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Abstract

This dissertation includes four Chapters. A brief description of each chapter is

organized as follows.

In Chapter 1, some developments on multiple hypotheses tests are introduced.

Some preliminaries about the definition and the assumption are included.

In Chapter 2, a Stable Combination Test is proposed to combine p-values from

multiple hypotheses tests. We show the proposed method controls the family-wise

error rate at the target level and maintains asymptotically optimal power even when

the elementary p-values from the individual hypotheses are dependent.

In Chapter 3, a deeper dig into additive p-value combination test is performed. A

common idea behind some existing combination tests including the Stable Combina-

tion Test is extracted and a unified framework is proposed. The tails of the combined

test statistics in this framework can be approximated by stable distribution. The

tests in this framework are proven to have a well-controlled family-wise error rate

and non-trivial power.

In Chapter 4, we illustrate the usefulness of the proposed unified framework by

capturing the dynamic structure instabilities of Granger causality in a vector au-

toregression model. The p-value combination tests in the framework are easy to im-

plement, robust to dependence, and have comparable performance to the bootstrap

technique.
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Chapter 1

Introduction

Multiplicity has been a long-standing issue in areas of applied statistics, such as clin-

ical trials, DNA microarray experiments, and functional magnetic resonance imaging

studies, where testing a large number of multiple hypotheses is necessary. Achieving

higher power, while controlling error rate, has been one of the most important mis-

sions in the multiplicity area. There are two widely used approaches to control the

overall type I error rate. One is the family-wise error rate (FWER) approach, where

the probability of making at least one type I error among all hypotheses is controlled.

The other is the false discovery rate (FDR) approach, where the expected propor-

tion of false discoveries out of all rejections is controlled. FDR-controlling procedures

usually have higher powers at the cost of increments of size than FWER-controlling

procedures because the FDR is equivalent to the FWER when all underlying hypothe-

ses are true but smaller otherwise [Benjamini and Hochberg, 1995]. Many methods

have been proposed under either FWER or FDR frameworks. In this dissertation, we

mainly focus on controlling the FWER of a global hypothesis.

LetH1, . . . , Hn be individual null hypotheses and the corresponding alternative hy-

potheses be Hc
1, . . . , H

c
n. Suppose the corresponding individual p-values are p1, . . . , pn.

The global null hypothesis, defined as H0 =
⋂n

i=1Hi, is true when all His are true.

The global alternative hypothesis, defined as Ha =
⋃n

i=1 H
c
i , is true if there is at least

1



one false null hypothesis.

A simple and widely used approach to control the FWER is the Bonferroni proce-

dure, where the global null hypothesis is rejected if min pin is less than the significance

level. However, Bonferroni is so conservative that it has been criticized for its low

power when a large number of tests are undertaken or tests are strongly positively

correlated. See O’Brien [1984], Moran [2003], Dmitrienko et al. [2009] among others.

Simes [1986] improved the Bonferroni procedure in the sense of making use of the or-

dered information of the underlying p-values instead of just the smallest p-value. The

combined p-value is defined as min p(i)n/i, where p(i) is the ith ordered underlying

p-value. Simes [1986] proved that the size is exactly the significance level when the

underlying tests are independent. It is noticeable that Simes’ procedure controls the

FWER in a weak sense under the global null hypothesis, thus it cannot be directly

used to test the individual null hypotheses, whereas the Bonferroni procedure can

control the FWER in the strong sense regardless of the composition of the true and

false underlying hypotheses [Zhang et al., 2013]. In order to provide statements of

individual hypotheses, Hochberg [1988] proposed a step-up version of the Simes’ test

which have strong control of the FWER.

Many methods are proposed under the condition of independent underlying p-

values. However, in practical applications dependency among the underlying individ-

ual tests is another key element to consider. Most of the above-mentioned methods

often suffer from low powers and size distortion as a consequence of the fact that

many heavily dependent underlying tests carry similar information as the fewer “ef-

fective” tests [Meinshausen et al., 2011]. Bootstrap, permutation, or other resampling

techniques have been used to provide correct sizes since they don’t make specific as-

sumptions about the true joint distribution. For example, Westfall and Young [1993]

proposed two step-wise permutation-based procedures, “min-P” and “max-T”, to es-

timate the adjusted p-value and thus control the FWER strongly without modeling

the dependence among underlying individual tests. However, it involved an extra con-

2



dition to control the FWER in the strong sense, called “subset pivotality”, to greatly

reduce the number of intersection hypotheses in the closed family. The subset piv-

otality condition assumes that the joint distribution of the p-values under the global

null hypothesis is identical to the joint distribution of the p-values under any sub-

sets of the global null hypothesis [Westfall and Young, 1993]. This condition is been

portrayed as too stringent when the number of hypotheses is large [Romano et al.,

2008]. Furthermore, Rempala and Yang [2013] argued that the permutation distri-

bution depends on data. When the underlying hypotheses about the data are not all

true, the permutation distribution may have little in common with the true state of

the data, thus the size is not necessarily properly controlled. Moreover, resampling-

based methods are computationally burdensome in the analysis of massive data. The

improvements might be too minor compared with the additional computation cost

[Ventura et al., 2004].

In recent years, computationally efficient methods with higher powers have been

proposed. Inspired by Simes [1986], Li et al. [2011] and Van der Sluis et al. [2013]

extended Simes’ procedure to address the correlations among individual tests. They

estimated the effective number of independent p-values by considering the eigenvalues

of the correlation matrix of the p-values. Since the correlation matrix of p-values is

unobservable, these methods propose to take advantage of external information, like

the correlation structure of phenotypes. However, these methods cannot be used if

such external information is not available.

The aforementioned methods can be understood as variants of the ordered p-value

method, where the combined p-value is based on the rank information of individual p-

values. There is another approach of combining p-values based on additive methods,

where the magnitude of p-values is important rather than the rank information [Hen-

ning and Westfall, 2015]. There are many methods associated with additive combina-

tions. For example, Fisher’s combination test [Fisher, 1992] stated that −2
∑n

i=1 log pi

follows a χ2
2n distribution. Stouffer’s Z-score method [Stouffer et al., 1949] stated that

3



1/
√
n
∑n

i=1 Φ
−1(1 − pi) follows a standard normal distribution. Rüschendorf [1982]

showed that the arithmetic mean of p-values should be adjusted by a constant factor

of two. Mattner [2010] claimed that the geometric mean should be multiplied by the

mathematical constant, e. Vovk and Wang [2020] define a so-called merging function

as the generalized mean p-value adjusted by a factor.

This dissertation focuses on additive p-value combination tests when the under-

lying p-values are allowed to be dependent. Additive combination tests utilize the

fact that a p-value under a null hypothesis is uniformly distributed. Each individual

p-value is transformed into a new random variable, which is then further linearly

combined to form a combined test statistic. The function used to transform p-values

in the first step characterizes the method. One of the key steps associated with a

combined test statistic is figuring out its null distribution. This step is simpler if the

transformation function is chosen in a way that the distribution of the transformed

p-values under the null is closed under addition. For example, if the ith null hypoth-

esis is true, pi would more or less follow a uniform distribution, and −2 log pi follows

a gamma distribution with shape parameter one and scale parameter two. If tests

are independent, Fisher’s statistic, −2
∑n

i=1 log pi, follows a gamma distribution with

shape parameter n and scale parameter two. Other examples of distributions that

are closed under addition include Pareto distribution utilized in Wilson [2019, 2020],

Loggamma distribution used by Wilson [2019], Cauchy distribution investigated by

Liu and Xie [2020], and stable distribution.

Stable distribution is a family of distributions that are closed under linear combi-

nation. A distribution is said to be stable if a linear combination of two independent

and identical distributed random variables has the same type of distribution up to

location and scale parameters [Nolan, 2020]. There are multiple parameterizations

for stable laws and we follow Nolan [2020]’s 1-parameterization. According Definition

1.5 in Nolan [2020], a random variable W is S(α, β, γ, δ) if W has a characteristic

4



function

E[exp (iuW )] =

exp
{
−γα|u|α

[
1− iβ tan(πα

2
)(signu)

]
+ iδu

}
α ̸= 1

exp
{
−γ|u|

[
1 + iβ 2

π
(signu) log |u|

]
+ iδu

}
α = 1,

where u ∈ (−∞,∞), i =
√
−1, and signu is the sign function which takes value

−1 if u < 0, 0 if u = 0, and 1 if u > 0. There are four parameters: an index

of stability α ∈ (0, 2], a skewness parameter β ∈ [−1, 1], a scale parameter γ > 0,

and a location parameter δ ∈ (−∞,∞). When the distribution is standardized,

i.e., when scale γ = 1, and location δ = 0, the symbol S(α, β) is an abbreviation

for S(α, β, 1, 0). We write F (x|α, β, γ, δ) = Pr(W < x), the distribution function

of a stable random variable W with parameters α, β, γ, and δ. Similarly, when the

distribution is standardized, F (x|α, β) is short for F (x|α, β, 1, 0).

In order to adapt the additive p-value combination tests, we assume the following

assumption throughout this dissertation,

Assumption 1.1. Under the global null hypothesis H0, pis are uniformly distributed

for all i = 1, . . . , n on (0, 1).

Remark 1.1. Assumption 1.1 is satisfied if the individual tests are exact tests with

continuous test statistics. If individual tests are based on asymptotic results or on

discrete statistics, the sample sizes should be large enough to satisfy this assumption

approximately. However, this assumption can be relaxed to some non-uniform p-

values as long as individual tests are more conservative than the nominal level. In

this case, a combined p-value is also conservative, which means that the combined

p-value can control the size correctly. See Remark 5 and Corollary 2 in Liu and Xie

[2020] for more details. For brevity, the rest of this dissertation assumes uniform

p-values under the null.

Throughout this dissertation, we write g(x) ∼ h(x) as x → ∞ to indicate

limx→∞
g(x)
h(x)

= 1. The symbol R indicates the set of all real numbers. The sym-

5



bol A\B indicates A∩BC . For instance, R\{0} is the set of all real numbers except

0. Γ(·) is the gamma function.
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Chapter 2

Stable Combination Test

Abstract

In this chapter, a stable combination test is proposed as a natural extension of Cauchy

combination tests by Liu and Xie [2020]. Similarly to the Cauchy combination test,

the stable combination test is simple to compute, enjoys good sizes, and has asymp-

totically optimal powers even when the individual tests are not independent. This

finding is supported both in theory and in finite samples.

Keywords: Additive combination test; multiple hypothesis testing; stable distribu-

tion.

2.1 Introduction

Liu and Xie [2020] proposed the Cauchy combination test (CCT) which originated

from the observation that the standard Cauchy distribution is closed under con-

vex combinations. What makes a Cauchy distribution an attractive candidate for a

combination test is that this relationship holds even when the random variables are

dependent [Pillai and Meng, 2016]. In CCT, the individual p-values are transformed

into standard Cauchy random variables, and a convex combination of these Cauchy

random variables is used as a combined test statistic. The critical values are taken

7



from a standard Cauchy distribution. Liu and Xie [2020] proved that the CCT con-

trols the size well if the significance level is small and has asymptotically optimal

powers under sparse alternatives. The CCT is fast to compute and robust to various

forms of dependence structures.

This chapter is motivated by the fact that there is a wide class of distributions

that is closed under addition – strictly stable distributions. In fact, the Cauchy

distribution is also a part of the strictly stable distribution family. This observation

naturally leads to a stable combination test (SCT), which is an extension of the

CCT. In the SCT, a stable distribution function is used in the transformation step.

It is well-known that a linear combination of independent stably distributed random

variables is still stable. In this chapter, we show that the SCT statistic is also stably

distributed asymptotically even when the underlying p-values are dependent, and

therefore, can control the error rate successfully when the number of tests, n, is large

enough. We also prove that the SCT has asymptotically optimal powers under sparse

alternatives as long as n is large enough. Our simulation results also suggest that our

method is robust to dependent structures in finite samples.

This chapter is organized as follows. In Section 2.2, we summarize the CCT and

introduce our SCT method. The sizes and powers of the SCT are explored in theory.

In Section 2.3, simulation results are provided to demonstrate favorable sizes and

powers of the SCT in finite samples. Section 2.4 concludes. Technical proofs are

relegated to Appendix A.

2.2 Method

Inspired by Pillai and Meng [2016]’s finding that a sum of dependent Cauchy random

variables is still a Cauchy random variable, Liu and Xie [2020] proposed to combine

p-values based on a Cauchy distribution. The p-values are first transformed into

standard Cauchy random variables and then a weighted sum is taken. The test

8



statistic is defined as the weighted sum

Tn(p) =
n∑

i=1

wi tan[π(0.5− pi)],

where wis are nonnegative weights and
∑n

i=1wi = 1. If the individual p-values are

independent or perfectly dependent, it is straightforward that the test statistic follows

the standard Cauchy distribution under the global null hypothesis. One of the main

contributions of Liu and Xie [2020] is to relax this condition. The tail probability

of the test statistic Tn(p) is approximately the same as that of a standard Cauchy

distribution when pis satisfy bivariate Gaussian copula condition. In order to prove

the above statement, Liu and Xie [2020] assumed the p-values are calculated from

Z-tests. That is, pi = 2[1 − Φ(|Xi|)] from the ith two-sided Z-test, with Xi follows

N(µi, 1), E[(X1, . . . , Xn)
T ] = (µ1, . . . , µn)

T = µ and Cov[(X1, . . . , Xn)
T ] = Σ. They

also assume that (Xi, Xj)
T for i ̸= j are pairwise bivariate normally distributed. In

this case, the test statistic can be rewritten as

Tn(p) = Tn(X) =
n∑

i=1

wi tan{π[2Φ(|Xi|)− 1.5]}.

They proved that Tn(X) has the same tail probability as a standard Cauchy random

variable if µ = 0. This means that the combined p-value can be derived from a

standard Cauchy distribution. Liu and Xie [2020] also proved that if µ ̸= 0 and if µ

satisfies the sparse alternative assumption with large enough signals, this test has an

asymptotically optimal power since Tn(X) → ∞ with probability one.

Inspired by the fact that a Cauchy distribution is a special case of a stable distri-

bution, we propose a Stable Combination Test (SCT). Let Wi = F−1 (1− pi|α, β) for

i = 1, . . . , n, where F (·|α, β) is the distribution function of a standardized stable ran-

dom variable with stability parameter α and skewness parameter β. The function F−1

indicates the quantiles of F , defined by F−1(p|α, β) = inf{x ∈ R : F (x|α, β) ≥ p}.

Though there are no closed forms for stable distribution functions except for Normal,

Cauchy, and Lévy distributions, stable quantiles can still be approximated numeri-
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cally. We define our test statistic as follows:

Tn(p) = an

n∑
i=1

wiWi, (2.2.1)

where wi > 0 is the nonnegative weight imposed on ith test with
∑n

i=1wi = 1 and

an =
(∑n

j=1w
α
j

)−1/α

is the normalizing factor.

We consider the stability parameters 0 < α < 2. If α ̸= 1, the skewness parameter

ranges −1 < β ≤ 1. If α = 1, only β = 0 is considered. This is to ensure that F (·|α, β)

is strictly stable. A distribution is called strictly stable if the sum of i.i.d. random

variables from this distribution follows the same distribution up to a normalizing

factor without requiring a centering factor. Since F−1 (1− pi|α, β) follows S(α, β),∑n
i=1wiF

−1(1− pi|α, β) also follows S(α, β) up to a normalizing factor if S(α, β) is

strictly stable. This motivates our definition of Tn(p) for α ̸= 1 with the normalizing

factor
(∑n

j=1w
α
j

)−1/α

. However, when α = 1, S(1, β) is no longer strictly stable

unless β = 0. When α = 1, and β = 0, S(1, 0) is a standard Cauchy distribution.

Note that a naive extension of the CCT to different α and β,
∑n

i=1wiF
−1(1−pi|α, β),

would not work without considering the normalizing factor an.

Remark 2.1. The test statistic Tn(p) can still be defined for α = 1 and β ̸= 0 if an

additional centering factor 2
π
β
∑n

j=1wj logwj is considered. However, this direction

will not be elaborated in this paper for the following reasons: (i) it had relatively

poor sizes and powers in our unreported simulation, (ii) the requirements for the

power proof need to be stronger if this case is included, and (iii) the computation

for F−1(·|1, β) is unstable if β ̸= 0. For these reasons, we only consider β = 0 when

α = 1 for the rest of this dissertation.

The rest of this section addresses that our SCT statistic (2.2.1) is also approxi-

mately stably distributed under the global null hypothesis, even when the underlying

p-values are not independent. This makes it possible to construct a test that can

control the FWER. We also prove that this test has asymptotically optimal powers

under alternatives.
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2.2.1 Size

Under Assumption 1.1, observe that 1− pi is uniformly distributed under the global

null hypothesis H0 for 1 ≤ i ≤ n, therefore, Wi = F−1(1− pi|α, β) is identically dis-

tributed with marginal distribution S(α, β). If the individual tests are independent,

it is trivial that the test statistic

Tn(p)
d
= W0, (2.2.2)

where W0 follows a stable distribution S(α, β). This can be seen by simple computa-

tions using the property that the sums of α-stable random variables are still α-stable;

see Proposition 1.4 and equation (1.7) in Nolan [2020].

However, if Wi are not independent, there is no exact relationship as in (2.2.2).

Instead, an asymptotic relationship can be established when the number of tests, n,

is large enough. For instance, Jakubowski and Kobus [1989] showed that a depen-

dent sum of stable random variables is also asymptotically stable. In this paper, we

adapt Jakubowski and Kobus [1989]’s Theorems 4.1 and 4.2 to establish that Tn(p)

converges to W0 under some dependence assumptions in Theorem 2.1 below. Owing

to this theorem, type I errors of SCTs can be controlled as long as n is large enough.

The following Assumptions 2.1, 2.2, and 2.3 are adapted from equations (4.4),

(4.8), and (4.5) of Jakubowski and Kobus [1989], respectively.

Assumption 2.1. Let A ⊂ R \ {0} be a finite union of disjoint intervals of the form

(a, b] that do not contain 0, and Ac be the complementary set of A. The sequence

{Wi}ni=1 satisfies

sup
1≤p<q<r≤n

∣∣∣∣∣Pr
( ⋂

p≤i≤r

(anwiWi ∈ Ac)

)
−

Pr

( ⋂
p≤i≤q

(anwiWi ∈ Ac)

)
Pr

( ⋂
q≤i≤r

(anwiWi ∈ Ac)

)∣∣∣∣∣→ 0

for every A as n → ∞.
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Assumption 2.2. The sequence {Wi}ni=1 is ρ-mixing with
∑∞

j=1 ρ(2
j) < +∞. A

sequence {Xi}ni=1 is called ρ-mixing if

ρ(m) = sup
1≤i≤j≤n

sup
{
|corr(f, g)| : f ∈ L2(Fj

i ), g ∈ L2(F∞
j+m)

}
−−−→
m→∞

0,

where F
j
i is the σ-field generated by (Xi, . . . , Xj) and L2(Fj

i ) be the space of square-

integrable, Fj
i -measurable random variables.

Assumption 2.3. Let ∆(r) be an arbitrary division of the set {1, 2, . . . , n} into r

segments, 0 = m0 ≤ m1 ≤ · · · ≤ mr = n. For every ε > 0, the sequence {Wi}ni=1

satisfies

lim
r→∞

lim sup
n→∞

inf
∆(r)

r∑
q=1

∑
mq−1<i<j≤mq

Pr (anwi|Wi| > ε, anwj|Wj| > ε) = 0.

The first two assumptions, Assumptions 2.1 and 2.2, mainly concern the long-

range dependence. Assumption 2.1 basically assumes asymptotic long-range inde-

pendence and will be used to address the convergence in distribution of our test

statistic with 0 < α < 1. Assumption 2.2 is a ρ-mixing condition, which will be used

for 1 ≤ α < 2.

Assumption 2.3 limits the amount of short-range dependence by assuming that

large values cannot be clustered in a small segment [Beirlant et al., 2006]. In our

setting under the global null, Assumption 2.3 means that at most one Wi can have

a large absolute value within a small neighborhood. If Wis are independent, this

condition can be easily satisfied. However, this condition may not hold if the short-

range dependence is too strong.

Remark 2.2. Note that long-range and short-range dependencies make the best sense

either when there is a natural order among the individual tests or when the tests are

independent. This situation is not too unusual in practice. For instance, any sequen-

tial testing, including testing a sequence of genes, would fall within this category.

Suppose Assumptions 2.1 and 2.3 or 2.2 and 2.3 are satisfied. Define an i.i.d.

sequence {W̃i} that has the same marginal distribution as {Wi}. Note that T̃n(p) =

12



an
∑n

i=1 wiW̃i follows a S(α, β) distribution for any n, using a similar argument as in

(2.2.2). By applying Theorems 4.1 and 4.2 of Jakubowski and Kobus [1989], our test

statistic converges in distribution to S(α, β). This observation leads to the following

Theorem 2.1.

Theorem 2.1. Let W0 be a random variable that follows S(α, β), where 0 < α < 2

and −1 ≤ β ≤ 1. Assume one of the following conditions:

(i) 0 < α < 1 and Assumptions 2.1 and 2.3 hold.

(ii) 1 ≤ α < 2 and Assumptions 2.2 and 2.3 hold.

Then, if the global null hypothesis H0 is true,

Tn(p) = an

n∑
i=1

wiWi
d→ S(α, β)

as n → ∞.

Based on Theorem 2.1, the global null hypothesis is rejected at significance level

s if Tn(p) > ts, where ts is the upper s quantile of S(α, β).

Remark 2.3. A stable distribution with parameters α = 1 and β = 0 is a Cauchy

distribution. In this case, our SCT is equivalent to CCT [Liu and Xie, 2020]; i.e.

Tn(p) =
n∑

i=1

wi tan[π(0.5− pi)].

Liu and Xie [2020]’s method is robust to dependencies among the underlying p-values,

similar to ours. While our theorems for the SCT do cover include the CCT, our techni-

cal settings are slightly different from those of Liu and Xie [2020]. The first difference

lies in the forms of dependencies allowed in assumptions. Assumption C.1 of Liu and

Xie [2020] assumed that every pair of test statistics of individual tests is bivariate

normal. While the p-values follow a uniform distribution marginally, their pairwise

dependencies are modeled through bivariate Gaussian copulas. On the contrary, our

assumptions do not require Gaussian copulas. Instead, we control long-range and
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short-range dependencies. This means that our assumptions require a structure of

dependence such as a natural order. Our assumptions also require relatively weaker

dependencies, whereas Liu and Xie [2020] did not impose any restrictions on the

strength of dependencies. The second difference is that Liu and Xie [2020]’s test is

controlled only when the significance level s is small enough, while ours would work

for any s. This is because Liu and Xie [2020]’s Theorems 1 and 2 concern the right

tail probabilities only. They showed that the right tail probability of the test statistic

is approximately the same as the right tail probability of a Cauchy random variable

only when the significance level s is small enough. By contrast, the type I error of

the SCT can be controlled at any significance level as long as n is large enough. This

is because the in-distribution convergence result in our Theorem 2.1 is much stronger

than the right tail convergence results in Theorems 1 and 2 in Liu and Xie [2020].

The last difference is that our result holds only when the number of individual tests,

n, is large enough, while Liu and Xie [2020]’s Theorem 1 showed that the CCT can

control the size also when n is fixed.

Remark 2.4. The form of our SCT statistic also resembles Stouffer’s Z-score [Stouffer

et al., 1949]. A stable distribution with tail parameter α = 2 is a normal distribution

no matter what the skewness parameter β is. In this case, our SCT test statistic is

equivalent to Stouffer’s Z-score; i.e.

Tn(p) =
1√∑n
j=1 w

2
j

n∑
i=1

wiΦ
−1(1− pi).

Stouffer’s Z-score [Stouffer et al., 1949, Mosteller and Bush, 1954] method was de-

signed for independent hypotheses. Abelson [2012] found that Stouffer’s test is more

sensitive to consistent departures from the null hypothesis than Fisher’s method for

independent tests. Although Kim et al. [2013] found that Stouffer’s test works well

in the analysis of large-scale microarray data for dependent tests, and the form of our

SCT statistic can cover Stouffer’s Z-score, we do not include α = 2 in our proof for

Theorem 2.1. This is because the simulation results in Section 2.3 show that Stouffer’s
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Z-score always performs worse than the SCTs with α < 2. In particular, Stouffer’s

Z-score tends to severely over-reject under strong dependencies. Their size-adjusted

powers are always dominated by the other choices of αs. Accordingly, even though

it is not impossible that Stouffer’s Z-score still works in dependent cases, we do not

pursue this direction in theory.

2.2.2 Power

In this section, we prove that our SCT test statistics have asymptotically optimal

powers under sparse alternative hypotheses. We consider a similar setting to the one

in Liu and Xie [2020]. Let X = [X1, X2, . . . , Xn]
T be the collection of test statistics,

where Xi corresponds to the i-th individual test. Suppose Xi marginally follows a

normal distribution. Denote E[X] = µ and Cov(X) = Σ. Without loss of generality,

we assume Σ is the correlation matrix, i.e., each Xi has variance 1. The p-value

for i-th two-sided test is pi = p(Xi) = 2[1 − Φ(|Xi|)]. The global null hypothesis is

specified as H0 : µ = 0 versus the global alternative hypothesis Ha : µ ̸= 0.

Assumption 2.4. Let S = {1 ≤ i ≤ n : µi ̸= 0}, the collection of indices for which

the individual null hypotheses His are false. Let S+ = {1 ≤ i ≤ n : µi > 0}, and

assume |S+| ≥ |S|/2 without loss of generality.

1. The p-values in Sc follow a uniform distribution and {Wi}i∈Sc satisfy the re-

quirements in Theorem 2.1 with a|Sc|.

2. The number of elements in S is nk0 with 0 < k0 < 0.5.

3. The magnitude for all nonzero µi is the same. For i ∈ S, |µi| = µ0 =
√
2r log n,

and
√
r +

√
k0 > max{

√
α, 1}.

4. There exists a positive constant c0 such that minn
i=1wi ≥ c0n

−1. The sum of

weights
∑

j∈S wj = nk0−1.

15



Part 1 of Assumption 2.4 requires the p-values in the set Sc satisfy Assumptions

2.1 and 2.3 if 0 < α < 1 or satisfy Assumption 2.2 and 2.3 if 1 ≤ α < 2. Under this

condition, the contribution of p-values in the set Sc to the test statistic is bounded.

Part 2 requires a sparse alternative, which is commonly taken in the multiple testing

field. Part 3 controls the strength of signals. The magnitude of the nonzero signals

should be large enough to ensure the test statistic is arbitrarily large. Part 4 helps

keep the contribution of maxi∈S pi under control. Note that pi can still be close to

1 even when i ∈ S. In this case, F−1(1 − pi) can be negative, possibly leading to a

less powerful test. This assumption is to guarantee that such pis would not affect the

power of the test asymptotically.

Theorem 2.2. Consider 0 < α < 2 and −1 < β ≤ 1. Under Assumption 2.4, for

any significance level s, the power of the SCT converges to 1 as n → ∞:

lim
n→∞

Pr[Tn(p) > ts] = 1,

where ts is the upper s-quantile of stable distribution S(α, β), i.e., F (ts|α, β) = 1− s.

The proof is attached in Appendix A.2.

For Theorem 2.2, we no longer consider β = −1. The powers of small βs tend to

be dominated by other βs given the same α, making it not worth considering β = −1

for a powerful test. This is because the left tail becomes heavier as β gets closer to

−1, which prevents a test from having better powers. See Section 2.3 for a related

discussion.

2.3 Simulation Results

In this section, we explore the size, raw power, and size-adjusted power of the SCT

in finite samples in a similar setting as Liu and Xie [2020]. A collection of test scores,

X, is drawn from Nn(µ,Σ). All diagonal elements of the covariance matrix Σ are

set as 1. There are four models for the covariance matrix Σ considered to represent
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different dependence structures. Model 1 is the scheme where the individual tests are

independent. In Models 2, 3, and 4, the off-diagonal entries of the covariance matrix

Σ = (σij) are functions of ρ.

1. Independent. The correlation between each pair of underlying test scores is

zero, i.e., Σ = In.

2. AR(1) correlation. The correlation between a pair of underlying test scores

decays exponentially fast as their distances increase; σij = ρ|i−j|.

3. Exchangeable structure. The correlation between each pair of underlying test

scores σij = ρ for all i ̸= j.

4. Polynomial decay. The correlation between the ith and jth test scores, σij,

is set to be 1
0.7+|i−j|ρ . It should be noted that the correlation is a decreasing

function of ρ, unlike Models 2 and 3 above.

The simulation is conducted in R. We use qstable function in stabledist package

[Wuertz et al., 2016] to calculate quantiles of stable distributions. We truncate too-

small and too-large p-values at 10−6 and 1 − 10−6, respectively. This is to avoid

technical issues involved with too large quantiles in absolute values in the qstable

function. The number of Monte Carlo replications is 1000. The number of individual

tests in each Monte Carlo replication is 40 (n = 40). The significance level is set

to be 5%. The parameter ρ that governs the strength of the dependencies is set to

be 0.2, 0.4, 0.6, or 0.8. Note that larger ρ implies stronger dependencies in Models

2 and 3 and weaker dependencies in Model 4. For the SCT, all combinations of

α = 0.1, 0.3, . . . , 1.9 and β = −0.8,−0.6, . . . , 1 are considered in addition to (α, β) =

(1, 0), which is equivalent to the CCT. We also consider Stouffer’s Z-score, which

would correspond to the SCT with α = 2 and β = 0. Note that although Stouffer’s

Z-score can be written in the SCT form, Stouffer’s Z-score is not a part of the SCT

family we consider in our paper. The test statistics are calculated as equation (2.2.1)

with equal weights wi = 1/n.
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When calculating the sizes, data are generated from a multivariate normal distri-

bution with mean µ = 0. For powers, a sparse alternative hypothesis with k0 = 0.43

and r = 0.54 is considered. This means that we set µi =
√
2r log n ≈ 2 to randomly

chosen [nk0 ] = [n0.43] = 4 indices in each replication. Note that (
√
0.43 +

√
0.54)2 ≈

1.93 > max(α, 1) for all αs considered in our simulation, satisfying Part 3 of Assump-

tion 2.4. For raw powers, the cutoff values are taken directly from the corresponding

stable distributions. For the size-adjusted powers, 1000 Monte Carol replications are

first drawn under the global null hypothesis. Combined test statistics are calculated

for each Monte Carlo replication. The simulation-based cutoff for each method is

determined as the 95% quantile of the 1000 test statistics. After that, another set

of 1000 Monte Carlo replications is drawn under the sparse alternative. The number

of test statistics that are greater than the simulation-based cutoffs are counted to

compute the size-adjusted powers.

Figures 2.1-2.4 present the sizes, raw powers, and size-adjusted powers under the

four models. Colored lines indicate the proportion of rejections of the SCT with

different αs and βs. Red dots indicate the CCT, which corresponds to the SCT with

α = 1 and β = 0. Black dots indicate Stouffer’s Z-scores. The black solid lines in the

size plots represent the nominal significance level 0.05.

Figure 2.1 presents the sizes, raw powers, and size-adjusted powers when the un-

derlying tests are independent. All methods considered in our simulations, including

Stouffer’s Z-score, are supposed to work fine in this case. The Stouffer’s Z-score and

the SCT with α = 1.7 and β = −0.8 have the best size, 0.05. However, these two

methods are not necessarily the best due to their relatively low powers. In particu-

lar, Stouffer’s Z-score is the lowest in both raw and size-adjusted powers. The SCT

with α = 1.7 and β = −0.8 also has relatively low raw and size-adjusted powers.

In this independent scenario, the SCT with α ≥ 1 and β ≥ 0 tends to have higher

powers without losing the size control. In particular, most SCT methods including

the CCT controls the size quite successfully, although there is a slight tendency of
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under-rejection. In terms of powers of the SCT, when α < 1, β does not seem to

affect the powers much, whereas when α > 1 the powers have an increasing trend

as β increases. It is noticeable the CCT tends to have better powers than the SCTs

with α < 1, keeping the sizes similar. However, when α > 1 and β > 0, the SCT

performs better in general than the CCT, both in size and power. In particular,

when α = 1.5, 1.7 and β = 1, the SCT performs best with well-controlled sizes and

the highest size-adjusted powers.

Models 2-4 represent dependent cases. In these cases, the SCT works better than

Stouffer’s Z-score. When tests are dependent, Stouffer’s Z-score is not supported in

our theorems. See Remark 2.4. Stouffer’s Z-score is the weakest in our simulations

as well, as can be seen in Figures 2.2-2.4. In Models 2-4, Stouffer’s Z-score tends to

over-reject, and this tendency gets worse as the dependency gets stronger. Stouffer’s

Z-score also tends to have much lower powers than the SCT methods. While it

sometimes has decent raw powers (e.g., Model 3 with ρ = 0.6 and 0.8), these powers

are inflated due to their higher sizes. Their size-adjusted powers are consistently low

in settings.

As for the behavior of the SCT family including the CCT, it seems that different

sets of α and β work better in different situations. There is a tendency that the

stronger the dependency is, the more oversized larger αs and the more undersized

smaller αs. Smaller αs are generally required to keep the sizes under control for

stronger dependencies. However, too small αs may result in too conservative tests. In

general, the SCTs with α ≥ 1 paired with larger βs tend to have well-controlled sizes

and better powers for models with weaker or no dependencies, whereas α ≤ 1 paired

with larger βs tend to have better performances when dependencies are stronger.

Figure 2.2 presents the sizes and powers in Model 2 where tests are correlated with

AR(1) correlation structures with different ρs. With weaker dependencies (ρ = 0.2

or 0.4), the SCT with α ≥ 1 has the best size-adjusted powers and well-controlled

sizes. In particular, when ρ = 0.2, SCT with α = 1.7 and β = 1 works the best
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with sizes less than 0.05 and the highest raw powers and size-adjusted powers. When

ρ = 0.4, the SCT with α = 1.3 and β = 0.6 works the best with a size very close

to the target value and the highest size-adjusted power. In Model 2 with higher

dependencies (ρ = 0.6 or 0.8), the SCT with α < 1 has the best size-adjusted powers

and well-controlled sizes. For instance, when ρ = 0.6, SCTs with α = 0.9 have the

highest size-adjusted powers and under-controlled sizes. When ρ = 0.8, the SCT with

α = 0.1 has the highest size-adjusted power with the size under control. The effect

of β is not as much. In general, β = 1 works reasonably well for all α < 1.

Figure 2.3 presents the sizes and powers of Model 3 where tests are correlated with

exchangeable correlation structures with different ρs. The dependencies in Model 3

are stronger than those of Model 2 given the same ρ. As a result, smaller αs tend

to work better in this case compared to the Model 2 cases. In Model 3, when the

dependency is relatively weak with ρ = 0.2, the SCT with α = 1.1 and β = 1 works

best with size 0.048, raw powers 0.459, and size-adjusted powers 0.469. When the

dependency is moderate or strong in Model 3, the SCT with α close to 0 and β close

to 1 tends to have the best size-adjusted powers. In particular, when ρ = 0.4, 0.6,

or 0.8, the SCT with α = 0.1 and β = 1 has the greatest size-adjusted powers and

controlled sizes.

Figure 2.4 presents the results of Model 4 where tests are correlated as polynomial

decayed correlation structures with different ρs. Model 4’s dependencies are even

stronger than those of Model 3 in general. Therefore, smaller αs, compared to other

models, tend to produce better sizes and powers. Note that unlike Models 2 and 3,

the larger ρ is, the weaker the dependencies are in this case. For all four ρs considered,

α < 1 and larger βs tend to control sizes better with higher powers. In particular,

when ρ = 0.4, 0.6, 0.8 in Model 4, α = 0.5 or 0.7 and β = 1 have the best size-

adjusted powers and under-controlled sizes. Under the strongest dependency setting

with ρ = 0.2, the SCTs with α = 0.1, 0.3 and β = 1 produce the highest size-adjusted

powers. In terms of raw powers when ρ = 0.2, 0.4 or 0.8, the SCTs with α = 0.9
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and β = 1 work the best with under-controlled sizes and largest raw powers. When

ρ = 0.6, the SCT with α = 0.9 and β = 0.8 has the highest raw power.

The different performances of different αs and βs seem to be strongly connected

to how heavily the tails of the transformed p-values are. The right tail probability

of a stable random variable is P (W0 > x) ∼ cα(1 + β)x−α as x → ∞, where cα =

sin(πα/2)Γ(α)/π and W0 is a stable random variable that follows S(α, β). This right

tail approximation holds for all 0 < α < 2 and −1 < β ≤ 1. It is noteworthy that the

right tail probability is an increasing function in β and a decreasing function in α for

large enough x. This means that the smaller the α is and the larger the β is, the stably

transformed p-values Wi used for our combined test statistic in equation (2.2.1) has

heavier right tails. It seems that this heavier right tail is particularly useful when the

dependence is strong for size control. One interesting observation is that the heavier

tail seems to affect in different ways under the null and the alternative. Under the

null, the heavier tails lead to rejecting less, often correcting the over-rejection behavior

under stronger dependencies. This is also the cause of under-rejection when α is too

small. Under the alternative, the effects of heavier tails vary depending on the source.

The heavier tail induced by larger βs usually leads to rejecting more, leading to better

raw powers. On the contrary, the heavier tail behavior due to smaller αs on powers is

not monotone. The raw powers increase as α increases, with a peak at around α = 1.5

or 1.7, and then rapidly decreases. The only exception to the above observation on

powers is Model 3 with ρ = 0.8. In this case, the powers decrease as β increases when

α > 1, and the powers tend to increase as α increases.

The power behaviors due to αs are somewhat consistent with the size behavior.

However, the increasing powers as β increases cannot be explained by the heavier

right tails. This behavior as well as the under-rejection for very small αs may be

explained by the left tail behavior. Our SCT is an additive combination test where

its summands may be negative. When the p-values are too close to 1, the stably

transformed p-values take large negative values, which might reduce the chance of
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detecting the false null hypothesis when added to the test statistic. The large p-values

are connected to the left tail probability of a stable distribution, which approximately

has a power law Pr(W0 < −x) ∼ cα(1− β)x−α for large positive x when −1 ≤ β < 1.

When β = 1, Pr(W0,1 < −x) < P (W0 < −x) for any β < 1. This means that the left

tail probability of W0 is a decreasing function in β for all −1 ≤ β ≤ 1 as well as in α,

unlike the right tail probability. As a result, the smaller αs and βs are, the heavier

the left tails are. Since heavier left tails may result in the loss of powers, the powers

could decrease as α and β decrease. This is indeed consistent with our observations

in powers in most cases.

In addition, notice that the effect of α on both tails is exponential whereas that of

β is only linear. In particular, for small αs, the effect of β is not as noticeable. This is

because the effect of α dominates over the effect of β in these cases. On the contrary,

the effect of βs is more noticeable both in sizes and powers when α is relatively large.

This is because the changes in the tail probabilities due to α are dominated by that

of β for αs closer to 2.

It is also noteworthy that the SCT’s behavior is somewhat consistent in all models.

In particular, the exchangeable structure in Model 3 does not satisfy our long-range

independence assumption in Assumptions 2.1 and 2.2, unlike the other two dependent

models, Models 2 and 4. The fact that the SCT’s finite sample behavior in Model 3

was similar to that of Models 2 and 4 implies that the SCT can in fact be applied to

a wider range of conditions.

In summary, the SCT can control the sizes in finite samples for all four models

when 0 < α ≤ 1 even under strong dependencies, unlike Stouffer’s Z-score. However,

when 1 < α < 2, sizes tend to be substantially inflated under moderate and strong

dependencies in finite samples. The size behaviors can be explained by how heavy the

right tails of the transforming stable distributions are. In general, the heavier right

tails seem to help control the size against strong dependencies. The heavier right tails

are obtained when α is small and β is larger. This explains why smaller α and larger
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Figure 2.1: Sizes, raw powers, and size-adjusted powers of Model 1.

βs are preferred in the strong dependency case.

The powers of the SCTs tend to decrease as the dependency gets stronger. In

general, the SCTs with α > 1 and large β tend to have the best powers under no or

weak dependencies, whereas the SCTs with α ≤ 1 and large β have the best sizes and

powers under moderate and strong dependencies. The powers are affected by how

heavy left tails of the transforming stable distributions. In general, larger αs and βs

lead to lighter left tails, which often result in better powers.

Based on this simulation results, we recommend using the SCT with α ≈ 1.5 and

β = 1 if the dependence is suspected to be relatively low, and using the SCT with

0.5 ≤ α ≤ 1 and β ≥ 0 when the individual tests are suspected to be strongly depen-

dent. If there is no knowledge of the strength of the dependencies, we recommend

using either the CCT or the SCT with α ≈ 0.9 and β = 1, which lead to the best

size-controlled tests without losing too much power in most cases in our simulation.

2.4 Discussion

In this chapter, we formulated an additive combination test based on stable distribu-

tions. The individual p-values are first transformed into stably distributed random

variables and then their weighted sum is considered. This weighted sum still has a

stable distribution, making it possible to construct a test for the global null hypothe-
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Figure 2.2: Sizes, raw powers, and size-adjusted powers of Model 2.
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Figure 2.3: Sizes, raw powers, and size-adjusted powers of Model 3.
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Figure 2.4: Sizes, raw powers, and size-adjusted powers of Model 4.
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sis. This method can be considered as an extension of the Cauchy combination test,

which is based only on the Cauchy distributed random variables because the Cauchy

distribution is also a stable distribution. Similarly to Liu and Xie [2020]’s result, our

test is robust to some forms of dependencies among individual p-values. We proved

that this new test can successfully control the size and has asymptotically optimal

power, which is further confirmed in simulations.
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Chapter 3

Unified Combination Test with

Regularly Varying Tails

Abstract

This chapter proposes a unifying framework for the additive p-value combination

methods such as the harmonic mean p and the Cauchy combination test. These

methods can be understood as convex combinations of transformed p-values, with a

normalizing factor. We prove that the tails of combined statistics can be approxi-

mated by stable distributions, as long as the transformation functions are regularly

varying. The asymptotic behaviors of tests in this class depend mainly on the vari-

ation exponents of their transformation functions. These tests are proven to have

asymptotic optimal powers. The finite sample performances are demonstrated with

a discussion on choices of stability parameter and transformation function. An appli-

cation to biomedical engineering data is also presented.

Keywords: Additive combination test; hypothesis testing; multiplicity; regularly

varying; stable distribution.
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3.1 Introduction

This chapter also focuses on the additive p-value combination methods with the pur-

pose to control the FWER under dependencies. Some recently proposed additive

p-value combination methods are proven to be robust to weak or strong dependence

structures among the p-values. These methods include the Cauchy combination test

(CCT) developed by [Liu and Xie, 2020], harmonic mean p-value (HMP) proposed

by Wilson [2019], the generalized mean p-values (GMP) proposed by Wilson [2020],

and the stable combination test (SCT) proposed by Ling and Rho [2022]. The CCT

transforms individual p-values under the null hypotheses to a standard Cauchy ran-

dom variable, and then their weighted sum has the same tail probability as a standard

Cauchy random variable. The SCT extends the CCT to the stable combination fam-

ily. The HMP utilizes the fact that the reciprocal of a uniformly distributed random

variable follows a stable distribution. The generalized central limit theorem (GCLT)

is then applied to obtain the distribution of the average of the reciprocals, i.e., the

harmonic mean. The GMP extends the harmonic mean into the generalized mean.

The aforementioned methods in fact share similar ideas: they are built upon the

fact that a convex combination of regularly varying distribution is also regularly vary-

ing. This observation motivates a unified framework of additive p-value combination

tests, which enables closer comparisons. In our unified framework, we find that the

major differences between these methods come from two factors: the variation expo-

nents and the form of the transformation functions. We prove that methods in this

unified framework can use the stable distribution as their null distributions. They

can control the FWER at the desired level and enjoy asymptotically optimal pow-

ers. In particular, when the variation exponent is chosen to be 1, the size can be

controlled no matter how strong the dependencies among p-values are. When the

variation exponent is not 1, we may gain higher power only when an asymptotic tail

independence condition is met. Our simulation confirms our theoretical results.

The rest of this chapter is organized as follows. In Section 3.2, we briefly sum-
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marize existing additive combination tests and propose a unified framework based

on the closure property of regularly varying random variables. We show that, under

an asymptotic tail independence assumption, the FWER of these tests approximates

the target value. Under some conditions on the global alternative assumptions, the

unified framework has asymptotically optimal power. In Section 3.3, the choices of

unified framework parameters are discussed and some simulation results are provided.

A case study is illustrated in Section 3.4, as well as guidance on how to determine

if the data meets the tail independence condition. Section 3.5 concludes. Heavy

technical work is relegated to Appendix B. In this chapter, we continue following the

notations introduced in Chapter 2.

3.2 A Unified Framework

In this section, we first briefly review recent developments in p-value combination

methods that are closely connected: Wilson [2019], Liu and Xie [2020], Wilson [2020],

and SCT proposed in Chapter 2. Inspired by their similar constructions and perfor-

mances, we propose a unified p-value combination test.

Wilson [2019]’s HMP was originally inspired by Bayesian model averaging. They

start from a weighted average of maximized likelihood ratios, noting that it resembles

a model-averaged Bayes factor. They further observe that each maximized likelihood

can be approximated by inverses of its p-value if the degree of freedom of the chi-

squared null distribution is two and based on Wilk’s theorem [Wilks, 1938]. Motivated

by this observation, Wilson [2019] proposed the harmonic combined p-value, imitating

the mean Bayes factor:

p̊ =

(
n∑

i=1

wip
−1
i

)−1

,

where wis indicate weights of individual p-values such that
∑n

i=1wi = 1. The limit-

ing distribution of p̊ can be approximated by the generalized central limit theorem

(GCLT) in Uchaikin and Zolotarev [2011]. Given Assumption 1.1, pi is uniformly
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distributed for i = 1, . . . , n so that the reciprocal 1/pi follows a logGamma distribu-

tion with scale and shape parameters 1, LogGamma(1, 1). The tail probabilities of

a LogGamma(1, 1) satisfy the power-law conditions of the GCLT (equations (2.5.17)

and (2.5.18) of Uchaikin and Zolotarev [2011]). For the right tail, Pr
(
p−1
i > x

)
∼ x−1

as x → ∞ for all i = 1, . . . , n. It is trivial that the left tail satisfies the power-

law condition since Pr
(
p−1
i < −x

)
= 0 for all x < 0. Therefore, by the GCLT in

Uchaikin and Zolotarev [2011], the sum of independent 1/pis converges weakly to a

stable distribution with stability parameter α = 1 and skewness β = 1 up to a scale

and location shift.

Wilson [2020] extended the HMP to generalized mean p-value (GMP). The key

idea is that the tail probabilities of pri satisfy the power-law conditions not only

when r = −1, which corresponds to the HMP, but also for all r < 0. If pi follows

a uniform distribution between 0 and 1 and r < 0, the right tail probability of pri

is Pr(pri > x) = x1/r for all x ≥ 0 and the left tail probability Pr(pri < x) = 0

for all x < 0. Therefore, the power-law tail probability conditions of GCLT from

Uchaikin and Zolotarev [2011] hold for all r < 0 under the global null hypothesis

as long as Assumption 1.1 approximately holds with independent pis with large n.

Assuming the independence of pis, Wilson [2020] derived that 1
br,n

(pr1+ . . .+prn− cr,n)

converges to a stable distribution with stability parameter α = min(−1/r, 2) and

skewness parameter β = 1, i.e., S(min(−1/r, 2), 1). Here, cr,n and br,n are nonrandom

numbers that only depend on r and n, representing centering and scaling coefficients,

respectively, as provided in Table 1 of Wilson [2020]. In particular, notice that α = 2

when −0.5 ≤ r < 0. A stable distribution with stability parameter α = 2 represents

a normal distribution. This special case can be understood as a result of the usual

central limit theorem without the need for the GCLT, since when −0.5 ≤ r < 0, pri

is not heavy-tailed and has a finite variance. Therefore, the threshold of a GMP can

be written as a function of a stable distribution quantile. With significance level s,

Wilson [2020] proposed to reject the global null hypothesis H0 if the GMP is smaller

32



than the threshold Ψr,n(s) =
{

cr,n+br,nF−1(1−s|α,1)
n

}1/r

. Though the GCLT requires

the underlying p-values to be independent, Wilson argued that the independence

assumption of the GCLT can be relaxed to the Davis-Resnick condition,

Pr(pj < ϵ|pi < ϵ) → 0 as ϵ → 0, for all i ̸= j, (3.2.1)

when r < 0, utilizing Lemma 2.1 of Davis and Resnick [1996]. Wilson [2020] also

argued that when r < −0.5 and when significance level s → 0, the threshold takes

a simpler form. This can be shown using the fact that pri is regularly varying. In

this case, the threshold of the GMP can be shown to be s
n1+1/r . This threshold is

consistent with that from the GCLT.

As discussed in Chapter 2, Liu and Xie [2020] proposed the Cauchy combination

test (CCT) independently from Wilson’s work under a bivariate normal copula con-

dition. We extended CCT into the stable combination test (SCT) in Chapter 2 under

some mixing conditions.

The aforementioned methods have close connections. First, they all combine mul-

tiple p-values into a global one. In particular, Wilson [2019, 2020] combined the

individual p-values using the harmonic mean and generalized mean, respectively. Liu

and Xie [2020] and the method proposed in Chapter 2 shared the idea to transform

individual p-values into a stable random variable and took their convex combination.

Second, the null distribution of the combined p-values follows a stable distribution.

Last but not least, their finite sample performances are quite similar as well, as ob-

served in their papers. These methods all work well under dependencies as well.

Motivated by their similarities, we present a unified framework that can be viewed

as a generalization of Liu and Xie [2020], Wilson [2019, 2020], Ling and Rho [2022]’s

approaches. We note the transformation functions in Wilson [2019, 2020], Liu and

Xie [2020], and Ling and Rho [2022] can be generalized to a family of functions with

regularly varying tail behavior: Both the survival function of a Stable distribution

(except Gaussian distribution) and a power law function can be understood as reg-

33



ularly varying functions. These similarities naturally suggest a unified framework

based on regularly random variables.

Before defining the unified test statistic, we introduce the definition of a regularly

varying function. A positive measurable function h : (0,∞) → (0,∞) is called

regularly varying at infinity with index a ∈ (−∞,∞) if for all x > 0,

lim
t→∞

h(xt)

h(t)
= xa,

where a is called the exponent of variation [Karamata, 1933]. If a = 0, this function

is called slowly varying and generically denoted as L(x).

The following Assumption 3.1 specifies the property of transformation functions

based on regular variation to guarantee a size-controlled test.

Assumption 3.1. Assume that ϕ(x) : (0, 1) → (−∞,∞) is continuous and decreas-

ing in x. Let the tail probabilities of ϕ(p) be regularly varying with variation exponent

−α, where p is a uniform random variable between 0 and 1 and 0 < α < 2. That is,

Pr [ϕ(p) > x] ∼ q1x
−αL(x) (3.2.2)

and

Pr [ϕ(p) < −x] ∼ q2x
−αL(x) (3.2.3)

as x → ∞, where q1, q2 ∈ [0, 1], q1 + q2 = 1, and L(x) is a slowly varying function.

We further assume L(x) has a finite limit lϕ, i.e. limx→∞ L(x) = lϕ.

Assumption 3.1 consists of two parts: the function ϕ has to be continuous and

decreasing in p, and tail probabilities of ϕ(p) should be regularly varying at both

tails. The former ensures that the transformation preserves most order informa-

tion in the p-values. For instance, the smallest p-value is most likely from an al-

ternative hypothesis if the global null is false. With the decreasing condition on ϕ,

max1≤i≤n ϕ(pi) = ϕ(min1≤i≤n pi) carries the same information as the smallest p-value.

The latter condition on the regularly varying tails of ϕ is closely related to the ex-

treme value theory. This condition is similar to that of the GCLT, where both tails

are required to have a power law behavior.
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However, there are some transformation functions that cannot satisfy Assumption

3.1, and therefore, cannot be included in our unified framework. For instance, the

transformation function used in the Fisher combination test, − log(p), which follows

a Gamma distribution, is not regularly varying because Pr [− log(p) > x] = e−x for a

uniform random variable p between 0 and 1. Another example is Stouffer’s Z-score

test [Stouffer et al., 1949, Mosteller and Bush, 1954]. The transformation function for

the Stouffers Z-score test is Φ−1(1−p), which follows a normal distribution. However,

the tails of a normal distribution are not regularly varying because Pr[Φ−1(1− p) >

x] = 1− Φ(x) ∼ e−x2/2

x
√
2π

[Nolan, 2020, Feller, 1968].

The test statistic of the unified framework is defined as a weighted sum of ϕ(pi)s

Tn(p) = an

n∑
i=1

wiϕ(pi)− bn, (3.2.4)

where ϕ(·) is a transformation function satisfying Assumption 3.1, wi is a nonnegative

weight imposed on the ith test, and
∑n

i=1wi = 1. With 0 < α < 2 as defined in

Assumption 3.1, the normalizing constant an =
(∑n

j=1w
α
j

)−1/α

is chosen such that∑n
i=1 Pr [wi|ϕ(pi)| > a−1

n ] → lϕ. The shifting factor bn is defined as follows,

bn =


0 0 < α < 1,

nE sin[ϕ(p1)/n] α = 1,

anE[ϕ(p1)] 1 < α < 2.

(3.2.5)

It is well-known that if the underlying p-values are independent [Nolan, 2020, Janson,

2011], as n → ∞,

Tn(p)
d−→ S(α, β, γ, 0), (3.2.6)

where β = q1 − q2, and γ =
[

πlϕ
2 sin(πα/2)Γ(α)

]1/α
.

The unified combination test (UCT) statistic in equation (3.2.4) covers a wide

range of methods in the literature. We present four examples of transformation

functions that satisfy Assumption 3.1, and thus belongs to our unified framework.
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Example 3.1. Let ϕ be a quantile function of a stable random variable, ϕ(p) =

F−1(1 − p|α, β) as the stable combination test (SCT) introduced in Chapter 2.

This function is decreasing in p and follows a stable distribution if p is uniformly

distributed. The two tail probabilities are Pr [ϕ(p) > x] ∼ x−α
(
1+β
2

)
L1(x) and

Pr [ϕ(p) < −x] ∼ x−α
(
1−β
2

)
L1(x) as x → ∞, where L1(x) = 2

π
sin
(
πα
2

)
Γ(α) is a

constant that depends only on α, satisfying the regularly varying condition in As-

sumption 3.1. In this case, q1 = (1 + β)/2, q2 = (1− β)/2, and lϕ = 2
π
sin
(
πα
2

)
Γ(α).

If α = 1 and β = 0, ϕ(p) is a Cauchy random variable, making the CCT [Liu and

Xie, 2020] a special case of this class of transformation functions.

Example 3.2. Let ϕ(p) = p−1/α be a power function with 0 < α < 2. The function

ϕ(·) is decreasing, and ϕ(p) has a Pareto distribution with index α if p is uniformly

distributed. The right tail probability is regularly varying with Pr(p−1/α > x) ∼ x−α,

and Pr(p−1/α < −x) = 0 as x → ∞. Therefore, Assumption 3.1 is satisfied with

q1 = 1, q2 = 0, and lϕ = 1. With this choice of ϕ, our unified framework is equivalent

to the GMP in Wilson [2020]. The HMP in Wilson [2019] is also included in our

framework with α = 1.

Example 3.3. Let ϕ(p) = [− log(1 − p)]−1/α. This function ϕ(·) is decreasing and

follows a standard Fréchet distribution with shape parameter α if p is uniformly

distributed. The corresponding survival function is Pr [ϕ(p) > x] = 1− e−x−α ∼ x−α

as x → ∞ and Pr [ϕ(p) < −x] = 0. We refer to this case as Fréchet Combination Test

(FCT). The FCT satisfies Assumption 3.1 with q1 = 1, q2 = 0, and lϕ = 1. Note that

q1, q2, and lϕ are the same for the GMP and FCT. This means that the two methods

are approximately equivalent, which can also be seen in the finite sample simulations

in Section 3.3.

Example 3.4. Let ϕ(p) = p−1 + 1. The function ϕ(·) is decreasing, and ϕ(p) follows a

F (2, 2) distribution for a uniform random variable p. The two tail probabilities can

be approximated as Pr[ϕ(p) > x] = (x − 1)−1 ∼ x−1 and Pr[ϕ(p) < −x] = 0 when

x > 0 as x → ∞. Assumption 3.1 is satisfied with q1 = 1, q2 = 0, and lϕ = 1, similarly
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to the GMP and FCT.

The rest of this section addresses that our test statistic (3.2.4) can control the

family-wise error rate under the null and has nontrivial power under some alternatives

when individual p-values are allowed to be dependent.

3.2.1 Size

Recall that Tn(p) is approximately distributed as a stable distribution in equation

(3.2.6) when pi are independent. In Chapter 2 we extended this result to weakly

dependent pi’s when ϕ(1 − p) is a stable quantile function, assuming that {pi}ni=1

have a natural order. In this chapter, we do not require this natural order or weak

dependence. Instead, an asymptotic tail independence condition is assumed. The

following assumption is adapted from Lemma 3.1 of Jessen and Mikosch [2006].

Assumption 3.2. For i = 1, . . . , n, let pi marginally follow a uniform distribution

and wi be a fix positive weight such that
∑n

i=1wi = 1. For any i ̸= j,

lim
t→∞

Pr [wiϕ(pi) > t,wjϕ(pj) > t]

Pr [w1ϕ(p1) > t]
= lim

t→∞

Pr [wiϕ(pi) < −t, wjϕ(pj) > t]

Pr [w1ϕ(p1) > t]

= lim
t→∞

Pr [wiϕ(pi) < −t, wjϕ(pj) < −t]

Pr [w1ϕ(p1) > t]
= 0.

(3.2.7)

This asymptotic tail independence condition assumes that the tail probability of

a pair-wise joint distribution decays faster than that of the marginal. Under this

condition, it is rare to observe two simultaneous extreme events than one extreme

event. The asymptotic tail independence condition can be considered as an extension

of the Davis-Resnick condition in equation (3.2.1), on which Wilson [2020] relies. Note

that the Davis-Resnick condition works only for nonnegative regularly varying random

variables, whereas our Assumption 3.2 allows for negative values. Assumption 3.2

allows a wide range of dependence structures, for example, jointly normal distribution

and jointly Farlie-Gumbel-Morgenstern distribution [Geluk and Tang, 2009].
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While Assumption 3.2 does not require weak dependence nor a natural order, it

seems that we no longer have the in-distribution convergence to a stable distribution.

Instead, the following theorem proves that the right tail probability of Tn(p) in (3.2.4)

can be approximated by that of a stable random variable.

Theorem 3.1. Suppose Assumptions 1.1, 3.1, and 3.2 hold, then under the global

null hypothesis H0, the right tail probability of the unified test statistic Tn(p) can be

approximated by that of a stable random variable. That is,

lim
t→∞

Pr[Tn(p) > t]

Pr(W0 > t)
= 1, (3.2.8)

where W0 is a stable random variable that follows S(α, β, γ, 0) with stability index

0 < α < 2, skewness parameter β = q1 − q2 = limt→∞
Pr[ϕ(·)>t]−Pr[ϕ(·)<−t]

Pr[|ϕ(·)|>t]
, location

parameter 0, and scale parameter γ =
[

lϕπ

2 sin(πα/2)Γ(α)

]1/α
.

The proof is attached in Appendix B.1. This theorem implies that the multiple

tests with rejection region {Tn(p) > ts} can control the Type I error at significance

level s, where the cutoff value ts is determined by the upper s-level quantile of a

stable distribution S(α, β, γ, 0). This holds as long as ts is large enough, or in other

words, as long as the significance level s is small enough. Owing to this theoretical

result, the combined p-value of H0 is calculated as the probability of observing as

or more extreme test statistic from the corresponding stable distribution, i.e. pc =

1− F [Tn(p)|α, β, γ, 0].

Remark 3.1. When individual tests are perfectly correlated, i.e., when all pi’s are

equal, the tail independence assumption in Assumption 3.2 does not hold. Under

perfect correlation, ϕ(pi) = ϕ(p1) for all i = 1, . . . , n and the test statistic takes a

simpler form, Tn(p) = anϕ(p1) + bn. In this case, only α = 1 can control the Type I

error. Let W0 have the distribution as defined in Theorem 3.1. By Assumption 3.1,

as t → ∞ and n fixed,

Pr[Tn(p) > t]

Pr(W0 > t)
∼

(
t+bn
an

)−α

t−α
∼

(
n∑

j=1

wα
j

)−1

.
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Since the function wα
j is decreasing in α,

(∑n
j=1w

α
i

)−1

is smaller than 1 if 0 < α < 1,

equals 1 if α = 1, and is greater than 1 if 1 < α < 2. Therefore, the UCT will

under-reject when α < 1 and over-reject when α > 1. The further α is away from 1,

the larger the type I error rate is away from the target value.

Remark 3.2. Liu and Xie [2020] proved the same result as our Theorem 3.1 for a special

case when ϕ(1 − p) is a Cauchy quantile function. Assumption C.1 of Liu and Xie

[2020] assumed that the test scores of individual tests are bivariate normal. Bivariate

normal random variables are always asymptotically tail independent as long as they

are not perfectly correlated. Therefore, excluding the perfectly correlated case, our

Assumption 3.2 is more general than the bivariate normal assumption in Liu and Xie

[2020]. Our Theorem 3.1 extends Theorem 1 of Liu and Xie [2020]to wider choices of

α and transformation function ϕ(·).

Remark 3.3. If we add an assumption that ϕ(p) is nonnegative, the UCT has a valid

multiple-level test. This can be shown by the closed testing procedure arguments

in Wilson [2019, 2020]. Let R ⊂ {1, 2, . . . , n} be a collection of indexes, Rc be its

complement set, and ts be the critical value derived from the upper s-quantile of

stable distribution S(α, 1, γ, 0). The multiple-level test,

reject
⋂
i∈R

Hi if T|R|(p) ≥
a|R|

an
ts +

a|R|

an
bn − b|R|,

is valid since

Tn(p) =
an
a|R|

T|R|(p) +
an
a|R|

b|R| + an
∑
i∈Rc

wiϕ(pi)− bn ≥ ts.

when ϕ takes nonnegative values only. This multiple-level test states that if the

subset R is significant then the whole set is also significant. When α ̸= 1, the term
a|R|
an

bn−b|R| = 0 , therefore the form is simpler that T|R|(p) ≥
a|R|
an

ts. When α = 1, this

term is less than 0. HMP has a simpler form without the shifting factor-related term

because HMP has an approximate multilevel test threshold, whereas our formula is

exact. See section 3.C of the Supporting Information of Wilson [2019]. Note that a
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wide range of ϕ functions are nonnegative. For instance, among the four examples of

ϕ listed above, if ϕ(p) is Pareto, Fréchet, F (2, 2), or stable with 0 < α < 1 and β = 1,

ϕ is nonnegative. However, if ϕ(p) is stable with α ≥ 1 or β ̸= 1, ϕ can take negative

values, and the multiple-level test may not exist.

Remark 3.4. The proof of Theorem 3.1 in the supplementary material Section B.1

requires three approximations: closure property of ϕ(p1), . . . , ϕ(pn) (see Lemma 3.1

of Jessen and Mikosch [2006]), tail probability approximation of ϕ(pi) in equation

(3.2.2), and tail probability approximation of a stable random variable W0 in equation

(B.1.1). All of these approximations require the critical value to be large enough.

3.2.2 Power

In the following, we show that the UCT has an asymptotically nontrivial power.

We consider a sparse alternative similar to Chapter 2, where only a relatively small

number of hypotheses are false.

Assumption 3.3. Let S be the collection of indices for which the individual null

hypotheses His are false.

1. The number of elements in S is assumed to be nk0 with 0 < k0 < 0.5.

2. There exists a positive constant c0 ≤ 1 such that minn
i=1 wi ≥ c0/n.

3. There exists a constant ε1 > 0 such that, as n → ∞

Pr

[
ϕ

(
min
i∈S

pi

)
≤ M1c

−1
0 nm1

]
−→ 1, (3.2.9)

where m1 = ε1 +max(1/α, 1) and M1 > 0 is a constant.

4. If ϕ(·) is always nonnegative, no additional assumption is required for the p-

values in set Sc. If ϕ(·) takes both negative and positive values, we have the

following additional conditions:

40



• There exist a constant 0 < ε2 < 1/α− k0 such that as n → ∞

Pr

[
ϕ

(
max
i∈S

pi

)
< M2c0n

m2

]
−→ 1, (3.2.10)

where m2 = 1/α− ε2 − k0 > 0 and M2 < 0 is a constant.

• The p-values in set Sc follow a uniform distribution and satisfy the asymp-

totic tail independent condition in Assumption 3.2.

Part 1 of Assumption 3.3 is for the sparse alternative, which is commonly taken

in the multiple testing field. Part 2 imposes a condition on the minimum weight

and helps find the upper bound of the normalizing factor an. Part 3 controls the

minimum p-value in set S to be small enough as in equation (3.2.9). This condition

guarantees that there will be at least one test statistic that is large enough when the

null hypothesis is false, contributing to the nontrivial power. Part 4 is necessary only

when ϕ(·) are allowed to be negative. When ϕ(pi) is always nonnegative for all i, a

large pi doesn’t affect the power. On the contrary, if ϕ(·) can be negative, ϕ(pi) may

take a large negative value when pi is too close to 1. In this case, too large pi may

contribute heavily to the UCT statistic, harming the power. The conditions on the

maxi∈S pi in equation (3.2.10) and p-values in set Sc ensure their contributions are

negligible compared to mini∈S pi and guarantee nontrivial power of the UCT, even

when ϕ(·) can take negative values.

These conditions on the magnitudes of minimum and maximum p-values are not

too strong. Without loss of generality, assume that ϕ−1 exists. From equations (3.2.2)

and (3.2.3), the tail behaviours of ϕ−1(·) can be obtained: as x → ∞,

ϕ−1(x) ∼ q1x
−αL(x) and ϕ−1(−x) ∼ 1− q2x

−αL(x).

Therefore, the conditions in equations (3.2.9) and (3.2.10) are equivalent to, as n →

∞,

Pr

[
min
i∈S

pi ≤ q1lϕ
(
M1c

−1
0

)−α
n−ε1α−max(α,1)

]
−→ 1, (3.2.11)

41



and

Pr

[
max
i∈S

pi ≤ 1− q2lϕ(−M2c0)
−αnα(ε2+k0)−1

]
−→ 1. (3.2.12)

Since ε2 < 1/α − k0, n
α(ε2+k0)−1 → 0, and therefore 1 − nα(ε2+k0)−1 → 1. Given

the form of ϕ(·), we know the values of q1, q2, lϕ, and thus the conditions can be

simplified. The conditions for different transformation functions are the same up to

some constant adjustment given the same α. These conditions on the magnitudes of

minimum and maximum p-values are not too strong. In particular, it can be shown

that equation (3.2.11) is comparable with the assumptions of Liu and Xie [2020],

while equation (3.2.12) is slightly stronger. See supplementary material B.3 for more

detail.

The condition on mini∈S pi in Equation (3.2.9) is crucial for achieving nontrivial

power. While providing the condition on min(pi) in an order of n makes it simple

to understand, this condition can be relaxed to provide a tighter bound. From the

proof of Theorem 3.2 in the Supplementary Material B.2 one can see that this bound

is tight except for α > 1. This stems from setting the lower bound min(n1−1/α, 1) of

an, which is tight when α ≤ 1 and can be improved when α > 1. Without taking the

lower bound of an in the proof, equation (3.2.9) can be replaced by the following:

Pr

[
ϕ

(
min
i∈S

pi

)
≤ M1n

1+ε1

c0an

]
−→ 1. (3.2.13)

With a properly defined ϕ−1(·), equation (3.2.13) is equivalent to

Pr

[
min
i∈S

pi ≤ q1lϕ

(
c0
M1

)α ( an
n1+ε1

)α]
−→ 1. (3.2.14)

An interesting observation is that equation (3.2.14) holds easier if q1lϕ

(
c0
M1

)α (
an

n1+ε1

)α
is larger. Understanding this behaviour would guide how to choose ϕ(·) and α. In

particular, q1, lϕ, and α are solely determined by the choice of the transformation

function ϕ(·) and can be controlled by the user. In the following three remarks, we

discuss the influence of each component, q1, lϕ, and α, on the power of UCT.
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Remark 3.5. Equation (3.2.14) suggests that larger q1 would lead to a higher power

of UCT. This was indeed the case in Ling and Rho [2022]’s simulation for SCT. For

SCT, q1 = (1 + β)/2 < 1 if β < 1. The largest possible q1 is 1 and is achieved when

β = 1. Ling and Rho [2022] reported that SCT with β = 1 does outperform β < 1

case for the same α. Examples 3.2–3.4 all have the largest possible q1 = 1.

Remark 3.6. The larger lϕ could also lead to a higher power of UCT. Examples 3.2–

3.4 all have lϕ = 1. For SCT, lϕ = 2
π
sin
(
πα
2

)
Γ(α), which is a decreasing function in

α. In fact, limα↓0 lϕ = 1, and lϕ < 1 for all α > 0. This suggests that SCT may be

slightly inferior to other choices of transformation functions in finite samples, which

is indeed consistent in our simulations in Section 3.3.

Remark 3.7. The effect of α is more complicated since an depends on α. There are

two terms to consider:
(
c0M1

−1
)α

and
(
ann

−(1+ε1)
)α
. Since M1 > 1 and 0 < c0 ≤ 1,(

c0M1
−1
)α

is a decreasing function in α > 0. Since an ≤ n1−1/α for any α and n,

ann
−(1+ε1) < 1, and therefore,

(
ann

−(1+ε1)
)α

would also be a decreasing function in α

if an is fixed, which would have suggested that higher power would be achieved if α

is chosen closer to 0. However, this is not the case because an depends on α. In fact,

an = (
∑

wα
i )

−1/α is increasing in α when α > 1, decreasing when α < 1, and is equal

to 1 when α = 1.

An interesting observation from equation (3.2.11) is that the smaller mini∈S pi is

required for larger α, given α ≤ 1. For a simpler argument, let’s assume equal weights.

In this case, an = n1−1/α and min pi is bounded from above by q1lϕ
(
M1c

−1
0

)−α
n−ε1α−1,

which decreases as α increases. This suggests that this condition is easier to achieve

if α is smaller, closer to 0.

Similarly, the larger q1, lϕ, and c0 are, the more likely the equation (3.2.11) is

satisfied, given the same n, M1, and ε1. For q1, Examples 3.1–3.4 all have the largest

q1 = 1, except for SCT with β < 1. As pointed out in Chapter 2, the SCT with β < 1

was dominated by β = 1 in their finite sample simulations. Larger c0 means that the

weights are more equally spread across pis, which may contribute to a higher power.
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The following theorem ensures that the power of a test that belongs to the unified

framework goes to one as n → ∞.

Theorem 3.2. Under Assumption 3.3, assume the weights
∑

i∈S wi = nk0−1 and∑n
i=1wi = 1. For any significant level s, the power of the unified framework goes to

1 as follows:

lim
n→∞

Pr [Tn(p) > ts] = 1, (3.2.15)

where ts is the upper s-quantile of the stable distribution S(α, β, γ, 0) with 0 < α < 2,

β = q1 − q2, and γ =
[

lϕπ

2 sin(πα/2)Γ(α)

]1/α
.

The proof is attached in the Appendix B.2.

3.3 Simulation studies and selection of parameters

This section presents simulation results to examine the size and power of the UCT

for various choices of tail indexes α and transformation functions ϕ(·) under different

levels of dependence strengths. We adopt similar simulation settings in Liu and Xie

[2020] and Chapter 2. Three values of sample sizes are examined; n = 40, 100, and

300. The number of Monte Carlo replications is 104 when the nominal significance

level s is 0.05 and 5 ∗ 105 when s = 10−4. In each replication X = (X1, . . . , Xn)

are drawn from an n-variate normal distribution Nn(µ,Σ), where µ = 0 under H0

and µ ̸= 0 under Ha. Let Φ be the distribution function of the standard normal

distribution, the p-values pi = 2−2Φ(Xi) are computed from the Z-score test statistics

Xi. The number of signals is n0.2 for each n under Ha. All signals have the same

strength µa =
√
1.8 log n. The elements of the covariance matrix Σ are set to follow

a decaying structure where Cov(Xi, Xj) = ρ|i−j| with 0 ≤ ρ < 1 for i, j = 1, . . . , n.

Size and raw power are calculated as the percentage of rejections of the test statistics

using the quantile of the reference stable distribution as the critical value. For all

settings, we consider equal weights for the UCT methods; that is, wi = 1/n, and

an = (
∑n

i=1 w
α
i )

−1/α = n1−1/α.

44



The size-adjusted powers are calculated to make the comparison fair to different

sizes. The simulation-based critical values are the upper s-quantiles of the simulated

UCT statistics drawn under the null hypothesis. The quantile of the reference stable

distribution is calculated by qEstable in FMStable package [Robinson, 2012] in R

when β = 1. When β ̸= 1, the qstable function in stabledist package [Wuertz

et al., 2016] is utilized. qEstable is more accurate and quicker than qstable but

the former only works for β = 1. In the simulation of SCT, too large and too small

p-values are truncated at 1− 10−6 and 10−6 respectively to avoid any technical issue

involved with too large quantiles in absolute values.

When computing the UCT statistics, we need to find the form for bn in equation

(3.2.5). In particular, finding bn for α = 1 may be tricky since it involves finding

expected values for a sine function. This can either be done by simply simulating

sin[ϕ(pi)/n] and taking their averages. An alternative approach is using well-known

approximations. In our simulations, we used bn = log n + 1 − 2cE for FCT [Janson,

2011], and bn = log n + 1 − cE for HMP [Wilson, 2019, Zaliapin et al., 2005], where

cE ≈ 0.57721 is the Euler’s constant.

We examine the performances of the UCT based on their size, raw power, and

size-adjusted power. The effect of different tail indexes α under various strengths in

correlations ρ are discussed in section 3.3.1. The effect of different transformation

functions ϕ is discussed in section 3.3.2.

3.3.1 The effect of tail index

In this subsection, we explore the effect of choices of α under various dependence

strengths. The effect of α is similar across different choices of transformation function

ϕ(·) in our unreported simulation. In this subsection, we only present the result with

the FCT to save space.

Recall that the FCT has tail probability Pr[ϕ(pi) > x] ∼ x−α satisfying Assump-

tion 3.1. The Fréchet distribution has expectation Γ(1 − 1/α) when 1 < α < 2.
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Therefore, the FCT statistic has the following form in equal weights,

Tn(p) =


n−1/α

∑n
i=1 ϕ(pi) 0 < α < 1,

n−1
∑n

i=1 ϕ(pi)− (log n+ 1− 2cE) α = 1,

n−1/α
∑n

i=1 ϕ(pi)− n1−1/αΓ(1− 1/α) 1 < α < 2.

Our multivariate normal setting satisfies Assumption 1.1 and 3.2. Thus, the FCT

statistic Tn(p) asymptotically has the same tail probability as S(α, 1, γ, 0) with γ =

[2/π sin(πα/2)Γ(α)]−1/α by Theorem 3.1.

Figures 3.1 and 3.2 present finite sample sizes, raw powers, and size-adjusted

powers of the FCT when the significance levels are s = 0.05 and s = 10−4, respec-

tively. Figures C.1 and C.2 in supplementary material present the same figures with

significance levels s = 0.01 and s = 0.005, providing more details of the effect of

different significance levels. Tail indexes α = 0.1, 0.3, 0.5, 0.7, 1, 1.3, 1.5, 1.7, 1.9 are

considered in the x-axis. The y-axis represents the percentage of rejections simula-

tions. The black horizontal line is the nominal significance level. Different strengths

of correlations are considered with ρ = 0, 0.2, 0.4, 0.6, 0.8, and varying sample sizes

n = 40, 100, 300.

The first rows of Figures 3.1 and 3.2 demonstrate how different choices of αs

affect the sizes. When the dependence is strong (ρ = 0.8), α = 1 seems to be the only

reasonable choice. This is somewhat expected because, as mentioned in Remark 3.1,

the UCT methods cannot control the size under perfect correlation (ρ = 1) unless

α = 1. It seems that this behavior is also consistent when the dependence is strong;

when ρ = 0.8, the FCT tends to under-reject for α < 1 and over-reject for α > 1. This

result was consistently observed for all UCT methods in our unreported simulations.

On the contrary, if α = 1, the FCT (and all other UCT) controls the size well for any

n and significance level s. Therefore, under the presence of a strong correlation, we

recommend α = 1.

However, when the dependence is weak or moderate (ρ = 0, 0.2, 0.4, 0.6), other

choices of α may achieve higher powers, while controlling sizes reasonably. As can
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be seen from the first row of Figures 3.1 and 3.2, the FCT controls the size well with

most αs, as long as α is not too close to 2. When α is close to 2 (α = 1.7, 1.9), the

FCT tends to under-reject with significance level s = 0.05 under weak or moderate

dependence. In this case, the larger α is, the more severe the size distortion is. This

is explained by the slower convergence to the stable tail probability limit when α is

close to 2. Recall we require t/an to go to infinity in the proof of Theorem 3.1, where

t is the critical value and an = (
∑n

i=1 w
α
i )

−1/α
is the normalizing constant. Since the

critical value depends on the significance level, the value of the significance level s

at which the requirement is satisfied depends on the magnitude of an. In particular,

when α > 1, an is an increasing function both in α and n. This means that larger t

is required if α is very close to 2 when the sample size n is held constant. In contrast

when α < 1, the large n does not affect the requirement of t because an < 1 according

to Lemma A.3 in Appendix A. We can indeed check this behavior from the simulation.

Compare the first rows of Figures 3.1 and 3.2, except for the ρ = 0.8 case. We can see

that the under-rejection behavior is no longer observed in 3.2 with significance level

10−4. Figures C.1 and C.2 in Appendix C present the same plots with significance

levels 0.01 and 0.005, which demonstrate that the under-rejection behavior gradually

reduces as the significance level s decreases, or equivalently, as the critical value t

increases. Another interesting observation is that as the sample size n increases, the

size distortion of large α gets worse. This phenomenon is also due to the fact that a

smaller significance level is required for a larger sample size if α > 1.

The second and third rows of Figures 3.1–3.2 present the raw and size-adjusted

powers, respectively. From the 3rd row of Figure 3.1 and 3.3, the size-adjusted power

increases as n increases, as expected by Theorem 3.2. An interesting observation is

that the raw and size-adjusted powers seem to slightly increase as α increases. In

Figure 3.1, the raw power seems to drastically decrease when α > 1.5. This, again,

is due to the too-small t/an ratio mentioned above. In the proof of Theorem 3.2, we

still need large enough t/an. This can indeed be double-checked by Figure 3.2, where
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the drastic decrease in raw power is no longer observed, thanks to the much smaller

significance level s = 0.0001. Another driver of this phenomenon is that a stronger

condition is required when alpha is large. In equation (3.2.11), ϕ−1(M1c0
−1nm1) relies

on α negatively. The larger α is, the smaller value of minimum p-value is required. In

our simulation, we use the same set of p-values for varying αs. However, the smallest

p-value in our simulation is not small enough to ensure the Part 3 of Assumption 3.3

when α is close to 2. Even when the significance level is relatively large s = 0.05, it

seems that α > 1 may still offer better good size-adjusted powers than α = 1, as long

as α stays away from 2 reasonably, say α = 1.5.

In the following we look more closely into the performance of the FCT under

weak dependence where ρ = 0, 0.05, 0.1, 0.15, and 0.2 when the significance level

is 0.05. Unlike the strong correlation cases, there are no inflated sizes with any

α ∈ (0, 2) in the 1st row of Figure 3.3. We still have severe under-rejection when α

is closer to 2 because t/an is too small, as mentioned above. The conservative size

and decreasing raw power when 1 < α < 2 is due to the inaccurate approximation

when the significance level is not small enough as discussed above. When we reduce

the significance level, the peak moves to a larger α. Under 5% significance level in

our simulation settings, α = 1.3 produces the highest raw powers when n = 40 and

100, and α = 1.5 does when n = 300. Under 1% and 0.5% significance level in

our simulation settings, α = 1.7 produces the best raw power for all n. In a weak

dependence structure, if a higher significance level as 5% is required, α = 1.5 produces

the best power, and if a lower significance level as 0.5% is required, α = 1.7 achieves

a higher power. However, when α → 2−, stable distribution approaches the normal

distribution and the regularly varying tail behavior is only evident on extreme tails.

As a consequence, we do not recommend α larger than 1.5 unless the significance

level is extremely tiny.

In conclusion, if the significance level is not small enough, α = 1 is the best choice

under a strong dependence structure and choosing α > 1 helps achieve higher powers
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Figure 3.1: Size, raw power, and size-adjusted powers of the FCT at the nominal significance level

5%.
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Figure 3.2: Size, raw power, and size-adjusted powers of the FCT at the nominal significance level

10−4.
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Figure 3.3: Size, raw power, and size-adjusted powers of the FCT with varying weak correlation at

the nominal significance level 5%.
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under a weak dependence structure. These suggestions are consistent with the results

in the previous Chapter.

3.3.2 The effect of transformation function

In this subsection, we consider the performance of different transformation functions

ϕ. When any ϕ takes only positive values, the test has better size and power under

dependence. Moreover, the test can control the FWER in a strong sense in this case.

Along with our recommendation of α = 1 under strong dependence and α = 1.5

under weak dependence, we compare the following six methods in Figure 3.4: FCT

with α = 1, 1.5, GMP with α = 1, 1.5, SCT with (α, β) = (1, 0) and (α, β) =

(1.5, 1). The x-axis is the correlation ranging from 0 to 1, and the y-axis represents

the percentage of rejections in 104 simulations. The black horizontal line indicates

the nominal significance level 5%. In legend, “FCT1” refers to FCT with α =1,

“FCT1.5” refers to FCT with α = 1.5, “GMP1” refers GMP with α = 1, which

is the same as the HMP, “GMP1.5” refers GMP with α = 1.5, “SCT1” refers to

SCT with (α, β) = (1, 0), which is the same as CCT, and “SCT1.5” represents SCT

with (α, β) = (1.5, 1). This result is reported only in graphs for brevity, but their

corresponding numerical values are available in Appendix C. The FCT and GMP

have similar performance despite the value of α because p ≈ − log(1 − p) when p is

small.

When dependence is weak, for example, ρ < 0.3, all methods control the size well,

and especially the SCT with (α, β) = (1.5, 1) produces the highest raw power. When

ρ < 0.75, the size-adjusted powers of these six methods are close, and thus suggest

that the unified framework is robust to dependence. When dependence is strong,

only tests with α = 1 successfully control the size. Among them, the “SCT1” has a

higher size than “FCT1” and “GMP1” when the correlation is high. The “SCT1” (i.e.

CCT) is less out-performed than the other two methods because it takes both positive

and negative values and it may potentially suffer from a large negative penalty when
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Figure 3.4: Size, raw power, and size-adjusted power of six methods.

pi → 1− even though under Part 4 of Assumption 3.3.

3.4 Application

We demonstrate applications with a set of paired time series of fluorescence intensity

in this section. The data were captured from live-cell imaging of the two fluorescently-

tagged molecules, i.e., Talin-GFP and Vinculin-TMR, which are involved in cell ad-

hesion to the extracellular matrix [Humphries et al., 2007, Geiger et al., 2009]. As
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focal adhesions, puncta-like molecular complexes where Talin and Vinculin are part

of, slide over time, from the time-lapse images, point-like sources were detected via

2D Gaussian fitting of the Talin-GFP channel and tracked using linear assignment

problem [Han et al., 2021]. From the x- and y-locations of each trajectory, fluores-

cence intensities of both Talin and Vinculin channels were measured and stored in

a separate array. While how Talin binds Vinculin in vitro is well-understood via

biochemistry, how they are recruited and associated with each other in live cells has

been unclear. In a previous attempt, a simple event detection algorithm was used to

detect which molecular signal has risen earlier than the other. Depending on each

adhesion’s fate to mature or fail, the time order of the recruitment event was different

[Han et al., 2021]. However, a functional causality has not been evaluated between

the two signals.

There are two series of Talin and Vinculin in each of the 278 locations. In each

location, the series has a length of at most 601. Since newly assembled IACs tend to

show an increasing trend, we first detrend the data to make them stationary. Figure

3.5(a) plots the detrended time series of two variables from one randomly picked

location. To find a causal influence of Talin to Vinculin or vice versa, we use a F test

for the existence of Granger causalities between the two series.

As shown in equation (3.4.16) and (3.4.17), the F test compares the unrestricted

model in which one series (xt) is explained by the lagged value of both series (xt

and yt) and the restricted model where the series is only explained by its own lagged

values. For t = 1, . . . , T ,

xt = u0 +

q∑
i=1

uixt−i +

q∑
i=1

viyt−i + e1t, and (3.4.16)

xt = ũ0 +

q∑
i=1

ũixt−i + e2t. (3.4.17)

Each F test has an individual null hypothesis that there is no directional causal

link from yt to xt, that is vi = 0 for all i = 1, . . . , q. The lag q is selected by
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Figure 3.5: (a) The detrended time series plots of two variables. (b) The violin plots of the individual

p-values from Granger causality F test of both directions.

the smallest BIC with a maximum lag order of five. The test statistic is defined as

F =
(
∑T

t=1 ê
2
2t−

∑T
t=1 ê

2
1t)/q∑T

t=1 ê
2
1t/(T−2q−1)

. Under the normality assumption, the F test statistic has a

null distribution of F (q, T−2q−1), and thus we can compute a corresponding p-value

for each test statistic.

In total, there are 278 hypotheses and 278 corresponding p-values in each causal

direction. Figure 3.5(b) is the violin plots of the individual p-values from the multiple

Granger causality F tests of both directions. ‘T.GC.V” represents the direction from

Talin to Vinculin and “V.GC.T” represents the direction from Vinculin to Talin.

The dashed horizontal red line is at an intercept of 0.05. The points in the plots are

the median values. From Figure 3.5(b), the p-values of a causal link from Talin to

Vinculin tend to be closer to zero, whereas the other direction is generally uniformly

distributed between 0 and 1.

We further fit multiple testing models to calculate a combined p-value to draw

more accurate conclusions. The 278 individual p-values are fitted into the unified

framework with different αs and different methods: FCT, GMP, SCT with β = 0, and

SCT with β = 1. The individual p-values are truncated at 10−6 to avoid divergence

in the calculation. Table 3.1 on the left (or right) give the combined p-values of

the causal link from Talin to Vinculin (or from Vinculin to Talin) with varying α.

When α = 1, the GMP is equivalent to the HMP. SCT is SCTα,1 when α ̸= 1 or
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SCT1,0, which is equivalent to CCT. The p-values are rounded to the 4th decimal

place. Regarding the left part of Table 3.1, the causal link from Talin to Vinculin,

all p-values with different α and different methods are very small. Therefore, we can

reject the null confidently. However, on the right of Table 3.1, the conclusions drawn

from the overall p-values with different αs are inconsistent. Most p-values are large,

but when α > 1.6 p-values from SCT are small. The combined p-values when α = 1.5

are 0.13, 0.14, and 0.09 for FCT, GMP, and SCT respectively. Therefore, we reject

the global null hypothesis and conclude that Vinculin does not Granger-cause Talin.

The results of causal links between Talin and Vinculin are backed up by the findings

in Han et al. [2021] that Talin comes a bit earlier than Vinculin. It makes sense to

have Vinculin follow Talin but not the other way around.

α FCT GMP SCT

0.5 0.0003 0.0003 0.0082

0.8 0.0003 0.0003 0.0010

1 0.0002 0.0002 0.0002

1.5 0.0001 0.0001 0.0009

1.8 0.0001 0.0001 0.0003

α FCT GMP SCT

0.5 0.4489 0.4473 0.4473

0.8 0.4194 0.4017 0.3356

1 0.2642 0.2646 0.1672

1.5 0.1308 0.1358 0.0854

1.8 0.1201 0.1298 0.0298

Table 3.1: The table of combined p-value causal links from both directions.

3.5 Discussion

We proposed a unified p-value combination framework that embraces many additive

tests in the literature. Our assumption allows a wide variety of existing methods such

as the Cauchy combination test and the harmonic mean p, providing an explanation

of why those methods behave somewhat similarly. Though our method belongs to

the family of additive p-value combination tests and utilizes the information of all p-

values, we focus more on the minimum p-value because it dominates the unified test
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statistic after transformation when the global null hypothesis is false. As shown in

Section B.2 in Appendix B, the transformed minimum p-value goes to infinity faster

than the other transformed p-values.

We proved that the right tails of this class of test statistics under the null hy-

pothesis can be approximated by a stable random variable, ensuring good sizes for

small significance levels. The power goes to one as long as the sample size is large

enough under some conditions on the minimum and maximum p-values and the num-

ber of false underlying hypotheses. However, there are some drawbacks to the unified

framework. First, the framework controls the family-wise error rate, which is more

conservative than the false discovery rate. Second, the framework is valid based on the

tail approximations of regularly varying distribution and stable distribution as well as

the closure property of regularly varying random variables, and thus the significance

level is required to be small enough. It remains future work how small the signifi-

cance level should be to ensure the approximations are valid. Besides, the methods

require the underlying p-values to be uniform under the null, which might narrow the

usage. Sometimes it is of more interest to make statements of underlying hypotheses

than the global hypothesis. But not all methods in the proposed framework have a

valid multi-level test. Last, the performance of a method depends on the choice of

transformation function ϕ and tail index α. Future studies will be needed to provide

the theoretical choices of the optimal ϕ and α.
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Chapter 4

A simple remedy for the

multiplicity problem in rolling

window Granger causality tests

Abstract

The multiplicity issue happens when the rolling window technique is utilized to cap-

ture the dynamic structure instability of Granger causality in a vector autoregression

model. Bootstrap is a popular method to control the multiplicity issue, however, it is

difficult to implement and costs high computations. This chapter proposes to use the

additive p-value combination tests to handle the multiplicity issue caused by rolling

windows. The finite sample simulations demonstrate that additive p-value combina-

tion tests are robust to dependence, have well-controlled sizes, and have comparable

powers to bootstrap. Rolling window Granger causalities between the Infections Dis-

ease Equity Market Volatility Tracker (IDEMV) and S&P500 index are not founded

in the full sample analysis but are discovered in rolling windows.

Keywords: Granger causality; rolling window; multiplicity; bootstrap; additive com-

bination test.

59



4.1 Introduction

In economics, structural changes such as technological innovation happen occasionally.

The shifts affect the data-generating process and might weaken the power of statistical

analyses. In a full-sample regression, the information over the sampling period is

averaged. In the presence of structural changes during the sampling period, the

data-generating process was affected and thus regression estimates based on the full

sample are biased, which may lead to misleading inference and may weaken the power

of statistical analyses [Granger, 1996, Duchin, 1998, Boehlje, 1999, Rossi, 2005, Clark

and McCracken, 2009, Zhang, 2013]. Providing a clearer picture of possible dynamic

structural changes, rolling window tests have been widely used to mitigate this issue in

many kinds of models, [Zivot and Wang, 2003, Diebold and Yilmaz, 2009, Mylonidis

and Kollias, 2010, Diebold and Yilmaz, 2012, Diebold and Yılmaz, 2014, Guidi and

Ugur, 2014, Papież and Śmiech, 2015, Chen, Mantegna, Pantelous, and Zuev, 2018,

Shi, Phillips, and Hurn, 2018, Ji, Zhang, and Zhao, 2020]. In a rolling window

scheme, the underlying assumption is that the parameters in a short time interval can

be considered time-invariant. Statistical tests are conducted in a sub-interval with

a fixed length at the beginning of the sample, moving the location of sub-intervals

forward. With the dynamic tests over sub-intervals, the shift in one period does not

mislead the overall picture. In the presence of structural changes, the shifts in the

underlying data-generating mechanism would be reflected by the test statistics of the

sub-intervals around those change points.

The rolling window technique has been broadly utilized in the Granger causality

analysis [Balcilar, Ozdemir, and Arslanturk, 2010, Balcilar and Ozdemir, 2013, Lu,

Hong, Wang, Lai, and Liu, 2014, Ming-Hsien and Chih-She, 2015, Nyakabawo, Miller,

Balcilar, Das, and Gupta, 2015, Shi, Phillips, and Hurn, 2018]. Granger causality, first

proposed by Granger [1969] is a popular concept in econometrics, involving a relation

in predictions instead of the general idea of cause-and-effect. A variable X is said to

Granger-cause a variable Y if involving past values of the former in the forecasting
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equation helps reduce the forecast error of the latter variable. Granger causality not

only catches the causation between variables but also detects the directions. The

strength and direction of causal relationships may change over time due to exogenous

events, such as global financial crises and new government policies. Since these change

points and effect durations are often not evident, it is necessary to apply the rolling

window technique, which allows reliable assessments of the causal links regardless of

the existence of the possible structural changes. If the casual linkages stay constant

over time, estimates of different sub-intervals would remain approximately the same,

whereas if the casual linkages are unstable, the changes could be detected.

The rolling window Granger causality method produces well-grounded evaluations,

especially in the area where structural changes are suspected. Previous studies have

employed the rolling window approach to examine the existence of Granger causality.

For example, Aaltonen and Östermark [1997] employed a rolling F-test to assess the

causal relationship between Finnish and Japanese securities markets. Balcilar et al.

[2010] applied the rolling sub-samples to analyze the causal links between energy

consumption and economic growth for G-7 countries. Lu et al. [2014] investigated

the weighted sum of rolling sample cross-correlation between standard residuals of

two series to test the time-varying causality among global crude oil markets. Ming-

Hsien and Chih-She [2015] used rolling window estimation to measure the causal link

between exports and GDP growth in China and Taiwan. Shi et al. [2018] examined

and identified changes in causality based on the forward window, rolling window, and

recursive window, concluding that both the rolling window and the recursive window

work smoothly.

Although the rolling window strategy has been widely studied, the intrinsic multi-

plicity issue has not been thoroughly discussed yet. The number of sub-intervals in a

rolling window method is often very large. A test is conducted on every sub-interval,

which leads to a large number of p-values. If one uses the same threshold value as

a single hypothesis test for all these p-values, the probability of false rejection would

61



be higher than intended. However, many studies have not considered the multiplicity

issue, using the same cutoff value from a single hypothesis test for all underlying p-

values. For instance, Aaltonen and Östermark [1997] and Lu et al. [2014] reported the

raw test statistics for each window without any adjustment, which may be associated

with a higher type I error. This problem was recognized in some previous studies.

For example, Cai et al. [2020] corrected the confidence interval width with respect to

different rolling window lengths by deriving the asymptotic limiting distribution of

rolling regression estimators. A more popular approach to maintain the overall error

rate is the bootstrap-based method. The basic rule of a s-level bootstrap hypothesis

testing is generating a large number of bootstrap samples under the null hypothesis,

and comparing the (1 − s)th quantile of bootstrap test statistics with the observed

test statistic. In the field of Granger causality testing, Balcilar et al. [2010] used

the mean adjusted Ordinary Least Square (OLS) residual-based bootstrap p-values

of observed likelihood ratio test statistic to test the null hypothesis of no causality be-

tween integrated variables. Shi et al. [2018] also employed a residual-based bootstrap

to tackle the multiplicity problem in the rolling-window Granger-causality test.

Combining multiple hypotheses and controlling the multiplicity issue is of substan-

tial interest in the genome-wide association studies field. Some ideas can be borrowed

and applied to the economics field. Among all possible methods, two additive p-value

combination tests, Cauchy transformation p-values combination (CCT) [Liu and Xie,

2020] introduced in Chapter 2 and Fréchet combination test (FCT) proposed in Chap-

ter 3 are evaluated and compared with a bootstrap technique proposed by Shi et al.

[2018, 2020].

In this paper, we propose an alternative approach to settle the multiplicity issue

besides the bootstrap technique. We demonstrate this approach in the context of the

rolling window Granger causality test but it can be easily generated in other settings

as well. Our intention is to combine the large number of p-values from all sub-intervals

into one combined p-value. This method is easier to implement and much faster in
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computation, compared to bootstrap. Our main contribution is that we not only

greatly reduce the computing time but also obtain slightly better results.

The chapter is constructed as follows. Section 4.2 introduces the settings of

Granger causality tests and the multiplicity issue caused by rolling windows. Section

4.3 presents and compares the simulation results of various tests in finite samples.

Section 4.4 present an application of p-value combination tests on rolling window

Granger causalities between the stock market and the market uncertainty due to

COVID-19. Section 4.5 concludes lastly.

4.2 Rolling Window Granger Causality Test

In this section, we introduce the setting of the bivariate Granger causality F test

and discuss the multiplicity issue caused by multiple windows. Then we state several

additive p-value combination methods and propose to use them as an alternative to

the bootstrap technique.

Granger causality, first proposed by Granger [1969], is a statistical concept that

describes a prediction relation. A time series xt is said to Granger-cause yt if the

mean square error of a forecast of the future value of yt decreases when the past

values of xt are involved. A simple approach for the Granger causality test uses the

autoregressive specification. We consider full and reduced autoregressives with lag

length k, for t = 1, . . . , T ,

yt = c1 +
k∑

i=1

aiyt−i +
k∑

i=1

bixt−i + εt,

and

yt = c0 +
k∑

i=1

diyt−i + et.

The null hypothesis of no Granger causality from xt to yt is equivalent to the zero

coefficient of lagged values of xt in the full model. That is,

H0 : b1 = b2 = · · · = bk = 0.
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Suppose εt is an i.i.d. Gaussian disturbance, we will conduct an F test. With OLS

estimations, we calculate the test statistic

S =
(RSS0 −RSS1)/k

RSS1/(T − 2k − 1)
,

where RSS1 =
∑T

i=1 ε̂
2
t is the sum of squared residuals from the full model and

RSS0 =
∑T

i=1 ê
2
t is the sum of squared residuals from the reduced model. If S is

greater than the (1 − s) critical value of an F (k, T − 2k − 1) distribution or the p-

value Pr(S > Fk,T−2k−1) is less than s, we reject the null hypothesis and conclude

that xt does Granger cause yt at s significance level. Reversely, the Granger causality

from yt to xt can also be examined.

The above procedure describes the test on a full interval. In the rolling pro-

cedure, the F test is conducted on each sub-interval as the testing window moves

forward. Suppose the window length is fixed at m, the ith window contains data

points (xi, yi), . . . , (xi+m−1, yi+m−1), where i = 1, . . . , T −m+1. Compute the F test

on ith window and denote the test statistic as Si. Then the corresponding p-value

is pi = Pr(Si > Fk,m−2k−1). The global null hypothesis that one variate does not

Granger cause another is an intersection of multiple hypotheses that the causal link

does not exist in any rolling sub-intervals. However, if the raw test statistics or p-

values are executed solely, the multiplicity problem occurs. The probability of falsely

finding at least one significant result is inflated. In the independent case, the FWER

is given by

FWER = 1− (1− s)T−m+1,

which is much greater than s if the number of tests is large. In the rolling window

procedure, the neighboring tests are highly positively correlated, which makes the

FWER falls somewhere between s and 1 − (1 − s)T−m+1. To maintain the overall

error rate and obtain high power simultaneously, we present and compare a bootstrap

technique and additive p-value combination methods in the following.

When the analytic distribution of the test statistic is not feasible, bootstrap is a
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powerful replacement. White [2000] proposed and proved a bootstrap reality check

strategy to approximate the p-value of multiple hypotheses. The null hypothesis is

an intersection of the one-sided individual hypotheses where neither of the individual

models has predictive superiority over a benchmark model. Shi et al. [2018, 2020]

proposed a residual-based bootstrap algorithm to test the sup Wald statistic in the

sense of forward, rolling, and recursive windows. Although the model hypotheses of

White [2000] and Shi et al. [2018, 2020] are different, they share the same spirit of

comparing the best of multiple models with the quantiles of the bootstrap statistics.

We use the residual-based bootstrap method proposed by Shi et al. [2018, 2020].

The test statistic for the global null hypothesis is calculated as the maximum value

of the F statistics, max{S1, . . . , ST−m+1}. The bootstrap samples are generated from

a restricted model with the null hypothesis imposed and the bootstrap residuals are

randomly drawn with replacements from the estimation errors. By construction, the

series of bootstrap test statistics is the emulated sampling distribution of the test

statistic under the global null hypothesis. The global null hypothesis is rejected if

the test statistic is greater than the 95% percentile of the bootstrap statistics series

at the 0.05 significance level.

Instead of involving test statistics, a bunch of multiple hypotheses tests address

the multiplicity issue by checking the p-values. For example, the most simple and

widely used approach is Bonferroni corrections. Many other methods are proposed

aiming to improve the power. However, many multiple hypotheses methods cannot be

utilized to handle rolling windows. For example, Stouffer et al. [1949], Simes [1986],

and Van der Sluis et al. [2013] do not work because of the strong dependencies.

Robustness to strong dependence is essential because nearby windows are always

highly correlated. Some recently developed additive p-value combination methods

are robust to strong dependence structure among the p-values, which makes them

possible to tackle the multiplicity issue for rolling windows.

Additive p-value combination tests are a set of methods that transform the under-
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lying p-values into new random variables and then further linearly combine them. The

p-values are usually “combined” following a simple recipe, so it is easy to implement

for a practitioner. These methods include the HMP [Wilson, 2019], GMP [Wilson,

2020], CCT [Liu and Xie, 2020], SCT introduced in Chapter 2, and UCT introduced

in Chapter 3. The aforementioned methods all require the validity of the p-value in

each sub-interval, that is, the p-values follow a uniform distribution. SCT ensures

the in-distribution relation under some mixing conditions, which regulates long-range

and short-range dependencies. In the case of the rolling window, there is a natural

order among the individual tests, and thus the conditions are easily satisfied [Ling and

Rho, 2022]. Besides, SCT has good performance from finite sample simulation when

the correlation between tests is decaying exponentially. Rolling windows also have

correlations decay fast, so SCT will be a good choice for the rolling window multiple

tests. Within the framework of the UCT, a new method called Fréchet combination

test (FCT) was proposed in Chapter 3. It is close to GMP since the transformation

functions [− log(1− p)]−1/α is close to p−1/α when p is small. FCT also has good

finite sample simulation performance when the correlation between tests is decaying

exponentially.

Among all of these methods, we utilize the CCT and FCT to test the Granger

causality in rolling samples because of their robustness to dependence and high sta-

tistical powers. The FCT involves a user-chosen tail parameter. We set it to be

one because of its simplicity and robustness to arbitrary dependence structure. Let

TC and TF denote the combined test statistics of CCT and FCT, respectively. It

is reasonable to set equal weights for each rolling window, so the test statistics are

calculated as the averages of transformed individual p-values p1, . . . , pT−m+1,

TC =
1

T −m+ 1

T−m+1∑
i=1

tan{(0.5− pi)π},

and

TF =
1

T −m+ 1

T−m+1∑
i=1

−1

log(1− pi)
− [log(T −m+ 1) + 1− 2cE] ,
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where cE ≈ 0.57721 is the Euler’s constant. Under the null hypothesis of no Granger

causality, TC either has the same upper tail probability under the assumption of

[Liu and Xie, 2020] or has a standard Cauchy distribution under the conditions in

Chapter 2. Although the assumptions and asymptotic results of Liu and Xie [2020]

and Chapter 2 are different, the implementation is the same. Under the null, the

tail probability of TF is the same as stable distribution S(1, 1, π/2, 0). Given the tail

probability or distribution of the combined test statistic under the null hypothesis,

it’s easy to obtain the combined p-value from the cumulative distribution function.

4.3 Simulations

This section presents the finite sample simulations in a bivariate VAR model under

similar settings to Shi et al. [2018]. The simulated performance of bootstrap and

additive p-value combination methods are compared under different sample sizes,

different rolling window lengths, and different values of parameters.

Suppose the data-generating procedure is a restricted bivariate VAR model with

lag one and no intercept. Only the causal link from xt to yt is considered and the

other link is set to 0 for simplicity. The model isyt
xt

 =

ϕ11 ϕ12(t)

0 ϕ22

yt−1

xt−1

+

u1,t

u2,t

 , t = 1, . . . , T

where u1,t and u2,t are i.i.d. N(0, 1), ensuring the F tests are exact. The existence

of Granger causality from xt to yt is determined by ϕ12(t), which is a function of

t. Under the null hypothesis, ϕ12(t) = 0, indicating there is no Granger causality

at any t. Under the alternative hypothesis, ϕ12(t) = ϕsID, where ϕs is a constant

taking a value between 0 to 1, corresponding to different causality strengths, and

ID is an indicator function showing when the causality takes place or disappears.

As a result, the Granger causality does not always exist but switches on in part D

under the alternative hypothesis. In the simulation, the duration D is taken to be
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[0.5T, 0.7T ]. We consider three pairs of the coefficients (ϕ11, ϕ22) = (0.5, 0.5), (-0.5,

0.8), and (0.5, -0.8), two different sample sizes T = 100 and 300, and two casual link

strengths ϕs = 0.5, 0.8. Let f0 = m/T be the proportion of rolling window length.

We consider six values of f0 = 0.18, 0.24, 0.30, 0.36, 0.42, and 0.48. The number of

replication is 1000 for each circumstance.

In the ith window, the F test statistic Si follows a F (1,m− 2) distribution under

the null hypothesis. The rolling algorithm of a residual-based bootstrap technique

in Shi et al. [2018, 2020] is conducted for purpose of comparison. The number of

bootstraps is 500. It’s worth pointing out that Shi et al. [2018] set the bootstrap

sample size to be T +m− 1 in order to control the size over the entire sample period.

However, our unreported simulation results suggest that it deflates the error rate.

As a result, we set the bootstrap sample size as T with the purpose to preserve the

same number of rolling windows. Since the disturbances are generated from a normal

distribution, the F tests are exact, and thus the corresponding p-values are uniformly

distributed under the null hypothesis, which satisfies the requirement of the additive

combination tests we utilized.

The proportion of rejections out of 1000 replications under the null (ϕ12(t) = 0)

and two alternatives (ϕs = 0.5, 0.8) are reported in Tables 4.1 and 4.2. The FCT

and HMP have almost the same results, so only the FCT is presented. The CCT

and FCT have similar results with well-controlled sizes and comparable powers to

bootstrap in most cases. Under the setting (ϕ11, ϕ22) = (-0.5, 0.8), bootstrap and

FCT have slightly conservative sizes when T = 100, and the under-rejections are

relieved when T increased to 300. Although the size of CCT also increases slightly

when T increases, the sizes of CCT under this setting are close to the target value.

When T = 100, the powers when ϕs = 0.5 and 0.8 of FCT beat CCT in all rolling

window lengths despite comparable error rates. CCT even has higher powers than

FCT. When T = 300, FCT and bootstrap still have close error rates. When ϕs = 0.5,

FCT has the highest power with small windows (f0 = 0.18, 0.24, 0.36), and CCT has

68



Bootstrap CCT FCT

T=100, (ϕ11, ϕ22) = (-0.5,0.8)

f0 ϕ12 = 0 ϕs = 0.5 ϕs = 0.8 ϕ12 = 0 ϕs = 0.5 ϕs = 0.8 ϕ12 = 0 ϕs = 0.5 ϕs = 0.8

0.18 0.034 0.483 0.811 0.041 0.549 0.86 0.036 0.548 0.849

0.24 0.044 0.546 0.854 0.044 0.596 0.872 0.042 0.58 0.866

0.30 0.042 0.521 0.807 0.052 0.571 0.836 0.041 0.552 0.826

0.36 0.042 0.504 0.774 0.047 0.565 0.818 0.048 0.55 0.799

0.42 0.043 0.505 0.753 0.052 0.569 0.793 0.041 0.535 0.77

0.48 0.042 0.49 0.72 0.056 0.541 0.773 0.039 0.513 0.75

T=100, (ϕ11, ϕ22) = (0.5,0.5)

f0 ϕ12 = 0 ϕs = 0.5 ϕs = 0.8 ϕ12 = 0 ϕs = 0.5 ϕs = 0.8 ϕ12 = 0 ϕs = 0.5 ϕs = 0.8

0.18 0.053 0.259 0.622 0.074 0.365 0.743 0.067 0.354 0.734

0.24 0.048 0.316 0.692 0.065 0.393 0.748 0.059 0.371 0.742

0.30 0.044 0.29 0.659 0.063 0.381 0.724 0.051 0.351 0.707

0.36 0.041 0.319 0.638 0.061 0.37 0.702 0.05 0.356 0.682

0.42 0.05 0.32 0.614 0.062 0.382 0.673 0.052 0.349 0.648

0.48 0.049 0.313 0.611 0.06 0.366 0.652 0.05 0.335 0.614

T=100, (ϕ11, ϕ22) = (-0.5,-0.8)

f0 ϕ12 = 0 ϕs = 0.5 ϕs = 0.8 ϕ12 = 0 ϕs = 0.5 ϕs = 0.8 ϕ12 = 0 ϕs = 0.5 ϕs = 0.8

0.18 0.043 0.507 0.839 0.047 0.522 0.862 0.044 0.513 0.859

0.24 0.05 0.571 0.868 0.052 0.584 0.87 0.044 0.566 0.866

0.30 0.058 0.559 0.841 0.051 0.574 0.847 0.045 0.552 0.844

0.36 0.056 0.547 0.798 0.057 0.579 0.809 0.049 0.543 0.793

0.42 0.048 0.536 0.766 0.054 0.556 0.79 0.047 0.53 0.772

0.48 0.047 0.515 0.76 0.05 0.544 0.778 0.041 0.502 0.752

Table 4.1: Size and power of bootstrap, CCT, and FCT when sample size T = 100.
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Bootstrap CCT FCT

T=300, (ϕ11, ϕ22) = (-0.5,0.8)

f0 ϕ12 = 0 ϕs = 0.5 ϕs = 0.8 ϕ12 = 0 ϕs = 0.5 ϕs = 0.8 ϕ12 = 0 ϕs = 0.5 ϕs = 0.8

0.18 0.046 0.983 1 0.051 0.983 1 0.048 0.985 1

0.24 0.047 0.976 1 0.051 0.981 1 0.042 0.982 1

0.30 0.04 0.957 1 0.049 0.956 1 0.039 0.958 1

0.36 0.043 0.938 0.997 0.049 0.946 0.996 0.043 0.941 0.997

0.42 0.046 0.925 0.995 0.055 0.935 0.996 0.043 0.925 0.994

0.48 0.056 0.913 0.992 0.058 0.921 0.993 0.047 0.913 0.991

T=300, (ϕ11, ϕ22) = (0.5, 0.5)

f0 ϕ12 = 0 ϕs = 0.5 ϕs = 0.8 ϕ12 = 0 ϕs = 0.5 ϕs = 0.8 ϕ12 = 0 ϕs = 0.5 ϕs = 0.8

0.18 0.061 0.858 0.997 0.067 0.876 0.998 0.065 0.883 0.997

0.24 0.056 0.871 0.998 0.065 0.88 0.998 0.054 0.876 0.998

0.30 0.051 0.828 0.995 0.062 0.845 0.995 0.053 0.837 0.997

0.36 0.056 0.788 0.985 0.066 0.821 0.991 0.053 0.797 0.986

0.42 0.061 0.77 0.977 0.06 0.809 0.984 0.05 0.78 0.979

0.48 0.061 0.751 0.97 0.056 0.782 0.978 0.048 0.754 0.974

T=300, (ϕ11, ϕ22) = (0.5,-0.8)

f0 ϕ12 = 0 ϕs = 0.5 ϕs = 0.8 ϕ12 = 0 ϕs = 0.5 ϕs = 0.8 ϕ12 = 0 ϕs = 0.5 ϕs = 0.8

0.18 0.043 0.98 1 0.042 0.982 1 0.039 0.984 1

0.24 0.046 0.985 1 0.042 0.982 1 0.036 0.979 1

0.30 0.045 0.971 1 0.042 0.969 1 0.035 0.969 0.999

0.36 0.047 0.954 0.996 0.043 0.951 0.998 0.035 0.951 0.997

0.42 0.045 0.93 0.993 0.05 0.941 0.996 0.039 0.927 0.995

0.48 0.047 0.914 0.988 0.051 0.923 0.99 0.044 0.907 0.99

Table 4.2: Size and power of bootstrap, CCT, and FCT when sample size T = 300.
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the highest powers with larger windows (f0 = 0.36, 0.42, 0.48). When ϕs = 0.8, the

powers are all close to 1.

Under the setting (ϕ11, ϕ22) = (0.5, 0.5), the error rates tend to be inflated but

power is deflated compared with other parameter settings. when T = 100 and 300,

CCT has inflated sizes for all rolling sample lengths f0, and FCT has inflated size only

when f0 is small. Bootstrap controls the size well at the target value when T = 100

but suffers from over-rejections when T = 300. The over-rejections of CCT and FCT

tend to be relieved as the window lengths get larger. Such a trend is not observed for

bootstrap when T = 300. When T = 100, CCT has the highest powers and bootstrap

has the lowest powers, which is reasonable because CCT has the highest error rates

and bootstrap has the lowest error rates. However, when T = 300 this trend still

exists while bootstrap does not have the smallest error rates anymore. For example,

when f0 = 0.24, 0.36, 0.42, 0.48, FCT has lower error rates and higher powers than

bootstrap.

Under the setting (ϕ11, ϕ22) = (0.5, -0.8), bootstrap and CCT control the sizes well

when T = 100 and 300. FCT controls the size well when T = 100 but under-rejects

when T = 300. When T = 100, CCT has higher power than bootstrap in all windows

even though the error rate of CCT is less than bootstrap when f0 = 0.3. Bootstrap

has higher powers than FCT in all cases when ϕs = 0.5 except f0 = 0.18. In some

cases of ϕs = 0.8, the powers of bootstrap are lower than FCT (f0 = 0.18, 0.3, 0.42).

When T = 300 and ϕs = 0.5, there is no method that works best in all cases. When

f0 = 0.18, FCT has the smallest error rate with the highest power. When f0 = 0.24,

0.3, 0.36, bootstrap has the highest powers. When f0 = 0.42, 0.48, CCT has the

highest powers. In the case of ϕs = 0.8, all of the bootstrap, CCT, and FCT have

power close to 1, while CCT is slightly higher than the other two methods when the

window length is large.

Furthermore, we can observe that a smaller fraction of window lengths behave

better from Table 4.1 and 4.2. For example, when T = 100, (ϕ11, ϕ22) = (0.5, -0.8)
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and (-0.5, 0.8), f0 = 0.24 produces the best performance in all methods. When

(ϕ11, ϕ22) = (0.5, 0.5), f0 = 0.24 has the highest power in all methods except that

ϕs = 0.5 of bootstrap. When T = 300 and (ϕ11, ϕ22) = (-0.5, 0.8), f0 = 0.18 results

in best error rates and powers in all methods. when (ϕ11, ϕ22) = (0.5, 0.5), f0 = 0.24

produces the best power for bootstrap and f0 = 0.24 produces the best power for both

CCT and FCT. When (ϕ11, ϕ22) = (0.5, -0.8), bootstrap achieves its best power when

f0 = 0.24, CCT achieves the same highest power when f0 = 0.18 and 0.24, and FCT

achieves its highest power when f0 = 0.18. In practice, the choice of window lengths

affects the size and power. The optimal choice usually depends on the periodicity of

the data. Longer rolling window sizes tend to yield smoother estimates than shorter

sizes. When the individual tests are not exact, a longer size is required to ensure that

the p-values are asymptotically uniform.

4.4 Application

In this section, we conduct a sample application on the dynamic Granger causality

analysis between the stock market and the market uncertainty related to COVID-

19. The proxy for the US stock market is the daily return of the S&P 500 index

downloaded from Google Finance.

We use the Infections Disease Equity Market Volatility Tracker (IDEMV) pro-

posed by [Baker et al., 2020] as the proxy for the market consensus of financial uncer-

tainties due to COVID-19. The IDEMV index is constructed by counting the number

of articles including keywords related to the pandemic, economy, stock market, and

uncertainty across approximately 3000 US Newspapers 1. Then, the raw counts are

scaled by the total number of all articles on the same day. After this, the authors

multiplicatively rescaled the resulting series to match the level of the Chicago Board

1The list of keywords can be founded and data can be downloaded at

https://www.policyuncertainty.com/infectious_EMV.html.
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Options Exchange’s Volatility Index, by using the overall EMV index. In the final

step, the series is rescaled to reflect the ratio of the IDEMV articles to the total EMV

articles. Hence, this index naturally reflects society’s uncertainty about the impact

of COVID-19 on the stock market. The higher value, the higher uncertainty.

There are many studies investing the impact of IDEMV on financial variables.

For example, Sosa-Castro [2022] analyzed the effect of the 42 category-specific EMV

trackers (including IDEMV) on nine S&P 500 sectors indexes using a Neural Network

approach given there was a negative and symmetric long-run relationship between the

EMV and section indexes. Surprisingly the Information and Communication Tech-

nologies was the only sector that was driven by IDEMV, whereas the IDEMV was

not one of the main drivers of the Health Care sector. Bouri et al. [2021] ran quantile

regressions between IDEMV and the total connectedness index (an index that rep-

resents the connectedness across various assets). They found that the connectedness

among gold, crude oil, world equities, currencies, and bonds is positively related to

the IDEMV. Their evidence also suggested that the higher IDEMV is, the higher the

market risk across the five assets. They found that the increased COVID-19 uncer-

tainty in the US has increased the market risk across. Li et al. [2020] found that

the IDEMV contained useful information in predicting the realized volatility for the

France and UK stock markets but was ineffective for the German stock market during

the global pandemic period.

Among the many studies of IDEMV impact, there are several papers examining

the effect of IDEMV on the stock markets in the Granger causality sense. For exam-

ple, Coronado et al. [2021] found the existence of the causality from IDEMV to the

volatility of five of the most important Latin American stock and exchange markets.

They used both the classical Granger causality test and a time-varying Granger mul-

tivariate causality test of Ajmi et al. [2015]. They also highlighted the importance of

having IDEMV as a new indicator for financial agents. Cepni et al. [2022] examined

both a classical constant parameter Granger causality test and a time-varying ro-
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bust Granger causality test of Rossi and Wang [2019]. They investigated the adverse

impact of IDEMV on the overall economy and the more significant impact on the

tourism and hospitality industry. Most of the above papers used time-varying models

where parameters were treated as a function of time. However, the rolling window

approach has the advantage of tremendous simplicity and coherence as claimed by

Diebold and Yılmaz [2014]. In addition, we consider bi-directions between IDEMV

and stock market return, while all of the above papers studied only the impact of

IDEMV on financial variables. The analysis of the direction from the stock market

to IDEMV makes sense because the fluctuation of stock markets naturally impacts

society’s expectations of volatility associated with COVID-19.

The sample period is from July 15th, 2020 to April 08th, 2022, in a total of 438

business days. In order to fit in a stationary VAR model, the unit root test suggests

taking the first difference of log prices, which is known as the daily return. The daily

S&P 500 closing price and return are plotted in Figure 4.1(a) and (b). We take the

log transformation of the IDEMV index and then subtract its average value to get

the centering log data. The unit root test suggests this series is stationary. The

original IDEMV index and its demean log series are plotted in Figure 4.1(c) and (d),

respectively.

In the full sample analysis, the selected lag is 2 with the smallest BIC -10.41. In

the direction from IDEMV to the stock return, the F test statistic and the corre-

sponding p-value are 0.0276 and 0.9727, respectively. The critical value derived from

F distribution is 3.006 and the value derived from bootstrap is 3.0256. In the other

direction from the stock return to IDEMV, the F test stat and the corresponding

p-value are 1.3347 and 0.2638 respectively. The critical value derived from F distri-

bution is still 3.006 and the value derived from bootstrap is 3.5910. In full sample

analysis, there’s no significant evidence of any causal relations.

The dynamic Granger causality analyses are conducted with rolling window sizes

m = 10, 22, 66, 132, 264, and 438 corresponding to two weeks, one month, three
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Figure 4.1: Time series plots of (a) daily S&P 500 closing price, (b) daily return of S&P 500, (c)

IDEMV index, and (d) IDEMV index after log transformation and subtracting the mean value.
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IDEMV G.C. Return Return G.C. IDEMV

m FCT CCT Bootstrap TS(CV) FCT CCT Bootstrap TS(CV)

10 0.0000 0.0000 557.8971(182.7373) 0.2252 0.2327 18.2102(169.3577)

22 0.0048 0.0047 13.9862(26.7586) 0.0080 0.0076 14.5486(28.8266)

66 0.5192 0.1994 6.7535(11.0782) 0.0743 0.8413 7.8076(12.2330)

132 0.0797 0.0582 9.8925(9.1393) 0.0329 0.0301 11.4755(9.3835)

264 1.0000 0.7398 1.5640(6.8791) 0.1907 0.0878 5.7752(7.0138)

Table 4.3: Results of directional Granger causality bootstrap and additive combina-

tion tests with different rolling window sizes.

months, a half year, one year, and the entire sample period. We set up the above

choices because we don’t have theoretical guidance to choose the optimal window

length. In each rolling sample, the daily return and demean log IDEMV index are

fitted into a stationary bivariate VAR model without intercept. The lag order is

selected by the smallest BIC with a maximum lag length of 5 when the window size

is greater than 10. The maximum lag length is set to 2 when the window size is

10. After selecting the lag order, a Granger causality F test as described in Section

4.2 is conducted and leads to an F test statistic and a corresponding p-value. In

the next step, we handle the multiplicity issue with bootstrap and additive p-value

combination as discussed in Section 4.2.

Table 4.3 presents the results of directional causal links between the daily return

of S&P 500 and demean log IDEMV index under different rolling window sizes m.

The left three columns under the name “IDEMV G.C. Return” show the outcomes

of the global null hypothesis that IDEMV doesn’t Granger cause the stock market

return in any sub-samples. The right three columns with the name “Return G.C.

IDEMV” display the outcomes for the null hypothesis that the stock market return

doesn’t Granger cause IDEMV. The “FCT” and “CCT” stand for combined additive

p-values. “TS” and “CV” are short for combined test statistics and critical values
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with a 0.05 significance level from the bootstrap approach. The significant entries are

in bold with a 5% level.

Bootstrap and additive p-value combinations give different results in some cases,

although they have the same peaks in unreported dynamic plots. The results of FCT

and CCT are always consistent. In the direction from IDEMV to Return, additive

combinations deliver significant results when window sizes are small (10, 22) and

insignificant results when window sizes are larger. But this trend is not observed

in the other direction or in the bootstrap results. Different rolling window sizes

have different significant results. This may be caused by sampling errors. When

the window size is 10, the effect of IDEMV on return is significant while the other

direction is not. When the window size is 22, additive p-value combination approaches

suggest that both directions are significant, whereas the critical values calculated from

bootstrap are not significant in either direction. When the window size is 66 or 264,

no significant result is detected by either method. When the window size is 66 in the

direction from the stock return to IDEMV, although FCT and CCT have consistently

significant results, the two combined p-values differ a lot. This is the consequence that

the maximum p-value 0.99987 is too close to 1. CCT is more sensitive to large p-values

than FCT. When the window size is 132, bootstrap suggests that both directions are

significant. However, p-value combinations suggest that only the direction from the

stock return to IDEMV is significant.

In the rolling window analysis, most lags are selected to be 1 or 2. When the

window length is 10, 62% sub-intervals have lag order 1 and the remaining have 2.

When window sizes are 66 and 132, over 90% of sub-intervals have lag order 1. When

the window size is 264, 70% of lags are 1 and 30% of lags are 2. However, there is

a problem when the window size is 22. More specifically, 75% (312 out of 417) of

sub-intervals have lag order 1, 12% (51 out of 417) of sub-intervals have lag order 2,

1% (5 out of 417) have lag order 3, 4% (15 out of 417) have lag 4, and the remaining

8% (34 out of 417) have larger lag order 5. Because larger lag orders are selected, the
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results are not robust to the manually set maximum lag order. If the maximum lag

is set to be 4 or 5, both FCT and CCT suggest the rolling tests are significant. But

if the maximum lag is set to less than 3, both FCT and CCT are not significant. The

empirical test of Granger causality is sensitive to the choice of lag length Hamilton

[2020], Chuen [2015].

After uncovering the existence of causalities, we want to locate the significant

subsamples. Bootstrap naturally locates the significant subsample by comparing the

elementary F test statistic series {S1, . . . , ST−m+1} with the critical value computed

by bootstrap samples. If there exists any Si that exceeds the critical value, then the

global null is rejected and the ith sample significantly observes Granger causality.

Figures 4.2 present the dynamic F test statistic for different window lengths and

directions. The y-axis is the F test statistic verse the x-axis is the ending date of

a rolling subsample. Each point represents the F test statistic estimated from a

rolling subsample. The dashed horizontal lines indicate the critical values derived

from the bootstrap sample. If a point exceeds the critical line, the x-coordinate is

the ending date of a subsample where significance is identified by bootstrap. The left

column of Figure 4.2 shows the test statistics and their corresponding critical values

for the Granger causalities direction from IDEMV to stock return. Except for (a2),

the highest points in the direction of IDEMV causes return all happen in November

of 2021 in (a1), (a3), (a4), and (a5). The right column of Figure 4.2 shows the test

statistics and their corresponding critical values in the direction from the stock return

to IDEMV. Most graphs except (b5) have a peak in July 2021. In particular, (b4) is

significant at the end of July 2021 and the start of August 2021.

In the context of additive p-value combination, the date-stamp requires the method

to be able to control the FWER in the strong sense for any configuration of true and

false elementary null hypotheses. As discussed in Remark 3.3 in Chapter 3, FCT is

valid for a multilevel test, whereas CCT is not for a computationally feasible shortcut.
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The elementary p-value pi from one subsample is significant if for i = 1, . . . , T−m+1,

−1

log(1− pi)
> (T −m+ 1)s0.95 + (T −m+ 1)[log(T −m+ 1) + 1− 2cE],

where s0.95 is the 0.95 quantile of S(1, 1, π/2, 0). Similarly as bootstrap, we present

Figure 4.3 to show the dynamic transformed values of elementary p-values. The y-axis

represents −1
log(1−pi)

and the x-axis is the ending date of a rolling subsample as well.

The dashed horizontal lines are the threshold values over which the elementary p-value

is significant in the strong sense. If any point exceeds the threshold, causality exists

significantly in this subsample. The exact ending dates of significant subsamples

for both bootstrap and FCT are displayed in Table 4.4 for clear comparison. The

em-dashes in cells indicate that no significant subsample is located.

Overall, FCT suggests more significant subsamples in shorter rolling windows

and bootstrap has more in longer windows. As reported in Table 4.4, when the

window size is 10, both FCT and bootstrap recognize 2021-11-29 and 2021-11-30 are

significant ending dates, which means that the IDEMV Granger causes the S&P 500

index return during the last half month of November 2021. The show-up of causality

from IDEMV to return might result from the approval of booster and the occurrence

of Omicron. FDA approved COVID-19 boosters for all adults on Nov 19, which might

affect the causality structure. The World Health Organization classified a new variant

on Nov 26 2021 and named it Omicron on Nov 30, 2021. The first confirmed case of

the Omicron variant was detected in the US on Dec 1, 2021. There were two more

causal links during the first half month of both February 2021 and November 2021 in

the direction from IDEMV to return suggested by FCT but not noticed bootstrap.

Pfizer asked for booster emergency use authorization for all adults on Nov 9. This

news might affect the causality structure by releasing more confidence in the stock

market and investors. The coefficient of the lag value of IDEMV on return is -0.00535

during that window. This suggests that a high past value of market uncertainty has

a negative impact on the return. In contrast, the coefficient of the lagged value of

the return is 0.8655. On Feb 1 2021 it was announced that more Americans were
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Figure 4.2: Dynamic plot of the F test statistics and critical values for different rolling window

lengths.
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Figure 4.3: Dynamic plot of transformed p-values in each rolling windows.
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IDEMV G.C. Return Return G.C. IDEMV

m FCT Bootstrap FCT Bootstrap

10

2021-02-11

2021-11-12 2021-11-29 — —

2021-11-29 2021-11-30

2021-11-30

22

2021-01-07

2021-01-11

2021-01-12 — 2020-11-16 —

2021-01-13

2021-01-14

66 — — — —

132

2021-07-28

2021-11-18 2021-07-29

— 2021-11-19 — 2021-07-30

2021-11-24 2021-08-02

2021-08-03

264 — — — —

Table 4.4: The ending dates of significant rolling subsamples identified by FCT and

bootstrap. The em-dashes in cells indicate that no significant subsample is located.
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vaccinated than infected. The coefficient of return’s lag value is positive at 0.018737.

When the window size is 22, FCT suggests that the causality from IDEMV to

stock return exists from mid-December 2020 to mid-January 2021. The appearance

of causality might be affected by FDA’s emergency use authorization for the Pfizer-

BioNTech vaccine on Dec 11 and for Moderna on Dec 18. The other causal direction

is also advised by FCT from mid-October to mid-November 2020. In this window,

the lag is selected as 5 and the coefficients of lag values of return are much larger in

magnitude than the coefficients of lag values of IDEMV itself. For comparison, the

coefficients of return from 1st lag to 5th lag are -6.0917, -15.4741, -23.9347, 14.6330,

and 0.7438, while that of IDEMV are 0.2832, -0.2437, 0.3018, 0.05829, and 0.7654.

This suggests that the return negatively impacts the market uncertainty. The 59th

US presidential election held on Nov 3rd, 2020 may incur some changes in the stock

market expectation and the pandemic policies. Although bootstrap has peaks at

these significant dates, the threshold is not exceeded for either direction.

When the window size is 66 and 264, no elementary hypothesis is found to be

significant. When the window size is 132, bootstrap indicates some significant sub-

samples while FCT does not. Bootstrap finds the causality from IDEMV to return

exists in the period from July 2021 to November 2021. Causality exists in the other

direction from March 2021 to August 2021. The combined p-value(0.0797) from the

IDEMV to return is not significant, nor is not any elementary p-value. In the other

direction from the return to IDEMV, although the combined FCT p-value(0.0329) is

significant, no rolling window is found to be significant. Instead, a collection of 29

elementary p-values is found to be significant. The ending dates of these subsample

collections range from 2021-07-09 to 2021-08-18, which is about one-month larger

than the set given by bootstrap.
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4.5 Discussion

We borrow the idea of additive p-values combination test from the field of multiple

hypotheses testing into the dynamic structural examination in the field of economet-

rics. Under the context of Granger causality tests in rolling windows, each rolling

window produces one hypothesis test and thus one corresponding p-value. Bootstrap

is a popular technique to deal with the multiplicity issue in econometrics, despite its

cost in computation. We propose to use additive p-value combination tests that are

robust to dependencies to handle the multiplicity issue as an efficient replacement for

bootstrap. It could be used in field of engineering under the context of analysing the

relationship among several time series.

We compare the performance in finite sample simulations of additive p-value com-

bination tests and bootstrap. It is found that CCT, HMP, and FCT are robust to

dependencies and produce well-controlled sizes and comparable powers to bootstrap.

Moreover, the additive p-value combination test is easier to be implemented and

consumes less time than bootstrap. We conduct a case study examining the bidirec-

tional Granger causalities between stock market return and market uncertainty due

to COVID-19. Additive p-value combination methods reject more than bootstrap

overall. Similar to bootstrap, FCT also has the property of identifying the signifi-

cant subsample but CCT does not. However, in the application of rolling window

techniques in real data, one of the mysteries is the choice of window size. Different

window sizes sometimes produce different results.

However, there are some drawbacks to applying the additive p-value combination

tests on the Granger causality test. First, not all p-value combination methods can

make statements of individual hypotheses. For example, SCT with α ≥ 1 or β ̸= 1

only controls the error rate at the weak sense when all underlying hypotheses are

true. Even though some methods like FCT and HMP can examine each underlying

hypothesis, it works differently from the bootstrap. In bootstrap, if and only if the

global null is significant, there is at least one significant underlying hypothesis. In the
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context of unified additive p-value combination tests, if there is at least one significant

underlying hypothesis, the global null is also significant. But the other direction is not

generally true. Another disadvantage of the combination test is that the elementary

p-values are required to be uniform under the null. We assume the data is normal

to take the advantage of exact F test of Granger causality. However, this is a strong

assumption in real data. When the data is non-normal, a Wald form of the OLS χ2

test should be utilized. This makes the p-values not uniform anymore and violates

the assumption of the additive combination tests. In this case, we require that both

the sample size and window size are large enough and thus the p-values would be

uniform asymptotically.
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Appendix A

Technical Work From Chapter 2

A.1 Lemmas

This section presents lemmas for the proof of Theorem 2.2. Recall that p(x) =

2 − 2Φ(|x|) for all x ∈ R, as defined in the beginning of Section 2.2.2. Lemmas A.1

and A.2 help find the lower bound of F−1(1 − mini∈S pi) and F−1(1 − maxi∈S pi),

respectively. Lemma A.3 presents a lower bound for an.

Lemma A.1. Define g(x) = cα,βx
1/αe

x2

2α with constant cα,β =
[
1+β√
2π
Γ(α) sin

(
πα
2

)]1/α
,

where 0 < α < 2 and −1 < β ≤ 1. For x → ∞,

F−1[1− p(x)|α, β] > g(x) = cα,βx
1/αe

x2

2α .

Proof of Lemma A.1. When x → ∞, g(x) → ∞. Therefore, we can apply the right

tail approximation of a stable distribution in Theorem 1.2 form Nolan [2020]. When

0 < α < 2 and −1 < β ≤ 1,

1− F [g(x)|α, β] = Pr[W0 > g(x)]

∼ 1 + β

π
Γ(α) sin

(πα
2

)
[g(x)]−α

=

√
2

π
x−1e−x2/2.
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From Mill’s ratio inequality that 1− Φ(x) ≤ ϕ(x)
x

for any x > 0, where Φ(·) and ϕ(·)

represent the distribution function and probability density function of a standard

normal random variable respectively, we have

p(x) = 2[1− Φ(x)]

≤ 2
ϕ(x)

x

=

√
2

π
x−1e−x2/2.

Therefore, p(x) ≤ 1−F [g(x)|α, β] for x → ∞. Since F−1 is increasing, F−1[1−p(x)] >

g(x) for large enough x.

■

Lemma A.2. Define g̃(x) = −c̃α,βx
−1/αe

x2

2α where c̃α,β =
[
1−β√
2π
Γ(α) sin

(
πα
2

)]1/α
is a

constant depends on α ∈ (0, 2) and β ∈ [−1, 1]. When x → 0+,

F−1[1− p(x)|α, β] > g̃(x) = −c̃α,βx
−1/αe

x2

2α .

Proof of Lemma A.2. We first consider the case where −1 ≤ β < 1. Similarly to the

proof of Lemma A.1, when x → 0+, g̃(x) → −∞, and thus we can apply the left tail

approximation from Theorem 1.2 of Nolan [2020] when 0 < α < 2 and −1 ≤ β < 1:

F [g̃(x)|α, β] = Pr[W0 < g̃(x)]

∼ 1− β

π
Γ(α) sin

(πα
2

)
[−g̃(x)]−α

=

√
2

π
xe−x2/2.

The standard normal distribution function, Φ(x), can be rewritten with integration

by parts,

1− p(x) = 2Φ(x)− 1

=

√
2

π
xe−x2/2 +Q(x),

whereQ(x) =
√

2
π
e−x2/2(x

3

3
+ x5

3∗5+· · · ) > 0 if x > 0. Therefore, 1−p(x) > F [g̃(x)|α, β]

for x → 0+.
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When β = 1, the distribution is totally skewed to the right, and the left tail

probability does not follow a power law. Instead, we know that the left tail probability

of W0;α,1 is smaller than that of W0;α,β with −1 ≤ β < 1, where W0;α,β is the stable

random variable with distribution S(α, β). That is,

F [g̃(x)|α, 1] = Pr[W0;α,1 < g̃(x)] ≤ Pr[W0;α,β < g̃(x)].

Therefore, 1 − p(x) > F [g̃(x)|α, β] > F [g̃(x)|α, 1] for all −1 ≤ β ≤ 1. Since F−1 is

increasing, we have F−1[1− p(x)] > g̃(x), which completes the proof. ■

Lemma A.3. Let wi ∈ (0, 1) be nonnegative weights such that
∑n

i=1wi = 1. The

normalizing constant an = (
∑n

i=1w
α
i )

−1/α ≥ min{n1−1/α, 1}.

Proof of Lemma A.3. The lower bound of an is considered in three separate cases.

First, when α = 1, an = 1. The second case is when 0 < α < 1. By Hölder’s

inequality,
n∑

i=1

wα
i ≤

[
n∑

i=1

(wα
i )

1/α

]α
n1−α = n1−α,

which is equivalent to an ≥ n1−1/α. The last case is when 1 < α < 2. From the fact

that lα norm is smaller l1 norm,(
n∑

i=1

|wi|α
)1/α

≤
n∑

i=1

|wi| = 1,

and therefore, an ≥ 1. Combining the above three cases, an = (
∑n

i=1 w
α
i )

−1/α ≥

min{n1−1/α, 1}.

■

A.2 Proof of Theorem 2.2

Proof of Theorem 2.2. Recall that the test statistic is defined as Tn(p) = Tn(X) =

an
∑n

i=1 wiF
−1[1 − p(Xi)|α, β], where an =

(∑n
j=1w

α
j

)−1/α

. Under Assumption 2.4,
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the test statistic Tn(X) can be decomposed into two parts:

Tn(X) = an
∑
i∈S

wiF
−1[1− p(Xi)|α, β] + an

∑
i∈Sc

wiF
−1[1− p(Xi)|α, β] := An +Bn.

In order to show Tn(X) → ∞ as n → ∞, we will show that An → ∞ with probability

1 and that Bn cannot be arbitrary large negative.

Part An can be further decomposed as follows:

An ≥ anc0n
−1max

i∈S
F−1[1− p(Xi)|α, β] + an(

∑
j∈S

wj − c0n
−1)min

i∈S
F−1[1− p(Xi)|α, β]

:= An,1 + An,2

In the following arguments, we will prove that An → ∞ with probability 1 by showing

that An,1 can be arbitrarily large whereas An,2 > op(1) as n → ∞.

Giving that F−1[1− p(x)|α, β] is increasing in x, An,1 can be rewritten as An,1 =

anc0n
−1F−1[1 − p(maxi∈S |Xi|)|α, β]. Recall that the set of positive signals (S+) is

assumed to have cardinality no less than |S|/2. From Lemma 6 of Cai et al. [2014]

and using the same argument as in the proof of Theorem 3 of Liu and Xie [2020],

maxi∈S |Xi| ≥ µ0 +
√

2 log |S+| + op(1). Given the assumptions µ0 =
√
2r log n and√

2 log |S+| ≥
√

2(k0 log n− log 2), we have maxi∈S(|Xi|) → ∞ with probability 1.

Lemma A.1 implies that, as n → ∞,

Pr

{
F−1

[
1− p

(
max
i∈S

|Xi|
)
|α, β

]
> g

(
max
i∈S

|Xi|
)}

→ 1,

which is equivalent to

Pr

{
An,1 ≥ anc0n

−1cα,β

(
max
i∈S

|Xi|
)1/α

exp

[
(maxi∈S |Xi|)2

2α

]}
→ 1.

Noting that maxi∈S |Xi| ≥
√
2r log n +

√
2 log |S+| + op(1), Pr{maxi∈S Xi > 1} → 1

and
√

log |S+| ≥
√

2(k0 log n− log 2) ≈
√
2k0 log n, we have

Pr

{
An,1 ≥ anc0n

−1cα,β

[
n(

√
k0+

√
r)2
]1/α}

→ 1.
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From Lemma A.3, an =
(∑n

j=1 w
α
j

)−1/α

≥ min{n(α−1)/α, 1}, therefore, as n → ∞,

Pr
{
An,1 ≥ c0cα,β

[
n(

√
k0+

√
r)2/α−1+min{1−1/α,0}

]}
→ 1.

By Pert 3 of Assumption 2.4,
√
r+

√
k0 > max{

√
α, 1}, we have n(

√
k0+

√
r)2/α−1/α−1 →

∞ as n → ∞. Therefore, we obtain that An,1 → ∞ with probability tending to 1 as

n → ∞.

Next consider the part An,2 = an

(∑
j∈S wj − c0n

−1
)
mini∈S F

−1[1− p(Xi)]. Sup-

pose µ1 = µ0 without loss of generality, thus X1 = µ0 + Z1, where Z1 ∼ N(0, 1).

Let ϵn = nαγ0−1 with k0 < γ0 < 1−k0
α

. Similarly to the proof of Liu and Xie [2020],

mini∈S |Xi| is greater than any ϵn with probability 1 as n → ∞ because

Pr
(
min
i∈S

|Xi| < ϵn

)
≤
∑
i∈S

Pr
(
|Xi| < ϵn

)
= nk0 Pr

(
|Xi| < ϵn

)
= nk0 [Φ(µ0 + ϵn)− Φ(µ0 − ϵn)]

< nk0 [2ϵnϕ(µ0 − εn)]

< nk0ϵn = nk0+αγ0−1 = o(1).

(A.2.1)

Apply the increasing function F−1 [1− p(x)|α, β] on both mini∈S |Xi| and ϵn, equation

(A.2.1) is then equivalent to the statement that F−1[1−p(mini∈S |Xi|)|α, β] is greater

than any F−1[1− p(ϵn)|α, β] with probability 1 as n → ∞. Since ϵn → 0 as n → ∞,

we can apply Lemma A.2 to find the lower bound of F−1[1−p(ϵn)|α, β], which implies

the bound of An,2 as follows:

Pr
{
|An,2| > an(n

k0−1 − c0n
−1)|g̃(ϵn)|

}
→ 1.

With the assumption that there is a constant c0 such that minn
i=1 wi ≥ c0/n, we have

an < n1−1/αc−1
0 . As n → ∞, eϵ

2
n/(2α) → 1, and thus

an(n
k0−1 − c0n

−1)|g̃(εn)| < c̃α,βann
k0−1ε−1/α

n eϵ
2
n/(2α)

≤ c̃α,βc
−1
0 nk0−γ0

= o(1).
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Therefore, An,2 > op(1), which completes the proof of the statement that An → ∞

with probability 1 as n → ∞.

Next, we show Bn cannot be arbitrary large negative. Under Part 1 of Assumption

2.4, Theorem 2.1 implies that as n → ∞,( ∑n
j=1 w

α
j∑

k∈Sc wα
k

)1/α

Bn =

( ∑n
j=1w

α
j∑

k∈Sc wα
k

)1/α

an
∑
i∈Sc

wiF
−1 (1− pi|α, β)

d→ W0,

where W0 follows S(α, β).

Let δϵn =
[
1−β
πϵn

Γ(α) sin
(
πα
2

) (∑
k∈Sc wα

k∑n
j=1 w

α
j

)]1/α
with ϵn = nαγ0−1 and k0 < γ0 <

1−k0
α

.

Notice that as n → ∞, ϵn → 0, and δϵn

( ∑n
j=1 w

α
j∑

k∈Sc wα
k

)1/α
=
[
1−β
πϵn

Γ(α) sin
(
πα
2

)]1/α
→ ∞.

We first show the case when −1 < β < 1. According to the tail approximation of

Theorem 1.2 of Nolan [2020], when 0 < α < 2 and −1 ≤ β < 1,

Pr (Bn < −δϵn) ∼ Pr

W0 < −δϵn

( ∑n
j=1w

α
j∑

k∈Sc wα
k

)1/α


∼ 1− β

π
Γ(α) sin

(πα
2

)
δ−α
ϵn

( ∑n
j=1 w

α
j∑

k∈Sc wα
k

)−1

= εn,

(A.2.2)

for large enough n. Equation (A.2.2) implies that for any ϵn → 0, there exist an

δ > δϵn such that Pr (Bn < −δ) < ϵn as n → ∞.

When β = 1, the distribution is totally skewed to the right, and consequently, for

all i ∈ Sc, Pr (Wi;α,1 < −δϵn) < Pr (Wi;α,β < −δϵn) for any β < 1, where Wi;α,β is the

transformed p-value with parameters α and β. Therefore, equation (A.2.2) holds for

β = 1 as well. That is, Bn cannot be arbitrary large negative for all 0 < α < 2 and

−1 < β ≤ 1, which finishes the proof. ■
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Appendix B

Technical Work From Chapter 3

B.1 Proof of Theorem 3.1

Proof. Under Assumption 3.2, for any i ̸= j

lim
x→∞

Pr [wiϕ(pi) > x,wjϕ(pj) > x]

Pr[w1ϕ(p1) > x]
→ 0.

For any fixed c,

lim
x→∞

Pr {wi[ϕ(pi)− c] > x,wj[ϕ(pj)− c] > x}
Pr[w1ϕ(p1) > x]

→ 0.

When 0 < α < 2, an = (
∑n

i=1 w
α
i )

−1/α
and bn = nE sin[ϕ(p1)/n]I(α = 1) +

anE[ϕ(p1)]I(1 < α < 2), where I is an indicator function. For any fixed n, t
an

→ ∞ as

t → ∞. Lemma 3.1 from Jessen and Mikosch [2006] stated that the closure property

of regularly varying random variables holds under the asymptotic tail independence
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condition. Therefore,

lim
t→∞

Pr [Tn(p) > t]

Pr [anw1ϕ(p1)− w1bn > t]
= lim

t→∞

Pr
{∑n

i=1 wi

[
ϕ(pi)− bn

an

]
> t

an

]
Pr
{
w1

[
ϕ(p1)− bn

an

]
> t

an

}
=

n∑
i=1

 lim
t→∞

Pr
{
wi

[
ϕ(pi)− bn

an

}
> t

an

]
Pr
{
w1

[
ϕ(p1)− bn

an

]
> t

an

}


=
n∑

i=1

 lim
t→∞

Pr
[
ϕ(pi)− bn

an
> t

wian

]
Pr
[
ϕ(p1)− bn

an
> t

w1an

]


=
n∑

i=1

 lim
t→∞

Pr
[
ϕ(pi) >

t
wian

]
Pr
[
ϕ(p1) >

t
w1an

]
 .

The last equality is true because both bn
an

and bn
w1an

are fixed constants for any given

n.

Recall from Assumption 3.1 we represent Pr [ϕ(p) > x] by q1x
−αL(x) as x → ∞,

where L(x) is a slowly varying function with limit lϕ. For any fixed n, we have

limt→∞ L
(

t
wian

)
= limt→∞ L(t) = lϕ. Therefore, the above equation equals

n∑
i=1

 lim
t→∞

q1

(
t

wian

)−α

L
(

t
wian

)
q1

(
t

w1an

)−α

L
(

t
w1an

)
 =

∑n
i=1w

α
i

wα
1

.

According to Theorem 1.2 of Nolan [2020], the right tail probability of a random

variable W0 ∼ S(α, β, γ, 0) with 0 < α < 2 and −1 < β ≤ 1 is

lim
t→∞

Pr(W0 > t) = lim
t→∞

t−αγα sin(πα/2)Γ(α)(1 + β)/π. (B.1.1)

Therefore,

lim
t→∞

Pr(W0 > t)

Pr [anw1ϕ(p1)− w1bn > t]
= lim

t→∞

t−αγα sin(πα/2)Γ(α)(1 + β)/π

q1wα
1 t

−αaαnlϕ

= lim
t→∞

t−αγα sin(πα/2)Γ(α)(1 + β)/π

q1wα
1 t

−αaαnlϕ

=

(∑n
i=1w

α
i

wα
1

)[
γα sin(πα/2)Γ(α)(1 + β)/π

q1lϕ

]
.
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Let β = q1 − q2 = limt→∞
Pr[ϕ(p1)>t]−Pr[ϕ(p1)<−t]

Pr[|ϕ(p1)|>t]
and γ =

[
πlϕq1

sin(πα/2)Γ(α)(1+β)

]1/α
=[

πlϕ
2 sin(πα/2)Γ(α)

]1/α
so that the last term in the above equation is 1. Therefore, we have

proved that when 0 < α < 2

lim
t→∞

Pr[Tn(p) > t]

Pr(W0 > t)
= 1.

■

B.2 Proof of Theorem 3.2

Before proving Theorem 3.2, the following lemma helps to control the magnitude of

the test statistic.

Lemma B.1. Under Assumption 1.1 and Assumption 3.2, limt→∞ Pr[Tn(p) < −t] =

0 for any n when 0 < α < 2.

Proof of Lemma B.1. When q2 = 0, the statement is true. When q2 ̸= 0, we will show

Pr[Tn(p) < −t] ∼ q2t
−αL(t) → 0 as t → ∞. Similarly to the right tail argument in

the proof of Theorem 3.1, for any fixed n we have the following argument for the left

tail,

lim
t→∞

Pr[Tn(p) < −t]

Pr [anw1ϕ(p1)− w1bn < −t]
=

n∑
i=1

wα
i

wα
1

,

based on Lemma 3.1 of Jessen and Mikosch [2006] and equation (3.2.3). Therefore,

as t → ∞,

Pr[Tn(p) < −t] ∼
n∑

i=1

(
wα

i

wα
1

)
Pr [anw1ϕ(p1)− w1bn < −t]

∼
(
t− bn

an

)−α

q2lϕ ∼ t−αq2lϕ.

■

Proof of Theorem 3.2. In this proof, we show that Tn(p) → ∞ with probability 1 as

n → ∞. Let T|Sc|(p) be the test statistic for the true null hypothesis ∩i∈ScHi, where
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|Sc| is the cardinality of set Sc. The test statistic Tn(p) is decomposed into three

parts:

Tn(p) = an
∑
i∈S

wiϕ(pi) + an
∑
i∈Sc

wiϕ(pi)− bn

= an
∑
i∈S

wiϕ(pi) +
an
a|Sc|

T|Sc|(p) +

(
an
a|Sc|

b|Sc| − bn

)
:= An +Bn + Cn.

It is sufficient to show An → ∞ with probability 1 and neither Bn or Cn can be

arbitrary large negative.

Using a similar decomposition strategy as in the proof of Theorem 3 of Liu and

Xie [2020], the lower bound of An can be decomposed as follows:

An ≥ an min
1≤i≤n

wimax
i∈S

ϕ(pi) + an

(∑
j∈S

wj − min
1≤i≤n

wi

)
min
i∈S

ϕ(pi)

:= An,1 + An,2.

In the following arguments, we will prove that An is arbitrary large by showing that

An,1 can be arbitrarily large whereas An,2 > op(1) as n → ∞.

We first prove that for any ε1 > 0,

Pr (An,1 > M1n
ε1) → 1 (B.2.2)

as n → ∞, where M1 is a positive constant as defined in Assumption 3.3. Equation

(B.2.2) implies that An,1 is arbitrarily large; i.e., An,1 → ∞ as n → ∞ with probability

1.

The following proves equation (B.2.2). Since ϕ is nonincreasing, maxi∈S ϕ(pi) =

ϕ(mini∈S pi). From Lemma A.3 of Ling and Rho [2022], the lower bound of an

is min
(
n1−1/α, 1

)
. In addition, the assumption that minwi ≥ c0/n suggests that

An,1 ≥ min
(
n−1/α, n−1

)
c0ϕ(mini∈S pi) given that ϕ(mini∈S pi) is positive. Therefore,
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let m1 = ε1 +max(1/α, 1), we have

Pr

[
An,1

nε1
> M1

]
≥ Pr

[
ϕ(min

i∈S
pi) ≥ M1c

−1
0 nm1

]
· Pr

[
ϕ(min

i∈S
pi) > 0

]
= Pr

[
min
i∈S

pi ≤ ϕ−1
(
M1c

−1
0 nm1

)]
· Pr

[
ϕ(min

i∈S
pi) > 0

]
,

where ϕ−1 is the inverse function of ϕ. Note that the first inequality of the above

equation is true because

Pr

[
An,1

nε1
> M1

∣∣ϕ(min
i∈S

pi) ≤ 0

]
= 0.

Since ϕ is nonincreasing, ϕ−1 : (−∞,∞) → (0, 1) is also nonincreasing, implying

ϕ−1(t) ≤ ϕ−1(0) for any t > 0. As n → ∞,

Pr [ϕ (mini∈S pi) > 0] = Pr [mini∈S pi ≤ ϕ−1(0)]

≥ Pr
[
mini∈S pi ≤ ϕ−1

(
M1c

−1
0 nm1

)]
→ 1.

Therefore, ϕ(mini∈S pi) is positive with probability tending to 1 as n → ∞. Therefore,

the condition (3.2.9) in Assumption 3.3 implies that

Pr [An,1 > M1n
ε1 ] ≥ Pr

[
min
i∈S

pi ≤ ϕ−1(M1c
−1
0 nm1)

]
· Pr

[
ϕ(min

i∈S
pi) > 0

]
→ 1,

proving equation (B.2.2).

Now we show that An,2 > op(1). When ϕ(maxi∈S pi) is nonnegative, it is trivial

that An,2 is also nonnegative and An can be arbitrary large. The nontrivial case is

when ϕ(maxi∈S pi) is negative, where we have the following proof to show An,2 > op(1).

The assumption min1≤i≤n wi ≥ c0/n implies an has an upper bound at c−1
0 n1−1/α.

Recall that the sum of the weights of false individual null hypotheses is assumed to be∑
j∈S wj = nk0−1 with 0 < k0 < 0.5, and thus, an(

∑
j∈S wj−minj wj) < an

∑
j∈S wj <

c−1
0 nk0−1/α. Given ϕ(maxi∈S pi) is negative, An,2 > c−1

0 nk0−1/αϕ(maxi∈S pi), and the

condition in equation (3.2.10) implies that, as n → ∞,

Pr
(
An,2 > M2n

−ε2
)
> Pr

[
c−1
0 nk0−1/αϕ(max

i∈S
pi) > M2n

−ε2

]
= Pr

[
ϕ(max

i∈S
pi) > M2c0n

m2

]
= Pr

[
max pi < ϕ−1(M2c0n

m2)
]
→ 1
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where m2 = 1/α − ε2 − k0. Since m2 > 0 and M2 < 0, M2c0n
m2 → −∞ as n → ∞,

and thus ϕ−1(M2c0n
m2) → 1. Recall that ε2 > 0, which leads to M2n

−ε2 = o(1).

Therefore, An,2 > op(1) with probability tending to 1 as n → ∞.

Next we show that Bn cannot be arbitrarily large negative. Let 0 < ε3 < ε1, as

n → ∞,

Pr(Bn < −nε3) = Pr

T|Sc|(p) < (−nε3)

(∑n
j=1 w

α
j∑

i∈Sc wα
i

)1/α


≤ Pr
[
T|Sc|(p) < −nε3

]
.

(B.2.3)

According to Lemma B.1,

lim
n→∞

Pr
[
T|Sc|(p) < −nε3

]
= 0.

Therefore, Bn cannot be arbitrary large negative and Bn/n
ε3 > op(1).

When α ̸= 1, Cn = 0 for any n. When α = 1, an = 1 and a|Sc| =
∑

j∈Sc wj ≥

1− c0n
k0−1 due to the assumption on the minimum weight in Assumption 3.3.2. The

number of true individual hypothesis |Sc| is n − nk0 from Assumption 3.3.2 for 0 <

k0 < 0.5. Noting that limx→0
E sin[ϕ(p)x]

x
= E[ϕ(p)], Cn ≤ |Sc|

1−c0nk0−1E sin[ϕ(p)/|Sc|] −

nE sin[ϕ(p)/n] ∼ E[ϕ(p)]
(

1
1−conk0−1 − 1

)
→ 0 with uniform p. Therefore, Cn = o(1).

Recall that An,1 goes to infinite with order ε1 > ε3, and An,2 > op(1). Therefore,

the sum of An,1, An,2, Bn, and Cn is dominated by An,1 and can be arbitrary large

positive. As a result, Tn(p) → ∞ as n → ∞, and thus for any fixed significant level

s,

lim
n→∞

Pr [Tn(p) > ts] = 1,

where the ts is the cutoff value defined under the global null hypothesis. ■

B.3 Comparisons of Assumptions

Theorem 3 in Liu and Xie [2020] assumes some conditions of the number and strength

of nonzero signals of Z-score test statistics to study the asymptotic power of CCT. In
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this section we show that their assumption and our assumption 3.3 in Chapter 3 are

comparable.

CCT’s z-score test has assumptions µ0 =
√
2r log n, |S| = nk0 , and

√
r +

√
k0 >

1. These conditions can be changed into assumptions on minimum and maximum

p-values. Since maxi∈S |Xi| ≥ µ0 +
√
2 log |S+| + op(1) and p(x) = 2[1 − Φ(|x|)],

mini∈S pi ≤ 2[1−Φ(µ0+
√

2 log |S+|)]+op(1). By Mill’s ratio inequality that 1−Φ(x) ≤

x−1ϕ(x), where x > 0 and ϕ(x) = 1/
√
2πe−x2/2, thus we have,

min
i∈S

pi = p(max
i∈S

|Xi|) ≤ 2
(
µ0 +

√
2 log |S+|

)−1

ϕ
(
µ0 +

√
2 log |S+|

)
+ op(1)

≈ (
√
π)−1

(√
r +

√
k0

)−1 (√
log n

)−1

n−(
√
r+

√
k0)

2

+ op(1),

where
√
r +

√
k0 > 1. When α = 1, recall from equation (3.2.11), our framework

requires that

min
i∈S

pi < π−1
(
M1c

−1
0

)−α
n−ε1−1 + op(1)

for any ε1 > 0. Our condition is comparable to CCT’s condition by selecting an ε1

such that nε1 =
√
log n.

Next let’s consider the condition on max pi. Ling and Rho [2022] showed in Ap-

pendix B equation (A.1) that mini∈S |Xi| is greater than any ϵn with probability

tending 1 as n → ∞ if ϵnn
k0 = o(1). Therefore, 1 − max pi = 1 − p(min |Xi|) >

1− p(ϵn) + op(1) = 2Φ(ϵn)− 1+ op(1). By Taylor series expansions of Φ(ϵn), we have

2Φ(ϵn)− 1 = O(ϵn). Let ϵn = nε2−1, where 0 < ε2 < 1− k0 is defined in Assumption

3.3. Therefore, the condition on max pi of CCT satisfies

Pr

[
max
i∈S

pi < 1− Cnε2−1

]
→ 1,

where C is some positive constant. Recall from equation (3.2.12) the assumption of

our framework when α = 1 is

Pr

[
max
i∈S

pi < 1− π−1(−M2c0)
−1nε2+k0−1

]
→ 1.

Since nε2−1 < nε2+k0−1, the condition of CCT is weaker than ours.
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Appendix C

More Simulation Results From

Chapter 3

Figures C.1-C.4 are the plots of finite sample sizes, raw powers, and size-adjusted

powers of the FCT under the significance levels 0.01 and 0.005 and different cor-

relation strengths. The sample size n = 40, 100, 300. The x-axis indicates the tail

index α = 0.1, 0.3, 0.5, 0.7, 1.0, 1.3, 1.5, 1.7, 1.9. The y-axis represents the percentage

of rejections. The black horizontal line is the nominal significance level. The varying

correlation coefficients ρ = 0, 0.2, 0.4, 0.6, 0.8 in Figures C.1 and C.2. The correlation

coefficients are weaker at ρ = 0, 0.05, 0.1, 0.15, 0.2 in Figures C.3 and C.4. The num-

bers of Monte Carol replication are 5∗104 and 105 when the nominal significance level

is 0.01 and 0.005 respectively. The size distortion of FCT when α > 1 and ρ close to

1 is relived compared with Figures 3.1-3.3 in the main body of the paper where the

significance level is 0.05.

Tables C.1-C.3 reports more detailed information of Figure 3.4 when sample size

n = 40, 100, and 300. The nominal significance levels in all tables is 0.05. The

highlighted cells have the best cells or powers. The size, raw power and size-adjusted

power of six methods with ρ = 0, 0.1, . . . , 1 and sample size n = 40, 100, 300 are

reported. The same as in Figure 3.4, “FCT1” refers to FCT with α =1, “FCT1.5”
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Figure C.1: Size, raw power, and size-adjusted powers of the FCT when the significance level is 0.01.
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Figure C.2: Size, raw power, and size-adjusted powers of the FCT when the significance level is

0.005.
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Figure C.3: Size, raw power, and size-adjusted powers of the FCT when the significance level is 0.01

with varying weak correlation coefficients.

114



Figure C.4: Size, raw power, and size-adjusted powers of the FCT when the significance level is 0.01

with varying weak correlation coefficients
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refers to FCT with α = 1.5, “GMP1” refers GMP with α = 1, which is the same as

the HMP, “GMP1.5” refers GMP with α = 1.5, “SCT1” refers to SCT with (α, β) =

(1, 0), which is the same as CCT, and “SCT1.5” represents SCT with (α, β) = (1.5, 1).
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Sample size n = 40

Size

ρ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FCT1 0.0479 0.0495 0.0498 0.0518 0.0523 0.0504 0.0533 0.0557 0.0539 0.0500 0.0392

GMP1 0.0479 0.0495 0.0498 0.0519 0.0523 0.0504 0.0533 0.0557 0.0539 0.0499 0.0392

SCT1 0.0481 0.0499 0.0516 0.0528 0.0518 0.0530 0.0554 0.0578 0.0573 0.0566 0.0513

FCT1.5 0.0444 0.0447 0.0464 0.0480 0.0508 0.0538 0.0606 0.0662 0.0736 0.0819 0.0930

GMP1.5 0.0438 0.0444 0.0463 0.0473 0.0499 0.0525 0.0598 0.0653 0.0725 0.0800 0.0888

SCT1.5 0.0407 0.0498 0.0509 0.0533 0.0595 0.0646 0.0756 0.0834 0.0962 0.1148 0.1774

Raw power

ρ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FCT1 0.4919 0.4963 0.4996 0.4943 0.4849 0.4901 0.4810 0.4841 0.4576 0.4396 0.3249

GMP1 0.4919 0.4962 0.4996 0.4943 0.4848 0.4901 0.4807 0.4841 0.4576 0.4394 0.3249

SCT1 0.4882 0.4945 0.4952 0.4922 0.4827 0.4862 0.4764 0.4803 0.4560 0.4383 0.3466

FCT1.5 0.4883 0.494 0.4959 0.4917 0.4828 0.4870 0.4797 0.4796 0.4568 0.4327 0.3273

GMP1.5 0.4866 0.4921 0.4938 0.4911 0.4811 0.4863 0.4791 0.4785 0.4556 0.4319 0.3253

SCT1.5 0.5046 0.5113 0.5150 0.5095 0.4991 0.5061 0.4959 0.4986 0.4738 0.4492 0.3655

Size-adjusted power

ρ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FCT1 0.4998 0.4977 0.4999 0.4903 0.4769 0.4870 0.4713 0.4650 0.4454 0.4397 0.3570

GMP1 0.4998 0.4976 0.4998 0.4903 0.4769 0.4869 0.4713 0.4651 0.4454 0.4398 0.3574

SCT1 0.4949 0.4946 0.4903 0.4862 0.4752 0.4776 0.4629 0.4568 0.4319 0.4179 0.3429

FCT1.5 0.5128 0.5143 0.5118 0.5009 0.4803 0.4771 0.4480 0.4305 0.3846 0.3540 0.2367

GMP1.5 0.5131 0.5135 0.5117 0.5006 0.4821 0.4796 0.4484 0.4295 0.3868 0.3555 0.2402

SCT1.5 0.5141 0.5117 0.5119 0.4980 0.4704 0.4654 0.4350 0.4128 0.3603 0.3269 0.2084

Table C.1: Size, raw power, and size-adjusted power of six methods when sample size

n = 40.
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Sample size n=100

Size

ρ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FCT1 0.0479 0.0485 0.0450 0.0542 0.0489 0.0519 0.0517 0.0523 0.0512 0.0496 0.0345

GMP1 0.0479 0.0485 0.0450 0.0542 0.0489 0.0519 0.0517 0.0523 0.0512 0.0496 0.0343

SCT1 0.0484 0.0492 0.0453 0.0544 0.0491 0.0540 0.0514 0.0532 0.0536 0.0542 0.0483

FCT1.5 0.0440 0.0444 0.0424 0.0521 0.0501 0.0578 0.0604 0.0663 0.0769 0.0946 0.1101

GMP1.5 0.0434 0.0439 0.0418 0.0518 0.0493 0.0577 0.0597 0.0656 0.0755 0.0922 0.1042

SCT1.5 0.0495 0.0489 0.0460 0.0561 0.0567 0.0669 0.0713 0.0800 0.0945 0.1235 0.2080

Raw power

ρ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FCT1 0.5227 0.5175 0.5198 0.5249 0.5254 0.5116 0.5139 0.5122 0.5018 0.4842 0.3275

GMP1 0.5227 0.5174 0.5198 0.5247 0.5254 0.5117 0.5139 0.5122 0.5018 0.4842 0.3275

SCT1 0.5152 0.5136 0.5188 0.5185 0.5226 0.5076 0.5091 0.5062 0.4964 0.4796 0.3518

FCT1.5 0.5251 0.5184 0.5237 0.5265 0.5267 0.5164 0.5163 0.5144 0.5055 0.4854 0.3268

GMP1.5 0.5237 0.5173 0.5224 0.5257 0.5253 0.5151 0.5156 0.5136 0.5048 0.4846 0.3235

SCT1.5 0.5340 0.5278 0.5367 0.5356 0.5371 0.5271 0.527 0.5274 0.5182 0.4986 0.3739

Size-adjusted power

ρ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FCT1 0.5285 0.5212 0.5410 0.5090 0.5275 0.505 0.5111 0.5050 0.4956 0.4869 0.3720

GMP1 0.5285 0.5212 0.5411 0.5089 0.5275 0.5050 0.5111 0.5051 0.4960 0.4871 0.3727

SCT1 0.5225 0.5158 0.5348 0.5057 0.5256 0.4983 0.504 0.4967 0.4897 0.4688 0.3554

FCT1.5 0.5428 0.5343 0.5485 0.5214 0.5267 0.4911 0.4849 0.4702 0.4425 0.3940 0.2272

GMP1.5 0.5432 0.5345 0.5486 0.5230 0.5272 0.4921 0.4853 0.4706 0.4439 0.3977 0.2306

SCT1.5 0.5352 0.5302 0.5495 0.5164 0.5200 0.4832 0.4750 0.4569 0.4231 0.3554 0.2029

Table C.2: Size, raw power, and size-adjusted power of six methods when sample size

n = 100.
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Sample size n=300

Size

ρ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FCT1 0.0504 0.0468 0.0500 0.0487 0.0536 0.0483 0.0517 0.0527 0.0596 0.0516 0.0349

GMP1 0.0504 0.0467 0.0500 0.0487 0.0536 0.0483 0.0517 0.0527 0.0596 0.0516 0.0348

SCT1 0.0505 0.0492 0.0507 0.0482 0.0530 0.0490 0.0523 0.0545 0.0590 0.0542 0.0520

FCT1.5 0.0489 0.0447 0.0489 0.0476 0.0547 0.0525 0.0615 0.0682 0.0880 0.1073 0.1270

GMP1.5 0.0489 0.0446 0.0485 0.0474 0.0547 0.0520 0.0613 0.0678 0.0873 0.1048 0.1205

SCT1.5 0.0469 0.0434 0.0477 0.0475 0.0552 0.0551 0.0662 0.0772 0.1011 0.132 0.2302

Raw power

ρ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FCT1 0.6854 0.6866 0.6910 0.6876 0.6929 0.6811 0.6849 0.6856 0.6764 0.6580 0.3707

GMP1 0.6854 0.6866 0.6910 0.6876 0.6929 0.6811 0.6848 0.6855 0.6764 0.6581 0.3707

SCT1 0.6803 0.6798 0.6849 0.6807 0.6864 0.6757 0.6797 0.6819 0.6714 0.6483 0.3930

FCT1.5 0.7010 0.7031 0.7080 0.7004 0.7104 0.6978 0.7021 0.7013 0.6868 0.6666 0.3726

GMP1.5 0.7006 0.7023 0.7075 0.7001 0.7098 0.6972 0.7022 0.7006 0.6863 0.6654 0.3700

SCT1.5 0.6944 0.6928 0.6962 0.6884 0.7023 0.6812 0.6771 0.6711 0.6474 0.6006 0.4154

Size-adjusted power

ρ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FCT1 0.6837 0.6935 0.6925 0.6932 0.6847 0.6865 0.6807 0.6784 0.6536 0.6500 0.4069

GMP1 0.6837 0.6935 0.6923 0.6931 0.6847 0.6865 0.6807 0.6785 0.6536 0.6500 0.4076

SCT1 0.6786 0.6819 0.6815 0.6863 0.6797 0.6776 0.6723 0.6707 0.6502 0.6384 0.3902

FCT1.5 0.7038 0.7182 0.7114 0.7056 0.7006 0.6921 0.6753 0.6509 0.6035 0.5550 0.2437

GMP1.5 0.7050 0.7183 0.7111 0.7055 0.7001 0.6925 0.6773 0.6518 0.6048 0.5575 0.2457

SCT1.5 0.7024 0.7158 0.7037 0.6968 0.6875 0.6576 0.6176 0.5573 0.4388 0.3111 0.1020

Table C.3: Size, raw power, and size-adjusted power of six methods when sample size

n = 300.
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