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Abstract 
Globally, lakes are sites of significant carbon cycling, respiring an estimated 0.07 

to 0.15 Pg as CO2 and sequestering 0.03 to 0.07 Pg C in sediments annually. These 

processes can be affected by nutrient availability, with seasonal mixing regulating nutrient 

transport in monomictic and dimictic systems. However, the effect of intermittent mixing 

on ecosystem production in polymictic systems has been much less studied. The timing 

and frequency of lake mixing are expected to be altered by climate change, which has the 

potential to impact nutrient transport. The first chapter of this thesis introduces lake mixing 

dynamics and indices of mixing. In chapter two, the relationship between intermittent 

mixing and changes in productivity in polymictic systems is examined, under the 

hypothesis that productivity will increase in response to lake mixing. Ecosystem 

productivity was calculated via the diel oxygen technique for Goose Lake, Marquette Co., 

MI, over the 2019 field season. The diel changes in Net Ecosystem Production (NEP), 

Gross Primary Production (GPP), and Respiration (R) were cross-correlated with the diel 

change in Lake Number (LN), an index of stratification. One day after mixing, dNEP dt-1 

and dGPP dt-1 were negatively correlated with dLN dt-1 with coefficients of -0.342 and -

0.209, respectively, at a cross correlation significance threshold of ±0.1859. This 

corresponds to an increase in NEP and GPP as LN decreases. These correlations suggest 

that GPP and NEP increase in response to mixing. In chapter three, climate-driven changes 

in stratification extent and mixing frequency are modeled for the early 2080’s relative to 

2019. The one-dimensional General Lake Model (GLM) was autocalibrated for 2019 

conditions using simulated annealing. The cost function consisted of the sum of 

temperature and Lake Number Normalized Root Mean Squared Error (NRMSE) to 



 

x 

improve vertical heat distribution. Six Coupled Model Intercomparison Project 5 (CMIP5) 

climate models for the early 2080’s were input into the GLM model to determine changes 

in hydrodynamics. In all future scenarios, stratification extent and water temperatures 

increased relative to 2019. However, mixing frequency also increased and the lake 

remained polymictic. This increase in stratification is likely due to both increased air 

temperatures and lower wind speeds. Increased stratification and temperatures will likely 

exacerbate existing water quality problems by stimulating DO drawdowns and internal 

loading of phosphorus. These conditions will increase the probability of cyanobacteria 

blooms. Higher temperatures will likely shift the system further towards net heterotrophy 

due to the greater temperature dependence of respiration than photosynthesis. While the 

number of mixing events increased, this was due to significantly increased stratification 

which would be expected to decrease productivity. Therefore, it cannot be conclusively 

determined if productivity will increase in Goose Lake in response to climate change. 
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1 Lake Mixing Dynamics 
Vertical mixing in lakes is a phenomenon that regulates many other processes, such 

as nutrient and dissolved oxygen (DO) transport, that in turn affect lake metabolism 

(Nürnberg 1998; Wilhelm and Adrian 2008; Fukushima et al. 2019; Cortés et al. 2021). 

Lakes mix when external forces overcome water column inertia, inducing mixing 

(Robertson and Imberger 1994). Climate change is contributing to a general decrease in 

mixing frequency by altering the drivers of mixing and stability (Kirillin 2010; Woolway 

et al. 2017; Woolway and Merchant 2019). However, some small lakes have been modeled 

as increasing in mixing frequency due to increased wind speeds (Woolway and Merchant 

2019). This section will briefly introduce lake mixing and provide a roadmap for future 

chapters. 

Lakes stratify due to vertical thermal or chemical density gradients within the water 

column (Boehrer and Schultze 2008). These gradients can produce defined layers; the least 

dense surface layer, or epilimnion, sits atop the denser hypolimnion. The two layers are 

separated by the metalimnion, a zone of temperature change that contains the thermocline, 

the layer of the largest temperature gradient. Molecular transport is inhibited across the 

thermocline (Boehrer and Schultze 2008). This separation can cause the isolated 

hypolimnion to experience hypoxia due to DO drawdowns (Fukushima et al. 2019; Cortés 

et al. 2021). Hypoxia can exacerbate the release of phosphorus bound in sediments due to 

changing redox conditions (Sondergaard et al. 2001). This phenomenon, known as internal 

loading, is a water quality concern in many lakes. A major mechanism to resupply 

hypolimnetic oxygen is vertical mixing from surface waters that are in contact with the 

atmosphere (Robertson and Imberger 1994; Fukushima et al. 2019). Nutrient-rich water 
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from the hypolimnion can increase productivity when mixed into the photic zone (Wilhelm 

and Adrian 2008).  

The breakdown of thermal gradients by external forces results in mixing. These 

forces primarily include wind but can result from gains or losses of lake water or changing 

density (Robertson and Imberger 1994; Boehrer and Schultze 2008). The latter is not 

limited to warming because water has a maximum density at 4 °C. In temperate regions, 

this can cause inverse stratification during the winter ice period, where water is coldest 

near the surface ice and warmest near the lakebed (Woolway et al. 2020). When the surface 

warms in the spring, the former ice is warmed to 4 °C and sinks, inducing mixing.  

The thermal gradients themselves are controlled by a myriad of processes that 

comprise a lake’s heat budget. Warming effects include shortwave radiation from the sun 

and longwave radiation from the atmosphere (Woolway et al. 2020; Schmid and Read 

2022). Cooling effects include evaporation and longwave radiation emitted by the lake. 

Other processes can have variable temperature effects on the lake, such as thermal 

conduction to and from the atmosphere (sensible heat), sediment heating, groundwater 

intrusion, inflowing water from surface sources, and precipitation. 

Shortwave radiation directly warms lakes (Woolway et al. 2020; Schmid and Read 

2022). Some shortwave radiation is reflected at the surface, but the remainder is attenuated 

within the water column (Boehrer and Schultze 2008). The surface reflectivity, or albedo, 

is especially high during the ice-covered season. Decreased ice cover has a warming effect 

on the lake because increased sunlight can enter the water column (Woolway et al. 2020). 
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However, warming is somewhat counteracted through increased evaporation and sensible 

heat loss (Zhong et al. 2016). 

The behavior of shortwave radiation is heavily influenced by the transparency of 

the water. (Rose et al. 2016; Pilla et al. 2018) In clear waters, sunlight can penetrate deep 

into the water column. In turbid lakes, shortwave radiation is rapidly attenuated near the 

surface, which can strengthen stratification by warming surface waters. Due to this 

behavior, changing water clarity can profoundly impact lake warming and mixing 

dynamics (Kirillin 2010; Rose et al. 2016; Pilla et al. 2018).  

Longwave radiation is emitted by both the atmosphere and the lake surface (Hipsey 

et al. 2019; Woolway et al. 2020; Schmid and Read 2022). Both fluxes depend on 

temperature, but atmospheric longwave radiation is also affected by cloud cover, humidity, 

and albedo at the water’s surface. These two forces can have competing effects on lake 

warming. If warmer air temperatures increase downwelling longwave radiation, which 

warms the water’s surface, outgoing radiation and evaporation will both increase, 

providing a cooling effect (Woolway et al. 2020) 

In addition to changing the water budget of a lake, evaporation is an important 

cooling process. The phase change from liquid to gas requires energy, known as latent heat, 

which cools the lake. Evaporation is regulated by water temperature, humidity, and wind 

speed (Boehrer and Schultze 2008; Hipsey et al. 2019; Schmid and Read 2022). 

Condensation has a warming effect, but the effect on the heat budget is small relative to 

evaporation. 
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Sensible heat and inflowing water can have variable impacts on the heat budget. 

The direction of sensible heat transfer between the lake surface and the atmosphere depends 

on the relative temperature difference between the two. However, according to Schmid and 

Read (2022), the net effect tends to be cooling. Surface water inflows, precipitation, or 

groundwater intrusion affect the heat budget based on their relative temperature. However, 

the temperature and location of the inflows can alter water column stability (Hipsey et al. 

2019; Schmid and Read 2022). Cold river water can “plunge” to the hypolimnion and 

strengthen stratification, whereas warm groundwater intrusion can destabilize the 

hypolimnion. The sediment can warm or cool the hypolimnion based on the relative 

temperature difference. 

One method of classifying lakes is by mixing frequency. Common in temperate 

regions, dimictic lakes mix twice per year, typically in spring and fall (Boehrer and 

Schultze 2008; Woolway et al. 2020). Monomictic lakes mix once per year, whereas 

amictic lakes are stratified year-round. Polymictic lakes mix multiple times per year and 

are subdivided into continuous lakes, which are consistently well-mixed, and discontinuous 

lakes that experience periodic stratification. Polymictic lakes are typically shallow because 

less water mass makes it easier for mixing to occur.  

There are several uncertainties in the response of small lakes to climate change. 

Mixing frequency in polymictic lakes is especially sensitive to wind forcing (Woolway et 

al. 2017). While lakes are generally expected to mix less frequently due to climate change, 

some modeling studies showed increases in mixing frequencies due to heightened wind 

speeds (Woolway and Merchant 2019). Other studies have found that changes in 
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transparency are the main regulator of the climactic response in polymictic lakes (Kirillin 

2010). Because mixing affects nutrient transport, changing mixing dynamics can affect 

productivity (O’Reilly et al. 2003). This thesis will focus on the drivers and impacts of 

mixing in polymictic lakes. 

There are many methods to quantify stratification and mixing in lakes, ranging in 

complexity from a simple 1 °C temperature gradient per meter to complex calculations of 

inertia. Schmidt Stability and Lake Number (LN) will be discussed here. Lake Number will 

be used extensively in the following chapters to quantify mixing and identify stratified 

periods. 

Schmidt Stability was proposed as a metric of the amount of work that is required 

to mix a body of water to a uniform density (Idso 1973). This metric is impacted by lake 

morphology and size, so it was refined to be calculated on a normalized basis. The equation 

used by Robertson and Imberger (1994) is as follows: 

 𝑆𝑆𝑡𝑡 = 1/𝐴𝐴𝑚𝑚 ∫ �𝑧𝑧 − 𝑍𝑍𝑔𝑔� ∗ 𝐴𝐴𝑧𝑧 ∗ (1 − 𝜌𝜌𝑧𝑧) ∗ 𝑑𝑑𝑧𝑧𝑍𝑍𝑚𝑚
0     

  [1.1] (Robertson and Imberger 1994)  

Where z is the height from the lakebed in cm, Am and Az are the lake surface and 

z–height areas in cm2, Zm and Zg are the maximum lake depth and height of the center of 

gravity above the lakebed, and ρz is the water density at height z in g cm-3. The units for St 

are g cm cm-2. One limitation of Schmidt Stability noted by Robertson and Imberger (1994) 

is that even if St is low, it does not necessarily mean that mixing will occur if external wind 



 

6 

forcing is also low. They built on St to develop Lake Number, which considered wind 

conditions to measure the potential for mixing. 

Lake Number is a unitless index that measures water column stability about the 

lake’s center of gravity (Robertson and Imberger 1994). The index compares the amount 

of energy required to mix the lake, calculated using Schmidt Stability, with the actual 

energy provided by wind forcing. In this calculation, wind is assumed to be the dominant 

mixing force acting on the lake (Robertson and Imberger 1994). A value of LN >1 indicates 

stratified conditions, while LN <1 indicates potential for mixing. The modified equation 

developed by Robertson and Imberger (1994) is as follows: 

 𝐿𝐿𝑁𝑁 =
𝑔𝑔∗𝑆𝑆𝑡𝑡∗�1−

𝑍𝑍𝑡𝑡
𝑍𝑍𝑚𝑚

�

(𝜌𝜌𝑚𝑚∗𝑢𝑢∗2∗𝐴𝐴𝑚𝑚1.5∗(1−
𝑍𝑍𝑔𝑔
𝑍𝑍𝑚𝑚

))
  [1.2] 

Where g is gravity in cm s-2, Zt is thermocline height in cm, ρm is water density at 

the surface and, Am is lake surface area in cm2. The water-friction velocity is defined as: 

 𝑢𝑢∗2 = 𝜌𝜌𝑎𝑎
𝜌𝜌𝑚𝑚

∗ 𝐶𝐶𝐷𝐷 ∗ 𝑈𝑈102   [1.3] 

Where 𝜌𝜌𝑎𝑎 is air density, Cd is the drag coefficient, and U10 is the wind speed 10 

meters above the lake in cm s-1. In subsequent chapters, LN will be used as a quantitative 

measure of mixing and stratification.  

The second chapter of this thesis examines the impact of mixing on metabolism in 

temperate, polymictic, hypereutrophic Goose Lake. Lake metabolism is first quantified for 

the 2019 field season using the diel oxygen technique (Staehr et al. 2010). Next, the 
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changes in productivity and Lake Number were cross-correlated to examine delayed 

signals between mixing events and productivity. Mechanistically, mixing should stimulate 

nutrient transport into the photic zone, which would increase productivity. A study by 

Wilhelm and Adrian (2008) found increases in algal biomass after recovery from long 

periods of stratification in polymictic lake Müggelsee, which they attributed to increased 

nutrient transport. We hypothesize that productivity will increase in response to mixing in 

Goose Lake. 

In the final chapter, the impact of climate change on lake hydrodynamics is 

explored. While mixing frequencies are generally expected to decrease due to warming, 

some modeling studies have shown increasing frequencies in shallow lakes due to greater 

wind forcing (Woolway et al. 2017, 2019; Woolway and Merchant 2019). Kirillin (2010) 

modeled regime shifts from polymictic to monomictic in Lake Müggelsee by the end of 

the century and predicted similar outcomes for other temperate, polymictic lakes.  

To examine potential changes to mixing, a one-dimensional hydrodynamic model 

of Goose Lake was constructed using the General Lake Model (Hipsey et al. 2019). The 

model was autocalibrated via simulated annealing to the observed 2019 season (Xiang et 

al. 2013). Six future climate models from the CMIP5 dataset were used as inputs to 

determine future hydrodynamics (Taylor et al. 2012). Finally, a sensitivity analysis was 

conducted for windspeed, transparency, and inflow conditions. The objectives of this 

chapter are to determine potential alterations in mixing frequency in response to climate 

change and to explore model sensitivity to wind speed and transparency, both defined as 

critical parameters in other studies (Kirillin 2010; Woolway et al. 2017; Pilla et al. 2018). 
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2 Effect of Mixing on Ecosystem Metabolism in a 
Shallow, Hypereutrophic, Polymictic Lake 

2.1 Background 
Lakes are sites of significant carbon cycling. Globally, lakes respire an estimated 

0.07 to 0.15 Pg C as CO2 and sequester 0.03 to 0.07 Pg in sediments on an annual basis 

(Cole et al. 2007). A lake receives carbon inputs from the watershed as Dissolved Organic 

Carbon (DOC), Particulate Organic Carbon, and Dissolved Inorganic Carbon in addition 

to atmospheric CO2 fluxes (Tranvik et al. 2009). Carbon is fixed into biomass by primary 

producers and respired by both primary producers and heterotrophs. Both organic and 

inorganic carbon can settle to the lakebed and be sequestered in sediments (Tranvik et al. 

2009). Carbon is also exported downstream, though the importance of this process varies 

depending on the system. Biological activity is a significant driver of carbon cycling in 

lakes (Tranvik et al. 2009; Cortés et al. 2021). 

A method of quantifying the biologic carbon processing of a system is through the 

lens of ecosystem metabolism. In lakes, the diel oxygen technique is most commonly used 

due to ease of instrument deployment and relatively low costs compared to bottle 

incubations (Staehr et al. 2010). This method derives ecosystem metabolism from high 

temporal resolution Dissolved Oxygen (DO) data. As photosynthesis and aerobic 

respiration involve both carbon and oxygen, a mass balance for either element enables the 

calculation of metabolism (Laas et al. 2012). The diel oxygen technique directly yields Net 

Ecosystem Production (NEP), which is further broken down into Gross Primary Production 

(GPP) and Respiration (R). 
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Gross Primary Production is the rate of oxygen production by photosynthesis, 

whereas R is the rate of oxygen consumption by aerobic respiration (Staehr et al. 2010). 

Net Ecosystem Production is the difference between the two. A positive NEP (GPP > R) 

indicates net autotrophy, where the system accumulates more carbon in biomass than is 

respired. A negative NEP indicates net heterotrophy, where the system releases more 

carbon into the atmosphere than it fixes into biomass. Even highly productive lakes can be 

net heterotrophic due to external carbon inputs from the watershed (Prarie and Bird 2002). 

A study of 33 Quebec lakes modeled a shift to net heterotrophy at epilimnetic DOC 

concentrations > 5 mg L-1 (Prarie and Bird 2002). However, the carbon balance in lakes 

can be seasonal, with net heterotrophic and net autotrophic regimes present at different 

times of the year (Staehr and Sand-Jensen 2007; Laas et al. 2012).  

Lovett et al. (2006) note that a positive NEP is not always synonymous with carbon 

sequestration, but is the total amount of carbon available for transport, sequestration, or 

loss from the system by other means (e.g., macrophyte harvesting). Notably, in addition to 

burial in sediments, significant quantities of carbon can be exported downstream. While 

not a complete predictor of the fate of carbon, NEP is still a valuable tool for understanding 

the ecosystem dynamics of a lake. 

Lakes are classified by their mixing frequency; monomictic, dimictic, and 

polymictic lakes mix once, twice, or multiple times per year, respectively. Lake mixing is 

a critical process that regulates oxygen and nutrient concentrations throughout the water 

column (Fukushima et al. 2019; Cortés et al. 2021). Lakes stratify due to temperature-

induced density gradients. These gradients can be disrupted by wind energy or increasing 
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density of upper layers, resulting in vertical mixing. The latter can be due to heating or 

cooling because water has a maximum density at 4℃.  

These mixing processes move oxygen-rich water to lower depths and nutrient-rich 

water into the photic zone (Cortés et al. 2021). In dimictic lakes, this overturn occurs twice 

per year, in the spring and fall, and the increased available nutrients are then utilized by 

microbes and macroscopic plants (Nürnberg 1998). It is unclear if productivity increases 

due to periodic mixing in polymictic systems. The shorter periods of stratification may not 

lead to significant DO drawdowns in the hypolimnion, which could stymie redox-driven 

internal loading of phosphorus (Cortés et al. 2021). However, significant oxygen demand 

has been observed before DO drawdowns in polymictic lakes (Fukushima et al. 2019). 

In addition to nutrient limitation, the growth of phytoplankton can also be limited 

by light availability (Torremorell et al. 2009; Staehr et al. 2016). While algae need light to 

photosynthesize, excess light can reduce productivity via photoinhibition. Plankton 

biomass can also create feedback loops of light limitation, where high concentrations can 

decrease water clarity, ultimately decreasing productivity. Photoinhibition is more 

common in oligotrophic, nutrient poor systems while light limitation is more common in 

nutrient rich, turbid systems (Staehr et al. 2016).  

Climate change is expected to impact the timing and frequency of lake mixing 

(Butcher et al. 2015; Woolway et al. 2017; Woolway and Merchant 2019). Higher air 

temperatures will shift the onset of stratification to earlier in the season and strengthen 

vertical thermal gradients. The duration of stratification also increases due to warmer 

temperatures persisting later into fall. Increased duration and strength of stratification may 
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exacerbate hypoxia, which in turn can lead to increased internal phosphorus loading or fish 

kills (Cortés et al. 2021). Altered wind speeds associated with climate change can also 

affect the depth, stability, and duration of stratification (Woolway et al. 2017; Woolway 

and Merchant 2019). 

Due to the connection between mixing and nutrient transport, changes to mixing 

frequency in polymictic systems could directly impact lake metabolism. While this relation 

is well documented in lakes that mix seasonally, there is a lack of research in polymictic 

systems (Nürnberg 1998; Cortés et al. 2021). A study by Wilhelm and Adrian (2008) found 

evidence of increased phytoplankton biomass following mixing events in polymictic Lake 

Müggelsee in Germany, which they attributed to the internal loading of phosphorus. While 

that study included a detailed analysis of plankton communities and water chemistry after 

long periods of stratification, they did not calculate rapid changes in ecosystem metabolism 

due to short-term stratification and mixing events. 

This chapter aims to examine the relationship between intermittent mixing and 

changes in productivity in polymictic systems. We hypothesize that productivity will 

increase in response to mixing in polymictic lakes. This paper will present a case study of 

productivity and mixing dynamics of Goose Lake, a shallow, hypereutrophic, polymictic 

lake in the Great Lakes Region. 
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2.2 Methods 
2.2.1 Study Site 

Goose Lake, in Marquette Co., MI, is a small, shallow, polymictic lake in the Great 

Lakes region, shown in Figure 2.1. The lake is listed on the state’s Clean Water Act 303(d) 

list as impaired for phosphorus due to historical wastewater discharge from the nearby 

town of Negaunee (White Water Associates 2003; Holden 2011). Phosphorus 

concentrations remain elevated primarily due to internal loading (Holden 2011).  

 

Goose Lake has a surface area of 1.74 km2, maximum depth of 4.57 m, and 

hydraulic retention time of 0.56 years (Holden 2011; 2021). A railroad line bisects the lake 

in the southwestern portion. The smaller section was assumed to have low connectivity and 

was excluded from the analysis, yielding a remaining lake area of 1.69 km2.  

Figure 2.1. Goose Lake, Marquette Co. MI USA 

The railroad bridge is visible in the southeastern basin of the lake. 
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The watershed is 37.7 km2 and consists of 77% natural, 15% barren, and 8% urban 

land uses (Purdue University 2021). For the natural land use, 11% of the total watershed 

area is wetlands and 66% is forested. The barren region is a result of iron mining activity 

(Holden 2011). The primary hydrologic input is Partridge Creek, though several small, 

unnamed streams are also present (White Water Associates 2003; Holden 2011). Few 

macrophytes were observed during the study period. 

2.2.2 Data Collection 
A NexSens CB-450 buoy was deployed for 134 days from June to October 2019 at 

the deepest point in the lake (4.57 m). Attached to the buoy was a chain of NexSens 

thermistors from 0.5 to 4.5 m depth at 0.5-m intervals and HOBO Dissolved Oxygen Data 

Loggers at 2, and 4 m. A YSI EXO2 sonde at 1-m depth monitored temperature and DO. 

An AIRMAR WeatherStation 200 WX on the buoy measured wind at 1-m height in 

addition to air temperature, and pressure. Shortwave radiation was recorded using a LICOR 

pyranometer. All sensors sampled at 10-min intervals, though 24-hour data gaps at the end 

of each month were present. Gaps in the recorded windspeed and water temperature data 

were filled by repeating the previous day’s observations. These periods were between 4:00 

pm and 11:50 pm on the last day of each month and midnight to 3:50 pm on the first day 

of each month.  

Water samples were collected at 0-, 2-, and 4-m depths at the buoy on seven days 

throughout the study period. The sampling interval was variable, starting at two-week 

intervals from 5/23 to 7/2 and subsequently being measured on 7/25, 8/29, and 10/24. 

Dissolved organic carbon was only collected on the first 4 sample dates of 5/23, 6/7, 6/19, 
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and 7/2. Phosphorus concentrations were analyzed via the ascorbic acid method, while 

DOC was analyzed using a Shimadzu TOC analyzer. 

Bathymetry and productivity calculations were completed in Excel, whereas 

calculation of lake indices and statistical analyses were conducted in R (R Core Team 

2022). Lake bathymetry was derived from a Navionics bathymetry map (2021). This map 

was traced in an image processor to calculate the total number of pixels corresponding to 

each contour. The pixels were converted to square meters by scaling to the total lake area 

delineated in Google Earth Pro.  

2.2.3 Data Analysis 
The methods of Staehr et al. (2010) were used to calculate ecosystem metabolism 

via the diel oxygen technique. The governing equation is as follows: 

 𝑁𝑁𝑁𝑁𝑁𝑁 = 𝐺𝐺𝑁𝑁𝑁𝑁 − 𝑅𝑅 − 𝐹𝐹 − 𝐴𝐴  [2.1] (Staehr et al. 2010) 

Where F is atmospheric flux. A includes all other processes, such as advection, and 

is typically neglected. Net Ecosystem Production is calculated for each timestep via 

equation 2.2, where F is atmospheric flux and Z is the depth of the mixed layer. NEP is in 

units of gO2m-310 min-1. Atmospheric flux is positive when the lake is supersaturated with 

oxygen and emits oxygen to the atmosphere and is defined in equation 2.3. Flux is in units 

of gO2m-210 min-1and k is piston velocity. 

 𝑁𝑁𝑁𝑁𝑁𝑁10 = ∆𝑂𝑂2 − 𝐹𝐹/𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚  [2.2]  

 𝐹𝐹10 = 𝑘𝑘(𝑂𝑂2𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 − 𝑂𝑂2𝑚𝑚𝑎𝑎𝑡𝑡) [2.3] 
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The mean rate of respiration over the entire day is assumed to be equivalent to the 

mean NEP during darkness. Daylight was defined as intervals > 40 W m-2 of incident 

shortwave radiation, consistent with Turan and Karakaya (2017).  

Due to the polymictic nature of the lake, several assumptions were made in the 

analysis that slightly deviated from the established methods. The 1-m DO sensor was 

assumed to be representative of the mixed layer DO concentration. This sensor was 

deployed the earliest in the season and should always be contained within the mixed layer. 

When the lake was mixed, lower depths had equivalent DO concentrations, shown in 

Figure 5.1. Dissolved oxygen saturation was obtained directly from the sensor and not 

calculated using the formulas from Staehr et al. (2010).  

Lake Number was used as a measure of stratification and mixing events (Robertson 

and Imberger 1994). This index utilizes the Schmidt Stability to balance water column 

density gradients and wind forcing to determine the mixing behavior of a lake (Robertson 

and Imberger 1994). An LN > 1 indicates stratification while LN < 1 indicates mixed 

conditions. 

This Lake Number timeseries was calculated using the Lake Analyzer package in 

R using a 1-hour time step that was then averaged to a daily interval. Lake Analyzer is an 

R package that can calculate parameters and indices from observed environmental datasets 

(Read et al. 2011). The minimum metalimnion temperature gradient, used in calculating 

LN, was set to zero to allow for a continuous calculation. Lake Number was sometimes 

calculated as a slightly negative value during unstratified periods when the lake was 

completely mixed. These values were replaced with zero since complete mixing was 
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assumed. This 60-min data was averaged to a daily interval for use in the correlation 

analysis. Because the diel oxygen technique inherently uses a diel timestep, all other 

parameters were calculated as average daily values to allow for comparison. Average 

mixing depth and volumetrically averaged epilimnion temperatures were also calculated 

from the bathymetry and thermistor data using Lake Analyzer. 

Cross-correlations were calculated between daily dLN dt-1 and dProductivity dt-1 to 

examine the relationship between mixing and productivity (R Core Team 2022). This 

analytical method was selected because we expected to see a delayed response as the 

phytoplankton utilized increased nutrients. The underlying calculation is a Pearson 

correlation on the lagged data. Thresholds of significance are based on the number of 

samples included in the appendix. A time lag of ± 5 days was chosen to analyze short-term 

mixing. This cross-correlation cannot contain negative values, so a flat integer was added 

to each parameter. In addition, Spearman correlations were determined between average 

irradiance, water temperature, mixing depth, and productivity metrics for each day, because 

light and temperature are expected to influence metabolic processes (Yvon-Durocher et al. 

2010; Harrell Jr. 2022).   
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2.3 Results 
The temperature profile for Goose Lake during the study period is shown in Figure 

2.2. Multiple stratification and mixing events are evident, particularly during July and 

August. The highest daily average epilimnion temperature of 25.11 °C occurred on July 

20th. The first temperature sensor was located at a 0.5-m depth, so the upper portion of the 

profile has been omitted. A timeseries of DO concentrations is supplied in the appendix. 

 

Figure 2.3 displays the times series of calculated NEP, GPP, and R for the study 

period, while Table 2.1 includes monthly averages. October 15th - 18th were omitted from 

the analyses because a positive respiration value was calculated for each day. In the plot, 

respiration is signified as a negative value. 

 

Figure 2.2. Goose Lake 2019 Temperature Profile. 

The plot interpolates the thermistors at 0.5 m intervals from 0.5 to 4.5 m.  Deployment 
dates spanned 6/7 to 10/18 2019. 
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Table 2.1. Average Monthly Productivity (g O2 m-3 d-1) 
 

Month R GPP NEP F 
Jun 1.876 1.402 -0.474 1.076 
Jul 2.474 2.212 -0.263 0.717 

Aug 3.033 2.588 -0.445 1.049 
Sept 1.794 1.515 -0.280 0.681 
Oct 0.511 0.757 0.246 -0.738 

All productivity metrics are in (g O2 m-3 d-1). Flux is in (g O2 m-2 d-1). The highest 
magnitude of GPP and R occurred in July and August. October was the only month with 

a positive NEP. 

 
All months other than October had a negative NEP. This indicates a switch from 

net heterotrophy to net autotrophy at the end of the season. The highest magnitudes of R 

(3.033 g O2 m-3 d-1) and GPP (2.588 g O2 m-3 d-1) both occurred in August, with the lowest 

magnitudes occurring in October. Flux was positive for all months except October. 
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Figure 2.3. Productivity Timeseries of Daily NEP, GPP, R and F. 

Respiration is denoted as a negative value. Negative NEP values denote periods of net 
heterotrophy and positive values net autotrophy. The first and last days of each month 

were omitted. 
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The results of the cross-correlation analysis between dLN dt-1 and dProductivity dt-

1 are shown in Table 2.2. One day after mixing (Lag = -1), dNEP dt-1 and dGPP dt-1 were 

negatively correlated with dLN dt-1 with coefficients of -0.342 and -0.209, respectively. 

This corresponds to an increase in NEP and GPP as LN decreases. On the day of mixing 

(Lag = 0) dNEP dt-1 was positively correlated, and dR dt-1 was negatively correlated with 

dLN dt-1 at 0.225 and -0.202 respectively. As Lake Number decreases, the magnitude of R 

increases. This increase lowers the value of NEP, resulting in a positive correlation. The 

cross correlation threshold for significance of the |Correlation Factor| is 0.1859 at 0 days 

and 0.1865 at -1 days for 116 observations (Minitab LLC 2022). All other correlations 

were not significant. 

Table 2.2. dLNdt-1 and dProductivitydt-1 Cross-Correlations 
 

Lag (days) dNEP dt-1 dGPP dt-1 dR dt-1 
-1 -0.342 -0.209 - 
0 0.225 - -0.202 

A lag of -1 corresponds to the productivity one day after mixing. The significance 
threshold of |Correlation Factor| is >= 0.1859 at lag = 0 and 0.1865 at lag = -1. 

Insignificant correlations were omitted. 

 
An additional correlation analysis was conducted between the daily averages of 

mixed layer depth, epilimnion temperature, radiation, and productivity, shown in Table 

2.3. Spearman correlations were chosen as the analytical method as several relations 

appeared nonlinear but monotonic. All significant P values were < 0.017. Respiration and 

GPP were positively correlated with radiation and temperature, but negatively correlated 

with mixed layer depth. Net Ecosystem Production was positively correlated with mixing 

depth but negatively correlated with epilimnion temperature. 
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Table 2.3. Light, Mixing Depth, and Epilimnion Temperature Spearman 
Correlations 

 
Spearman Rho 

 Radiation Mixed Layer Depth Epi Temp 
Mixed Layer Depth -0.465 - - 

Epi Temp 0.539 -0.675  
R 0.225 -0.343 0.546 

GPP 0.355 -0.254 0.497 
NEP - 0.241 -0.253 

Correlations that were not significant to p < 0.05 were omitted. R was considered to be 
positive for this analysis. 

 
Measured DOC values are shown in Table 2.4. Only four profiles were collected 

between May and October. At all depths, DOC exceeded 5 mg L-1 which is the threshold 

suggesting net heterotrophy by Prairie et al. (2002). There was no DOC data for October 

when the lake became net autotrophic. 

Table 2.4. Measured 2019 DOC Concentrations (mg/L) 
 

Date Depth (m) 
 0 2 4 

5/23 8.8 7.5 6.6 
6/7 8.6 6.4 9.4 
6/19 5.8 8 7.3 
7/2 9.8 9.3 10.3 

DOC concentrations at 0, 2 and 4-m depths. The values > 5 mg L-1 at 0-m depth suggest 
net heterotrophy according to Prairie et al (2002). 
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2.4 Discussion 
Despite the hypereutrophic status of Goose Lake, the system exhibits net 

heterotrophy for most of the study period, as seen in Figure 2.3 and Table 2.1. This is likely 

due to the high DOC concentrations that are present, with observed surface concentrations 

ranging from 5.8 to 9.8 mg/L. A study of 33 Quebec lakes showed that lakes exhibit net 

heterotrophy when epilimnetic DOC concentrations are above 5 mg L-1 (Prarie and Bird 

2002). The Goose Lake watershed is 11% wetlands, which may be a source of this DOC 

(Purdue University 2021).  

October was the only month with a positive average NEP, marking a switch from 

net heterotrophy to net autotrophy. While GPP (rho = 0.355) is more strongly correlated 

with radiation than R (0.225), it is less sensitive to epilimnion temperature. The stronger 

correlation of temperature for R (0.546) than GPP (0.497) is consistent with other literature 

(Yvon-Durocher et al. 2010). NEP was negatively correlated with epilimnion temperature 

(-0.253) and not significantly correlated with light. This NEP correlation suggests that 

water temperature is a significant regulator of the ratio between GPP and R. Therefore, the 

cooler water temperatures in October may explain the switch to net autotrophy. Due to the 

lack of samples, it is unknown if DOC concentrations affected this switch. 

Mixing depth is strongly negatively correlated with water temperature (rho = -

0.675). Correlations between mixing depth and productivity may be spurious due to 

seasonality. The well-mixed, high-mixing depth period in the fall experiences lower light 

and water temperature, so decreases in productivity may be attributed to those factors. The 
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converse is true during warmer months, where stratified periods of high productivity 

experience high temperatures and incident radiation. 

In support of our hypothesis, the cross-correlations showed that NEP and GPP 

increased one day after mixing. Mechanistically, this is likely due to nutrient-rich 

hypolimnetic waters mixing into the photic zone and causing an increase in photosynthesis. 

While there were no significant correlations two days after mixing, GPP and NEP may 

remain elevated. The correlation only measured the change in productivity from the 

previous day, so productivity would need to increase further on subsequent days after 

mixing for a signal to be visible. A multivariate analysis would be required to disentangle 

the effect of mixing from other processes which is beyond the scope of this analysis.  

The decrease in NEP and increase in R on the day of mixing are likely due to an 

artifact of the diel oxygen technique. The DO sensor cannot measure below the mixed 

layer, so the analysis excludes respiration in the hypolimnion. When the lake mixes, this 

potentially hypoxic water enters the mixed layer, and the decrease in DO is calculated as 

respiration occurring on that day. Because increases in R directly reduce NEP, the 

calculated correlations agree with the expected signal. 

These findings of increased GPP and NEP in response to mixings somewhat match 

those of Wilhelm and Adrian (2008), who showed an increase in algal biomass after mixing 

events. Their study found that maximum algal biomass was present three weeks after 

mixing. Their stratification periods in Lake Müggelsee were much longer than in this study, 

ranging from 1 week to 2 months. In contrast, Goose Lake stratified on the order of days, 

so there is the potential for increased drawdowns of DO in the hypolimnion and internal 
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loading in their system. Additionally, their study examined the longer-term increases in 

productivity as increased biomass, whereas this study can only observe initial changes in 

productivity through the cross-correlations. While suggesting similar results, both studies 

examine different pieces of the same puzzle. 

Several limitations of the diel oxygen technique may impact the analysis. First, a 

core assumption is that respiration is constant between daylight and nighttime periods 

(Staehr et al. 2010). This results in lower calculated values of R and GPP but no change in 

NEP, as the changes to R and GPP are equal and opposite. Second, mixing processes 

(included in the A in Eq. 1) can cause noise in the productivity calculations. This was 

observed in the negative R values on October 15th and 16th. Staehr et al. (2010) recommend 

including negative values as a normal distribution should result in correct mean values on 

a monthly to seasonal scale. Because we were analyzing productivity on a daily time scale, 

we omitted those dates from the analysis. However, the presence of negative productivity 

values suggests that mixing processes are introducing error into the diel productivity 

calculations. This is likely due to the changing mixed layer depth affecting the oxygen 

mass balance, as was seen as the increased respiration on the day that mixing occurred. A 

depth integrated mass balance approach, such as that used in a more recent paper by Staehr 

et al. (2012) would have likely been more appropriate for a polymictic system. However, 

the project timeline did not allow for repeating the analysis. Finally, the diel oxygen 

technique assumes that the single sonde profile is representative of the entire horizontal 

lake area, likely introducing some error (Staehr et al. 2010). 
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Additional limitations of the study include low temporal resolution of nutrient 

sampling and using only a single year of data for a single lake. The temporal resolution of 

our nutrient sampling was low, and DOC was not analyzed later in the season. This omits 

the critical period where the lake becomes net heterotrophic in October. While our 

hypothesis proposes that increasing epilimnetic nutrient concentrations after mixing causes 

productivity increases, we have no direct measures of nutrient concentrations before or 

after mixing events. Finally, using a single year of data on a single lake complicates 

generalizing the results to other systems, and it is unknown if 2019 was a representative 

year biologically for the site.  
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2.5 Conclusions 
Metabolism in Goose Lake was modeled via the diel oxygen technique for the 2019 

field season. The change in the daily productivity values were cross correlated with Lake 

Number to examine delayed signals between mixing and productivity. It was found that 

GPP and NEP were negatively correlated with Lake Number one day after mixing. This 

suggests that productivity increases in polymictic lakes in response to mixing. This agrees 

with the findings of Wilhelm and Adrian (2008). Because mixing frequency impacts 

productivity, the subsequent chapter examines the impact on climate change on mixing 

frequency in Goose Lake. 
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3 Effects of Climate Change on Hydrodynamics 
in a Shallow, Hypereutrophic, Polymictic Lake 

3.1 Background 
Climate change is altering ecosystems globally with effects ranging from ocean 

acidification to changing precipitation patterns. A significant concern in lakes is that 

elevated air temperatures and shifting wind patterns may alter mixing frequencies and 

change the timing and duration of stratified summer periods (Kirillin 2010; Woolway and 

Merchant 2019). However, there is some uncertainty about the climatic response of 

shallow, polymictic lakes because increased wind forcing may offset stronger stratification 

due to warming, but reduced forcing would have the opposite effect  (Woolway et al. 2017; 

Woolway and Merchant 2019). Understanding how lakes will respond to climate change 

is vital to informing management decisions, and lake hydrodynamics are foundational to 

other ecosystem processes. 

Lakes stratify due to the formation of density gradients in the water column 

(Woolway and Merchant 2019). These gradients can be thermal, as in the case of warming 

surface waters, or chemical, as in saline lakes (Boehrer and Schultze 2008). Lakes mix 

when external forces overcome the density gradient; the external forces are generally wind 

and/or an increased density of surface waters. Increasing density is not limited to cooling, 

as fresh water is most dense at 4°C. A notable effect of this property in temperate regions 

is the occurrence of inverse stratification in winter, where water near the bottom is the 

warmest, and temperatures decrease as they approach the surface ice layer (Woolway et al. 

2020). As a significant mass-transport process, lake mixing regulates other processes 

within lakes. 
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Two processes regulated by mixing are dissolved oxygen (DO) and nutrient 

transport (Woolway and Merchant 2019). Because only the water surface can exchange 

oxygen with the atmosphere, physical mixing is the main process that provides oxygen to 

deeper waters. Overturn also mixes nutrients from deeper waters into the photic zone, 

where they can be utilized by algae. During stratified periods, biological activity within 

sediments can deplete DO concentrations in the hypolimnion, releasing iron-bound 

phosphorus from sediments due to changing redox conditions (Sondergaard et al. 2001). 

This can stimulate internal loading of phosphorus and exacerbate eutrophication. Both DO 

and nutrient transport are expected to be impacted by altered mixing patterns due to climate 

change (O’Reilly et al. 2003; Adrian et al. 2009). 

Climate change directly impacts the timing and frequency of lake mixing. In 

temperate regions, one direct result of increased air temperatures is the reduction of winter 

ice cover (Fang and Stefan 1998). When ice onset is delayed or ice extent reduced, the 

exposed darker water absorbs more radiation, warming the lake. However, warming can 

be counteracted by evaporative cooling and heat transfer with the atmosphere (Zhong et al. 

2016). In the spring, warmer temperatures result in earlier ice-off, accelerating the onset of 

summer stratification. During the summer, warmer air temperatures heat surface waters, 

which strengthens stratification by increasing the vertical temperature gradient within the 

water column. Warmer fall temperatures cause this gradient to persist until cooling surface 

waters destabilize the water column and allow for mixing. If warming occurs to the point 

that ice does not form in the winter, it can cause a temperate dimictic lake to switch to a 

warm monomictic regime (Woolway and Merchant 2019; Woolway et al. 2020).  
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In addition to direct temperature forcing, trends in observed reductions of wind 

speeds in the northern hemisphere, known as atmospheric stilling, also have the potential 

to reduce mixing frequency and intensity (Woolway et al. 2017, 2019). However, increases 

in wind speeds are observed in some areas (Desai et al. 2009). Decreases in transparency 

can also strengthen stratification and can result from increased phytoplankton biomass, 

increased DOM, resuspended sediment, or erosion (Heiskanen et al. 2015; Pilla et al. 

2018). However, the increased surface warming due to transparency decreases is most 

pronounced in clear lakes. The net effect of climate change in many lakes is elevated 

surface water temperatures and increased stratification, which can alter lake ecosystems. 

Increased water temperatures and stratification induce many other changes in lake 

ecosystems. Higher water temperatures accelerate metabolic activity. However, respiration 

is more temperature dependent than photosynthesis, which will accelerate DO drawdowns 

(Cortés et al. 2021). Longer periods of stratification will decrease DO transport to the 

hypolimnion, which will increase stress on cold water fish and exacerbate internal loading 

of phosphorus (Sondergaard et al. 2001; Ficke et al. 2007). Additionally, elevated 

temperatures can directly stress fish and accelerate bioaccumulation of contaminants 

(Ficke et al. 2007). Cyanobacteria can cause nuisance blooms and thrive in warmer, 

stratified systems (Yankova et al. 2017; Bartosiewicz et al. 2019). Some species produce 

toxins that can harm aquatic life and human health. Cyanobacteria can manipulate their 

buoyancy, allowing them to obtain carbon dioxide directly from the atmosphere or 

phosphorus from lower waters (Bartosiewicz et al. 2019). Species that can fix nitrogen 

further outcompete other algae in high phosphorus environments. These adaptations allow 

them to outcompete other phytoplankton, impacting the food web. Finally, increased 
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stratification can decrease overall productivity due to reduced nutrient transport (O’Reilly 

et al. 2003).  

Polymictic lakes are lakes that mix multiple times per year. They can be classified 

as continuous, where the lake is continuously mixed, or discontinuous, where the lake 

experiences periodic stratification throughout the year (Woolway et al. 2020). They are 

further divided into warm and cold based on the presence of winter ice cover. Polymictic 

lakes tend to be shallow, which causes increased sensitivity to wind forcing on mixing due 

to the lower mass of water (Woolway et al. 2017; Woolway and Merchant 2019). A 

modeling study by Woolway and Merchant (2019) forecasting changes in global mixing 

frequency due to climate change found that certain shallow lakes increased in mixing 

frequency despite the general trend of decreased mixing. A separate study by Kirillin 

(2010) found that water clarity was a key parameter determining the response of polymictic 

lakes to climate change. Darker waters absorb more light energy near the surface, 

strengthening the vertical thermal gradient. They modeled shifts in the currently polymictic 

Lake Müggelsee to a dimictic regime by midcentury and a warm monomictic regime by 

the end of the century. Additionally, they predicted that other temperate polymictic lakes 

would exhibit the same regime shift. However, polymictic lakes have variable responses 

to climate change, so further case studies are needed to illuminate lake-specific effects. 

The objectives of this study are to model potential changes to mixing frequency and 

stratification duration in a temperate, shallow, hypereutrophic, polymictic lake between 

2019 and early 2080’s resulting from climate change. Additional objectives include 



 

30 

determining the model sensitivity to wind speed and water clarity because other studies 

have noted those as key parameters.  
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3.2 Methods 
3.2.1 Study Site 

Goose Lake is a small, shallow, polymictic lake located in Marquette Co., MI, 

shown in Figure 2.1. The lake is impaired for phosphorus as defined by the Clean Water 

Act Section 303(d) and is hypereutrophic due to historical discharges of untreated 

wastewater until 1953 (White Water Associates 2003; Holden 2011). Internal loading of 

phosphorus is still of concern today as a result of this discharge. The lake has a functional 

surface area of 1.69 km2 with an average depth of 3.46 m and a maximum depth of 4.57 m. 

This surface area omits the southwestern basin on the far side of a railroad bridge, shown 

in Figure 2.1, which was not considered to be connected to the rest of the lake. Partridge 

Creek is the primary hydrologic input into the system, and the single outflow is aptly named 

Goose Lake Outlet. Two small, unnamed streams were not considered to be significant 

hydrologic inputs. 

3.2.2 Field Methods and Data Acquisition 
 Continuous water profiles and weather data were collected through a five-month 

buoy deployment during the 2019 field season between 6/7 and 10/17. The buoy was 

deployed at the deepest point of Goose Lake and was equipped with an AIRMAR Weather 

Station 200WX at 1- m height. That sensor array monitored wind speed, air temperature, 

and pressure, and a LICOR pyranometer measured shortwave radiation. A thermistor chain 

suspended through the depth range of 0.5-4.5 m included NexSens thermistors at 0.5-m 

intervals and HOBO Dissolved Oxygen Loggers at 2 and 4-m depth. Finally, a YSI EXO2 

sonde at 1-m depth was directly attached to the buoy. The sampling frequency for all 

instruments was 10 min. 
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Additional data about the site was obtained via stream gauging and third-party 

sources. A HOBO Water Level Logger was deployed at the mouth of Partridge Creek from 

5/23 to 10/24 in order to calculate the daily streamflow. The streamflow was measured on 

four dates; 6/7, 6/19, 7/2, and 7/25 with a USGS Pygmy Current Meter. However, only the 

latter three measurements were used in the rating curve because 6/7 was an outlier. The 

Goose Lake Outlet was not gauged or monitored. Daily precipitation time series were 

accessed from the NOAA Marquette WFO station and relative humidity time series from 

the Chatham 1 SE station in Alger Co., MI (2022; Purdue University and NOAA 2023). 

These stations are located 7 km north and 48 km southeast of the lake, respectively, but 

were the closest locations with available data. Lake bathymetry was derived from a 

Navionics SonarChart™ map (2021). 

A continuous, smoothed weather dataset was required for the model input. Twenty-

four-hour gaps in buoy observations, which began at 16:00 on the last day of each month, 

were present. These periods were filled by substituting in the observations from the 

previous days. Wind data was smoothed by removing any 10 min periods recording 

windspeeds > 20 m/s and filling the gaps via linear interpolation. These cleaned datasets 

were averaged to a one-hour timestep and used to construct a one-dimensional 

hydrodynamic model of the system. 

3.2.3 Model Description 
The one-dimensional, vertically integrated General Lake Model (GLM) was 

selected to simulate lake hydrodynamics. The General Lake Model is the successor to the 

Dynamics Reservoir Simulation Model (DYRESM) and has been applied in settings 



 

33 

ranging from wetlands to large lakes (Hipsey et al. 2019). A brief overview of the model 

requirements will be included here. For a full description of calculation methods, refer to 

Hipsey et al. (2019). This analysis used GLM version 3.1.0a4. 

Data required to drive the model includes lake morphometry, an initial temperature 

profile, inflow water temperature, precipitation, and high-resolution air temperature, wind 

speed, shortwave radiation, and relative humidity inputs. In place of the outflow module, 

the crest height of the lake was set to the maximum depth of 4.57 meters so the lake would 

“spill over” when full as a pseudo-outflow. This approach maintains a consistent water 

level and may not accurately reflect levels in dry periods. Due to the lack of longwave 

radiation data, the Bird Clear Sky Method was used with default parameters to estimate 

longwave radiation and cloud cover from measured shortwave radiation. An annotated 

configuration file detailing calculation method selection is provided in the appendix. 

3.2.4 Model Calibration 
Simulated annealing was selected as the optimization method for the GLM model 

to calibrate the model to observed temperature profiles and stability indices (Kirkpatrick et 

al. 1983). This autocalibration approach uses an evolutionary algorithm to minimize a 

multivariate function while avoiding local minima. This optimization was applied using 

the GenSA package in R (Xiang et al. 2013; R Core Team 2022). All code for the 

autocalibration is included in the appendix. The following cost function was calculated as 

the sum of the weighted Normalized Root Mean Squared Errors (NRMSE) between 

observed and modeled water temperature and Lake Number (LN).  

 



 

34 

𝑀𝑀𝑀𝑀𝑑𝑑𝑀𝑀𝑀𝑀 𝑁𝑁𝑅𝑅𝑀𝑀𝑆𝑆𝑁𝑁 = 𝑥𝑥 ∗ (𝑇𝑇𝑀𝑀𝑇𝑇𝑇𝑇𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑢𝑢𝑇𝑇𝑀𝑀 𝑁𝑁𝑅𝑅𝑀𝑀𝑆𝑆𝑁𝑁) + 𝑦𝑦 ∗ (𝐿𝐿𝑇𝑇𝑘𝑘𝑀𝑀 𝑁𝑁𝑢𝑢𝑇𝑇𝑁𝑁𝑀𝑀𝑇𝑇 𝑁𝑁𝑅𝑅𝑀𝑀𝑆𝑆𝑁𝑁)  

   [3.1] 

Where x and y are decimal weights that always sum to 1. 

Lake Number, a measure of water column stability, was included in the cost 

function to improve the vertical distribution of heat throughout the water column 

(Robertson and Imberger 1994). Lake Number is an index of mixing potential calculated 

using Schmidt Stability and wind conditions, explained further in Chapter 1. Lake Number 

was calculated using the LakeAnalyzer package in R (Read et al. 2011). Their approach 

uses the top and bottom metalimnion depths in the calculation. In our application, the 

minimum metalimnion temperature gradient was set to zero to prevent the function from 

returning null values during mixed periods. The resulting LN values approached zero 

which would be expected under mixed conditions. Any negative LN values for these 

periods were assumed to be zero since the lake would be well mixed. 

During the calibration, the model was run continuously at a one-hour timestep from 

6/8/19 to 10/17/19. Nine GLM parameters were selected for calibration and are listed in 

Table 3.2, along with their allowed ranges and default values. The bounds were set 

narrowly so the combined outputs would remain at realistic values. For example, the 

shortwave factor is a scalar, so the bounds were set to the narrow range of 70% to 130%. 

Parameters for internal mixing were set to default values, and stream parameters from the 

Kinneret example file were used (Bruce et al. 2018). Each calibration run was set to 5000 

iterations, though some runs exceeded this target. Weights were applied to the NRMSE 
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cost functions, ranging from 50% temperature and 50% LN to 100% temperature and 0% 

LN in 10% increments. However, the 0% LN sets were not considered in the final analysis. 

Four runs were conducted for each set of weights. Model validation was not possible as we 

had only one season of data. Therefore, we selected the best calibration run based on the 

lowest Root Mean Squared Error (RMSE) for temperature. 

3.2.5  Model Application 
In order to run models of future scenarios, high-resolution weather data was 

required, as noted above. Six future forecasts from the World Climate Research 

Programme's Coupled Model Intercomparison Project 5 (CMIP5) database were selected 

for the RCP4.5 and 8.5 middle to high emissions scenarios. The 2080 outputs for the 

GFDL-CM3 and GFDL-ESM2M models and 2081 outputs for MIROC5 were used (Taylor 

et al. 2012). These models were determined to perform well in the Great Lakes Region by 

Byun and Hamlet (2018) based on historical accuracy. In the case of MIROC5 which had 

multiple ensemble outputs, only the r1i1p1 was used in this analysis. These climate model 

outputs were available at a 3-hour temporal resolution and 2-degree latitude and 2.5-degree 

longitude grid size. The climate model grid centroid was 0.455 degrees north and 0.333 

degrees west of the study site.  

Several derived parameters and assumptions were required to compensate for 

missing variables in the climate projections. Relative humidity time series were not directly 

available and had to be estimated from specific humidity, temperature, and air pressure 

using the Bolton method (Bolton 1980). The future inflow for Partridge Creek was assumed 

to match the observed 2019 distribution. That observed daily flow was multiplied by the 
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ratio of total precipitation between the future and 2019 study periods. While the resulting 

hydrograph does not correspond to future precipitation events, scaled flow rates were 

examined in the sensitivity analysis. The initial 2019 profile was used with a 1-week model 

spin-up period because there was no way to estimate an initial water temperature profile. 

This period was deemed adequate due to the shallow lake depth, which should allow 

temperatures to reach equilibrium quickly. The inflow temperature was forecasted using a 

linear regression between air and water temperature on the 2019 data. The 3-hour climate 

model datasets were linearly interpolated to a 1-hour timestep to be compatible with GLM. 

Finally, the future models were run from 6/1 to 10/17 at a 1-hour timestep. Key 

model outputs included 1-m and 4-m water temperatures, the number of mixings events, 

the longest continuous period of stratification, and the percentage of the study period that 

was stratified. Mixing events were defined as consecutive periods where the LN 

transitioned from >1 to <1. Lake Number was calculated using 3-hour averaged data to 

reduce noise. Mixing events and mixed periods were identified using the Run Length 

Encoding function in R (R Core Team 2022). This function calculates how many 

consecutive entries in a series match a given condition, in this case if LN >1. Sensitivity 

analyses were performed for wind speed, transparency (KW), and Partridge Creek inflow. 

The former two are parameters of interest based on the studies by Kirillin (2010), Woolway 

et al. (2017) and Woolway and Merchant (2019). The Partridge Creek inflow curve 

assumption is a potential source of error, so it was also analyzed. The 2019 calibration and 

GFDL-CM3 scenarios were run with ± 10, 25, and 50% variation in calibrated values.  
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3.2.6 Climactic Inputs 
While this analysis is limited due to only a single year of field data, the 2019 study 

period aligns with recent climatic trends. The June – October 2019 temperature 

observations at the buoy were 0.29 °C warmer than the 2006-2020 reference average for 

the Marquette WFO station, shown in Table 3.1 (NOAA 2023). Precipitation was elevated 

by 1.67 cm in 2019 compared to the reference period. Averages for windspeed and 

shortwave radiation were not available for this station. These climactic averages show that 

2019 is a reasonable year on which to base future comparisons. 

Table 3.1. Study Period Climate Averages 
 

 
2006-2020 
Average 

2019 
Observed 

Temp (C) 15.22 14.93 
Precip (cm) 40.62 42.29 
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3.3 Results 
The best set of calibrated GLM parameters, along with their bounds and default 

values, are listed in Table 3.2. The weights for the run were 80% temperature and 20% LN. 

The summed NRMSE was 0.378, the temperature RMSE was 1.424 °C, and the LN RMSE 

was 0.943. This calibration set was selected because it had the lowest temperature RMSE 

out of all the runs with an LN weight > 0. The resulting wind, shortwave, air temperature, 

and relative humidity factors were reduced, while longwave factor was increased. 

Coefficients for sensible and latent heat, CE and CH, were increased while wind drag, CD, 

was decreased. Light extinction, KW, was high at 3.287 m-1.  

The corresponding 2019 GLM output is shown in Figure 3.1. The lake was well 

mixed for the majority of the season, experiencing stratification only 4.4% of the study 

period. The average temperature at 1 m was 19.93 °C, 4 m was 19.66 °C, and the ΔT was 

0.27 °C. The lake experienced 19 mixing events, and the longest consecutive period of 

stratification was 15 hours. These mixing behaviors and calibration parameters were used 

as a reference for the future model outputs and sensitivity analyses. 

Table 3.2. GLM Calibrated Parameters 
 

Parameter Value Default Min Max 
Wind Factor 0.7115 1.0 0.7 1.3 

Shortwave Factor 1.0246 1.0 0.7 1.3 
Longwave Factor 0.8370 1.0 0.7 1.3 

Air Temperature Factor 0.7872 1.0 0.7 1.3 
Relative Humidity Factor 0.9565 1.0 0.9 1.1 

Latent Heat CE 0.0015 0.0013 0.0011 0.0015 
Sensible Heat CH 0.0015 0.0013 0.0011 0.0016 

Momentum Transfer. CD 0.0011 0.0013 0.0011 0.0015 
Light Extinction KW (m-1) 3.2869 - 0.5 5 
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Figure 3.1. 2019 Modeled Temperature Profile 
 

Future climactic drivers, shown in Table 3.3, varied significantly relative to 2019. 

All future models had lower average wind speeds during the study period, which match the 

currently observed atmospheric stilling phenomenon (Woolway et al. 2019). Precipitation 

was variable, with only the GFDL-CM3 8.5 and MIROC5 8.5 models experiencing 

elevated levels. The average air temperature increases for the RCP 4.5 and 8.5 scenarios 

were 6.74 °C and 8.46 °C, respectively. Shortwave radiation was 7.4 to 14.4% higher in all 

models.  

Table 3.3. Change in Climate Drivers Relative to 2019 
 

Model Precipitation 
Shortwave 
Radiation 

Δ Air 
Temperature (C) 

Wind 
Speed 

GFDL-CM3 4_5 91.0% 110.8% 6.94 74.0% 
GFDL-CM3 8_5 117.7% 112.1% 9.49 67.1% 

GFDL-ESM2M 4_5 90.8% 107.4% 7.06 73.2% 
GFDL-ESM2M 8_5 84.8% 113.7% 7.85 75.5% 

MIROC5 4_5 70.8% 112.2% 6.23 57.7% 
MIROC5 8_5 114.2% 114.4% 8.04 53.4% 

 



 

40 

In all future scenarios, water temperatures, mixing frequencies, and stratification 

extent increased relative to 2019. Model outputs and analyses are shown in Figure 3.2 and 

Table 3.4. Average 1 m temperature increases were 5.71 °C for the RCP 4.5 scenarios and 

7.06 °C for the RCP 8.5 scenarios. These water temperature increases were 84.7% and 

84.1% of air temperature increases for the two scenarios, respectively. Average ΔT between 

1 and 4 m increased by 1.18 °C and 1.64 °C for the 4.5 and 8.5 scenarios. While the longest 

consecutive period of stratification was 15 hours in 2019, future models ranged from 69 to 

258 hours. Finally, the percentage of the study period that was stratified increased from 

4.4% in 2019 to between 16.7 and 42.8% in the future scenarios. 
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Figure 3.2. Future Model Temperature Profile. 

Both GFDL scenarios are for 2080 while MIROC5 is 2081. These profiles include the 1-
week spin-up period. 
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Table 3.4. Future Scenario Analyses 
 

Scenario 

# of 
Mixing 
Events 

Longest 
Strat 

(Hours) 
% 

Stratified 
1m Avg 

Temp (C) 
4m Avg 

Temp (C) Δ T (C) 
2019 19 15 4.4% 19.93 19.66 0.27 

GFDL-CM3 
4.5 27 69 16.7% 25.57 24.41 1.16 

GFDL-CM3 
8.5 35 150 31.8% 27.75 25.95 1.80 

GFDL-
ESM2M 4.5 21 177 16.1% 24.65 23.24 1.41 

GFDL-
ESM2M 8.5 26 90 24.2% 25.17 23.18 1.99 
MIROC5 4.5 63 258 39.1% 26.71 24.93 1.79 
MIROC5 8.5 62 195 42.8% 28.22 26.29 1.93 

 

Sensitivity analyses for wind speed, KW, and Partridge inflow for the 2019 and 

GFDL-CM3 scenarios were conducted to measure their impact on stratification extent 

throughout the study period. Plots of these outputs are shown in Figure 3.3. The GLM 

model was sensitive to decreases in wind speed, which agrees with the findings of 

Woolway et al. (2017) in polymictic lakes. This trend is notable because all future scenarios 

had decreased wind speeds relative to 2019. Scaling KW did not produce a high variation 

in stratification, contrary to the findings of Kirillin (2010). Interestingly, there is a slight 

negative trend between KW and stratification, which is the opposite of typical assumptions 

(Pilla et al. 2018). Scaling the Partridge Creek Inflow did not significantly influence 

stratification duration. 
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Figure 3.3. Stratification Extent Sensitivity Analysis 
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3.4 Discussion 
The 2019 model simulation yielded a well-mixed lake for most of the study period 

but had few mixing events. While these outcomes may seem contradictory, they can be 

attributed to how mixing was defined in this analysis. A mixing event was quantified as a 

shift from stratified to mixed conditions. Because Goose Lake was well mixed for 95.6% 

of the study period, there were few opportunities for recovery from stratification. When 

considering the results of the future models, the number of mixing events tended to increase 

with stratification extent. However, there is likely a stratification threshold where mixing 

events would rapidly decrease, which was not reached in this study.  

The model parameters have competing effects on lake hydrodynamics. These 

parameters are listed in Table 3.2. The input variable scalars of wind, longwave, air 

temperature, and relative humidity factors were reduced, while the shortwave factor was 

increased by 2.5%. The reduction in wind factor to 71.2% limits wind availability for 

mixing and evaporation (Hipsey et al. 2019). This considerable reduction of the observed 

time series is likely a result of wind sheltering being disabled in the model configuration. 

Sheltering lowers wind speeds above small lakes, especially in nearshore areas, and the 

buoy was placed in the middle of the lake where wind speeds would be highest (Holgerson 

et al. 2022). Longwave radiation was not directly measured and was estimated by GLM 

using shortwave radiation and the Bird Clear Sky Model (Hipsey et al. 2019). The 83.7% 

would decrease the cloud cover calculated by the model, cooling the lake. The lower 

relative humidity scalar of 95.7% would increase evaporation and, therefore, evaporative 

cooling (Hipsey et al. 2019). The slight reduction may result from the off-site relative 



 

45 

humidity data that was used. Finally, the 102.5% shortwave radiation scalar would have a 

direct warming effect on the lake. 

Parameters used to calculate latent and sensible heat, CE and CH, were both elevated 

from the default values. An elevated CE results in greater evaporative cooling, while 

increased CH would have a net cooling effect because the average air temperature for the 

study period was lower than the 1-m water temperature. The bulk transfer coefficient for 

momentum, CD, was below the default value. This change would reduce mixing by limiting 

the amount of energy that wind imparts on the lake and may also be a result of disabled 

wind sheltering. While reductions in wind factor would affect both mixing and evaporation, 

CD would only impact mixing (Hipsey et al. 2019). Light extinction, KW, was high at 3.287 

m-1, which would increase surface warming and stratification through light attenuation in 

near-surface waters. Despite competing forces in the calibration parameters, the future 

models resulted in elevated water temperatures and stratification. 

The model was extremely sensitive to wind speed decreases for both 2019 and 2080 

scenarios, which is in agreement with a modeling study by Woolway et al. (2017) on 

polymictic lake Võrtsjärv. Because all future scenarios had lower wind speeds than in 2019, 

much of the increase in stratification can likely be attributed to this trend. For example, 

both MIROC5 scenarios had the highest stratification extent out of all models at 39.1% and 

42.8% for the RCP 4.5 and 8.5 scenarios, respectively, but had the lowest average wind 

speeds, only 57.7% and 53.4% of 2019. It is notable that Goose Lake does not shift mixing 

regimes despite reduced wind speed because the predictions by Kirillin (2010) assumed 

unchanged future windspeeds above Müggelsee.  
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Even under significant warming, it does not appear that Goose Lake will shift 

mixing regimes by 2080. The longest continuous period of stratification between all the 

models was 10.75 days for the MIROC5 RCP 4.5, and the model with the lowest mixing 

frequency was the GFDL-ESM2M 4.5 with 21 mixing events. These fall far short of the 

predictions by Kirillin (2010) of shifts to dimictic regimes, defined by 120 consecutive 

days of summer stratification by midcentury in temperate, polymictic lakes. However, the 

increase in bottom temperatures in all models is consistent with their 2100 prediction, 

despite the lack of a monomictic regime.  

There are several reasons why the projected mixing behaviors of the lakes may 

differ. The first may be the low depth of Goose Lake (3.6 m avg. 4.6 m max) relative to 

Müggelsee (4.9 m avg. 8.0 m max) (Kirillin 2010). Less wind energy is required to mix a 

shallow lake completely than in a deeper lake. Second, differences in transparency may 

play a role. While Kirillin found that changing transparency greatly affected lake mixing 

behavior, the KW sensitivity analysis for Goose Lake did not. The KW in Goose Lake was 

3.29 m-1, more than double that of Müggelsee at 1.2 m-1. The already high KW may be to 

blame for the low sensitivity. A study by Pilla et al. (2018) that compared historical 

warming and stratification dynamics in two small lakes found that the initially more turbid 

lake was less impacted by further decreases in transparency than a similar clear lake. A 

separate study by Heiskanen et al. (2015) found high model sensitivity for KW < 0.5 m-1 in 

1-D LAKE and FLake models.  

The calibrated KW was high, at 3.29 m-1. However, it is not unrealistic for this 

system because the lake is hypereutrophic and impaired for phosphorus, resulting in high 



 

47 

algal biomass. While no Secchi depths were taken during fieldwork for this study, depths 

of 1.2 m and 0.6 m were measured in August of 2003 and 2006 during the Goose Lake 

Nutrient Study and TMDL fieldwork (White Water Associates 2003; Holden 2011). For 

the latter depth, the Poole and Atkins relation between Secchi depth and KW yields a KW 

of 2.94 m-1, which approaches the calibrated GLM parameter (Society 2008). 

The high KW poses some challenges to the experimental design. According to the 

Beer-Lambert law, the resulting depth of the euphotic zone for the calibrated KW would be 

1.40 m. This analysis only considered temperatures starting at 1-m depth in the calibration 

and subsequent calculations because it matched to match our observed data. Therefore, if 

the top of the metalimnion is less than one meter deep due to intense light attenuation in 

the euphotic zone, as may be the case in the sensitivity analysis with the maximum Kw of 

4.93 m-1, that period would be calculated as non-stratified. This phenomenon could explain 

the slight trend of decreasing stratification with increasing KW values in the sensitivity 

analysis.  

Despite retaining a polymictic regime, increased stratification and warmer water 

temperatures will likely exacerbate existing water quality problems in Goose Lake. While 

the stratified periods are still relatively short compared to dimictic lakes, these events can 

still result in hypoxia. In eutrophic, polymictic lakes Kasumigaura and Kitaura in Japan, a 

study by Fukushima et al. (2019) observed DO demand of 4.3 mg L-1 d-1 before 

stratification events that resulted in DO concentrations < 2 mg L-1. Increased hypoxia will 

stimulate internal loading of phosphorus, which along with elevated temperatures, will 

increase favorability for buoyant cyanobacteria (Sondergaard et al. 2001; Bartosiewicz et 
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al. 2019). Algal blooms can further draw down DO as a positive feedback loop. Finally, 

fish kills have previously been observed in Goose Lake, and increased DO drawdowns and 

temperature stress may exacerbate this phenomenon (Ficke et al. 2007; Holden 2011). 

One question not addressed in this study is the potential of a regime shift from 

discontinuous cold polymictic to discontinuous warm polymictic. Increased winter 

temperatures directly affect ice cover, with loss of ice cover being a hallmark of regime 

change. A year-round monitoring project on Goose Lake would allow continuous modeling 

throughout the winter to examine changes in ice dynamics and summer stratification onset. 

Finally, additional monitoring would provide a validation dataset for the model developed 

in this study. Additionally, while no regime shift was observed in this case study of a single 

shallow, polymictic lake, this analysis should be expanded to other systems to understand 

the trends in variable climactic response of this extremely common lake type. 
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3.5 Conclusions 
The 1-D General Lake Model was applied to Goose Lake and calibrated to the 2019 

field season. Six CMIP5 climate outputs for the early 2080’s were input to the model to 

examine potential changes to mixing frequency. In all future scenarios, mixing frequency 

was found to increase along with water temperatures and stratification extent. However, 

the lake remained polymictic despite warming. The model was extremely sensitive to 

changes in wind speed but insensitive to Kw, likely due to already low water clarity (Pilla 

et al. 2018). Increased warming and stratification will likely exacerbate existing water 

quality issues in Goose Lake by stimulating DO drawdowns, increasing internal loading of 

phosphorus, and providing favorable conditions for cyanobacteria (Sondergaard et al. 

2001; Adrian et al. 2009; Bartosiewicz et al. 2019). Additional research is required to 

determine the impact of climate change on winter ice cover and the timing of summer 

stratification. 
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5 Appendix 
5.1 Goose Lake 

 

Figure 5.1. Goose Lake Hypsographic Curve 
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Figure 5.2. Observed 2019 DO Profile 

The measured dissolved oxygen profile is shown in Figure 5.2. When the lake is mixed, all depths are at equivalent concentrations, but 
the 2 and 4 m profiles are drawn down during stratification. For this reason, along with the longest deployment time, the 1 m sonde 

was assumed to be representative of mixed layer concentrations.  
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5.2 Metabolism Modeling 
The following equation was used to test significance of the cross-correlation: 

2/�𝑛𝑛 − |𝑘𝑘| (Minitab LLC 2022) [5.1] 

Where n is the number of samples and k is the time lag. This metric corresponds to the 

Pearson R and is listed in the documentation as a rule of thumb for significance. Pearson 

correlations were then calculated manually to test the P values. 

 There is a slight discrepancy between the cross-correlation coefficient and Pearson 

correlations for the productivity delta values for identical time lags.  This is due to how R 

handles missing values for the cross-correlations. First, the average of the dLN dt-1 for the 

entire time series is calculated before dates with missing dProductivity dt-1 values are 

thrown out, resulting in a slightly altered correlation. However, the difference in correlation 

coefficient is at most 0.01, seen in Table 5.1. The significant Pearson correlations had the 

largest P value of 0.033. 
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Table 5.1. Pearson and Cross-Correlation Comparison 

Lag dNEPdt dGPPdt dRdt 
Cross-Correlation 

0 0.225 - -0.202
-1 -0.342 -0.209 -

Pearson Correlation 
0 0.221 - -0.199
-1 -0.332 -0.202 -

A lag of -1 corresponds to the productivity one day after mixing. Values the cross-
correlation significance threshold of |Correlation Factor| >= 0.1859 at 0 days and 
0.1865 at -1 days were omitted. For the Pearson correlation, values of p>0.05 were 

omitted. 
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5.3 GLM Modeling 
5.3.1 GLM Configuration File 
&glm_setup 
   sim_name = 'Goose_Lake' 
   max_layers = 60 
   min_layer_vol = 0.025 
   min_layer_thick = 0.1 
   max_layer_thick = 0.15 
   density_model = 1 

! Uses given daily flow data, and does not interpolate rates between days
non_avg = .true.

/ 
&morphometry 
   lake_name = 'GooseLake' 
   latitude = 46.47073 
   longitude = -87.51936 
   bsn_len = 2672 
   bsn_wid = 1097 

! In lieu of outflow data, the crest elevation was set to allow the lake to "spill over"
when full 
   crest_elev = 372 
   bsn_vals = 16 
   H = 367.43, 367.73, 368.04, 368.34, 368.65, 368.95, 369.26, 369.56, 369.87, 370.17, 
370.48, 370.78, 371.09, 371.39, 371.7, 372 
   A = 215369, 643605, 793765, 969877, 1135043, 1236040, 1291021, 1328867, 
1364613, 1399331, 1439097, 1482855, 1531220, 1585978, 1646077, 1686000 
/ 
&time 

! timefmt = 2 utilizes start and end dates, not number of days
timefmt = 2
start = '2019-06-08 01:00:00'
stop = '2019-10-17 23:00:00'
dt = 3600
! Because the analysis was for the summer, the time zone is EDT
timezone = -4
! Not used because timefmt = 2
num_days = 131

/ 
&init_profiles 
   lake_depth = 4.57 
   num_depths = 9 
   the_depths = 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5 
   the_temps = 19.16, 19.06, 19.13, 19.05, 19.01, 18.89, 18.13, 17.35, 15.41 

! Because the lake is fresh water, zero salinity was assumed
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   the_sals = 0, 0, 0, 0, 0, 0, 0, 0, 0 
/ 
&meteorology 
   met_sw = .true. 

! Assumes neutral atmospheric stability which is sutable for for seasonal analyses
according to Hipsey et al. (2019) 
   atm_stab = 0 

! This rad mode uses the shortwave radiation data to calculate longwave radiation and
cloud cover 
   rad_mode = 3 

! Uses Yajima and Yamamoto Method
albedo_mode = 3
! Uses Yajima and Yamamoto Method
cloud_mode = 4
! Disables wind sheltering. This was selected since we had on site wind data. The lower

wind factor likely mimics wind sheltering 
   fetch_mode = 0 
   subdaily = .true. 
   meteo_fl = 'nldas_driver_2019_final.csv' 

! The following factors were all calibration parameters
wind_factor = 0.711487115
sw_factor = 1.024595606
lw_factor = 0.837043668
at_factor = 0.78724626
rh_factor = 0.956470433
ce = 0.001453027
ch = 0.001473118
cd = 0.001104396

/ 
&light 

! Light mode = 0 uses a single value of Kw for all PAR wavelengths
light_mode = 0
! Kw is a calibration parameter
Kw = 3.28692823

/ 
&output 
   out_dir = 'output' 
   out_fn = 'output' 
   nsave = 1 
   csv_lake_fname = 'gooselake' 
   csv_point_nlevs = 4 
   csv_point_fname = 'Temp_' 
   csv_point_at = 4, 3, 2, 1 
   csv_point_frombot = .false. 
   csv_point_nvars = 1 
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   csv_point_vars = 'temp' 
   csv_ovrflw_fname = 'overflow' 
/ 
&mixing 
   surface_mixing = 1 

! These internal mixing parameters were set to defaults given in Bruce et al. (2018)
coef_mix_conv = 0.2
coef_wind_stir = 0.23
coef_mix_shear = 0.3
coef_mix_turb = 0.51
coef_mix_KH = 0.3
coef_mix_hyp = 0.5
deep_mixing = 2
diff = 0

/ 
&inflow 
   num_inflows = 1 
   names_of_strms = 'Partridge' 
   subm_flag = .false. 
   inflow_factor = 1 
   inflow_fl = 'PartridgeInflow.csv' 
   inflow_varnum = 1 
   inflow_vars = 'FLOW' 

! These streamflow parameters are from the Kinneret example file, as we did not have
streambed data 
   coef_inf_entrain = 0 
   strm_hf_angle = 85 
   strmbd_slope = 4 
   strmbd_drag = 0.016 
/ 
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Table 5.2. GLM Sensitivity Analysis Results 

Wind 2019 GFDL-CM3 4.5 GFDL-CM3 8.5 
Weight # M.E. Longest Strat (hr) % Strat # M.E. Longest Strat (hr) % Strat # M.E. Longest Strat (hr) % Strat 

50 72 324 42.00% 31 468 68.70% 28 1590 74.60% 
75 56 33 16.00% 35 435 39.10% 37 300 52.00% 
90 35 18 8.20% 27 111 24.70% 34 150 37.30% 
110 9 15 2.00% 21 133 12.60% 32 132 26.80% 
125 4 9 0.90% 17 42 7.80% 26 114 19.50% 
150 0 0 0.00% 14 18 3.80% 22 84 11.40% 
KW 2019 GFDL-CM3 4.5 GFDL-CM3 8.5 

Weight # M.E. Longest Strat (hr) % Strat # M.E. Longest Strat (hr) % Strat # M.E. Longest Strat (hr) % Strat 

50 21 15 4.50% 27 66 18.80% 33 138 32.80% 
75 22 15 5.20% 27 69 18.40% 33 162 33.90% 
90 19 15 4.00% 31 69 18.10% 33 138 31.70% 
110 22 15 4.50% 25 69 15.40% 34 138 31.00% 
125 13 15 3.10% 30 60 14.40% 36 138 31.60% 
150 7 15 1.90% 26 57 12.40% 36 138 29.76% 

Inflow 2019 GFDL-CM3 4.5 GFDL-CM3 8.5 
Weight # M.E. Longest Strat (hr) % Strat # M.E. Longest Strat (hr) % Strat # M.E. Longest Strat (hr) % Strat 

50 23 15 5.10% 29 69 16.10% 32 153 31.40% 
75 16 15 3.40% 29 69 16.87% 33 138 30.90% 
90 21 15 4.10% 27 69 16.80% 35 150 31.90% 

110 22 15 5.40% 30 57 15.70% 32 138 31.90% 
125 19 15 3.90% 30 69 17.30% 35 141 31.80% 
150 24 15 4.70% 32 57 18.10% 36 138 31.70% 
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5.4 R Code 
5.4.1 Calibration Setup 

# This script set all of the variables necessary for the GLM calibration. It reads in the 
field data, calculates the observed Lake Number, and creates empty data frames for other 
scripts. The metalimnion depths in Lake Analyzer are changed to allow for a continuous 
analysis. This allows a continuous calculation of Lake Number RMSE in the following 
script. 

# Initialize Session 
pacman::p_load(pacman, party, psych, rio, tidyverse,optimization,glmtools,GLM3r, 
               Metrics,rLakeAnalyzer,GenSA,processx) 
setwd("D:/Masters_Research/Goose_Calibration_Simple_3") 
sim_folder <- "D:/Masters_Research/Goose_Calibration_Simple_3" 

#simulation path 
# Add manually to metalimnion depths: mixed.cutoff = 0 
trace(rLakeAnalyzer::ts.lake.number,edit = TRUE) 

# Read and convert field observations 
TempObs <- read.csv(file = 'observed/ObsTempHour.csv') 
dates <- tibble(TempObs$datetime,.rows = 3166) 
colnames(dates) <-c("datetime") 

#Lake Analyzer Files 
bathy <- load.bathy('observed/GooseBathyNew.txt') 
wind <- load.ts('observed/Goose_Wind_Hourly_LA_U1.txt') 
TempObsLA <- load.ts('observed/ObsTempHour.txt') 
#Calculates observed Lake Number  
ObsLN <- ts.lake.number(wtr = TempObsLA,  

wnd = wind,  
wnd.height = 1,  
bathy = bathy, 
seasonal = FALSE) 

# Replaces negative values with 0 
ObsLNClean <- ObsLN$lake.number 
ObsLNClean[ObsLNClean < 0] <- 0 
ObsTempRMSE <- c(TempObs$wtr_1.0,TempObs$wtr_2.0, 

TempObs$wtr_3.0,TempObs$wtr_4.0) 

# Initialized Parameters 
temp_RMSE <-list() 
LN_RMSE <-list() 
i <- 1
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5.4.2 Simulated Annealing Calibration 
# This is the cost function for the calibration. It writes the new variables to the .nml file, 
runs GLM, and calculates Lake Number and temperature rmse for the model outputs. It 
returns the summed NRMSE for both values that are weighted during model setup. 
SACalibration <- function(CV, ...) { 
 
  #Edits nml file 
  glm_nml <- read_nml('glm3.nml') 
  glm_nml <- set_nml(glm_nml, arg_name = 'wind_factor', arg_val = CV[1]) 
  glm_nml <- set_nml(glm_nml, arg_name = 'sw_factor', arg_val = CV[2]) 
  glm_nml <- set_nml(glm_nml, arg_name = 'lw_factor', arg_val = CV[3]) 
  glm_nml <- set_nml(glm_nml, arg_name = 'at_factor', arg_val = CV[4]) 
  glm_nml <- set_nml(glm_nml, arg_name = 'rh_factor', arg_val = CV[5]) 
  glm_nml <- set_nml(glm_nml, arg_name = 'ce', arg_val = CV[6]) 
  glm_nml <- set_nml(glm_nml, arg_name = 'ch', arg_val = CV[7]) 
  glm_nml <- set_nml(glm_nml, arg_name = 'cd', arg_val = CV[8]) 
  glm_nml <- set_nml(glm_nml, arg_name = 'Kw', arg_val = CV[9]) 
  write_nml(glm_nml, file = 'glm3.nml') 
   
  #Runs the GLM Simulation 
  run(command = "glm.bat", echo = FALSE) 
 
  # Reads temperature outputs from the netcdf output file 
  A <- get_var(file = "output/output.nc", var_name = 'temp',  
               reference = "surface", z_out = 1) 
  B <- get_var(file = "output/output.nc", var_name = 'temp',  
               reference = "surface", z_out = 2) 
  C <- get_var(file = "output/output.nc", var_name = 'temp',  
               reference = "surface", z_out = 3) 
  D <- get_var(file = "output/output.nc", var_name = 'temp',  
               reference = "surface", z_out = 4) 
   
  # Converts the modeled temperatures into a suitable format for Lake Analyzer 
  TempModel <- tibble(dates, A$temp_1, B$temp_2,  
                      C$temp_3, D$temp_4,.rows = 3166) 
  colnames(x = TempModel)<-c('datetime','temp_1.0', 'temp_2.0',  
                             'temp_3.0', 'temp_4.0') 
  write.table(x = TempModel,file = "TempModelFormat.txt", append = FALSE,  
              sep = "\t",col.names = TRUE, quote = FALSE) 
  TempModelFormat <- load.ts('TempModelFormat.txt') 
   
  #Calculates Lake Number and Rounds to 4 decimal places  
  #to remove slightly negative values (ie -1E13) 
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  ModelLN <- ts.lake.number(wtr = TempModelFormat,  
                            wnd = wind,  
                            wnd.height = 1,  
                            bathy = bathy, 
                            seasonal = FALSE) 
 ModelLNClean <- ModelLN$lake.number 
 ModelLNClean[ModelLNClean < 0] <- 0 
  
  #Makes single vector of model temps 
  TempModelRMSE <-c(TempModel$temp_1.0,TempModel$temp_2.0, 
                    TempModel$temp_3.0,TempModel$temp_4.0) 
   
  #Records RMSE for each iteration 
  LN_RMSE_it <- rmse(ObsLNClean,ModelLNClean) 
  temp_RMSE_it <- rmse(ObsTempRMSE,TempModelRMSE) 
 
  temp_RMSE[[i]] <<-as.data.frame(list(temp_RMSE_it)) 
  LN_RMSE[[i]] <<- as.data.frame(list(LN_RMSE_it)) 
  i <<- i+1 
   # Calculates the summed Normalized Root Mean Squared Error 
   
ModelNRMSE <<- rmse(ObsTempRMSE,TempModelRMSE)/mean(ObsTempRMSE)*1 
+  
    rmse(ObsLNClean,ModelLNClean)/mean(ObsLNClean)*0 
  c2 <<- ModelNRMSE 
  return(ModelNRMSE) 
} 
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5.4.3 Simulated Annealing Call 
# This function uses a simulated annealing function for model optimization. The lowe 
and upper parameter bounds of the model are set and then iterate over the previous 
function. On completion, the script outputs the simulated annealing results as well as the 
temperature and LN RMSE for each run. These were used to determine the “best” run in 
absence of a validation dataset. 
 
# Sets bounds for simulated annealing function 
lower = c(0.7,0.7,0.7,0.7,0.9,.0011,.0011,.0011,0.5) 
upper <- c(1.3,1.3,1.3,1.3,1.1,0.0015,0.0016,0.0015,5.0) 
 
#Runs SA function 
system.time( 
out <<-GenSA(fn = SACalibration,lower = lower,upper = upper, 
      control = list(max.call=5000) 
      )) 
 
# Outputs parameters 
results <- out[c("value","par","counts","trace.mat")] 
temp_RMSE_List <- rbind.data.frame(temp_RMSE) 
LN_RMSE_List <- rbind.data.frame(LN_RMSE) 
write.csv(LN_RMSE_List,"logs/LN_RMSE_PC3_6_2.csv") 
write.csv(temp_RMSE_List,"logs/temp_RMSE_PC3_6_2.csv") 
capture.output(out,file = 'logs/results_PC3_6_2.csv') 
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5.4.4 2019 Mixing Analysis 
# This code read in the GLM inputs and model outputs to calculate the Lake Number 
time series for the model. Run length encoding was then used to determine the number of 
mixing events and stratification extent for the study period. The data processing was 
specific to this dataset and would need to be modified for different length datasets. 
 
# Initialize Session 
pacman::p_load(pacman, party, psych, rio, tidyverse,optimization,glmtools,GLM3r, 
               Metrics,rLakeAnalyzer,GenSA,processx,lubridate) 
# Add manually to metalimnion depths: mixed.cutoff = 0 
trace(rLakeAnalyzer::ts.lake.number,edit = TRUE) 
 
# This reads from the nldas_driver from the GLM model 
setwd("C:/Users/breus/Documents/Masters_Research/Goose_Calibration_Final") 
driver = 'nldas_driver_2019_final.csv' 
path_out = 'LN/2019 Final' 
 
# This is used to scale the wind speed for LA  
wind_scalar = 1 
 
rle_out = 'rle.csv' 
LN_out = 'LNClean.csv' 
Temp_avg_out = 'Avg_Layer_Temp.csv' 
 
# Reads water temperature outputs from the .nc file 
A <- get_var(file = "output/output.nc", var_name = 'temp',  
             reference = "surface", z_out = 1) 
B <- get_var(file = "output/output.nc", var_name = 'temp',  
             reference = "surface", z_out = 2) 
C <- get_var(file = "output/output.nc", var_name = 'temp',  
             reference = "surface", z_out = 3) 
D <- get_var(file = "output/output.nc", var_name = 'temp',  
             reference = "surface", z_out = 4) 
#Combines temperature data into a single dataframe and removes dates through  
# 6/8 0100.  
 
Temperature <- data.frame('datetime' = A$DateTime,"temp_1" = A$temp_1, 
                          'temp_2' = B$temp_2,'temp_3' = C$temp_3, 'temp_4' = D$temp_4) 
 
# Depth Temperature Averages 
one_meter_avg <- mean(Temperature$temp_1) 
two_meter_avg <- mean(Temperature$temp_2) 
three_meter_avg <- mean(Temperature$temp_3) 
four_meter_avg <- mean(Temperature$temp_4) 
Temp_avg <- data.frame('1m' = one_meter_avg, '2m' = two_meter_avg, 
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                       '3m' = three_meter_avg, '4m' = four_meter_avg) 
 
# Averages hourly outputs to 3 hours which matches the available wind data 
# https://community.rstudio.com/t/how-to-take-the-average-of-every-3-rows/101338 
GroupLabels <- 0:(nrow(Temperature)-1) %/% 3 
Temperature$Group <- GroupLabels 
Temp3hr <- Temperature %>% group_by(Group) %>% summarize(Avg = data.frame( 
  'datetime' = mean(datetime),'wtr_1.0' = mean(temp_1), 'wtr_2.0' = mean(temp_2), 
  'wtr_3.0' = mean(temp_3), 'wtr_4.0' = mean(temp_4))) 
 
# Writes the temp data into a Lake Analyzer compatable format 
Temp_LA <- data.frame('datetime' = Temp3hr$Avg$datetime, 
'wtr_1.0'= Temp3hr$Avg$wtr_1.0,'wtr_2.0'= Temp3hr$Avg$wtr_2.0, 
'wtr_3.0'= Temp3hr$Avg$wtr_3.0,'wtr_4.0'= Temp3hr$Avg$wtr_4.0) 
 
write.table(Temp_LA,'LN/Model Temp 3hr.txt', sep = "\t",  
            col.names = TRUE,row.names = FALSE,quote = FALSE) 
 
# Reads the wind data from the nldas_driver file and averages to 3 hr, writes to LA 
wind_GLM = read.csv(driver) 
wind_GLM <- wind_GLM[2:3167,] 
GroupLabelsWind <- 0:(nrow(wind_GLM)-1) %/% 3 
wind_GLM$Group <- GroupLabelsWind 
names(wind_GLM)[names(wind_GLM) == 'time'] <- 'datetime' 
wind_GLM$datetime <- ymd_hm(wind_GLM$datetime) 
Wind3hr <- wind_GLM %>% group_by(Group) %>% summarize(Avg = data.frame( 
  'datetime' = mean(datetime),'WindSpeed' = mean(WindSpeed))) 
wind_LA = data.frame('dateTime' = Wind3hr$Avg$datetime, 
                     'windSpeed' = Wind3hr$Avg$WindSpeed) 
write.table(wind_LA,'LN/Model Wind 3hr U10.txt', sep = "\t", col.names = TRUE, 
            row.names = FALSE,quote = FALSE) 
 
#Lake Analyzer Files 
bathy <- load.bathy('LN/GooseBathyNew.txt') 
wind <- load.ts('LN/Model Wind 3hr U10.txt') 
 
TempObsLA <- load.ts('LN/Model Temp 3hr.txt') 
#Calculates observed Lake Number  
ObsLN <- ts.lake.number(wtr = TempObsLA,  
                        wnd = wind,  
                        wnd.height = 10,  
                        bathy = bathy, 
                        seasonal = FALSE) 
 
# Replaces negative values with 0 
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ObsLNClean <- ObsLN$lake.number 
ObsLNClean[ObsLNClean < 0] <- 0 
 
# True is for periods of stratification where LN >1 
# Run Length Encoding to determine when LN > 1 
a <- rle(ObsLNClean > 1) 
a_comb <- data.frame(a$lengths,a$values) 
#Writes outputs to files 
write.csv(a_comb,paste(path_out,rle_out,sep = '')) 
write.csv(ObsLNClean,paste(path_out,LN_out,sep = '')) 
write.csv(Temp_avg,paste(path_out,Temp_avg_out,sep = '')) 
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5.4.5 Future Scenario Mixing Analysis 
# This script automatically ran all weights for the sensitivity analysis. It used the GLM 
inputs which were consistent between runs and each model output to calculate the Lake 
Number time series. Then stratification extent and mixing periods were calculated using 
run length encoding. The data processing was specific to this dataset and would need to 
be modified for different length datasets. 
 
# Initialize Session 
pacman::p_load(pacman, party, psych, rio, tidyverse,optimization,glmtools,GLM3r, 
               Metrics,rLakeAnalyzer,GenSA,processx,lubridate) 
# Add manually to metalimnion depths: mixed.cutoff = 0 
trace(rLakeAnalyzer::ts.lake.number,edit = TRUE) 
 
# This reads from the 3hour nldas_driver for the 3 hour windspeed 
 
# File name components for loop 
rle_out = 'rle.csv' 
LN_out = 'LNClean.csv' 
Temp_avg_out = 'Avg_Layer_Temp.csv' 
 
# The loop iterates for each parameter weight 
scalars <- c(50,75,90,110,125,150) 
for (i in scalars){ 
   
wd <- 
'C:/Users/breus/Documents/Masters_Research/Climate_Spreadsheet/Sensitivity_Analyse
s/Wind_Sensitivity/GFDL-CM3/RCP8_5/GLM' 
pout <-  'LN/GFDL_CM3 8_5 Wnd' 
 
setwd(paste(wd,i,sep = '')) 
# Reads in the GLM model inputs. These remain constant between sensitivity analyses 
# with the exception of wind, which is scaled in the loop. 
driver = 'nldas_driver_GFDL-CM3_8_5.csv' 
path_out = paste(pout,i,sep = '') 
 
# For the wind sensitivity analyses, the wind data must be scaled for Lake Analyzer 
# For all other analyses, wind scalar = 1 
wind_scalar = i/100 
 
# Reads water temperature outputs from the .nc file 
A <- get_var(file = "output/output.nc", var_name = 'temp',  
             reference = "surface", z_out = 1) 
B <- get_var(file = "output/output.nc", var_name = 'temp',  
             reference = "surface", z_out = 2) 
C <- get_var(file = "output/output.nc", var_name = 'temp',  
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             reference = "surface", z_out = 3) 
D <- get_var(file = "output/output.nc", var_name = 'temp',  
             reference = "surface", z_out = 4) 
 
#Combines temperature data into a single dataframe and removes dates through  
# 6/8 0100.  
 
Temperature <- data.frame('datetime' = A$DateTime,"temp_1" = A$temp_1, 
                          'temp_2' = B$temp_2,'temp_3' = C$temp_3, 'temp_4' = D$temp_4) 
Temperature <- Temperature[167:3333,] 
 
# Depth Temperature Averages 
one_meter_avg <- mean(Temperature$temp_1) 
two_meter_avg <- mean(Temperature$temp_2) 
three_meter_avg <- mean(Temperature$temp_3) 
four_meter_avg <- mean(Temperature$temp_4) 
 
Temp_avg <- data.frame('1m' = one_meter_avg, '2m' = two_meter_avg, 
                       '3m' = three_meter_avg, '4m' = four_meter_avg) 
 
# Averages hourly outputs to 3 hours which matches the available wind data 
# https://community.rstudio.com/t/how-to-take-the-average-of-every-3-rows/101338 
GroupLabels <- 0:(nrow(Temperature)-1) %/% 3 
Temperature$Group <- GroupLabels 
Temp3hr <- Temperature %>% group_by(Group) %>% summarize(Avg = data.frame( 
  'datetime' = mean(datetime),'wtr_1.0' = mean(temp_1), 'wtr_2.0' = mean(temp_2), 
  'wtr_3.0' = mean(temp_3), 'wtr_4.0' = mean(temp_4))) 
 
# Writes the temp data into a Lake Analyzer compatable format 
Temp_LA <- data.frame('datetime' = Temp3hr$Avg$datetime, 
'wtr_1.0'= Temp3hr$Avg$wtr_1.0,'wtr_2.0'= Temp3hr$Avg$wtr_2.0, 
'wtr_3.0'= Temp3hr$Avg$wtr_3.0,'wtr_4.0'= Temp3hr$Avg$wtr_4.0) 
 
write.table(Temp_LA,'LN/Model Temp 3hr.txt', sep = "\t",  
            col.names = TRUE,row.names = FALSE,quote = FALSE) 
 
# Reads the wind data from the nldas_driver file and writes to LA 
wind_GLM_raw = read.csv(driver) 
 
# This pulls the time data from the GLM output file since it is already in the right format 
wind_GLM <- data.frame('datetime' = wind_GLM_raw$time[57:1112], 
                       'WindSpeed' = wind_GLM_raw$WindSpeed[57:1112]*wind_scalar) 
wind_LA = data.frame('dateTime' = wind_GLM$datetime, 
                     'windSpeed' = wind_GLM$WindSpeed) 
write.table(wind_LA,'LN/Model Wind 3hr U10.txt', sep = "\t", col.names = TRUE, 
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            row.names = FALSE,quote = FALSE) 
 
#Lake Analyzer Files 
bathy <- load.bathy('LN/GooseBathyNew.txt') 
wind <- load.ts('LN/Model Wind 3hr U10.txt') 
TempObsLA <- load.ts('LN/Model Temp 3hr.txt') 
 
#Calculates observed Lake Number  
ObsLN <- ts.lake.number(wtr = TempObsLA,  
                        wnd = wind,  
                        wnd.height = 10,  
                        bathy = bathy, 
                        seasonal = FALSE) 
 
# Replaces negative values with 0 
ObsLNClean <- ObsLN$lake.number 
ObsLNClean[ObsLNClean < 0] <- 0 
 
# True is for periods of stratification where LN >1 
# Run Length Encoding to determine when LN > 1 
a <- rle(ObsLNClean > 1) 
a_comb <- data.frame(a$lengths,a$values) 
 
#Writes outputs to files 
write.csv(a_comb,paste(path_out,rle_out,sep = '')) 
write.csv(ObsLNClean,paste(path_out,LN_out,sep = '')) 
write.csv(Temp_avg,paste(path_out,Temp_avg_out,sep = '')) 
} 
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