the determined weights with the 

corresponding values for individual years. Table 4 shows a sample group of mines with 

their risk index for the year 2019. Mine 1 has a significantly higher risk than other mines 

in the example table. 

Table 4: Determination of Risk Index 

MINE 

ID 

P/100 

IH 

NDL 

IR 

NFDL 

IR 

SM C/100 

IH 

SS/100 

IH 

O/100 

IH 

Risk 

Index 

1 0.0085 1.0000 0.0000 0.0000 0.1039 0.0000 0.0000 0.4930 

2 0.0797 0.0000 1.0000 1.0000 0.6119 0.5159 0.0847 0.2954 

3 0.1350 0.0000 0.0000 0.0000 0.2189 0.5801 1.0000 0.1765 

4 0.1238 0.0016 0.4025 0.3461 0.3254 0.2861 0.0395 0.1243 

5 0.4356 0.0001 0.0169 0.1088 0.6936 0.7851 0.2206 0.1224 



  20  

The top 25 mining types that provide the highest risk are shown in Table 5 for each year. 

The majority of underground coal mines are prone to higher risk than other mining types. 

The average numbers of coal mines with the higher risk accounted to be 16 out of 25. 

Table 5: Top 25 high risk underground mining types from 2011-2020 

CAL YR  Coal Mines Metal Mines Non-metal 

Mines   

Stone 

2011  20 2 1 2 

2012  17 5 1 2 

2013  17 6 1 1 

2014  19 5 0 1 

2015  11 7 1 6 

2016  17 3 0 5 

2017  15 6 1 3 

2018  17 2 1 5 

2019  14 5 0 6 

2020  15 4 1 5 

 

2.4.2 Validation 

2.4.2.1 Number of clusters 

This study uses the clustering technique to group the data, which is then split into (k) 

clusters. The silhouette plots for the BIRCH clustering indicate the silhouette coefficient 

values for k clusters. The displayed results for the silhouette analysis are for 2019, as 

shown in Figure 4. Due to the presence of a negatively dominated cluster and the large 

fluctuations in the size of the clusters, the clusters values of 4, 5, and 6 are poor choices 

for this data. The 2 cluster model groups into distinct large clusters based on the 
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probability score assigned for each data point in the cluster. However, this results in a 

large group of individual clusters compared to other cluster numbers. The 3 cluster 

models have fewer overlaps compared to other clusters, and this statement is supported 

by the average silhouette score of 0.434 which shown as a dashed red line in Figure 4. 

Therefore, the ideal number of clusters is three, determined by the silhouette analysis. 

Similarly, the number of clusters is determined for each year, as shown in Table 6. 
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Figure 4 Silhouette analysis for various clusters using BIRCH Clustering 
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Table 6 Silhouette Analysis from 2011-2020 

Calendar Year Number of clusters 

2011 2 

2012 2 

2013 2 

2014 2 

2015 4 

2016 2 

2017 2 

2018 3 

2019 3 

2020 3 

2.4.2.2 Statistical Analysis of Clustering 

The multivariate statistical analysis of the BIRCH clustering algorithm is shown in Table 

7, which focuses on Wilks lambda, Pillai’s trace, Hotelling-Lawley trace, and Roy’s 

greatest root and determines the significant difference between the clustered groups. The 

2019 dataset consisted of 451 mines, and the optimal number of clusters considered is 

three based on the silhouette analysis. Seven statistical variables (NDL IR, NFDL IR, 

SM, C/100, SS/100, O/100, and P/100) were used for clustering. The degrees of freedom 

for residuals (Den DF) and the number of independent variables (Num DF) are 7.0 and 

443.0, respectively. The clustering technique has very low p-values (0 < 0.05), along with 

Pillai’s trace indicating a significant difference between the groups and thereby rejecting 

the null hypothesis. Wilk’s lambda has an F-statistic of 55.1727 which produces a p-

value that is small enough (0) to be reported. However, the F-statistic is significantly 

large, indicating a significant difference between the groups. The Wilks lambda shows 
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around 46.58% of the variance in the dependent variable. Therefore, the statistics show 

a significant difference between the clusters on the BIRCH cluster labels.  

Table 7 Multivariate Statistics for BIRCH clustering 

Intercept Value Num DF Den DF F Value Pr > F 

Wilks lambda 0.3030 7 443 145.6087 0 

Pillai’s trace 0.6970 7 443 145.6087 0 

Hotelling-Lawley trace 2.3008 7 443 145.6087 0 

Roy’s greatest root 2.3008 7 443 145.6087 0 

BIRCH Clustering 

Wilks lambda 0.5342 7 443 55.1727 0 

Pillai’s trace 0.4658 7 443 55.1727 0 

Hotelling-Lawley trace 0.8718 7 443 55.1727 0 

Roy’s greatest root 0.8718 7 443 55.1727 0 

Since a significant difference between the clusters was found, post-hoc test of Tukey's 

HSD was applied to investigate the difference between the pairs of clusters. As shown in 

Table 8, there is a significant difference in mean between the cluster groups, and the 

upper and lower bounds help in determining the confidence interval by focusing on the 

mean difference. The reject column indicates that the null hypothesis can be rejected for 

all comparisons and indicates a significant difference between the groups. Similar results 

were also observed for other years, which are presented in Appendix A – I.  

Table 8 MANOVA Post-hoc statistics for the BIRCH algorithm 

Group 1 Group 2 Mean 

Diff 

P-adj Lower Upper Reject 

0 1 0.2105 0 0.1849 0.2360 True 

0 2 0.1035 0 0.0853 0.1218 True 

1 2 -0.1069 0 -0.1368 -0.0771 True 

The cluster validation, including MANOVA and post-hoc has shown a significant 

difference between the clustered groups. However, to compare the difference between 
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the risk index from one cluster to another, ANOVA and post-hoc tests were performed. 

The ANOVA test consists of two records: between the clusters and within the cluster’s 

variation, as shown in Table 9. The degrees of freedom and sum of squares between the 

clusters includes 2.0 and 0.1463. The variation that cannot be explained in the clustering 

algorithm is termed as residual. The p-value between the clusters is quite low and close 

to 0 (<0.05) and rejects the null hypothesis. Therefore, there is a significant difference 

between the cluster groups to the risk index. 

Table 9 ANOVA statistics for ERI from different clusters 

 

The post-hoc statistics were performed for ANOVA to determine the significant mean 

difference in risk index between the cluster groups (Table 10). The p-adj is quite low, 

and the null-hypothesis is rejected, indicating a significant difference between the cluster 

groups. These results revealed that the proposed risk index (ERI) correctly captures the 

information contained within the seven-dimensional risk indicators. Similar results have 

also been observed for other years (Appendix A - I). 

Table 10 Post- hoc statistics for ERI from different clusters 

Group 1 Group 2 Mean Diff P-adj Lower Upper Reject 

0 1 0.0643 0 0.0497 0.0790 True 

0 2 0.0321 0 0.0216 0.0425 True 

1 2 -0.0323 0 -0.0494 -0.0151 True 

For the visual representation of the range of risk index for each cluster group in 2019, a 

box plot is provided as shown in Figure 5. The box plot can determine the maximum and 

minimum values from each cluster group. Compared to the other cluster groups shown 

in the box plot, the range of risk index values for cluster group 0 is the broadest. 

 df sum_sq mean_sq F Pr(>F) 

BIRCH 

 Clustering 

2.0 0.1463 0.0732 72.4015 5.6799e-

28 
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Figure 5 Box plot for risk index based on cluster labels 

2.5 Case Study 

In this section, we considered an underground mine and determined the risk index over 

time based on the risk indicators. The underground coal mine in the Appalachian coal 

basin accident in 2010 highlighted the ineffectiveness of the POV. As a result, MSHA 

highlighted the list of hazardous underground coal mines after the accident and targeted 

these mines for extra inspections. The determination of SPI included consideration of 

equal weighting to the accident and citation measures to balance the considerations of 

accident and citation, thereby focusing on determining the safety performance 

(Kinilakodi and Grayson, 2011a). To demonstrate the effectiveness of the proposed risk 

index, a comparative evaluation was performed between SPI and the proposed entropy-

based risk index for the study coal mine prior to the accident time. Table 11 shows the 

weights calculated from 2006 to 2010 using the entropy-based approach. Table 12 shows 

the entropy-based risk index and SPI values for the study mine during that period. 
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Table 11 Entropy-based weights from 2006-2011 

CAL 

YR 

P/100 

IH 

NDL IR NFDL IR SM C/100 

IH 

SS/100 IH O/100 

IH 

2006 0.054 0.263 0.297 0.279 0.010 0.023 0.076 

2007 0.101 0.181 0.367 0.157 0.020 0.045 0.139 

2008 0.104 0.274 0.166 0.223 0.020 0.046 0.167 

2009 0.038 0.276 0.280 0.308 0.008 0.018 0.073 

2010 0.095 0.246 0.180 0.231 0.019 0.049 0.180 

2011 0.044 0.291 0.289 0.281 0.008 0.019 0.068 

 

Standard injury measures such as the NDL IR, NFDL IR, and SM, as well as citation-

related measures, such as C/100 IH, SS/100 IH, and O/100 IH, were utilized in the 

calculation of the SPI. SPI shows an increased value over the years, with the highest risk 

index recorded in 2011. SPI predicts that 2009 and 2010 show reasonably close risk 

values, ignoring the small values of NDL IR, NFDL IR, and SM. However, the entropy-

based risk index (ERI) shows a relatively high-risk index in 2010 and 2011. This can be 

observed through the methane ignitions at the mine in 2010, which led to terrible 

outcomes, with the latter resulting in an enormous explosion that affected the whole 

mine. However, SPI did not determine this, and the values decreased from 2009 to 2010, 

as shown in Figure 6. The highest number of citations is completely ignored in the SPI 

as the highest weightage was given to C/100 IH in 2010. The P/100 IH values vary over 

the years with the highest value recorded in 2008 and the lowest penalties in 2009. ERI 

is performing better than SPI, indicating that the proposed risk index manages the risks 

in the case study mine. Therefore, the proposed risk index is anticipated to assist mining 

industry executives in prioritizing hazards and associated risks and in creating 

appropriate action plans to eliminate (or lessen) the severity of such risks. 
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Table 12 Risk index based on entropy weights 

CAL 

YR 

P/100 

IH 

NDL 

IR 

NFDL 

IR 

SM C/100 

IH 

SS/100 

IH 

O/100 

IH 

SPI ERI 

2006 0.0490 0.0003 0.0003 0.0002 0.1017 0.0784 0.0844 0.1163 0.012 

2007 0.1074 0.0100 0.0011 0.0301 0.2368 0.1238 0.0135 0.1670 0.030 

2008 0.0865 0.0030 0.0310 0.0143 0.2198 0.1311 0.0341 0.1939 0.034 

2009 0.1467 0.0002 0.0003 0.0001 0.3474 0.3375 0.0835 0.2820 0.021 

2010 0.1479 0.0228 0.0421 0.0600 0.4243 0.1869 0.0755 0.2673 0.072 

2011 1.0000 0.0006 0.0001 0 0.2182 0.2993 0.2740 0.2991 0.070 

The plots for the SPI and ERI are shown in Figure 6. The fundamental shortcoming of the 

equal weights method for evaluating the output is that it cannot evaluate the discriminatory 

power of input characteristics (Stankovic et al., 2019). Using equal weights, assuming the 

same relative importance, may introduce bias into estimations (Karagiannis and Karagiannis, 

2023). Despite indicating an increasing risk, SPI does not capture the replica of statistics 

in the mines. Thus, the proposed risk index values can help the mining companies to 

assess the risk and thereby focus on improving the safety aspects of the mine. 
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Figure 6 Risk Index based on SPI and ERI 

2.6 Conclusion 

The research focused on determining and validating the risk index through clustering 

algorithms and statistical methods. The violations, accidents, employee production, and 

inspections datasets from the MSHA database were used for this purpose. The entropy-

based indicator weights are determined for the individual year, and the risk index is 

calculated. Parameters like the C/100 IH and SS/100 IH had significantly low weight 

compared to other indicators over the years. Machine learning algorithms were developed 

through the seven-dimensional dataset to validate the mine risk index. Statistical 

techniques such as MANOVA and post-hoc tests are performed on a seven-dimensional 

dataset to determine the significant difference between the clusters. Results show all the 

ML models performed with the MANOVA test identified p-value (<0.05), indicating a 

significant difference between the clusters. Detailed statistical information on mean 

differences in groups was determined with the help of post-hoc testing. The test statistics 
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show a p-value that is significantly low (0), and the mean difference between each pair 

of groups shows a significant difference, thereby rejecting the null hypothesis. However, 

to determine the significant difference between the risk index from one cluster to another, 

ANOVA and post hoc tests were performed. The results show a low sum of squares 

deviation and p-value along with significant mean difference between the clusters. 

Therefore, the results conclude that the risk index for each year can be determined using 

a seven-dimensional dataset consisting of (Penalty, no days lost incidence rate, non-fatal 

days lost incidence rate, severity measure, citation, order, and significant and substantial 

citations) based on entropy-based weights. The risk index would help the mine operators 

manage the workplace safety and focus on regulating the safety standards in high-risk 

mines. 

2.7 Future Work 

This research will be extended to identify the root causes of accidents by relating the 

calculated weights with other variables from MSHA databases, including accident 

narratives. A dashboard will be developed that will provide the user with some 

quantitative measures for the significance analysis of mine safety performance. 

3. Concluding Remarks

This research focuses on the MSHA database to identify the risk indicators causing 

accidents and injuries and determine the risk index. An understanding of the effects of 

accident-causing variables assists the determination of risk indicators. Accidents and 

injuries in the workplace can range from being minor and resulting in no days lost from 

work to being significant and several days away from work. Entropy-based weights are 

determined for the risk indicators of individual years and multiplied with the 

corresponding values to assess the risk index. The mining risk was analyzed using the 

clustering algorithm and statistical methods. MANOVA test helped in understanding the 

relationship between the dependent and the independent variables. Post-hoc results 

helped in analyzing the mean differences between the clusters, thereby rejecting the null 

hypothesis. The statistical and clustering analysis helped in validating the proposed risk 
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index based on violations and accidents in the United States. These statistical and 

clustering analysis interpretations help understand the entropy-based risk index, thereby 

preventing accidents and injuries, and ensuring a secure environment at the mine site. 
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Appendix 

Appendix A 

Table 13 Multivariate statistics for BIRCH clustering in 2011 

Intercept Value Num DF Den DF F Value Pr > F 

Wilks lambda 0.2372 7 724 332.5756 0 

Pillai’s trace 0.7628 7 724 332.5756 0 

Hotelling-Lawley trace 3.2155 7 724 332.5756 0 

Roy’s greatest root 3.2155 7 724 332.5756 0 

BIRCH Clustering 

Wilks lambda 0.4527 7 724 125.0320 0 

Pillai’s trace 0.5473 7 724 125.0320 0 

Hotelling-Lawley trace 1.2089 7 724 125.0320 0 

Roy’s greatest root 1.2089 7 724 125.0320 0 

Table 14 MANOVA Post-hoc statistics for BIRCH algorithm in 2011 

Group 1 Group 2 Mean Diff P-adj Lower Upper Reject 

0 1 -0.0778 0 -0.0844 -0.0713 True 

Table 15 ANOVA statistics for BIRCH clustering and risk index in 2011 

df sum_sq mean_sq F Pr(>F) 

BIRCH 

Clustering 

1.0 0.03984 0.03984 64.506 3.857e-15 
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Table 16 Post-hoc statistics for BIRCH clustering and risk index in 2011 

Group 1 Group 2 Mean Diff P-adj Lower Upper Reject 

0 1 -0.0224 0 -0.0278 -0.0169 True 

Figure 7 Box plot for 2011 
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Appendix B 

  
Table 17 Multivariate statistics for BIRCH clustering in 2012 

Intercept Value Num DF Den DF F Value Pr > F 

Wilks lambda 0.3664 7 706 174.3892 0 

Pillai’s trace 0.6336 7 706 174.3892 0 

Hotelling-Lawley trace 1.7291 7 706 174.3892 0 

Roy’s greatest root 1.7291 7 706 174.3892 0 

BIRCH Clustering      

Wilks lambda 0.2796 7 706 259.9215 0 

Pillai’s trace 0.7204 7 706 259.9215 0 

Hotelling-Lawley trace 2.5771 7 706 259.9215 0 

Roy’s greatest root 2.5771 7 706 259.9215 0 

 

Table 18 MANOVA Post-hoc statistics for BIRCH algorithm in 2012 

Group 1 Group 2 Mean Diff P-adj Lower Upper Reject 

0 1 0.0838 0 0.0751 0.0926 True 

 

Table 19 ANOVA statistics for BIRCH clustering and risk index in 2012 

 df sum_sq mean_sq F Pr(>F) 

BIRCH  

Clustering 

1.0 0.1329 0.1329 134.7278 1.1957e-

28 

 

Table 20 Post-hoc statistics for BIRCH clustering and risk index in 2012 

Group 1 Group 2 Mean Diff P-adj Lower Upper Reject 

0 1 0.058 0 0.0482 0.0678 True 
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Figure 8 Box plot for 2012 
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Appendix C 

Table 21 Multivariate statistics for BIRCH clustering in 2013 

Intercept Value Num DF Den DF F Value Pr > F 

Wilks lambda 0.2128 7 625 330.2872 0 

Pillai’s trace 0.7872 7 625 330.2872 0 

Hotelling-Lawley trace 3.6992 7 625 330.2872 0 

Roy’s greatest root 3.6992 7 625 330.2872 0 

BIRCH Clustering 

Wilks lambda 0.4554 7 625 106.7780 0 

Pillai’s trace 0.5446 7 625 106.7780 0 

Hotelling-Lawley trace 1.1959 7 625 106.7780 0 

Roy’s greatest root 1.1959 7 625 106.7780 0 

Table 22 MANOVA Post-hoc statistics for BIRCH algorithm in 2013 

Group 1 Group 2 Mean Diff P-adj Lower Upper Reject 

0 1 -0.0631 0 -0.0715 -0.0547 True 

Table 23 ANOVA statistics for BIRCH clustering and risk index in 2013 

df sum_sq mean_sq F Pr(>F) 

BIRCH 

Clustering 

1.0 0.0053 0.0053 6.044 0.0142 

Table 24 Post-hoc statistics for BIRCH clustering and risk index in 2013 

Group 1 Group 2 Mean Diff P-adj Lower Upper Reject 

0 1 -0.008 0.0142 -0.0144 -0.0016 True 
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Figure 9 Box plot for 2013 
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Appendix D 

Table 25 Multivariate statistics for BIRCH clustering in 2014 

Intercept Value Num DF Den DF F Value Pr > F 

Wilks lambda 0.2333 7 585 274.6432 0 

Pillai’s trace 0.7667 7 585 274.6432 0 

Hotelling-Lawley trace 3.2863 7 585 274.6432 0 

Roy’s greatest root 3.2863 7 585 274.6432 0 

BIRCH Clustering 

Wilks lambda 0.3612 7 585 147.8192 0 

Pillai’s trace 0.6388 7 585 147.8192 0 

Hotelling-Lawley trace 1.7688 7 585 147.8192 0 

Roy’s greatest root 1.7688 7 585 147.8192 0 

Table 26 MANOVA Post-hoc statistics for BIRCH algorithm in 2014 

Group 1 Group 2 Mean Diff P-adj Lower Upper Reject 

0 1 0.0893 0 0.0801 0.0984 True 

Table 27 ANOVA statistics for BIRCH clustering and risk index in 2014 

df sum_sq mean_sq F Pr(>F) 

BIRCH 

Clustering 

1.0 0.1507 0.1507 84.9182 5.393e-19 
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Table 28 Post-hoc statistics for BIRCH clustering and risk index in 2014 

Group 1 Group 2 Mean Diff P-adj Lower Upper Reject 

0 1 0.0403 0 0.0317 0.0489 True 

Figure 10 Box plot for 2014 
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Appendix E 

Table 29 Multivariate statistics for BIRCH clustering in 2015 

Intercept Value Num DF Den DF F Value Pr > F 

Wilks lambda 0.3920 7 535 118.5313 0 

Pillai’s trace 0.6080 7 535 118.5313 0 

Hotelling-Lawley trace 1.5509 7 535 118.5313 0 

Roy’s greatest root 1.5509 7 535 118.5313 0 

BIRCH Clustering 

Wilks lambda 0.3798 7 535 124.8201 0 

Pillai’s trace 0.6202 7 535 124.8201 0 

Hotelling-Lawley trace 1.6332 7 535 124.8201 0 

Roy’s greatest root 1.6332 7 535 124.8201 0 

Table 30 MANOVA Post-hoc statistics for BIRCH algorithm in 2015 

Group 1 Group 2 Mean Diff P-adj Lower Upper Reject 

0 1 0.2661 0 0.2237 0.3084 True 

0 2 0.0415 0 0.031 0.052 True 

0 3 0.1012 0 0.0858 0.1167 True 

1 2 -0.2245 0 -0.2672 -0.1819 True 

1 3 -0.1648 0 -0.2089 -0.1207 True 

2 3 0.0597 0 0.0434 0.076 True 

Table 31 ANOVA statistics for BIRCH clustering and risk index in 2015 

df sum_sq mean_sq F Pr(>F) 

BIRCH 

Clustering 

3.0 0.1516 0.0505 67.4972 4.5517e-37 
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Table 32 Post-hoc statistics for BIRCH clustering and risk index in 2015 

Group 1 Group 2 Mean Diff P-adj Lower Upper Reject 

0 1 0.1303 0 0.1033 0.1572 True 

0 2 0.0097 0.0012 0.003 0.0163 True 

0 3 0.0292 0 0.0193 0.039 True 

1 2 -0.1206 0 -0.1478 -0.0934 True 

1 3 -0.1011 0 -0.1292 -0.073 True 

2 3 0.0195 0 0.0091 0.0299 True 

 

  

Figure 11 Box plot for 2015 
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Table 33 Multivariate statistics for BIRCH clustering in 2016 

Intercept Value Num DF Den DF F Value Pr > F 

Wilks lambda 0.2762 7 462 172.9663 0 

Pillai’s trace 0.7238 7 462 172.9663 0 

Hotelling-Lawley trace 2.6207 7 462 172.9663 0 

Roy’s greatest root 2.6207 7 462 172.9663 0 

BIRCH Clustering 

Wilks lambda 0.4121 7 462 94.1612 0 

Pillai’s trace 0.5879 7 462 94.1612 0 

Hotelling-Lawley trace 1.4267 7 462 94.1612 0 

Roy’s greatest root 1.4267 7 462 94.1612 0 

Table 34 MANOVA Post-hoc statistics for BIRCH algorithm in 2016 

Group 1 Group 2 Mean Diff P-adj Lower Upper Reject 

0 1 0.1158 0 0.1023 0.1293 True 

Table 35 ANOVA statistics for BIRCH clustering and risk index in 2016 

df sum_sq mean_sq F Pr(>F) 

BIRCH 

 Clustering 

1.0 0.0827 0.0827 50.6763 4.1231e-12 

Table 36 Post-hoc statistics for BIRCH clustering and risk index in 2016 
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Group 1 Group 2 Mean Diff P-adj Lower Upper Reject 

0 1 0.04 0 0.029 0.0511 True 

Figure 12 Box plot for 2016 

Appendix G 
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Table 37 Multivariate statistics for BIRCH clustering in 2017 

Intercept Value Num DF Den DF F Value Pr > F 

Wilks lambda 0.2841 7 456 164.1378 0 

Pillai’s trace 0.7159 7 456 164.1378 0 

Hotelling-Lawley trace 2.5197 7 456 164.1378 0 

Roy’s greatest root 2.5197 7 456 164.1378 0 

BIRCH Clustering 

Wilks lambda 0.4710 7 456 73.1587 0 

Pillai’s trace 0.5290 7 456 73.1587 0 

Hotelling-Lawley trace 1.1230 7 456 73.1587 0 

Roy’s greatest root 1.1230 7 456 73.1587 0 

Table 38 MANOVA Post-hoc statistics for BIRCH algorithm in 2017 

Group 1 Group 2 Mean Diff P-adj Lower Upper Reject 

0 1 -0.0764 0 -0.0861 -0.0667 True 

Table 39 ANOVA statistics for BIRCH clustering and risk index in 2017 

df sum_sq mean_sq F Pr(>F) 

BIRCH 

Clustering 

1.0 0.0580 0.0580 67.2539 2.3826e-15 

Table 40 Post-hoc statistics for BIRCH clustering and risk index in 2017 

Group 1 Group 2 Mean Diff P-adj Lower Upper Reject 

0 1 -0.0349 0 -0.0432 -0.0265 True 
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Figure 13 Box plot for 2017 
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Appendix H 

Table 41 Multivariate statistics for BIRCH clustering in 2018 

Intercept Value Num DF Den DF F Value Pr > F 

Wilks lambda 0.3188 7 456 139.1978 0 

Pillai’s trace 0.6812 7 456 139.1978 0 

Hotelling-Lawley trace 2.1368 7 456 139.1978 0 

Roy’s greatest root 2.1368 7 456 139.1978 0 

BIRCH Clustering 

Wilks lambda 0.4568 7 456 77.4770 0 

Pillai’s trace 0.5432 7 456 77.4770 0 

Hotelling-Lawley trace 1.1893 7 456 77.4770 0 

Roy’s greatest root 1.1893 7 456 77.4770 0 

Table 42 MANOVA Post-hoc statistics for BIRCH algorithm in 2018 

Group 1 Group 2 Mean Diff P-adj Lower Upper Reject 

0 1 0.1679 0 0.1478 0.188 True 

0 2 0.0798 0 0.0679 0.0917 True 

1 2 -0.0881 0 -0.1101 -0.066 True 

Table 43 ANOVA statistics for BIRCH clustering and risk index in 2018 

df sum_sq mean_sq F Pr(>F) 

BIRCH 

Clustering 

2.0 0.5649 0.2825 152.936 1.134e-51 
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Table 44 Post-hoc statistics for BIRCH clustering and risk index in 2018 

Group 1 Group 2 Mean Diff P-adj Lower Upper Reject 

0 1 0.1377 0 0.1178 0.1575 True 

0 2 0.0419 0 0.0301 0.0537 True 

1 2 -0.0958 0 -0.1175 -0.0740 True 

Figure 14 Box plot for 2018 
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Appendix I 

Table 45 Multivariate statistics for BIRCH clustering in 2020 

Intercept Value Num DF Den DF F Value Pr > F 

Wilks lambda 0.1889 7 423 259.5413 0 

Pillai’s trace 0.8111 7 423 259.5413 0 

Hotelling-Lawley trace 4.2950 7 423 259.5413 0 

Roy’s greatest root 4.2950 7 423 259.5413 0 

BIRCH Clustering 

Wilks lambda 0.3879 7 423 95.4670 0 

Pillai’s trace 0.6124 7 423 95.4670 0 

Hotelling-Lawley trace 1.5798 7 423 95.4670 0 

Roy’s greatest root 1.5798 7 423 95.4670 0 

Table 46 MANOVA Post-hoc statistics for BIRCH algorithm in 2020 

Group 1 Group 2 Mean Diff P-adj Lower Upper Reject 

0 1 -0.0294 0 -0.0501 -0.0087 True 

0 2 -0.1215 0 -0.1341 -0.1088 True 

1 2 -0.092 0 -0.1110 -0.0731 True 

Table 47 ANOVA statistics for BIRCH clustering and risk index in 2020 

df sum_sq mean_sq F Pr(>F) 

BIRCH 

Clustering 

2.0 0.8421 0.4210 182.351 5.24e-58 
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Table 48 Post-hoc statistics for BIRCH clustering and risk index in 2020 

Group 1 Group 2 Mean Diff P-adj Lower Upper Reject 

0 1 0.0256 0.0115 0.0047 0.0465 True 

0 2 -0.0849 0 -0.0976 -0.0722 True 

1 2 -0.1105 0 -0.1296 -0.0914 True 

Figure 15 Box plot for 2020 
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