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Abstract

The marine renewable energy community is interested in maximizing the power gen-

erated by nonlinear wave energy converters. Optimal control methods provide a tool

to achieve this aim and can also help to inform the buoy design. An energy-optimal

control law for a class of non-linear buoy models is derived and is shown to be sin-

gular. The solution approach is illustrated using an hourglass-shaped buoy having

a cubic, hydrostatic nonlinearity. The optimal control law is only valid on singular

arcs, and a method to search for these arcs is presented. Two singular arcs are found

for the hourglass buoy model and analyzed. Neither is likely optimal thus, finding

the energy-optimal singular arc is left for future work.

xix





Chapter 1

Introduction

In this thesis, optimal control methods are explored for extracting the maximum

amount of power from both linear and nonlinear, point absorber wave energy con-

verters (WECs). The analysis focuses on axisymmetric wave energy converter buoys

in heave, although the methods presented may have applications elsewhere.

For the optimal control problem to be tractable, only a specific class of non-linear

forces is considered. This class of nonlinear forces is important to the wave energy

community because many hydrostatic and hydrodynamic interactions of interest be-

tween the buoy and the water surface fit into this class and can be used in the analysis

presented.

It is shown that the optimal control that maximizes extracted energy falls into a
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particular class called singular arc control solutions. This class of optimal control

problems requires specific consideration which is detailed in this thesis. However, the

fact that the problem is singular ends up being fortuitous as this allows a general

control law can be derived. This control law is considered general because it can be

applied to any dynamic system model which fits into the class of non-linear forces

which is considered. The analysis deriving this general control law is the main result

of this thesis.

For the general control law to be valid, the system must be on a singular arc. Of

the infinite set of possible trajectories which exist that the system can be on, only a

small subset meets the criteria of being singular. There exists a criterion called the

stationary condition, which if met classifies a trajectory as singular. This means that

certain initial conditions must be chosen so that the system starts on one of these

singular arcs. If the system starts on a singular arc, the general control law will force

the system to remain on that arc.

Analysis is done to show that one of the singular arcs maximizes the power extracted

from the device. A second-order test called the general Legendre-Clebsch condition is

performed to show that being on a singular arc is a necessary condition for maximizing

the power extraction.

When the buoy is not on a singular arc, power extraction is not maximized. In this

case, bang-bang control can be used to drive the system to a singular arc. Once the
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system has reached the singular arc, the optimal control law may be used to keep

the system on that arc. Pontryagin’s Minimum Principle is discussed, and it follows

from this principle that bang-bang control is optimal when the system is not on the

singular arc.

To perform bang-bang control, a switching function must be defined. This switching

function should drive the system to the singular arc. For instance, if the switching

function is positive, the maximum control force is applied, if the switching function

is negative, the minimum control force is applied, and if the switching function is

identically 0 then the system is on the singular arc and the general control law can

be used. It is assumed that the available control force is symmetric, i.e the maximum

control force equals the negative of the minimum control force. This assumption is

not required by the analysis but is typical in real-world applications.

One of the first forms of control ever explored in the wave energy field is called complex

conjugate control. This type of control essentially forces a linear buoy to operate at

resonance, which maximizes the velocity of the buoy. Then, the well-known result of

impedance matching is used to maximize the power extracted from the buoy. This

form of control was valid for linear buoys in regular waves i.e. waves that are modeled

by a sinusoid at a single frequency. It is shown analytically that complex conjugate

control is a special case of the optimal control law developed in this thesis.

The optimal control law is applied to a linear model of a buoy. The linear model is
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shown to be a special case of the class of non-linear models which are studied. This is

a ”toy” model as it is not predictive of many buoys which are used in the real world.

However, the interaction between the general control law and the linear buoy is rich

enough to gain an intuitive understanding of how more realistic problems will act. A

switching function is found for the linear buoy model, and numerical analysis using

this switching function is explored. The behavior of the linear buoy with bang-bang

and singular control is explored extensively.

The general control law is then applied to an hour-glass shaped buoy. This demon-

strates how non-linear buoy shapes may be used in the optimal control analysis. Only

hydrostatic forces are considered in this analysis, although in principle nothing is pre-

venting hydrodynamic forces from being included. Difficulties in finding a switching

function for the hourglass buoy are discussed.

An infinite number of singular arcs are shown to exist, and only one of these arcs

will maximize the power extracted from the device. It is shown that the singular arc

which maximizes the power extraction can be found through numerical simulation.

Future work may be done to find a systematic approach to finding the arc which

maximizes power extraction.
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1.1 Organization of this Thesis

Section 1.2, entitled ”Motivation”, provides a more detailed explanation of why the

optimal control law derived in this thesis is important to the wave energy community.

Section 1.3, entitled ”Background”, provides an overview of why wave energy is impor-

tant in combating climate change. It then provides a general overview of the different

types of wave energy converters. The basic components of a wave energy converter

are covered. A case for applying closed-loop control to wave energy converters is

made. Finally, the optimal control of wave energy converters is discussed.

Section 1.4 discusses the theoretical framework for developing an optimal control

problem. An important set of necessary conditions known as the Euler-Lagrange

equations are derived. Pontryagin’s Minimum Principal is discussed, as is the defini-

tion of a singular arc problem. The necessary conditions for optimality including the

stationary condition and the Legendre-Clebsch conditions are discussed. Finally, a

generalized Legendre-Clebsch test is discussed which works for singular arc problems.

Chapter 2 discusses the optimal control of both linear and non-linear wave energy

converters.

Section 2.1 goes over the class of dynamic system models which will be considered in
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this thesis.

Section 2.2 shows the general solution for developing an optimal control law that

keeps a general class of non-linear dynamic buoy models on the optimal singular arc.

Showing that an optimal singular arc exists for this class of non-linear buoys is the

main contribution of this thesis.

Section 2.3 shows that the optimal solution derived in 2.2 passes the general 2nd order

Legendre-Clebsch test for singular arcs. This is a necessary condition for the solution

to be a local minimum over the singular arc. The fact that the general control law

passes the Legendre-Clebsch test over the class of non-linear models is new work in

this thesis.

In section 2.4, an equivalency is shown between the optimal solution for a linear buoy

and complex conjugate control. Zou et al. showed that the numerical simulation of

the optimal control law and the buoy were equivalent [1]. This thesis extends that

by showing an analytical derivation of the equivalency.

In section 2.5, the general control law is applied to a linear buoy, and the resulting

control law is shown to be identical to what Zou et al. reached in their paper [1].

Numerical simulation is shown of how the system acts when the initial conditions are

started both on and off of the optimal singular arc. New work is completed to show

through analysis and simulation that there are an infinite number of singular arcs and
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that only one is optimal. Because it is clear when the power extraction of the linear

model is maximized, a simple numerical scheme is used to find the optimal singular

arc.

Section 2.6 shows new work to apply the general control law to an hourglass-shaped

buoy. This section discusses how to apply the general control law to a non-linear

example. Only hydrostatic forces are considered for simplicity. There is no reason in

principle why the method presented could not be extended to hydrodynamic forces.

A numerical method for searching for singular arcs is presented, and two candidates

are found. Each arc is analyzed for power generation. It is unlikely that either arc is

the optimal candidate.

In chapter 3 a summary of findings and future work can be found.

1.2 Motivation

The main contribution of this thesis is to show a method of formulating an optimal

control law for a wide variety of non-linear wave energy converters. When applied to

a wave energy converter model, this control law will force the system to evolve along

an optimal trajectory. The trajectory is optimal in that the total power extracted

from the system is maximized over this trajectory.
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Consider an axisymmetric buoy oscillating in heave. Let m be the mass of a buoy,

ζ be the position of the buoy in heave, b be the linear viscous damping, k be the

spring force, fe(t) be the excitation force, and u be the control force. For the linear

model described below in equation 1.1, there exists an optimal control function u

which keeps the system on the optimal trajectory [1]. This control function will be

derived later in section 2.5.

mζ̈ + bζ̇ + kζ = fe(t)− u (1.1)

This thesis considers a broader class of non-linear models, where the spring force and

excitation terms can be described by any potentially non-linear function fnl(ζ, t).

mζ̈ + cζ̇ = fnl(ζ, t)− u (1.2)

Note that the linear model of equation 1.1 is a special case of the non-linear model

in equation 1.2 where fnl(zeta, t) = fe(t)− k ζ.

The non-linear force term fnl(ζ, t) admits a variety of interesting phenomena including

modeling the nonlinear forces arising from non-cylindrical buoys experiencing large

displacements.
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This work shows that there is a general optimal control law that can be applied to

nonlinear point absorbers experiencing large motions. The law is only valid when the

system is on a singular arc. A method for searching for singular arcs is presented. If

the optimal singular arc candidate can be found, then it can then be used to build

tracking control laws. In addition, it can be used for designing energy-optimal buoy

shapes.

Future work needs to be done to be able to find these trajectories for non-linear

systems systematically.

1.3 Background

Wave energy is likely to play an important role in the future of renewable energy. The

demand for renewable resources is high and will likely need to be filled by a variety

of sources. Wave energy converters offer an additional resource that may be able to

ease the growth requirements of traditional wind, solar, and hydro renewable sources.

1.3.1 Demand for Renewable Resources

Total US energy production in 2013 was about 3.7 terawatt years (TWy) [2]. Approx

9% of that amount was supplied by renewable energy.
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At the current rate of growth, the US will produce about 8.65 TWy in 2050 [3].

Energy models show that between 28% and 74% of this total energy will need to

come from renewable sources to meet climate mitigation and pollution objectives [4].

An average figure of 50% renewable energy production requires the addition of 100

gigawatt years (GWy) of renewable energy every year starting in 2014. Scaling the

current US renewable energy portfolio, made of hydroelectric, geothermal, solar, wind,

and biomass sources, to this amount, would require significant additional resource

utilization. These rates would require the annual addition of 90 billion tons of water

falling from 1000 m, about 1580 km2 of new PV panel area, and about 180 km2 of

new turbine swept area [3]. Offshore energy provides a significant additional resource

that could ease the growth curves of other renewable resources.

The following figures help to get a sense of how much energy is available from wave

energy sources. Wave energy is typically measured in kilowatts per meter of wave

front. Approximately 37 kW/m is available off the US Northern Pacific coast, and

33 kW/m is available off the US Northern Atlantic coast [5]. It is estimated that

approximately 590 TWh/year can be extracted from the West Coast, and approxi-

mately 230 TWh/year of energy can be extracted from the East Coast [3]. In general,

more power is available at high northern or southern latitudes, especially in the win-

ter months [3]. From the figures above, it can be seen that wave energy can play an

important role in the future demand for renewable energy sources.
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1.3.2 A Selection of Wave Energy Converter Types

Many different types of wave energy converters have been studied to harness wave

energy in different environments. A short synopsis of several interesting buoys is

provided below.

One of the earliest devices was the tail-tube or pneumatic buoy, also called an oscil-

lating water column buoy [3]. This device consists of a cylindrical buoy with a deeply

immersed central tube. The tube creates a central shaft of water which was isolated

from the wave motion. This shaft of water can be used to produce relative motion

against the buoy as it heaved up and down in the wave field. Navigation buoys using

this principle to generate power were used in Japan as early as the 1940s [6].

The Edinburgh Duck was a novel buoy concept developed by Professor Steven Salter

at the University of Edinburgh in the 1970s [3]. The duck was specifically designed to

extract energy in a beam-sea configuration. The shape was optimized to ”terminate”

the wave, and energy conversion efficiency could approach 100% in correct wave con-

ditions [3]. A weakness of the duck design is that the efficiency of the device was

significantly degraded if the wavefront was not perpendicular to the device [3].

Axisymmetric point absorber buoys are the main object of analysis in this thesis.

They prove popular as many methods of analysis are available, and often these types
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of buoys can be the easiest to construct and install. An interesting feature of these

buoys is that they can absorb more energy than is directly incident on the diameter of

the buoy [3]. This feature is wavelength dependent, and the maximum characteristic

length that they can absorb over is found as λ d/2π where λ is the wavelength of the

wave field, and d is the diameter of the buoy [7].

1.3.3 Parts of a WEC

The main goal of a wave energy converter is to generate relative motion from the

oscillatory force generated from waves. This motion then can be used to generate

power. This thesis will mainly consider WECs that float out at sea. Other types of

devices do exist, for instance, WECs that are built into break walls near the shore.

Wave energy converters usually consist of a floating body, some kind of mooring

system, and a power-take-off unit, which is responsible for generating power. Many

power-take-off unit designs exist, these may be hydraulic pumps, linear/rotary gen-

erators, or turbine systems [3]. The power lines are usually run through the mooring

system to the sea floor where they connect with an underwater power grid.
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1.3.4 Hydrostatic and Hydrodynamic Interactions

For a heaving point absorber, the most relevant non-linear component of the hydro-

dynamic force is the Froude-Krylov force [8]. This force is the integration of the

incident pressure from the water over the wetted surface of the buoy [8].

The Froude-Krylov can be broken down into a static and a dynamic component,

yielding the hydrostatic and the hydrodynamic forces of the buoy respectively. The

Froude-Krylov forces can be computed as follows:

ffk =

∫∫
S(t)

P n dS (1.3)

where P is the pressure over the wetted surface, n is the normal over the wetted

surface, and S(t) is the area of the wetted surface. Therefore dS is an infinitesimal

patch of the wetted surface.

The pressure can be estimated using Airy’s wave theory for deep water waves [8]:

P = ρ g a eχ z cos(ω t− χx)− ρ g z (1.4)
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where a is the amplitude of the wave, χ is the wavenumber, z is the vertical direction,

ω is the frequency, and x is the direction of propagation.

Airy’s wave theory can be split up into static and dynamic components as shown

below:

Pdy = ρ g a eχ z cos(ω t− χx) (1.5)

Pst = −ρ g z (1.6)

This leads naturally to splitting the integral in equation 1.3 into two parts as follows:

ffk,dy =

∫∫
S(t)

Pdy n dS = ρ g a

∫∫
S(t)

eχ z cos(ω t− χx)n dS (1.7)

ffk,st =

∫∫
S(t)

Pst n dS = −ρ g

∫∫
S(t)

z n dS (1.8)

where ffk,dy are the Froude-Krylov hydrodynamic forces, and ffk,st are the Froude-

Krylov hydrostatic forces.
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These integrals then need to be evaluated for the particular buoy shape under con-

sideration.

1.3.5 Control

Applying closed-loop control to wave energy converters can increase their power out-

put by a factor of 3-5 fold [3]. Oftentimes, the necessary control force can be intro-

duced into a buoy through the existing power-take-off unit, yielding the advantages

of control with minimal cost.

An early type of control applied to buoys was called complex conjugate control (also

known as impedance matching) [9]. The idea behind complex conjugate control was

to force the buoy to operate at resonance by using the control force to cancel the

mass and spring terms in the dynamic system equation [10]. Then the maximum

power would be transferred from the buoy if the damping in the power-take-off unit

matched the damping in the buoy system [3].

Optimal Control methods have been applied to wave energy converters. These meth-

ods are useful because they can provide upper theoretical bounds on the amount of

energy that can be extracted from a device. Zou et al. adapted a result from the

optimal control of vibration dampers to show how to maximize the power drawn from

a linear WEC buoy [1] [11]. Zou et al. showed that the optimal trajectory is singular
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for their model because the Hamiltonian is linear in the control function [1]. They

also show that utilizing the optimal control law for the singular trajectory is more

optimal than traditional bang-bang controllers [1]. Finally, they compare simulations

of their method against complex conjugate control [1].

This thesis shows that similar optimal control methods to those in Zou et al. can

be used on a wider class of non-linear buoy models [1]. This wider class of models

can include important non-linear dynamics such as the static and dynamic Freude-

Krylov forces for many axisymmetric buoy shapes, although only the static forces are

analyzed in this thesis.

This thesis shows that extracted power is maximized when the system is on the

singular trajectory, as well as deriving a general control law that will keep the system

on the optimal singular trajectory. It also discusses the difficulty in finding the

singular arc for non-linear systems (specifically an hour-glass buoy is analyzed), as

well as the difficulty in finding a switching function that can be utilized with bang-

bang control to drive the system to the singular arc.
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1.4 Overview of Optimal Control Theory

The goal of optimal control theory is to determine an admissible control function that

yields an optimal trajectory. The trajectory is considered optimal if it minimizes a

given cost function while obeying a given set of constraints.

In the particular formulation followed in this thesis, the cost function will relate to the

energy extracted from the buoy, and the constraints will force the optimal trajectory

to obey the differential system of equations that describes the buoy motion.

1.4.1 Optimal Control Problem Formulation

Note that for clarity of reading, boundary terms have been omitted as they do not

affect the derivation of the particular optimal control problem studied.

Let ϕ(x(t),u(t), t) be an arbitrary Lagrangian to minimize and ẋ(t) = f(x(t),u(t), t)

be a set of dynamic equations which describe a system of interest.

Then J , which is a cost function to be minimized, can be defined as:
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J =

∫ tf

t0

ϕ(x(t),u(t), t) + λ(t)T
[
f(x(t),u(t), t)− ẋ(t)

]
, dt (1.9)

The integrand of the above cost function is composed of the sum of the Lagrangian and

a set of equality constraints that are adjoined to the cost function through Lagrange

multipliers. The Lagrangian may be chosen as any quantity which is desired to be

minimized as the system evolves over the optimal trajectory. The equality constraints

force the optimal trajectory to obey the given dynamic equations [12].

The Hamiltonian, which is a scalar function, is defined as:

H = ϕ(x(t),u(t), t) + λ(t)Tf(x(t),u(t), t) (1.10)

Then, substituting the Hamiltonian back into equation 1.9, the cost function becomes:

J =

∫ tf

t0

H(x(t),u(t), t)− λ(t)T ẋ(t) dt (1.11)

The calculus of variations can be used to derive the necessary conditions for a tra-

jectory to be optimal under a particular Lagrangian. In the calculus of variations

approach, the first variation of the cost function must vanish to zero at the optimal

trajectory [13]. By differentiation under the integral sign, the first variation of the
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cost function J is [12]:

δJ =

∫ tf

t0

[
HT

x δx+HT
u δu− λT δẋ+ (Hλ − ẋ)T δλ

]
dt (1.12)

The variation in ẋ can be eliminated via integration by parts as follows [12]:

∫ tf

t0

−λT δẋ dt =

∫ tf

t0

λ̇T δx dt+ boundary terms (1.13)

Substituting 1.13 back into equation 1.12 produces the following result:

δJ =

∫ tf

t0

[
HT

x δx+HT
u δu+ λ̇T δx+ (Hλ − ẋ)T δλ

]
dt

=

∫ tf

t0

[
(HT

x + λ̇T )δx+ (Hλ − ẋ)T δλ+HT
u δu

]
dt

(1.14)

The necessary condition for an optimal trajectory is that the first variation δJ must

vanish to 0. This must be true for any arbitrary variations of δx, δu, and δλ [13].

Thus each term in the integrand above must vanish to zero which yields the following

conditions for an optimal trajectory:
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Hx + λ̇ = 0 (1.15)

Hλ − ẋ = 0 (1.16)

Hu = 0 (1.17)

or as they are more commonly written:

∂λH = ẋ (1.18)

∂xH = −λ̇ (1.19)

∂uH = 0 (1.20)

Equations 1.18 are known as the state equations, equation 1.19 are called the co-state

equations, and equation 1.20 is the stationary condition.

1.4.2 Pontryagin’s Minimum Principle

The Pontryagin Minimum Principal (PMP) is a necessary condition that a control

function must satisfy to be a candidate for optimality. The principle states that the
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optimal control function is the one that both satisfies the boundary conditions on the

problem and which minimizes the Hamiltonian.

Let u(t) be any admissible control, let Ω be the family of all admissible control laws,

and let u∗(t) be the optimal control function in Ω for a given problem. An admissible

control is defined as a control that evolves the system of states and co-states from the

initial conditions to the final conditions. Let x(t) be the set of states and let λ(t) be

the set of co-states corresponding to an admissible control function u(t) which satisfy

the boundary conditions of the problem. Let x∗(t) and λ∗(t) be the optimal states

and co-states corresponding to the optimal control law u∗(t).

Pontryagin’s Minimum Principle states that the value of the Hamiltonian has an

absolute minimum at the optimal control law [14], i.e.

min
u∈Ω

H(x(t), λ(t), u(t)) = H(x∗(t), λ∗(t), u∗(t)) (1.21)

or, equivalently

H(x∗(t), λ∗(t), u∗(t)) ≤ H(x(t), λ(t), u(t)) (1.22)

for all u(t) in Ω.
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Pontryagin’s Minimum Principle also states that the value of the Hamiltonian of the

optimal control function is constant across time [14], i.e.

H(x∗(t), λ∗(t), u∗(t)) = H0 (1.23)

1.4.3 Singular Arcs

When the Hamiltonian contains terms where the control variable is at least quadratic,

the stationary condition 1.20 will contain a control value term that can be solved

in terms of the states and co-states. In general, the control law derived from the

stationary condition for these kinds of problems will depend on both the states and

co-states. Finding the optimal trajectory for this class of problems involves picking

the correct boundary conditions for the states and co-states and evolving the system

along the optimal control law. These boundary conditions are called transversality

conditions.

The transversality conditions are derived from the boundary terms which were ignored

in the derivation in section 1.4.1. Typically the boundary conditions for the state

equations occur at the beginning of the trajectory, and the boundary conditions for

the co-state equations occur at the end of the trajectory.
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Special consideration must be taken when the Hamiltonian function is linear with

respect to the control variable, or equivalently if Huu = 0. In this case, the first

derivative of the Hamiltonian with respect to the control variable Hu will be inde-

pendent of the control variable u.

When this happens, the stationary equation 1.20 is independent of the control variable

u. This implies that the Hamiltonian is not sensitive to the control variable while

the system is on the optimal trajectory. This means that it is impossible to directly

minimize the Hamiltonian as required by Pontryagin’s Minimum Principle by choosing

the control variable. In this case, the optimal trajectory is said to lie on a singular

arc.

In some cases, an optimal control law can still be found when the optimal trajectory

lies on a singular arc. Typically the procedure for finding the optimal control law

involves differentiating the stationary condition and then algebraically manipulating

the system of equations formed by the state, co-state, stationary, and stationary

derivative equations. An example of a derivation is given below in 2.2.

1.4.4 Necessary Conditions

The stationary condition is a necessary condition for the trajectory to be optimal. To

verify that the Lagrangian is minimized, as opposed to a maximum or saddle point,
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a second-order test must be conducted.

In general, the second-order condition for optimality is:

Huu(x(t), λ(t), u(t), t) ≥ 0 (1.24)

The above is called the Legendre-Clebsch condition [15].

There is a strengthened version of the Legendre-Clebsch test as follows:

Huu(x(t), λ(t), u(t), t) ≥ α (1.25)

for some positive α. If the strengthened Legendre-Clebsch test holds, it guarantees

that u(t) is a local minimizer of the Hamiltonian almost everywhere on the trajectory

[15].
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1.4.5 Generalized Legendre-Clebsch Conditions for Singular

Arcs

When the system stationary equation forms a singular arc, the Legendre-Clebsch test

above is not useful. This is because when the system is singular, in all cases Huu = 0.

Kelly et al. showed that there is a generalized Legendre-Clebsch test that can be used

when an optimal control solution lies on a singular arc [16]. The generalized test is

as follows:

∂

∂u

[
d2

dt2
Hu(x(t), λ(t), u(t))

]
≤ 0 (1.26)

A more generalized version of this test is given in Bryson and Ho when systems of

equations must be considered, and is reproduced below [17]:

(−1)k
∂

∂u

[(
d

dt

)2k

Hu

]
≥ 0, k = 0, 1, 2, . . . . (1.27)

It can be seen that the test in equation 1.26 is a special case of this more general

result by inspection. In general, a term will fall out of the test which contains the
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control law through an even number of differentiations with respect to time [17].

The general procedure behind this test is to first take the time derivative of the

Hamiltonian with respect to the control function u. This will cause several partial

derivatives to appear in the expression. These can be eliminated by substituting the

state and co-state equations into the expression. A second derivative is then taken,

and the same procedure is followed. At this point, at least one of the terms in the

expression will include the control variable. When the expression is differentiated

with respect to the control variable for the final time, these terms will form the test

for the generalized Legendre-Clebsch condition. An example of the specific problem

studied by this thesis is worked through in the section 2.3.
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Chapter 2

Optimal Control of a General Class

of Non-linear WECs

In this chapter, the general solution for the optimal control law which maximizes the

power generated by a WEC is presented.

Section 2.1 builds up the class of non-linear dynamic models which are considered

for optimal control. First, a linear model will be discussed. Then, a generalization of

this model which admits a certain useful class of non-linear forces will be defined.

This generalized model will be used in the derivation of an optimal control law in

section 2.2. The Legendre-Clebsch conditions will then be worked out for this optimal

control law in section 2.3, showing that a singular arc is a candidate for maximum

27



power generation.

The relationship between the general optimal control law and complex conjugate

control will be explored in section 2.4.

The control law will be applied to the linear model in section 2.5. Numerical analysis

will be performed to show the behavior of the system both on and off the singular

arc. It will be shown that an infinite number of singular arcs exist, only one of which

maximizes the power generated. The construction of the family of singular arcs will

be discussed. The optimal singular arc can be found through numerical optimization.

Finally, the control law will be applied to an hourglass buoy in section 2.6. Numerical

simulation will be performed to show that the system is operating on a singular arc.

Numerical optimization methods will be used to search for the optimal singular arc.

2.1 Dynamic System Model

A free-body diagram for a simple linear wave energy converter buoy in heave is shown

in figure 2.1.

Let ζ be the position of the buoy in the heave direction. Then the dynamic system

model for the buoy is given by equation 2.1. It is found by summing the forces in the
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Figure 2.1: Free body diagram of simple dynamic model

free-body diagram.

mζ̈ + bζ̇ + kζ = Fe(t)− Fpto (2.1)

where m is the mass of the buoy, c is the damping coefficient, k is the spring constant,

Fe is the excitation force from the waves impacting the buoy, and Fpto is the force

applied to the buoy by the power take-off. Waves are introduced into the model

through the excitation force Fe.

The total energy extracted from this system can be written as:

E =

∫ tf

0

Fpto ζ̇ dt (2.2)
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where tf is the time horizon to optimize over. A quick dimensional analysis veri-

fies the above equation is physically correct. The dimensions of the integrand are(
Fpto [N]

)(
ζ̇ [m

s
]
)
= [Watts]. The integral of [Watts] with respect to time is [Joules]

of energy.

An optimal control force that can be applied to this simple buoy model from the

power take-off and which maximizes the extracted energy from the model is found in

Zou et al and will be re-derived in section 2.5 [1].

One shortcoming of the simplified model 2.1 is that it cannot capture realistic non-

linear hydrostatic and hydrodynamic force interactions between a buoy and the water

surface. For instance, it may be desirable to analyze a model which contains Freude-

Krylov hydrostatic or hydrodynamic forces.

This thesis considers dynamic models with any non-linear force which may be written

as a function of buoy position ζ and time t. This class of functions allows for the

modeling of many interesting non-linear spring-like forces. These spring-like forces

are usually some non-linear function of the distance between the water surface and the

buoy position. It is necessary to include time as a dependency of the force function

to allow the water surface to evolve. A free-body diagram for models of this type is

shown in figure 2.2.
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Figure 2.2: Free body diagram of simple dynamic model

A dynamic model corresponding to the free-body diagram in figure 2.2 with a gener-

alized force term is given in equation 2.3.

mζ̈ + bζ̇ = Fh(ζ, t)− Fpto (2.3)

Note that in this model, the water surface is represented as η(t) which is some ar-

bitrary function of time. Typically the non-linear force on the buoy is given as a

function η(t) and ζ - e.g. the force function usually looks like Fh(ζ, η(t)). Note that

this is a special case of the class of the family of force functions Fh(ζ, t) which are

considered.

It is important to note that equation 2.3 is a strict generalization of equation 2.1

where
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Fh(ζ, t) = −kζ + Fe(t) (2.4)

Examples of realistic hydrostatic and hydrodynamic models which can be represented

by Fh(ζ, t) will be considered later in this thesis.

2.2 General Optimal Control Solution

A general control function is derived which will keep any model in the class of dynamic

systems described by equation 2.3 on the optimal singular arc. While the system is on

the optimal arc, the amount of power extracted from the device will be maximized.

First, the dynamic model in equation 2.3 is transformed into state space. Let u = Fpto

represent the control force in the model. The following state assignments are used:

x1 = ζ (2.5)

x2 = ζ̇ (2.6)

x3 = t (2.7)
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Time is included as a state because the system is non-autonomous (i.e. the non-linear

force function Fh(ζ, t) can depend on time). This is necessary for allowing the location

of the surface of the water to evolve with time.

The transformation into state space is given below:

ẋ1 = x2 (2.8)

mẋ2 = Fh(x1, x3)− u− b x2 (2.9)

ẋ3 = 1 (2.10)

The Lagrangian to optimize over will be defined as the negative of the energy extracted

from the device, given below.

ϕ(x, u) = −ux2 dt (2.11)

The negative sign is included in the Lagrangian as the optimization problem is set

up as a minimization problem. Minimizing the negative of the energy extracted is

equivalent to maximizing the energy extracted. It is interesting to note that the same

control law will be derived regardless if this negative sign is included or not. However,
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the negative sign is important when performing the Legendre-Clebsch second-order

tests.

It will be assumed that there are no limits on the control force which can be applied

in this problem formulation. This is a reasonable assumption as the power take-off

needs to be capable of producing the force required to keep the system on the singular

arc. If it is not, the system will leave the singular arc, and optimal power extraction

will not be achieved.

Let λ be the vector of co-states, and let f be the vector of state equations. Then the

Hamiltonian for the system can then be defined as follows:

H = ϕ(x, u) + λTf(x, u, t)

= −ux2 + λ1 x2 +
λ2

m

[
Fh(x1, x3)− u− b x2

]
+ λ3

(2.12)

The state equations which can be re-computed from the Euler-Lagrange equation 1.18

take the same form as in equations 2.8, 2.9, and 2.10. The co-state equations can be

computed from the Euler-Lagrange equation 1.19 as follows:
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−λ̇1 =
λ2

m
∂x1Fh(x1, x3) (2.13)

−λ̇2 = −u+ λ1 −
b

m
λ2 (2.14)

−λ̇3 =
λ2

m
∂x3Fh(x1, x3) (2.15)

The stationary condition (computed from equation 1.20) is as follows:

− x2 −
λ2

m
= 0 (2.16)

The state, co-state, and constraint equations can be solved algebraically to derive a

closed-form solution for the control force u in terms of the states and the excitation

force. The derivation is shown below.

The first step in the derivation is to find algebraic relations for λ1 and λ2. A constraint

for λ2 can be solved from equation 2.16 when the stationary condition holds (i.e. the

system is on a singular arc).

λ2 = −mx2 (2.17)
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The above can be differentiated to produce:

λ̇2 = −mẋ2 (2.18)

Then equation 2.18 is combined with equation 2.14 to form the following:

mẋ2 = −u+ λ1 −
b

m
λ2 (2.19)

Equation 2.17 is used to eliminate λ2 from the above.

mẋ2 = −u+ λ1 + b x2 (2.20)

The state equation 2.9 is used to eliminate ẋ2 from the above.

Fh(x1, x3)− u− bx2 = −u+ λ1 + b x2 (2.21)

The above result can be simplified to find an algebraic relation for λ1 when the

stationary condition holds.
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λ1 = Fh(x1, x3)− 2b x2 (2.22)

The two algebraic constraints for λ1 and λ2 can be combined with the state and

co-state equations to find an algebraic solution for u. The above result can be differ-

entiated with respect to time as shown below:

λ̇1 = ẋ1 ∂x1Fh(x1, x3) + ẋ3 ∂x3Fh(x1, x3)− 2b ẋ2 (2.23)

The co-state equation 2.13 can be substituted into the above to eliminate λ̇1.

− λ2

m
∂x1Fh(x1, x3) = ẋ1∂x1Fh(x1, x3) + ẋ3∂x3Fh(x1, x3)− 2b ẋ2 (2.24)

Equation 2.17 can be used to eliminate λ2 from the equation above. Equation 2.8

can be used to eliminate ẋ1, equation 2.9 can be used to eliminate ẋ2, and equation

2.10 can be used to eliminate ẋ3.

x2∂x1Fh(x1, x3) = x2∂x1Fh(x1, x3) + ∂x3Fh(x1, x3)−
2c

m
(Fh(x1, x3)− u− b x2) (2.25)
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The above equation can be simplified to yield the following:

u = Fh(x1, x3)− b x2 −
m

2b
∂x3Fh(x1, x3) (2.26)

The state definitions can be substituted into equation 2.26 to yield the general optimal

control law when the system is on the singular arc.

usa = Fh(ζ, T )− b ζ̇ − m

2b
∂T Fh(ζ, T ) (2.27)

This optimal control law is broadly applicable under a wide variety of buoy models

and is the main result of this thesis.

Once the optimal control law is known, the third co-state constraint equation can be

found. The co-state constraint equations show how the co-states will evolve if the

stationary condition is met, i.e. the system is on a singular arc.

The third co-state constraint can be found by the following procedure. First, an

observation must be made that the Hamiltonian will be some constant value when

the system is on an optimal arc, which comes from Pontryagin’s Minimum Principle.

Because λ3 appears alone at the end of the Hamiltonian, it can be expressed as

λ3 = (some expression forcing the Hamiltonian to be constant) + C without loss of
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generality. This means that for this particular system, the value of the Hamiltonian

constant can be chosen by picking C.

From the above observation, let

H = C (2.28)

Then by substituting the optimal control law from equation 2.27 as well as the pre-

vious co-state constraints from equation 2.22 and 2.17 into the above equation, the

following expression is found:

− bv2 + λ3 = C. (2.29)

Arbitrarily choose C = 0, then, when the system is on the singular arc,

λ3 = b v2 (2.30)
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2.3 Legendre-Clebsch Necessary Conditions

The generalized Legendre-Clebsch test is followed for the singular arc found in section

2.2. The generalized test, which is found in equation 1.26 is re-written for convenience:

∂

∂u

[
d2

dt2
Hu(x(t), λ(t), u(t))

]
≤ 0 (2.31)

The derivative of the Hamiltonian with respect to the control variable u is below:

Hu = −x2 −
λ2

m
(2.32)

Note that this quantity is used to compute the stationary condition in equation 2.16.

The first time derivative of Hu is:

d

dt
Hu = −ẋ2 −

λ̇2

m
(2.33)

Equation 2.9 and equation 2.13 are substituted into the above to yield:
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d

dt
Hu = −Fnl(ζ, T )− u− bv

m
−

u− λ1 +
b
m
λ2

m

= −Fnl(ζ, T )

m
+

bv

m
+

λ1

m
− bλ2

m2

(2.34)

The second time derivative is taken of the above:

d2

dt2
Hu = − ζ̇ ∂ζ Fnl(ζ, T )

m
− Ṫ ∂T Fnl(ζ, T )

m

+
bv̇

m
+

λ̇1

m
− bλ̇2

m2

(2.35)

State and co-state equations are substituted into the above to yield the following:

d2

dt2
Hu = − ζ̇ ∂ζ Fnl(ζ, T )

m
+

∂T Fnl(ζ, T )

m

+
bFnl(ζ, T )

m2
− 2bu

m2
− b2v

m2

− λ2∂ζFnl(ζ, T )

m2

+
bλ1

m2
− b2λ2

m3

(2.36)

Only one term in the above contains the control variable u, so when the derivative of

the above with respect to u is taken, only one term survives.
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∂u
d2

dt2
Hu = − 2b

m2
(2.37)

The second-order test can then be performed as follows:

(
∂u

d2

dt2
Hu = − 2b

m2

)
≤ 0 (2.38)

The generalized Legendre-Clebsch test always passes because the mass m and damp-

ing value b must be positive real values.

2.4 Relationship Between Optimal Solution and

Conjugate Control

Zou et al. compared the above optimal control solution for the linear wave energy

converters to complex conjugate control through simulation [1]. In this section, the

relationship between the two is developed analytically. First, the main result from

complex conjugate control is derived [10]. Finally, it is shown that this result is a

special case of the general optimal control solution.

42



2.4.1 Derivation of Complex Conjugate Control

The conjugate control optimal constraint for a linear system in regular waves is derived

below.

First, the linear dynamic equation is given in equation 2.39. ζ is the position of the

buoy, fe is the excitation force, and fL is the force applied by the power take-off (also

called the load force).

mζ̈ + bζ̇ + kζ = fe + fL (2.39)

Because the system, the excitation, and load forces are periodic, the system can be

analyzed in the Laplace domain. The substitution s = iω is made to study the

frequency response of the system.

(s2m+ sb+ k)Z = Fe + FL (2.40)

(−mω2 + biω + k)Z = Fe + FL (2.41)
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The analysis below will be more concerned with the velocity than the position of the

system, so a new variable V is defined as the velocity of the system. The position and

velocity are related through a derivative, so sZ = V . Again, the substitution s = iω

is made.

(iω)Z = V ⇒ Z = − i

ω
V (2.42)

The load force is defined to be a constant dissipative/resistive load which must have

the following form, where d is a positive real number:

FL = −d(V ) (2.43)

Substituting equation 2.42 and the form of the load force from equation 2.43 back

into equation 2.41 yields the following equation:

(iωm+ (b+ d)− i

ω
k)V = Fe (2.44)

The above can be solved for velocity to yield the following expression:
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V =
Fe

iωm+ (b+ d)− i
ω
k

(2.45)

The idea of complex conjugate control is to force the system to operate at resonance.

This can be seen to be ideal from inspection of the following argument. When the

reactive terms in the system equation are forced to zero, then a given excitation force

will translate into the largest possible dissipative force, which is desirable for power

extraction. When the system is operating at resonance, the following constraint must

hold:

iωm− i

ω
k = 0 (2.46)

When the above resonance constraint is substituted into equation 2.45, the following

result for the velocity of the system is found:

V =
Fe

b+ d
(2.47)

Maximization of the extracted power using calculus will now be performed to find the

optimal value for d. The power extracted is defined as the negative of the product of

the velocity and the load force applied to the system.
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P = −V FL ⇒ P = V 2 d (2.48)

Substituting the above back into equation 2.47 yields the following result for the

extracted power:

P = − dFe
2

(b+ d)2
(2.49)

The above power result can be maximized by setting the derivative with respect to

the free parameter d to zero.

∂dP = 0 ⇒ b− d

b+ d
Fe = 0 (2.50)

Equation 2.50 result can be solved to find the optimal value of d.

b− d = 0 ⇒ b = d (2.51)

The power transfer out of the system is maximized when the impedance of the power

take-off is matched with the impedance of the buoy. The above result can be sub-

stituted back into equation 2.47 to find the optimal constraint on the velocity for
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complex conjugate control in the frequency domain.

V =
Fe

2b
(2.52)

Finally, the result can be translated out of the frequency domain and back into the

time domain to yield the general constraint on the velocity of the system for optimal

power transfer. This constraint is valid as long as all excitation forces are periodic,

i.e. the frequency domain analysis used above holds.

ζ̇ =
fe
2b

(2.53)

The above is the well-known main result from complex conjugate control [10].

2.4.2 Relationship with Optimal Control

The main complex conjugate control result can be recreated from the optimal control

result for a linear system. The dynamic equation for a linear system is written below:

m ζ̈ + c ζ̇ + k ζ = Fe − u (2.54)
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The optimal control law for a linear system is shown below:

u = Fe − c ζ̇ − k ζ − m

2b
Ḟ e (2.55)

Substituting equation 2.55 into equation 2.54 yields the following equation:

m ζ̈ + c ζ̇ + k ζ = Fe−
(
Fe− c ζ̇ − k ζ − m

2b
Ḟ e

)
(2.56)

All terms but the mζ̈ term and the m
2b
Ḟ e term cancel. Therefore, the above can be

simplified into the following:

ζ̈ =
Ḟe

2b
(2.57)

Taking the anti-derivative of the above equation yields the following:

ζ̇ =
Fe

2b
+ C (2.58)

Integrating the above equation again will show that ζ = Ct + E +
∫ t

0
Fe(τ)
2b

dτ . The

buoy position ζ is required to be periodic which means the linear term must vanish
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and therefore C = 0.

ζ̇ =
Fe

2b
(2.59)

This is the same result that was obtained through the derivation of complex conjugate

control, which means that complex conjugate control is a special case of the optimal

control law (when the system is linear and the waves are regular). However, unlike

complex conjugate control, the optimal control law developed here is not limited by

these assumptions.

2.5 Application to Linear Buoy Model

The general control law is applied to the linear buoy model. The control law derived

is the same as what is given in Zou et al [1]. Bang bang control for the linear model is

considered, using a derived switching function. Optimal initial conditions are found

that lie on the singular arc. Numerical simulation is provided which verifies the

performance of the system, both on and off of the singular arc. Finally, it is shown

that there are an infinite number of singular arcs and that they can be constructed

by changing the position initial condition.
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2.5.1 Application of General Control Law to Linear Buoy

The linear model of the system described by the free body diagram 2.1 is shown

in equation 2.1 and is re-written below for convenience. T is capitalized to denote

that it represents the time state, not the time t. However, as per equation 2.7, the

substitution T (t) = t can be made at the appropriate point in the analysis after all

the derivatives with respect to T have been taken.

mζ̈ + cζ̇ = f(ζ, T )− u (2.60)

The force term for the linear buoy is defined as given below:

f(ζ, T ) = −k(ζ − η(T )) (2.61)

The generalized control law (equation 2.27) states that both the force as well as the

derivative of the force with respect to the time state are needed. The derivative is

simply ∂T f(ζ, T ) = k η̇(T ).

After the derivatives have been taken, the substitution T = t may be made, and the

above can be substituted into equation 2.27 to yield the optimal control law for a
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linear buoy.

usa = k η(t)− k x− b v − km

2b
η̇(t) (2.62)

The above equation is true for any general wave height η(t), however, a periodic

forcing function will be applied for the subsequent analysis.

Let a be the amplitude of the wave applied to the buoy from a regular wave field,

and let Tw be the period of that regular wave field. Then the excitation force for the

buoy in a regular wave field takes the following form:

η(t) = a cos

(
2π

Tw

t

)
(2.63)

The derivative, as required by the control law, is computed as the following:

η̇(t) = −a
2π

Tw

sin

(
2π

Tw

t

)
(2.64)

Substituting these into the control law for the linear buoy, the following specific

optimal control law for the linear model when the system is on the singular arc is

calculated below:
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usa(t) = k a cos

(
2π

Tw

t

)
− b v(t)− k x(t) +

2π kma

2b Tw

sin

(
2π

Tw

t

)
(2.65)

The above holds when the system is on the singular arc. According to the Pontryagin

Minimum Principle, when the system is off the singular arc, the maximum available

control should be applied to drive the system back to the singular arc. Let γ be the

maximum control available. ζ = Hu = −v − λ2

m
forms a switching function that can

be used to drive the system to the stationary condition.

u(t) =



γ ζ(t) > 0

usa(t) ζ(t) = 0

−γ ζ(t) < 0

(2.66)

The switching function ζ is awkward to use because it is in terms of the co-state

λ2. The initial conditions for the co-state are not known when the system is not on

the singular arc, making the simulation difficult to implement. A different switching

function can be derived as follows [1]:

ζ(t) = v(t)− k

2b
η(t) (2.67)
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This switching function is found by substituting the optimal control law 2.27 back

into the velocity state equation 2.9 which yields the following:

v̇ =
k

2b
η̇(t) (2.68)

The above can be integrated with respect to time, which produces the equation below:

v =
k

2b
η(t) + C (2.69)

To find C, the state equation 2.5 can be substituted above, and then the system can

be integrated to yield the following expression:

ẋ =
k

2b
η(t) + C (2.70)

x = D + Ct+

∫ t

0

k η(τ) dτ (2.71)

Because only periodic forcing functions are considered, then C = 0.

Solving equation 2.69 for C yields the switching function 2.67 (repeated below for
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clarity).

ζ = C = v(t)− k

2b
η(t) (2.72)

Because the above was found by substituting the optimal control law into the state

equation 2.9, when the switching function ζ = 0, the system must be on the singular

arc. When ζ ̸= 0, the system is off the singular arc and must be driven back.

2.5.2 Optimal Initial Conditions

The optimal initial conditions for the linear buoy can be computed as follows. The

state space for the linear system is given below.

ẋ = v (2.73)

v̇ =
k(η(t)− x)− c v − u

m
(2.74)

Ṫ = 1 (2.75)

For this simple linear model, the state space can be directly solved.

54



x = tD + C +
k a Tw

4π b
sin

(
2π

Tw

t+ E

)
(2.76)

v = D +
k a

2b
cos

(
2π

Tw

t+ E

)
(2.77)

T = t+ E (2.78)

The variables C, D, and E are integration constants. The initial condition for the

state T is known to be T (0) = 0, which forces E = 0. The state x must be periodic,

which forces D = 0. The initial condition C cannot be determined from the infor-

mation available and must be found by looking for the condition which maximizes

the power extraction from the device. The optimal result ends up being C = 0. The

fact that C is not determinable is indicative of the fact that there are infinitely many

singular arcs, but this will be discussed later in the numerical analysis section 2.5.4.

Then the following are the equations of motion for the system.

x =
k a Tw

4π b
sin

(
2π

Tw

t

)
(2.79)

v =
k a

2b
cos

(
2π

Tw

t

)
(2.80)

T = t (2.81)
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The optimal initial conditions can be computed when t = 0 as follows:

x(0) = 0 (2.82)

v(0) =
k a

2b
(2.83)

T (0) = 0 (2.84)

2.5.3 Numerical Simulation on Singular Arc

In this section, a numerical simulation is used to verify the performance of the linear

system. The numerical values used in the simulation are provided in Table 2.1. These

numerical values will also be used in the non-linear simulations in the sections below

for a fair comparison.

Table 2.1
Numerical values of quantities used in linear simulations

Quantity Value Units Description
g 9.81 m/s2 Acceleration due to gravity
ρ 1000 kg/m3 Density of water
m 109626 kg Mass of the buoy
b 20000 N s/m Linear viscous damping coefficient
k π 9810 N/m Spring force constant
a 0.5 m Wave height
Tw 11.8502 s Period of wave field
γ 20000 N Max available control force
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The linear system was modeled starting at the optimal initial conditions. The initial

conditions for the states were found using the values described above. The initial

values for the co-states were found using the co-state constraints from equations 2.22

and 2.17. The system is simulated at resonance i.e. the wave period was calculated

as Tw = 1
2π

√
k/m ≈ 11.8502.

The position and velocity are shown in figure 2.3. Note that the optimal initial

condition for the position state is 0, whereas the optimal initial condition for the

velocity state is at the max amplitude of the velocity sinusoid.
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Figure 2.3: Position and velocity of the buoy vs time

Figure 2.4 below shows the velocity and control force overlaid. Note that the control
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force is in phase with the velocity, yielding maximum power generation.

The velocity and control forces are only perfectly in phase when the frequency of the

wave field is equal to the resonant frequency of the linear system. As the wave field

frequency moves away from the resonant frequency, the velocity will begin to either

lead or lag the control force. This yields a smaller, although still optimal, power

generation.
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Figure 2.4: Velocity and control force of the buoy vs time. Note that veloc-
ity is given in decimeters/second, and control force is given in kilonewtons
to make graph scales comparable. The wave field frequency is set at the
resonant frequency of the buoy

In Figure 2.5 below, the power transfer out of the device is maximized. Positive

power values represent instantaneous power generated by the device. Negative values
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represent instantaneous power drawn by the device. The blue line shows the average

power generated by the device.

At resonance, and starting at optimal initial conditions, power is only generated by

the device, and no power is drawn. This represents an optimum power extraction

trajectory for the device.
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Figure 2.5: Instantaneous and average extracted power from the buoy vs
time

At an optimal trajectory, the Hamiltonian should be constant. As seen below in figure

2.6, there are small spikes in the Hamiltonian due to numerical integration error.

These spikes were found to decrease as the step size of the integration technique was

increased.
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Figure 2.6: Hamiltonian vs time

When on the singular arc, the switching function should be identically equal to 0.

Figure 2.7 below shows this to be true. Due to numerical error, there are very slight

variations away from 0 once the system is on the singular arc.
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Figure 2.7: Switching function ζ vs time

Figure 2.8 below shows the co-states calculated from the evolved from the co-state

equations 2.13, 2.14, and 2.15, and also from the co-state constraint equations 2.22,

2.17, and 2.30. The co-state constraints are derived from the stationary condition in

equation 2.16, which is only valid when the system is on the singular arc. Therefore,

the fact that the evolved and calculated co-states match is a good check that the

system is on the singular arc in this simulation. The fact that the data in the three

co-state graphs are line-on-line shows that the simulated system is on a singular arc.
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Figure 2.8: Co-state numerically integrated (evolved) from the differential
equation and calculated from the singular arc constraint

2.5.4 Numerical Simulation off of Singular Arc

The results from the simulation which was off of the singular arc were derived from

starting the system at an initial condition of (x0, v0) ≈ (0.273, 0). This initial condi-

tion is not on the singular arc.

Figure 2.9 below shows the position vs velocity for the system when the above initial

conditions are used. The discontinuity in the velocity around 1.5 seconds arises from
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the control switching from bang-bang to the singular arc control as the system moves

onto the singular arc. The initial choice of the position state will be discussed at the

end of this section.
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Figure 2.9: Position and velocity vs time with initial conditions (x0, v0) ≈
(0.273, 0)

Figure 2.10 below shows the control force vs time. For about the first 1.5 seconds,

the control is in bang-bang mode because the system is not on the singular arc. After

that time, the system arrives on the arc and the singular control law is used. Note

that in this simulation, the maximum control force available is γ = 20 kN. This value

was chosen as an arbitrary number that was larger than the maximum force required

on the singular arc.
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Figure 2.10: Velocity and control force vs time with initial conditions
(x0, v0) ≈ (0.273, 0). Note that velocity is given in decimeters/second, and
control force is given in kilonewtons to make graph scales comparable.

The power generated from this simulation after the system is on the singular arc as

shown in figure 2.11 is very similar to the power generated in the previous simulation

(shown in figure 2.5). There is a significant power draw in the simulation during the

first 1.5 seconds to move the system to the singular arc, maxing out at over 5kW

draw. After the system reaches the singular arc, the power generation is very similar

to figure 2.5, averaging about 1.5 kW.
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Figure 2.11: Instantaneous and average extracted power from the buoy vs
time with initial conditions (x0, v0) ≈ (0.273, 0)

The switching function is shown in figure 2.12 below. Before about 1.5 seconds, the

system is not on the singular arc, and so the switching function is negative. As

the system moves to the singular arc, the switching function moves to be almost

identically equal to 0.
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Figure 2.12: Switching function ζ vs time with initial conditions (x0, v0) ≈
(0.273, 0)

The evolution of the co-states is shown below in figure 2.13. Until about 1.5 seconds,

the system is not on the singular arc, and so the evolved co-states from equations

2.13, 2.14, and 2.15 do not match the co-state constraints equations 2.22, 2.17, and

2.30. At about 1.5 seconds, the system is driven to the singular arc. At this point,

the evolution of the co-states is known to match the co-state constraint equations.

Because the initial conditions of the co-states are not known at the beginning of the

simulation but are known when the system lands on the singular arc, the values of

the co-states must be updated in the numerical integration routine when the system

lands on the singular arc. After the co-states are updated, the full system is allowed

to continue to evolve.

66



In figure 2.13 below, it can be seen that evolved and constraint graphs of λ1, λ2,

and λ3 are essentially line-on-line once the system reaches the singular arc. Any

discrepancies come from errors in the numerical integration.
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Figure 2.13: Co-state numerically integrated (evolved) from the differential
equation and calculated from the singular constraint with initial conditions
(x0, v0) ≈ (0.273, 0)

There are an infinite number of initial conditions which meet the requirements for

being a singular arc. This can be seen by integrating the switching function from

equation 2.67. Integrating this equation yields x(t) = E + 1
2c

∫ t

0
fe(τ) dτ , where E is

an integration constant, and τ is a dummy integration variable. Like equation 2.67,
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this equation is valid when the system is on a singular arc. There are no constraints

on the integration constant E, and from this, it can be seen that the system is on the

singular arc for any initial condition for the position state.

The initial condition for the position state does have a significant effect on the power

generation of the system. If the position initial condition is not chosen correctly, the

system will oscillate in a lopsided manner, and the amount of average power generated

will be reduced. An example of this is shown in the simulations shown below.

For the following simulations, the initial conditions were chosen as (x0, y0) = (0, 0).

Note that the x0 initial condition is different than the optimal initial condition of

about x0 = 0.273 used in the simulations above.

It can be seen that unlike in figure 2.9, the system in figure 2.14 below has a lopsided

position which has a max value of about 0.5 meters and a min value of about -1.0

meters.
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Figure 2.14: Position and velocity vs time with initial conditions (x0, v0) =
(0, 0)

There is a constant offset in the control function as compared to figure 2.10. The

offset is required to drive the position of the system in the lopsided manner shown in

the graph above. This additional control effort will reduce the power extracted from

the system, even though the system is on a singular arc.

69



Velocity [dm/s]

Control [kN]

0 5 10 15 20

-20

-15

-10

-5

0

5

10

15

Time [s]

M
ag
n
it
u
d
e

Velocity and Control vs Time

Figure 2.15: Velocity and control force vs time with initial conditions
(x0, v0) = (0, 0). Note that velocity is given in decimeters/second, and
control force is given in kilonewtons to make graph scales comparable.

The power extracted from the system is shown below in figure 2.16. Notice that there

are points in the stationary cycle where the power generated is negative, which is not

true in graph 2.11. The average power generated in this graph is still about 1.5 kW.
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Figure 2.16: Instantaneous and average extracted power from the buoy vs
time with initial conditions (x0, v0) = (0, 0)

The co-state graphs are provided below in figure 2.17 to prove that the simulation

is still on a singular arc. This is true even though the initial condition x0 = 0 in

this simulation is different from the optimal simulation of x0 ≈ 0.273 used above.

Also, the power extracted in figure 2.16 is less than figure 2.11. Still, once the system

leaves bang-bang control and starts using the singular arc control law, the co-state

constraints are line-on-line with the evolved co-states. This proves that the system is

on a singular arc.
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Figure 2.17: Co-state numerically integrated (evolved) from the differential
equation and calculated from the singular constraint with initial conditions
(x0, v0) = (0, 0)

2.6 Application to Hour Glass Buoy

The general control law from equation 2.27 will be applied to a non-linear hourglass

buoy. Then numerical simulation will be used to verify the performance of this system.

72



2.6.1 Application of General Control Law to Hourglass Buoy

A schematic representation of the hourglass buoy is provided below in figure 2.18.

Figure 2.18: Schematic representation of an hourglass buoy

The hydrostatic force on the buoy can be calculated by finding the submerged volume

of the buoy Vsub. The hydrostatic force is given in equation 2.85. Note that a term

for gravity has been included.

Fh = ρ g Vsub −mg (2.85)

The submerged volume can be found as an integral of the cross-sectional area of the

buoy. The cross-sectional area will be found as a function of buoy height, then this
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function can be integrated over the submerged height to find the submerged volume

of the buoy.

The cross-sectional area of the buoy as a function of height is given below, where ζ

is the position of the buoy with respect to the draft line.

Sw(z, ζ) = π tan(α)2[z − ζ]2 (2.86)

The formula for the volume of a cone is provided below:

Vcone =
1

3
π tan(α)2h3 (2.87)

where h is the height of the cone.

The submerged volume can then be found as follows:

Vsub = Vcone +

∫ η

ζ

Sw(z, ζ) dz (2.88)

The Vcone term accounts for the fact that at the draft line, half of the buoy is already

submerged. The integral accounts for the change in the submerged volume due to
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the buoy position ζ and the height of the water from the draft line η.

Equations 2.85, 2.86, 2.87, and 2.88 can be combined to find the hydrostatic force on

the buoy, which is shown below:

Fh(ζ, η) = ρ g Vcone + ρ g

∫ η

ζ

π tan(α)2 [z − ζ]2 dz −mg

=
1

3
ρ g π tan(α)2 h3 +

1

3
ρ g π tan(α)2 (η − ζ)3 −mg

(2.89)

Through the density of water, the mass from the gravity term can be translated to a

volume, which must be the volume of one of the cones. This can be reasoned by the

fact that the draft line is defined so that one cone is fully submerged in still water.

Thus the following is true:

mg = ρ g Vcone =
1

3
ρ g π tan(α)2 h3 (2.90)

Using this fact, the cone volume term and the gravity term cancel yielding the final

equation for the hydrostatic force on the buoy:

Fh(ζ, η) =
1

3
ρ g π tan(α)2 (η − ζ)3 (2.91)
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Note that η is dependent on the time state T because η represents the water surface

which is dependent on time. The wave height function should therefore actually be

written as η(T (t)), however, the dependency has been dropped in the above equations

for brevity.

If a stiffness-like variable is defined as k = 1
3
ρ g π tan(α)2, then the similarities be-

tween the hourglass buoy model and the linear buoy model are evident.

Fl = k(η − ζ) (2.92)

Fh = k(η − ζ)3 (2.93)

where Fl is the linear force model, and Fh is the hourglass force model.

According to the optimal control law, the derivative of the force with respect to

the time state T is needed and is computed from equation 2.91 below. The full

dependencies on the time state T and on time t has been written out for clarity.

∂T (t) Fh(ζ(t), η(T (t))) = π ρ g tan(α)2 [ζ(t)− η(T (t))]2 η̇(T (t)) (2.94)
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Equations 2.91 and 2.94 can then be substituted directly into the optimal control

law found in equation 2.27 to generate the following law relating to hourglass buoys.

Finally the substitution T (t) = t is made using equation 2.7. The time dependence of

ζ is not included below, but it is implied. The time dependencies are used to denote

that a function is non-autonomous.

usa(t) =
1

3
ρ g π tan(α)2 (η(t)− ζ)3 − b ζ̇ − m

2b
π ρ g tan(α)2 (ζ − η(t))2 η̇(t) (2.95)

The control law that maximizes the energy extracted from an hourglass buoy was

found directly from equation 2.27. Note that it is only valid if the system is on a

singular arc.

Unfortunately, the procedure for generating a closed-form switching function for the

linear system does not apply to the hourglass buoy. In the linear problem, equation

2.68 is only a function of the time state, so the integral of this function with respect

to time has a closed-form solution. In the non-linear case, the force term on the

right-hand side is dependent on both the time state as well as the position state

variable. This means that there is no closed-form expression for this integral. The

initial condition for this integral must be known at the start of the simulation to

evolve the system, but the integral state is not known until the system is on the
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singular arc and the co-state constraint equations apply. More work needs to be done

to find a general candidate switching function for non-linear models.

2.6.2 Searching for Singular Arcs

A method for searching for singular arcs was developed and demonstrated on the

hourglass buoy model. In section 2.5.4, it was shown that the co-state constraints

equations 2.22, 2.17, and 2.30 and the co-state evolution equations 2.13, 2.14, and

2.15 could be used to verify that a system was on a singular arc. If both the constraint

and the evolution of the co-state differential equation produced the same result, then

the system is on a singular arc. This is because the co-state constraints are derived

from the stationary condition, so if the co-state constraints hold, then the stationary

condition must hold.

While this test method can be used as a verification to ensure that the system is

on a singular arc, it can be impractical as a search criterion. In practice, it is not

clear how long to simulate the system for before a divergence is expected between the

co-state evolution and the co-state constraint equations. Simulating the system for a

long duration can also be computationally slow, as many simulations need to be run

during the search.

An observation can be made that singular arcs should be periodic with the same
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period as the forcing wave. This observation leads to a practical search method.

First, set up an error function that penalizes non-periodic trajectories. Next, choose

an arbitrary state to check. Finally, simulate the system for one period, and check the

error function. Standard numerical optimization techniques can be used to choose the

next search point. Gradient-based methods were able to find two different singular

arcs for the hourglass buoy case.

The error function to enforce periodicity was defined as:

err = (x(0)− x(Tw))2 + (v(0)− v(Tw))2 (2.96)

where Tw is the period of the wave.

2.6.3 Numerical Simulation of Hourglass Buoy

Using the numerical search method defined in section 2.6.2, two different singular arcs

were found. The initial conditions for the arcs are (x0, v0) = (−0.393072, 0.857953)

and (x0, v0) = (−0.0237669, 0.11256).

79



Table 2.2
Numerical values of quantities used in nonlinear simulations

Quantity Value Units Description
g 9.81 m/s2 Acceleration due to gravity
ρ 1000 kg/m3 Density of water
m 109626 kg Mass of the buoy
b 20000 N s/m Linear viscous damping coefficient
k π 9810 N/m Spring force constant
a 0.5 m Wave height
α 60 deg Hourglass buoy angle
Tw 6 s Period of wave field

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x0

v
0

Figure 2.19: Phase space of hourglass buoy at t=7 s with two found sin-
gular arcs
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Figure 2.19 shows the phase space of the nonlinear hourglass buoy system with two

different singular arcs which were found using the numerical search method described

in subsection 2.6.2. The current state of the system is represented by a dot. The

trajectory of the system is represented by a curve.
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Figure 2.20: Phase space of hourglass buoy at t=10.5 s with two found
singular arcs

The direction of the arrows in phase space is time-dependent. The phase space graph
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shows a stable side and an unstable side which flip sides with the period of the wave.

Figure 2.20 shows when the orbits of the singular arcs are on the other side of the

graph, and when the stable and unstable sides have flipped along the x0 axis.

The two singular arcs need to be analyzed to determine if they are optimal candidates.

The first arc to be analyzed will be the larger (orange) arc from figure 2.19. The

velocity and the control force for the larger (orange) arc are shown in figure 2.21.
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Figure 2.21: Velocity and control force for large (orange) singular arc orbit

The instantaneous and average power for the larger (orange) are shown in figure 2.22.

This singular arc takes power to stay on, as can be seen by the fact that the average
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power is approximately -1.5 kW.
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Figure 2.22: Instantaneous and Average power for large (orange) singular
arc orbit

The trajectory is verified to be a singular arc by comparing the co-state equations

and the co-state constraints in figure 2.23.
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Figure 2.23: Co-state evolved vs constraint check for large (orange) singu-
lar arc orbit

The second arc to be analyzed will be the smaller (blue) arc from figure 2.19. The

velocity and the control force for this arc are shown in figure 2.24.
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Figure 2.24: Velocity and control force for smaller (blue) singular arc orbit

The instantaneous and average power for the smaller (blue) are shown in figure 2.25.

This singular arc takes does generate power, but the result is minuscule at approxi-

mately 70 watts. This makes sense as the velocities for this arc are small, and power

generation is related to velocity.
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Figure 2.25: Velocity and control force for smaller (blue) singular arc orbit

The trajectory is verified to be a singular arc by comparing the co-state equations

and the co-state constraints in figure 2.26.
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Figure 2.26: Velocity and control force for smaller (blue) singular arc orbit

Two singular arcs were found and analyzed, but it is unlikely that either are the

optimal candidate. It is very possible that the search method used was unable to find

optimal arc.
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Chapter 3

Conclusions

Optimal control methods were explored for non-linear wave energy converters. A

derivation of the optimal problem was provided, and the solution was explored for

both linear and hourglass-shaped buoys.

3.1 Summary of Findings

Optimal control methods which maximize the power extracted from a certain class

of non-linear wave energy converters were presented in this thesis. The class of non-

linear wave energy converters considered were models where the non-linear force could

be written in terms of the position state and the time state of the system. Allowing
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the time state to be included in the non-linear force term allows the term to be

non-autonomous, which is necessary to model wave heights that evolve with time.

A general control law for the class of non-linear systems was found which maximizes

the power generated from a system when it is on a singular arc. This general control

law is directly applicable to any buoy model which falls within the class of non-linear

models considered. The general control law is only valid when the system is on a

singular arc.

This general control law was then applied to a linear buoy model. A switching function

was defined which discerns whether the system is on a singular arc, and a bang-bang

controller was defined to drive the system to the singular arc. Numerical analysis of

the buoy model was performed which verifies the performance of the system. The

behavior of the buoy both on and off the singular arc is demonstrated to be optimal

through numerical simulation.

It is demonstrated that there are infinitely many singular arcs that the system can

be on. Only one singular arc is optimal, which is demonstrated through simulation.

A method to construct all possible singular arcs is shown, which is to set the position

initial condition to any arbitrary value. This is justified through analysis of the

switching function. The performance of two different singular arcs are compared -

one which is optimal, and the other which starts at the arbitrarily chosen initial

position of 0.
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The general control law is applied to an hourglass-shaped buoy. A switching function

is difficult to find for non-linear systems, so a numerical search is used to find initial

conditions which are on the singular arc. Two singular arc candidates are found

and analyzed. Neither generate significant power, so it is likely that neither are the

optimal candidate.

3.2 Future Work

A systematic way of finding initial conditions which are on singular arcs for the general

non-linear problem is needed. A method of finding switching functions that can be

used for bang-bang control for non-linear systems is also needed.

If these are found to not be possible, more robust code for searching for the singular

arcs and driving the system towards one of these arcs can be written.

Work also needs to be done to determine if there is some algorithm that can be used

as a switching function to determine in which direction the system should travel to

move toward the singular arc.

Finally, it would be interesting to develop a controller which used feedback to reject

perturbations away from the optimal singular arc.
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Appendix A

Differentiable Approximations to

Piecewise Linear Functions

Often it is desirable to include piecewise linear functions in a dynamic system model.

However, the method above requires that all functions in the non-linear force model

are differentiable. Differentiable approximations to any piecewise linear function can

be built to an arbitrarily close approximation using the method described below.

The core insight to this approximation method is that the derivative of any piecewise

linear function will be some stair step function.

The derivative of any piecewise linear function can therefore be represented as some

sum and product of shifted and scaled step(x) functions. These step(x) functions can
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Figure A.1: Saturate(x) and Abs(x) and their derivatives

then be approximated as sigmoid(x) functions. Finally the approximated derivative

function can be integrated to build the approximation of the desired function.

The equation for a sigmoid function is given below:

sigmoid(x) =
ekx

1 + ekx
(A.1)

In the sigmoid function, k is a smoothing parameter such that:
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lim
k→∞

ekx

1 + ekx
= step(x) (A.2)

The figure below shows how a sigmoid(x) functions can approximate a step(x) arbi-

trarily closely.
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Figure A.2: Step(x) function overlaid against Sigmoid(x) curve with k=50

While the approximation functions generated using this method can be cumbersome

to work with by hand, they pose no issue to a computer algebra system or a numerical

solver software package.
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A.1 Approximation of the Saturate Function

The derivative of the saturate function (shown in figure A.1) can be represented as

step functions in the following way:

∂x saturate(x) = step(1− x) ∗ step(1 + x) (A.3)

This can be approximated by replacing the step functions with sigmoids:

∂x saturate(x) ≈ sigmoid(1− x) ∗ sigmoid(1 + x)

≈ ek(1−x)

1 + ek(1−x)
∗ ek(1+x)

1 + ek(1+x)

(A.4)

Finally equation A.4 can be integrated to produce an approximation of the saturate(x)

function as follows:

saturate(x) ≈
∫

ek(1−x)

1 + ek(1−x)
∗ ek(1+x)

1 + ek(1+x)
dx

≈ e2k

k(e2k − 1)

[
ln(ek + e−kx)− ln(1 + ek(1−x))

] (A.5)
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Therefore a good approximation to the saturate function is the following equation:

saturate(x) ≈ e2k

k(e2k − 1)

[
ln(ek + e−kx)− ln(1 + ek(1−x))

]
(A.6)

A.2 Approximation of the Abs Function

The derivative of the abs function (shown in figure A.1) can be written as follows:

∂x abs(x) = 2 step(x)− 1 (A.7)

This can be approximated as:

∂x abs(x) ≈ 2 sigmoid(x)− 1

≈ 2 ekx

1 + ekx
− 1

(A.8)

The approximation can be integrated as follows:
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abs(x) ≈
∫

2 ekx

1 + ekx
− 1 dx

=
2

k
ln[1 + ekx]− x

(A.9)

Therefore a good approximation to the abs function is the following equation:

abs(x) ≈ 2

k
ln[1 + ekx]− x (A.10)
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Appendix B

Mathematica Code
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export[filename_, object_] :=

Export[FileNameJoin[{NotebookDirectory[], "Figures", filename <> #}], object] & /@ {".eps", ".png"}

The default color palette comes from the “scientific theme” used in Mathematica

A plot command is defined to make consistent themed plots from this code.

defaultColors = ColorData[108, "ColorList"];

color[idx_] := Module[{mod},

mod = Mod[idx - 1, First[Dimensions[defaultColors]]] + 1;

Part[defaultColors, mod]

]

prep[qty_] := qty //. Join[subs, soln]

plot[qty_, opts___] := Plot[

Evaluate[prep[qty]], {t, 0, tMax},

opts,

PlotStyle  defaultColors,

GridLines  Automatic, PlotRange  All,

Frame  True, ImageSize  Medium

]

104



genSoln generates a series of trajectories based on a vector of initial conditions.  It is configured using a series of global 

variables which are listed below.

tMac The max time to simulate to
ctl The control law to use. Generally u[t]  uSa or u[t]  0
force The force model to use. Generally forceLinear or forceHourglass
inits A list of initial conditions for the states.
soln The results from the calculation

The co-state initial conditions are assumed to start on a singular arc.  The initial conditions  are generated using the co-

state constraint equations.

genSolnSwitched is similar to genSoln, however includes extra logic to implement bang-bang control.  

A switching rule is defined which changes a mode variable depending on whether the control should be the min, max, or 

singular control.  The method is changed to stiffnessSwitching which is necessary for the integrator to make it through the 

problem.  

Note that this method seems to introduce some numerical error.  While the percentage error is low compared to the 

regular method, certain functions like the Hamiltonian (which end up being sensitive to this kind of error) will evaluate to 

non-constant expressions.
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Clear[genSoln]

genSoln := DynamicModule{initIdx},

Dynamic[initIdx];

initIdx = 0;

solns = MonitorMapIndexed[Module[{ret},

ret = Function[{init, idx}, Last[NDSolve[Join[

Thread[dX  D[H, {Λ}]],

Thread[-dΛ  D[H, {X}]],

Thread[(X /. t  0)  init],

costateConstraints //. Join[{t  0, Rule  Equal}]

] //. subs,

Join[X, Λ], {t, 0, tMax}

]]]; initIdx += 1; ret

], inits],

ToStringNumberFormN
initIdx

First[Dimensions[inits]]
*100, {∞, 2} <> "% complete"



Clear[genSolnSwitched]

genSolnSwitched := DynamicModule{currentTime, initIdx},

Dynamic[currentTime]; currentTime = 0;

Dynamic[initIdx]; initIdx = 0;

solns = MonitorMapIndexed[Module[{ret},

ret = Function[{init, idx}, Last[NDSolve[Join[

Thread[dX  D[H, {Λ}]],

Thread[-dΛ  D[H, {X}]],

Thread[(X /. t  0)  init],

costateConstraints //. Join[{t  0, Rule  Equal}],

switchRule

] //. subs,

Join[X, Λ, {mode[t]}], {t, 0, tMax},

DiscreteVariables  mode,

Method  "StiffnessSwitching",

EvaluationMonitor  (currentTime = t;)

]]]; initIdx += 1; ret

], inits],

ToString[currentTime] <> " " <>

ToStringNumberFormN
initIdx

First[Dimensions[inits]]
*100, {∞, 2} <> "% complete"


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makePlots generates a series of plots that we are usually interested in for these kinds of systems.

Clear[makePlots]

makePlots := Module{p1, p2, avgPwr, p3, p4, p5, p6},

p1 = plot[{x[t], v[t]},

FrameLabel  {"Time [s]", "Magnitude"},

PlotLabel  "Position and Velocity vs Time",

PlotLegends  Placed[{"Position [m]", "Velocity [m/s]"}, Below]

];

p2 = plot[{v[t], u[t]/10000},

FrameLabel  {"Time [s]", "Magnitude"},

PlotLabel  "Velocity and Control vs Time",

PlotLegends  Placed[{"Velocity [m/s]", "Control [10kN]"}, Below]

];

avgPwr =
1

tMax
Quiet[NIntegrate[prep[v[t]*u[t]/1000], {t, 0, tMax}]];

p3 = plot[{v[t]*u[t]/1000, avgPwr},

FrameLabel  {"Time [s]", "Power [kW]"},

PlotLabel  "Extracted Instantaneous and Average Power vs Time",

PlotLegends  Placed[{"Instantaneous Power", "Average Power"}, Below]

];

p4 = plot[H,

FrameLabel  {"Time [s]", "H"},

PlotLabel  "Hamiltonian vs Time"

];

p5 = plot[ζ[t],

PlotLabel  "Switching Function vs Time",

FrameLabel  {"Time [s]", "ζ"}

];

p6 = Grid[{{

plot[{λ1[t], λ1[t] /. costateConstraints}, PlotLabel  "λ1 vs Time",

FrameLabel  {"Time [s]", "λ1"}, PlotLegends  Placed[{"Evolved", "Constraint"}, Below]],

plot[{λ2[t], λ2[t] /. costateConstraints}, PlotLabel  "λ2 vs Time",

FrameLabel  {"Time [s]", "λ2"}, PlotLegends  Placed[{"Evolved", "Constraint"}, Below]]

}, {

plot[{λ3[t], λ3[t] /. costateConstraints}, PlotLabel  "λ3 vs Time",

FrameLabel  {"Time [s]", "λ3"}, PlotLegends  Placed[{"Evolved", "Constraint"}, Below]],

SpanFromLeft

}}];

{p1, p2, p3, p4, p5, p6}


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Clear[render]

render[T0_] := Module[{rangeSubs, xMin, xMax, vMin, vMax, vp, pp, gp},

rangeSubs = Thread[{xMin, xMax, vMin, vMax} -> Flatten[range]];

(* vector plot *)

vp = VectorPlot[

Evaluate[F[[1 ;; 2]] //. Join[subs, {v[t]  v, x[t]  x, T[t]  T0}]],

Evaluate[{x, xMin, xMax} /. rangeSubs], Evaluate[{v, vMin, vMax} /. rangeSubs],

VectorScale  {0.04, Automatic, None},

VectorColorFunction  Function[{x, y, vx, vy, n}, ColorData["ThermometerColors"][n]],

PlotRange  range,

FrameLabel  {"x0", "v0"}

];

(* parametric plot of trajectores *)

pp = ParametricPlot[Evaluate[{x[t], v[t]} //. solns], {t, 0, T0}, PlotStyle  defaultColors];

(* points at head of trajectories *)

gp = Graphics[Flatten[MapIndexed[Function[{soln, idx}, {PointSize[Large],

color[idx[[1]]], Point[{x[t], v[t]}] //. Join[soln, {t  T0}]}], solns]]];

Show[vp, pp, gp]

]

animate := Animaterender[T0], EvaluateT0, 10-6, tMax //. nVals, DefaultDuration  tMax
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Setup Optimal Control Problem

Setup the optimal control problem and solve for the singular arc control.  Also setup the force and wave models.  Finally, 

solve for the co-state constraints.

X = {x[t], v[t], T[t]};

Λ = {λ1[t], λ2[t], λ3[t]};

dX = D[X, t];

dΛ = D[Λ, t];

(* differential equations *)

{

x'[t]  v[t],

m v'[t] + b v[t]  Fe[x[t], T[t]] - u[t],

T'[t]  1

};

F = dX /. Solve[%, dX][[-1]] // Simplify;

(* lagrangian and hamiltonian *)

Φ = -u[t] v[t];

H = Φ + Λ.F;

(* necessary conditions for optimality *)

D[H, u[t]]  0;

sys = Join[

Thread[dX  D[H, {Λ}]],

Thread[-dΛ  D[H, {X}]],

{%, D[%, t]}

];

(* solve for costate constraints *)

Join[{0 == H}, sys[[{2, 5, 7, 8}]]];

Eliminate[%, {v'[t], λ2′[t]}];

costateConstraints = Solve[%, {λ1[t], λ2[t], λ3[t]}] // Last;

costateConstraints[[{1}]] //. {Rule  Equal};

D[%, t];

Join[%, sys[[{1, 2, 3, 4}]]];

Eliminate[%, {x'[t], v'[t], T'[t], λ1′[t]}] //. costateConstraints[[{2}]];

(* solve for singular arc control *)

uSa[t_] = u[t] /. Solve[%, u[t]] // Last // FullSimplify;
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(* numerical values taken from Houssein's paper *)

nVals = 

g  981/100, ρ  1000, ϵ  10-6, a  5/10,

m  50376 + ma, ma  59250, b  20 000, α  60*π/180,

k ->
1

3
π ρ g Tan[α]2, uMax  20000, Tw ->

2 π

k/m

;

(* wave model *)

η[T]  a Cos
2 π

Tw
T;

wave = {%, D[%, T]} //. {f_[T]  f[T_], Rule  RuleDelayed};

(* force models *)

Fe[x, T]  -k (x - η[T]);

forceLinear = {%, D[%, x], D[%, T]} //. {f_[x, T]  f[x_, T_], Rule  RuleDelayed};

Fe[x, T]  -k (x - η[T])3;

forceHourglass = {%, D[%, x], D[%, T]} //. {f_[x, T]  f[x_, T_], Rule  RuleDelayed};
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Linear System, Initial Conditions on Singular Arc

This is a simulation of the linear system which starts on the singular arc were x0=0.

tMax = Tw //. nVals;

ctl = {u[t_]  uSa[t]};

force = forceLinear;

switching = ζ[t_]  v[t] -
k

2 b
η[T[t]];

inits = 0,
a k

2 b
, 0;

subs = Join[ctl, force, wave, nVals, switching];

genSoln;

soln = solns[[1]];

makePlots // TableForm
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Linear System, Initial Conditions off Singular Arc (bang bang)

Uses bang-bang control to go to the singular arc

Two different singular arcs are simulated.  The first is very similar to the one above.  The second is just an arbitrary arc 

where the initial conditions are (0,0) and where the bang-bang control drives to the nearest arc.

tMax = 2 Tw //. nVals;

ctl = {u[t_]  uMax*mode[t] + uSa[t]*(1 - Abs[mode[t]])};

force = forceLinear;

inits = {

{0.27335446434033694`, 0, 0}, (* close to same singular arc as ideal case above *)

{0, 0, 0} (* off center singular arc *)

};

switching = ζ[t_]  v[t] -
k

2 b
η[T[t]];

switchRule = {

WhenEvent[ζ[t] > ϵ, {mode[t]  1}],

WhenEvent[ζ[t] < -ϵ, {mode[t]  -1}],

WhenEvent[ζ[t]  0, Evaluate[Join[{mode[t]  0}, costateConstraints //. subs]]],

{mode[0]  Piecewise[{{1, ζ[0] > ϵ}, {-1, ζ[0] < -ϵ}}, 0]}

};

subs = Join[ctl, force, wave, switching, nVals];

genSolnSwitched;

soln = solns[[1]]; (* close to same singular arc as ideal case above *)

makePlots // TableForm

soln = solns[[2]]; (* off center singular arc *)makePlots // TableForm
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Nonlinear (Hourglass) System

Set wave period to be shorter so that there is a stable solution

nVals = nVals /. {(Tw  _)  (Tw  6)};

ctl = {u[t_]  uSa[t]};

force = forceHourglass;

subs = Join[ctl, force, wave, nVals];

Search for the arcs by looking for stable orbits that are one period long

A stable orbit must have the same state at the beginning and the end of one period

Clear[stableSearch]

stableSearch[x0_?NumericQ, v0_?NumericQ] := Module{tMax, dSys, soln, err},

tMax = Tw //. nVals;

dSys = Join[

Thread[dX  F],

{x[0]  x0, v[0]  v0, T[0]  0}

] //. subs;

soln = NDSolve[dSys, X, {t, 0, tMax}, Method  "StiffnessSwitching"][[-1]] /.

{x[t]  x[t_], v[t]  v[t_], T[t]  T[t_], Rule  RuleDelayed};

err = (x[0] - x[Tw])2 + (v[0] - v[Tw])2 //. Join[nVals, soln];

err



initialGuesses = {{-1, -1}, {-1, 0}, {-1, 1}, {0, -1}, {0, 0}, {0, 1}, {1, -1}, {1, 0}, {1, 1}};

idx = 0;

Dynamic[idx];

stableInits = Monitor[MapIndexed[

Function[{s, i}, Block[{ret}, ret = FindMinimum[stableSearch[x0, v0],

{{x0, First[s]}, {v0, Last[s]}}, Method  "PrincipalAxis"] // Quiet;

idx = i[[1]]; ret]],

initialGuesses
], idx];

stableInits = SortBy[stableInits, #[[1]] &];

stableInits // TableForm

Select initial conditions from the list of stable orbits above

inits = Function[idx, {x0, v0, 0} /. stableInits[[idx, 2]]][{1, 4}]

{{-0.393072, 0.857953, 0}, {-0.0237669, 0.11256, 0}}

Simulate and animate system

tMax = 2 Tw //. nVals;

range = {{-3, 3}, {-3, 3}};

genSoln;

animate

render[7]

export["nonlinear_phasespace_start", %]

render[10.5]

export["nonlinear_phasespace_end", %]
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soln = solns[[1]];

plot[{v[t], u[t]/100000},

FrameLabel  {"Time [s]", "Magnitude"},

PlotLabel  "Velocity and Control vs Time",

PlotLegends  Placed[{"Velocity [m/s]", "Control [100kN]"}, Below]

]

export["nonlinear_s1_velandctl", %]

avgPwr =
1

tMax
Quiet[NIntegrate[prep[v[t]*u[t]/1000], {t, 0, tMax}]];

plot[{v[t]*u[t]/1000, avgPwr},

FrameLabel  {"Time [s]", "Power [kW]"},

PlotLabel  "Extracted Instantaneous and Average Power vs Time",

PlotLegends  Placed[{"Instantaneous Power", "Average Power"}, Below]

]

export["nonlinear_s1_pwr", %]

Grid[{{

plot[{λ1[t], λ1[t] /. costateConstraints}, PlotLabel  "λ1 vs Time",

FrameLabel  {"Time [s]", "λ1"}, PlotLegends  Placed[{"Evolved", "Constraint"}, Below]],

plot[{λ2[t], λ2[t] /. costateConstraints}, PlotLabel  "λ2 vs Time",

FrameLabel  {"Time [s]", "λ2"}, PlotLegends  Placed[{"Evolved", "Constraint"}, Below]]

}, {

plot[{λ3[t], λ3[t] /. costateConstraints}, PlotLabel  "λ3 vs Time",

FrameLabel  {"Time [s]", "λ3"}, PlotLegends  Placed[{"Evolved", "Constraint"}, Below]],

SpanFromLeft

}}]

export["nonlinear_s1_costate", %]

soln = solns[[2]];

plot[{v[t], u[t]/100000},

FrameLabel  {"Time [s]", "Magnitude"},

PlotLabel  "Velocity and Control vs Time",

PlotLegends  Placed[{"Velocity [m/s]", "Control [100kN]"}, Below]

]

export["nonlinear_s2_velandctl", %]

avgPwr =
1

tMax
Quiet[NIntegrate[prep[v[t]*u[t]/1000], {t, 0, tMax}]];

plot[{v[t]*u[t]/1000, avgPwr},

FrameLabel  {"Time [s]", "Power [kW]"},

PlotLabel  "Extracted Instantaneous and Average Power vs Time",

PlotLegends  Placed[{"Instantaneous Power", "Average Power"}, Below]

]

export["nonlinear_s2_pwr", %]

Grid[{{

plot[{λ1[t], λ1[t] /. costateConstraints}, PlotLabel  "λ1 vs Time",

FrameLabel  {"Time [s]", "λ1"}, PlotLegends  Placed[{"Evolved", "Constraint"}, Below]],

plot[{λ2[t], λ2[t] /. costateConstraints}, PlotLabel  "λ2 vs Time",

FrameLabel  {"Time [s]", "λ2"}, PlotLegends  Placed[{"Evolved", "Constraint"}, Below]]

}, {

plot[{λ3[t], λ3[t] /. costateConstraints}, PlotLabel  "λ3 vs Time",

FrameLabel  {"Time [s]", "λ3"}, PlotLegends  Placed[{"Evolved", "Constraint"}, Below]],

SpanFromLeft

}}]

export["nonlinear_s2_costate", %]
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